CN101668552A - 包含纤维素和糖肽木葡聚糖-grgds的可植入材料 - Google Patents

包含纤维素和糖肽木葡聚糖-grgds的可植入材料 Download PDF

Info

Publication number
CN101668552A
CN101668552A CN200880006212.3A CN200880006212A CN101668552A CN 101668552 A CN101668552 A CN 101668552A CN 200880006212 A CN200880006212 A CN 200880006212A CN 101668552 A CN101668552 A CN 101668552A
Authority
CN
China
Prior art keywords
xyloglucan
chemical group
pcm
clm
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880006212.3A
Other languages
English (en)
Other versions
CN101668552B (zh
Inventor
奥瑟·博丁
保罗·加滕霍尔姆
海伦·芬克
博·里斯贝里
哈里·布鲁默
尼尔斯·拉格·阿伦斯泰特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SweTree Technologies AB
Original Assignee
SweTree Technologies AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP07103055A external-priority patent/EP1961432A1/en
Application filed by SweTree Technologies AB filed Critical SweTree Technologies AB
Publication of CN101668552A publication Critical patent/CN101668552A/zh
Application granted granted Critical
Publication of CN101668552B publication Critical patent/CN101668552B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

医疗或手术用的可植入材料,在其表面上包含特定化学基团以改变所述材料的物理化学性质,从而赋予其合适的植入性质或生物相容性质。

Description

包含纤维素和糖肽木葡聚糖-GRGDS的可植入材料
技术领域
本发明涉及医疗或手术用的可植入材料,其包含改变所述材料的物理化学性质以赋予其合适的植入性质或生物相容性质的特定化学基团。更具体地,本发明涉及包含聚合碳水化合物的可植入材料、制备这些可植入材料的方法以及通过这些方法制成的材料的用途和包含这些材料的产品。
背景技术
器官或组织衰竭是严重的健康问题。组织工程提供了使用来自不同来源的功能性健康细胞(即,自体、异源或异种细胞)和/或细胞外天然或合成聚合物来重建组织功能的潜力。
具有各种不同性质的大量合成聚合物材料如今在医疗和美容用途中使用,如组织工程用的假体、植入物和支架。这些合成聚合物材料通常可分成两个主要类别:临时植入物/可生物再吸收和长期植入物/不可生物再吸收。可生物再吸收的合成材料的实例包括包含聚l-乳酸(PLLA)和聚l-乙醇酸(PLGA)的聚合物。长期可植入和不可生物再吸收材料的实例是聚(四氟乙烯)PTFE,其已用在多种医疗可植入制品,包括血管移植物和组织修复片材和补片中。
但是,这些合成材料也具有限制和缺点,如聚合物与细胞之间的不合适相互作用在体内造成异物反应,如炎症、感染、无菌性松动、局部组织废物和植入物包囊以及血栓形成和栓塞。因此,有前景的聚合物的成功部分取决于相关细胞在其表面上的附着和生长。表面化学介导细胞对该材料的应答并影响细胞在该表面上的粘附、增殖、迁移和功能。
在动脉血管重建领域中,越来越需要功能性小直径人工移植物(内径<6毫米)。当自身替换血管不可得时(例如由于患者差的血管***状况),外科医生除植入合成聚合物基血管外别无选择。在植入后,关于这些血管的最初的主要问题是在相对低的流动条件下由血液凝固和血小板沉积引起的几乎立即阻塞。由于造成表面诱发性血栓形成的相互作用发生在血液-生物材料界面处,所以表面改性已是提高血液相容性的方式。在不同的改性中,用多糖(如肝素)的改性也已广泛用于使人造器官上的血栓形成最小化。但是,问题在于当肝素直接结合到表面上时,肝素的活性显著降低。迄今,最成功类型的生物相容表面是端点连接(end-point-attached)肝素表面。
另一有吸引力的表面改性是引入可防止血浆蛋白质吸附、血小板粘附和血栓形成的亲水性基团。问题在于使它们保留在长期器件(如血管移植物)的表面上。尤其是已将水溶性聚合物,如聚丙烯酰胺(PAAm);聚(N,N-二甲基丙烯酰胺)(PDMAAm);聚(乙二醇)(PEG)、乙烯-乙烯醇共聚物(EVA)和聚(甲基丙烯酸2-羟乙酯)(PHEMA)移植到固体表面上以防止蛋白质吸附。
将材料改性以改进其血液相容性的其它理念必须设法模仿生物惰性表面。在血管中,这种惰性表面由单层内皮细胞构成。目前用作血管移植物的材料,如膨体聚四氟乙烯(ePTFE)和聚酯不会促进人体内皮细胞的粘附或增殖。因此用血纤维蛋白原、粘连蛋白或用固定的RGD(Arg-Gly-Asp)(其是粘附蛋白,如血纤维蛋白原、粘连蛋白和von Willbrand因子的活性位点的最小片段)进行表面改性。除用肝素表面改性外,已经进行大量研究和试验以将内皮细胞接种到PTFE管上。但问题在于使细胞长期保持在表面上。
但是,上文提到的这些合成材料,例如PTFE和聚酯,也具有其它限制和缺点,包括有限范围的物理和生化性质。因此,仍然需要探寻更适用于特定外科应用的替代性可植入材料。
一些调查人员已经研究纤维素及其衍生物的组织生物相容性并且审查该材料的一些特定应用。具体而言,已经调查将由微生物产生的纤维素用在组织工程中。微生物源纤维素具有网络结构,其中由高度结晶和高度单轴取向的纤维素构成的非常细的带状纤维复杂地彼此缠结,且这种网络结构在其内部空隙中含有大量液体。由于该纤维素由具有高结晶度的许多带状纤维构成,该纤维素即使在湿状态下也可以抵抗外力如拉伸力。微生物纤维素并非在结构上不同于源自植物的纤维素,但在植物源纤维素中没有发现高度有序的结构如上述结构,它是微生物纤维素的特性。相应地,微生物纤维素尽管呈凝胶状,但具有高强度。
US 6800753描述了使用再生纤维素(RC)和氧化再生纤维素(ORC)制备组织工程用支架。RC和ORC复合材料通过首先将纤维素溶解在溶剂体系中,然后使该纤维素再生成所需的支架结构来制备。为了制造多孔支架,在该溶剂体系中引入成孔剂以在支架结构中产生孔。可随后将该支架氧化以在其表面上引入羧基、醛和/或酮官能团。这些官能团充当细胞粘附或进一步化学改性的位点以诱导细胞粘附和随后增殖。
Seo S等人(″Alginate microcapsules prepared with xyloglucanas a synthetic extracellular matrix for hepatocyte attachment″,Biomaterials,第26卷no.17(2005),第3607-3615页)描述了用木葡聚糖(XG)改性的藻酸钙聚合碳水化合物胶囊以制备原代小鼠肝细胞的合成细胞外基质。提高的肝特异性功能归因于XG的半乳糖部分与肝细胞上的去唾液酸糖蛋白受体之间的特异性相互作用。
Yang Y等人(″Biodegradable scaffolds-delivery systems forcell therapies″,Expert Opinion on Biological Therapy第6卷,no.5(2006),第485-498页)是论述使用生物分子将可生物降解材料表面改性的综述文章。可生物降解的支架据说在方便细胞疗法的应用方面是重要的。论述了支架材料的选择,特别是在生物相容性方面。概述了仿生支架的形成、能够控制支架构造和微结构的新型制造技术以及可注射和原位交联的支架的制造。概述了在提供能够恰当地引导其所接触的细胞的可生物降解支架方面仍然存在挑战。
Zhou Q等人(″Xyloglucan and xyloglucan endotransglycosy-lases(XET):Tools for ex vivo cellulose surface modification″,Biocatalysis and Biotransformation,第24卷,no.1-2(2006),第107-120页)是木纤维技术领域中的综述文章,描述了木纤维的改性以提供新型生物材料和纤维素的新型表面改性方法。提供了用于使官能团连接到木浆上的新***,包括将木葡聚糖与纤维素之间的高亲和力相互作用、木葡聚糖内糖基转移酶催化多糖-寡糖偶联反应的独特性质和传统的碳水化合物合成组合。
但是,在提供具有良好生物相容性,尤其是具有包含生物活性因子的表面的可植入材料方面仍存在挑战。
根据US 6800753制成的再生纤维素(RC)和氧化再生纤维素(ORC)的使用存在各种问题。例如,用溶剂处理纤维素可能并不理想,因为这种处理可以因纤维素材料的结构改变而复杂化。这些结构改变会导致收缩和改变的形态以及得到更脆的材料。
目前,如上所述,可植入材料受制于与它们的物理和生化性质(如它们的表面化学)相关的问题。无疑目前一个长期存在但尚未满足的需要是开发新的可植入材料并改进它们的性质,以使它们可成功用在医疗应用中。
相应地,本发明的主要目的是提供用于制备具有与活体极好相容性的可植入材料的改进方法,并提供用该方法制成的可植入材料。
本发明的另一目的是提供具有期望机械性质(如机械和拉伸强度、伸长和可缝合性)的可植入材料。
本发明的另一目的是提供带有细胞附着位点或影响细胞粘附、增殖、迁移和功能的其它因子的可植入材料。
本发明的再一目的是提供适用于体内植入的可植入材料。
从下面发明描述中会清楚看出实现各上述目的以及其它目的的方法和手段。
发明内容
为实现本发明的目的,本发明人提供了制备可植入材料的新方法,包括通过使包含化学基团的碳水化合物连接分子(CLM)键合到聚合碳水化合物材料(PCM)上来将PCM改性,其中所述化学基团赋予该PCM改进的生物相容性。
本发明的制备包含用化学基团改性的PCM的可植入材料的方法的主要优点之一是避免化学处理PCM。这种处理会改变PCM的构象(confirmation)或取向以及其它物理化学性质。因此,本发明的方法避免了在PCM的直接化学改性中常遇到的纤维结构和性能的损失。
例如,由于使用有机溶剂,水凝胶如细菌纤维素的化学改性会因结构改变而复杂化。通过将水性化学酶促技术用于细菌纤维素的表面改性,本发明避免了这些结构改变。
在本发明的其它方面中,提供了根据本发明的方法制成的可植入材料;该可植入材料用于制造组织工程用支架的用途;包含根据本发明制成的材料的组织工程用支架;和体内组织置换和/或再生方法。
根据一个具体实施方案,本发明包括包含根据本发明制成的可植入材料的人造血管。本发明的人造血管的特征在于高的耐穿透性、高爆裂压力和良好的生物相容性。
下面尤其参照附图更详细地描述本发明。
附图说明
图1示出了未改性的聚合碳水化合物材料(PCM)(1)和改性PCM(6)。改性PCM包含碳水化合物连接分子(CLM)(2),所述CLM(2)包含至少一部分可溶性聚合碳水化合物(SCP)(3)和化学基团(5)和任选复合的包含该化学基团的碳水化合物聚合物片段(CPF)(4)。
图2示出使用酶和CPF(4)制备CLM(2)。使SCP(8)与酶(7)和包含化学基团(5)的CPF(4)接触。该酶(7)使SCP断裂并引入该含化学基团的CPF,得到产物CLM(2)。
图3示出用Direct Red 28(刚果红)染色的细菌纤维素▲和棉绒●的朗缪尔吸附等温线(A)。图B中的线表示线性回归的结果。
图4示出吸附有木葡聚糖●和木葡聚糖-GRGDS▲的细菌纤维素的朗缪尔吸附等温线(A)。图B中的线表示线性回归的结果。
图5示出吸附有木葡聚糖●和木葡聚糖-GRGDS▲的棉绒的朗缪尔吸附等温线(A)。图B中的线表示线性回归的结果。
图6示出木葡聚糖●和木葡聚糖-GRGDS▲的吸附量与纤维素底物的比表面积的函数关系。该线表示线性回归的结果。
图7示出细菌纤维素、棉绒和溶解性纤维(lyocell)的结晶度。
图8示出GRGDS木葡聚糖寡糖(XGO-GRGDS)的化学结构。
图9示出了细胞培养基吸附到纤维素上(—)、木葡聚糖然后细胞培养基吸附到纤维素上(...)、木葡聚糖-GRGDS然后细胞培养基吸附到纤维素上(—··)的QCM吸附等温线。箭头代表水洗。
图10示出了未改性的细菌纤维素(A),木葡聚糖改性的细菌纤维素(B)和木葡聚糖-GRGDS改性的细菌纤维素(C)的ECs的光学显微图像。
图11示出了未处理的细菌纤维素(A)、在丙酮中处理后的细菌纤维素(B)和用木葡聚糖-GRGDS改性的细菌纤维素(C)的SEM图像。
具体实施方式
本发明涉及开发医疗或手术用的可植入聚合碳水化合物材料(PCM),在其表面上包含特定化学基团以改变所述材料的物理化学性质。特别地,所述化学基团赋予该PCM改进的生物相容性,例如通过提供细胞的附着位点或影响细胞在该表面上的粘附、增殖、迁移和功能的其它因子。
此外,本发明涉及制备本发明的可植入材料的方法以及通过这些方法制成的材料的用途,和包含这些材料的产品。
在本说明书中,除非另行指明,“一”或“一种”是指“一种或多种”。
关于本发明,术语“生物相容性”涉及材料的性质,即材料与活体相容的性质。换言之,与生命体协调;对生物功能没有有毒或损害的影响。如果例如在使材料与活体的一部分接触时诱发不良反应,则该材料与活体具有差的相容性。这种不良反应会造成异物反应,如炎症、感染、无菌性松动、局部组织废物和植入物包囊以及血栓形成和栓塞。相反,如果没有发生这类不良反应,则观察到与活体的良好相容性。此外,改进的生物相容性意味着材料与活体的改进的相容性。生物相容性的实例是血液相容性,即材料与血液相容的性质。
制备可植入材料的方法
根据本发明的第一方面,提供了通过使包含化学基团的碳水化合物连接分子(CLM)键合到PCM上而将聚合碳水化合物材料(PCM)改性来制备可植入材料的方法,其中所述化学基团赋予该PCM改进的生物相容性。
该方法的一个实施方案示在图1中,其示出了未改性的PCM(1)和碳水化合物连接分子(CLM)(2),所述CLM(2)包含至少一部分SCP(3)和化学基团(5)和任选复合的包含该化学基团的碳水化合物聚合物片段(CPF)(4)。由于该CLM能够键合到PCM上,所以在使PCM与CLM接触时发生键合。
在本发明的一个实施方案中,该方法包括下列步骤:(a)提供包含化学基团的碳水化合物聚合物片段(CPF);(b)使所述包含该化学基团的CPF与可溶性聚合碳水化合物(SCP)在导致形成由所述包含该化学基团的CPF和SCP组成的复合物的条件下接触,所述CPF和SCP一起形成碳水化合物连接分子(CLM);和(c)使所述复合物与要改性的PCM在使该复合物键合到PCM上的条件下接触。
在一个优选实施方案中,使包含化学基团的CLM接触PCM并键合到其上的步骤在水性条件下进行。这样的优点在于,在使CLM接触并键合到PCM上的步骤中PCM形态没有改变。
制备包含化学基团的CLM的方法,即制备由所述CLM和所述化学基团组成的复合物的方法与PCM分开进行。由此,制备包含化学基团的CLM的方法可以扩大规模并包括若干个步骤和严苛的条件。
缩写为“PCM”的术语“聚合碳水化合物材料”涉及包含不溶于水的聚合碳水化合物材料和/或水溶性聚合碳水化合物材料的材料,其全部或部分由一种或多种单糖的重复单元组成。这类PCM通常是含两种或更多种不同类型的聚合碳水化合物或含碳水化合物聚合物和另一聚合物如蛋白质的复合材料。
根据本发明,PCM可以是适合用作可植入材料,例如用作组织工程用支架的主要组分的任何聚合碳水化合物材料。本发明中可用的不同PCM例如描述在WO 03/033813中。
在一个具体实施方案中,该PCM是纤维素材料形式,即包含纤维素。在本发明中,纤维素可提取自一年生植物(如亚麻、***或谷物)或多年生植物(如棉、白杨、桦树、柳树、桉树、落叶松木、松树或云杉)。适当的纤维素材料的实例包括纯化棉、棉绒、α-纤维素、木浆、纯木浆、粉末化纤维素、微晶纤维素和/或改性为其它聚合物的纤维素。
与植物纤维素相比具有不同性质的另一纤维素来源是微生物源纤维素。微生物源纤维素在用作生物材料中已受到关注,这主要由于针对给定应用将其模制成不同形状的可能性以及其生物相容性和高纯度。这种纤维素是胞外多糖并通过培养木醋杆菌(Acetobacterxylinum)而相当便宜地制造。与植物纤维素相比,该纤维素以其纯形式挤出和不与任何其它聚合物或蛋白质结合。细菌纤维素可以用氢氧化钠有效纯化,以实现FDA关于与血液接触的移植物的内毒素值,即每器件<20EU。细菌纤维素含有99%水并且被视为(尽管不是通过定义)水凝胶。尽管其固含量低,但纳米纤维素原纤维的分枝网络提供了好的机械性能(mechanics)。
术语“微生物源纤维素”涉及如上所述由微生物(如细菌)产生的纤维素。在本发明的一个优选实施方案中,使用纤维素合成细菌(如木醋杆菌属)的培养物。
缩写为(SCP)的术语“可溶性碳水化合物聚合物”涉及包含一种或多种不同单糖或其衍生物的聚合物,其可溶解在水性或有机溶剂中。实例包括归类为半纤维素(不只是由β(1-4)-连接葡萄糖单元组成的那些碳水化合物聚合物,即纤维素)、果胶(多糖醛酸和酯)和淀粉(含或不含α(1-6)侧链分支的α(1-4)-连接聚葡萄糖)的多糖。木葡聚糖是由带有α(1-6)木糖残基的β(1-4)-连接聚葡萄糖骨架组成的多糖,其中α(1-6)木糖残基本身可进一步被其它糖如岩藻糖和阿糖取代;它是这类SCP的实例,具体而言是半纤维素。在一个优选实施方案中,SCP能够键合到PCM上,例如经由一个或多个氢键、离子相互作用、一个或多个共价键、范德瓦尔斯力或这些的任何组合。在本发明的一个实施方案中,SCP可以是根据下文描述的CPF。在一个优选实施方案中,SCP来自于木葡聚糖(XG)。
“来自于木葡聚糖”是指由带有α(1-6)木糖残基(该α(1-6)木糖残基本身可进一步被其它糖如岩藻糖和阿糖取代)的β(1-4)-连接聚葡萄糖骨架组成的多糖,及其进一步化学取代和改性的变化形式和片段。
缩写为“CPF”的术语“碳水化合物聚合物片段”涉及可以是SCP的酶促制备或化学制备片段的分子。这类片段的实例包括所述SCP的任意数量的重复单元。
因此合适的片段可以在聚合物骨架中含有2至大约5000个单糖单元,如2-10、4-10、3-100、11-15、20-25、26-40、41-60、61-100、101-200、201-300、301-400、401-500、501-1000、1001-2000、2001-3000、3001-4000或4001-5000个单糖单元。该CPF可进一步包含具有不同长度和组成的侧链。具体实例包括但不限于木葡聚糖(xylogluco)-寡糖(XGO)或其片段,或用一个或多个岩藻糖残基或其它单糖进一步改性。
XGO一般根据Fry等人(1993)Physiologia Plantarum,89,1-3中概述的命名***命名,其中G代表未取代的β-吡喃葡萄糖基残基,X代表吡喃木糖基-α(1-6)吡喃葡萄糖基单元,L代表吡喃半乳糖基-β(1-2)-吡喃木糖基-α(1-6)葡糖基单元,F代表吡喃岩藻糖基-α(1-2)-吡喃半乳糖基-β(1-2)-吡喃木糖基-α(1-6)-葡糖基单元。这些不同单元可经由β(1-4)连接键在吡喃葡萄糖基单元之间连接以形成β(1-4)-葡聚糖多糖骨架。使用这种命名法,通常在对罗望子木葡聚糖进行内切葡聚糖酶消化后分离出的XGO是XXXG、XLXG、25XXLG和XLLG。如果这些寡糖的还原端葡萄糖(G)是还原的糖醇形式,该单元用“Gol”表示。因此,例如来自罗望子木葡聚糖的上述寡糖的还原(糖醇)衍生物记为XXXGol、XLXGol、XXLGol和XLLGol。
优选地,CPF衍生自木葡聚糖并且可以含有3至100个,包括4至10个聚合物骨架单糖单元。
缩写为“CLM”的术语“碳水化合物连接分子”涉及含有根据上文描述的SCP的至少部分和化学基团的分子或复合物。CLM能够键合到PCM上,例如经由一个或多个氢键、离子相互作用、一个或多个共价键、范德瓦尔斯力或这些的任何组合。
CLM可以通过有机或化学合成和/或通过利用某些酶的催化活性制备。
在本发明的一个实施方案中,CLM可以利用WO 2004/094646Al中所述的方法制备。例如,该包含化学基团的CLM可通过包括下列步骤的方法制备:由木葡聚糖聚合物制备木葡聚糖片段;和将一个或多个化学基团连接到该木葡聚糖片段的还原端和/或侧链上,由此制得可用于键合到PCM上的包含化学基团的CLM。
使用酶和CPF制备CLM的实施方案示在图2中。使SCP(8)与酶(7)和包含化学基团(5)的CPF(4)接触。在此实施方案中,酶(7)使SCP断裂而引入该含化学基团的CPF,从而产生产物CLM(2)。
该CLM可以包含一个或多个化学基团。
在本发明的一个实施方案中,该CLM可以使用能够将天然或化学改性的单糖或寡糖转移到寡糖或多糖末端上的酶来制备。这类酶包括但不限于具有高糖基转移活性但低的水解活性的酶、具有高的固有糖基转移活性的葡糖基水解酶、已经工程化以提高它们的糖基转移活性的酶和使用核苷酸糖作为底物的葡糖基转移酶。
在WO 03033813中更详细描述了根据本发明可使用的不同的酶及其性质以及如何获得所述酶。
在本发明的优选实施方案中,该酶是木葡聚糖内糖基转移酶(XET,EC 2.4.1.207)。
在性质上,糖基转移酶如XET酶在活植物体内发挥作用,因此该酶明显能够在水性环境中工作。本发明的方法因此可以在水溶液中实施,或它可以在水中在某些组分如缓冲剂和/或润湿剂和/或稳定剂和/或聚合物和/或降低水活性的有机组分(如DMSO)存在下实施。关于这些组分的进一步细节,参见WO 03/033813。
根据本发明的具体实施方案,可以通过首先在溶液中使用XET酶将化学改性的XGO偶联到木葡聚糖(XG)上,然后使改性XG吸附到纤维素材料上,将新的化学基团添加到不含固有木葡聚糖的纤维素材料中。
在本发明中,术语“化学基团”涉及潜在可用于PCM改性的任何化学基团。改性是指改变PCM的功能性质。改变PCM的功能性质的能力在此意义上是该化学基团中固有的。根据本发明,该改性赋予该PCM改进的生物相容性。因此,该化学基团改变所述PCM的物理化学性质以使其生物相容性更好。
生物相容性涉及材料与活体相容的性质。改进材料的生物相容性的一种方式是影响与该材料接触或相互作用的细胞的粘附、发育、迁移、增殖、分化、形状、极性和/或代谢功能。改进材料的生物相容性的一种具体方式是降低该材料诱发与该材料接触的血液凝固的趋势。对人造血管中所用的材料而言,这种抗凝血性质尤其有用。
本发明的化学基团中所含的改变PCM物理化学性质以使其生物相容性更好的成分包括但不限于:抗凝血因子、ECM粘附分子、生长因子、细胞粘附分子和粘附肽片段以及细胞培养底物和细胞营养素。本领域技术人员清楚,该成分列举不是穷尽性的,在本发明中可以使用改变PCM的物理化学性质以使其生物相容性更好的其它合适成分。
在本发明中,术语“抗凝血因子”涉及降低血液凝固趋势的分子。用于本发明的这类分子的优选实例是肝素、低分子量肝素和Xa因子的五糖抑制剂,如磺达肝素和艾卓肝素(idraparinux)。
关于本发明,术语“ECM粘附分子”涉及构成细胞外基质(ECM)的细胞外大分子。这些大分子(主要是蛋白质和多糖)局部分泌出并在多数组织的细胞外空间中装配成有组织的3-D网络。ECM分子包括糖胺聚糖和蛋白聚糖,如硫酸软骨素、粘连蛋白、硫酸肝素、透明质酸酶(hyaluron)、硫酸皮肤素、硫酸角蛋白、层连蛋白、胶原蛋白、硫酸乙酰肝素蛋白聚糖和弹性蛋白。细胞外基质调节细胞内细胞骨架的组织、细胞分化以及细胞和组织的空间构造。实际上,ECM在通过影响与其接触的细胞发育、迁移、增殖、分化、形状、极性和代谢功能来调节该细胞的行为方面起到关键作用。
关于本发明,术语“生长因子”涉及引起细胞增殖的生物活性多肽。它们包括但不限于表皮生长因子、转化生长因子、神经生长因子、酸性和碱性成纤维细胞生长因子和血管生成因子、血小板源生长因子、胰岛素和***包括生长调节素、粘液瘤和牛痘病毒源生长因子。
关于本发明,术语“细胞粘附分子”涉及含有细胞结合序列的细胞粘附分子。细胞粘附分子的实例包括整联蛋白、钙粘附蛋白(cadherin)、选择蛋白、和免疫球蛋白超家族的粘附分子,如VCAM、ICAM、PECAM和NCAM。
术语“ECM粘附分子”、“生长因子”或“细胞粘附分子”包括其任何活性类似物、活性片段或活性衍生物。
关于本发明,术语“粘附肽片段”涉及为细胞或影响细胞在该表面上的粘附、增殖、迁移和功能的其它因子提供附着位点的肽序列,例如改进细胞附着效率的肽序列。
几种这类粘附肽片段是本领域已知的。可以根据标准技术测试特定肽片段的结合能力或粘附能力。这类肽序列的实例包括但不限于:含RGD的肽序列;含YIGSR的肽序列;和/或含IKVAV的肽序列。
含Arg-Gly-Asp(RGD)的肽序列被公认为是细胞识别基序。RGD肽不仅有效触发细胞粘附,还可用于选择性寻址某些细胞系并引发特定细胞应答。关于本发明中可用的不同含RGD的肽和它们的具体性质的进一步细节描述在Hersel等人,Biomaterials 24(2003)4385-4415中。
本发明中可用的含RGD的肽序列的实例包括但不限于:RGD、RGDS、GRGDS、GRGD、YRGDS、YRGDG、YGRGD、GRGDSP、GRGDSG、GRGDSY、GRGDSPK、CGRGDSY、GCGYGRGDSPG和RGDSP ASSKP。
在本发明的一个优选实施方案中,该肽序列为Gly-Arg-Gly-Asp-Ser(GRGDS)。
含Tyr-Ile-Gly-Ser-Arg(YIGSR)的肽序列发现在层连蛋白的B1链上,其促进上皮细胞附着(Graf等人,Biochemistry,26,第6896-900页(1987))。
含Ile-Lys-Val-Ala-Val(IKVAV)的肽序列发现在层连蛋白的A链上,并已被报道促进神经突长出(Tashiro等人,J.Biol.Chem.,264,pp.16174-182(1989))。
本发明的化学基团可以包含重复肽序列(肽单体)。这些重复肽序列可以是由单种重复肽单体组成的均聚物或可以是由两种或更多种不同的重复肽单体或亚基组成的杂聚物。通常,该化学基团可以由2至100个肽单体,通常2至50个,优选3至15个组成。各肽单体的长度可以为2至40个,通常2至30个,优选2至10个氨基酸残基。
技术人员会认识到,肽单体可以化学合成或通过重组遗传学制备。类似地,包含重复肽序列的化学基团可以通过将肽单体化学连接在一起来制备,或它们可以重组表达。
在本发明的一个具体实施方案中,本发明的化学基团包含含RGD肽序列的重复肽序列。
组织工程用支架
根据本发明制成的可植入材料可用于制造组织工程用支架。本发明的可植入材料的优点之一在于其包含赋予该支架改进的生物相容性的化学基团。
关于本发明,术语“组织工程用支架”涉及组织替代物或植入物,例如(受损)组织的功能性替代物。
本发明在人和动物医疗和整容外科中具有广泛的特殊应用,并可用于之前描述的组织工程用支架的任何和所有适应症,和用于本领域中尚未明文公开但本领域技术人员容易确定的其它用途。
本发明的可植入材料的特殊应用的实例包括但不限于:血管(即人造血管)、***、输尿管、气管、消化道、皮肤、口腔、食道、腹壁、尿道以及牙周组织、软骨组织和皮下组织的替代材料或组织植入物。其它应用是微神经缝合线的护罩;和培养的皮肤载体(cultured skin carriers)。
本发明的支架针对其各自应用而具体成型。不同的可能形状包括但不限于中空管、条带、圆柱体、杆和薄片。
根据某些实施方案,微生物源纤维素用作本发明的支架中的PCM。微生物纤维素在这方面具有许多有利性质,例如其可以合成各种形状或尺寸并具有优异的形状保持性。微生物纤维素的这些性质主要归因于其独特的薄片状微原纤维三维结构。以无纺形式排列的这些微原纤维比植物纤维素(如棉纤维)细大约200倍,从而每单位体积具有巨大的表面积。用于制造成型微生物纤维素材料的方法在例如JP 8126697A2、EP 186495、JP 3165774Al和JP 63205109Al中有描述。此外,在JP 3272772A2和EP 396344A2中描述了用作血管替代物的中空管微生物纤维素的制造。
除本发明的可植入材料外,本发明的支架还可以包含辅助材料。用于此目的的合适辅助材料包括水溶性、可溶于极性溶剂的或形成亲水性凝胶的聚合物材料如琼脂、葡聚糖、聚丙烯酰胺、聚乙烯基吡咯烷酮、藻酸盐、透明质酸、热凝胶多糖(curdlan)、聚丙烯酸盐、肝素、硫酸化多糖、支链淀粉、角叉菜胶、葡甘露聚糖、纤维素衍生物、聚乙二醇、聚乙烯基醇、明胶、胶原、昆布醇、粘连蛋白、角蛋白、丝水解产物、聚氨基酸、聚有机酸和酶。通过如浸渍、层压或吸附之类的方式将本发明的可植入材料与上述辅助材料组合以获得复合材料。
根据某些实施方案,本发明的支架包含用含有下述成分的化学基团衍生化的PCM,所述成分影响与该衍生化PCM接触或相互作用的细胞的粘附、发育、迁移、增殖、分化、形状、极性和/或代谢功能。
因此,根据本发明的组合物和方法,可以通过提供适当的分子基序来影响任何类型细胞的行为(即,粘附、发育、迁移、增殖、分化、形状、极性和/或代谢功能)。
特别地,根据本发明使用包含影响细胞粘附的成分的化学基团。
本发明的PCM可用于将细胞粘附分子或粘附肽片段呈递给各种类型的细胞。这些类型的细胞包括通常在体内与植入材料接触的任何细胞。这类细胞包括但不限于上皮细胞、内皮细胞、成纤维细胞、成肌细胞、成软骨细胞、成骨细胞和干细胞。可用在本发明的方法和产品中的其它细胞包括Schwann细胞、星形细胞、少突细胞和它们的前体、肾上腺嗜铬细胞等。
干细胞代表在培养中可容易膨胀并且可通过施用特定生长因子使其后代终末分化的一类细胞。成肌细胞是最初由中胚层干细胞群得到的肌肉前体细胞,例如L-6和O-CH3细胞。
要认识到,用在本发明中的化学基团的选择可例如取决于所需靶细胞类型。本领域技术人员可常规检测任何特定细胞粘附分子或粘附肽片段基序对所选类型细胞的粘附能力。
在另一些实施方案中,本发明的支架可以体外预接种细胞,由此使细胞暴露在该PCM中。可以使用来自不同来源的功能性健康细胞(即自生、异源或异种细胞)。这些细胞接种的支架可用在组织置换方案中。根据这些实施方案,组织可以体外重构,然后将其植入需要它的宿主中。例如,可以将心成肌细胞悬浮在本发明的支架中以形成厚度相应于心脏壁的组织补片。该重构的心脏补片随后作为组织置换疗法的一部分植入。可以考虑用于血管、软骨、腱、骨、皮肤、神经和其它组织的类似方案。
使用本发明的方法,可以将该可植入材料即支架在所需位置改性。例如,可以仅将支架片材或管的一侧改性。PCM的密度以及CLM的长度会影响是PCM的整个网络还是仅一侧被改性。因此,可以通过改变PCM的密度或CLM的长度并由此改变CLM的渗透和吸附可达性来优化PCM的改性程度和改性位置。根据该实施方案,本发明使得可以在特定位置改性并由此赋予该支架/植入物双重功能。例如,人造血管的内壁可以用促进人内皮细胞的粘附或增殖的化学基团改性,而同一人造血管的外壁可以用促进与血管周围组织的生物相容性的化学基团来改性。
本发明的支架可以通过在将细胞接种到该材料上之前在细胞培养基中预培养PCM来进一步改性。由此改进细胞与该材料的粘附。
在某些实施方案中,本发明的支架可用于制备人造血管。获得包含PCM的人造血管的方法是本领域中公知的。本发明的人造血管可以具有任何尺寸,是线型、锥形和/或支化的。
根据本发明的优选实施方案,该人造血管包含微生物源纤维素。EP 0396344和JP 3272772描述了获得包含微生物源纤维素的人造血管的方法。该微生物纤维素可例如通过在由例如玻璃纸、Teflon、硅、陶瓷、无纺织物或机纺织物组成的载体的内表面和/或外表面上培养产生纤维素的微生物来获得。
Bodin等人,Influence of cultivation conditions on mechanicaland morphological properties of bacterial cellulose tubes,BiotechnolBioeng,2006年12月29日(出版前电子公布)描述了获得包含微生物源纤维素的人造血管的改进方法。根据该方法,通过在作为氧化载体的有机硅管上发酵木醋杆菌并鼓入不同浓度的氧,即21%(空气)、35%、50%和100%来以管形式沉积细菌纤维素。
此外,根据本发明的方法,通过如上所述键合赋予微生物纤维素改进的生物相容性和血液相容性的化学基团将人造血管的该微生物纤维素改性。本发明人造血管的改进的生物相容性和血液相容性大大降低了阻塞之类的风险。阻塞是主要问题,并且在小直径人造血管的相对低流动条件下普遍。阻塞由血液凝固和血小板沉积引起。既然造成这些问题的相互作用发生在血管-植入物界面处,根据本发明改性是提高血液相容性和降低阻塞问题的方式。
本发明的人造血管的特征还在于高的耐穿透性和高爆裂压力。
在本发明的优选实施方案中,该人造血管的可植入材料包含含有至少一个含RGD的肽序列的化学基团。这些序列促进人体内皮细胞与血管壁的粘附或增殖。
此外,该人造血管可以在植入之前预接种内皮细胞。
组织置换和再生
包含本发明可植入材料的支架具有各种医疗或手术应用。
根据本发明的再一方面,提供了体内组织置换和/或再生的方法,包括下列步骤:a)提供包含根据本发明制成的可植入材料的组织工程用支架;和b)将所述材料植入需要它的对象的合适植入位置。
关于本发明,术语“组织置换”和“组织再生”笼统地指组织工程,涉及受损组织的功能置换和组织再生。包含本发明的可植入材料的支架可充当组织替代物,由此用植入的材料完全或部分替代宿主组织。此外,包含本发明可植入材料的支架可充当组织再生载体,由此宿主细胞渗透该材料。根据此实施方案,促进了宿主组织再生。
用于植入本发明支架的方法是常用于例如普通外科、整形外科或神经外科中的组织工程的那些。这些方法根据对象和植入位置来采用。植入位置原则上可以是活体的任何部位,例如血管***、淋巴***、皮肤、神经***等。本发明的对象可以是需要组织置换的任何对象,例如哺乳动物,优选人。
在一个具体实施方案中,在植入支架的步骤之前,将所述支架体外预接种细胞。
在另一实施方案中,组织工程用的支架是人造血管。
给出下面实施例来举例说明本发明。但是,应该理解的是,本发明并非意在限于这些实施例中描述的具体条件和细节。
实施例
本发明人用木葡聚糖-GRGDS缀合物将细菌纤维素表面改性,并分析GRGDS改性的细菌纤维素对内皮细胞粘附的影响。
材料
在刚果红和木葡聚糖吸附研究中调查细菌纤维素(BC)水凝胶和Whatmann滤纸(1级,由用于比较的纯棉绒制成)。在使用QCM的吸附研究中使用三甲基甲硅烷基纤维素(TMSC)。该TMSC如Kontturi等人,Langmuir 19(2003)5735-5741中所述的合成。使用Roux烧瓶(工作容积100毫升),30℃下将BC在玉米浆液体培养基中静态生长三天,产生2毫米表膜。用于该生物合成的菌株是木醋杆菌亚种sucrofermentas BPR2001,商品号:1700178TM。该菌株购自American Type Culture Collection。通过在0.1M NaOH中60℃下煮沸4小时,随后在MilliporeTM水中反复煮沸,从而将BC纯化。将该材料蒸汽灭菌并冷藏备用。丙酮处理:在冷冻干燥和SEM分析之前用丙酮处理细菌纤维素过夜。
实施例l
木葡聚糖和木葡聚糖-GRGDS的制备
基本按以前在Greffe,L.等人,Glycobiology,2005.15(4):第437-445页中所述的,通过内切葡聚糖酶消化直接处理罗望子仁粉(60%木葡聚糖含量,D.N.Palani,Mumbai,India),由此获得XXXG、XLXG、XXLG和XLLG木葡聚寡糖(XGO)的混合物(15∶7∶32∶46)。如下经由1-脱氧-1-氨基-β-糖苷转化成相应的1-脱氧-1-氨基琥珀酰胺酸盐衍生物(XGO-succ),由此将该XGO活化。将XGO(1克,0.78毫摩尔)溶解在去离子水(10毫升)中,然后加入碳酸氢铵(2.5克),然后在连续加入碳酸氢铵以保持饱和的同时将该混合物在42℃下搅拌28小时。通过TLC监测反应进程(70/30乙腈/水)。通过三个冷冻干燥循环除去过量的碳酸氢铵,以产生由XGO和1-脱氧-l-氨基-β-糖苷的混合物组成的白色粉末;基于来自原料和产物的异头质子的1H-NMR信号积分,转化程度为83%。将该粗制产物溶解在水(10毫升)中,加入琥珀酸酐(157毫克,1.57毫摩尔,2当量),并将该溶液在涡旋混合机上剧烈搅拌10分钟。用含0.1%TFA的水/乙腈混合物逐步洗脱的反相(C18硅胶)色谱,产生白色粉末状的XGO-琥珀酰胺酸盐(860毫克,0.63毫摩尔,两步收率80%)。1H NMR(500MHz,D2O,25℃):δ=2.56(t,J=6Hz,2H;COCH2CH2COOH),2.61(t,J=7Hz,2H;COCH2CH2COOH),3.24-3.95(m;Gal,Glc,1-脱氧-1-氨基琥珀酸盐-Glc的H-2至H-6,Xyl的H-2至H-5),4.44-4.50(m;Glc和Gal的H-1),4.85-4.89(m;Xyl的H-1),5.08-5.10(m;带有Gal-□(l-2)的Xyl的H-1)。ESI-MS[37]:XXXG-succ[M+2Na]2+,603.6802计算值(603.7095实测值);XLXG-succ和XXLG-succ[M+2Na]2+,684.7066计算值(684.7079实测值);XLLG-succ[M+2Na]2+,765.7330计算值(765.7475实测值)。
根据Engfeldt等人,Chembiochem FIELD Full Journal Title:Chembiochem:a European journal of chemical biology,2005.6(6):第1043-50页描述的方案,使用标准固相Fmoc化学按0.25毫摩尔的规模合成五肽GRGDS,但有如下不同。在DIPEA(在NMP中的2.0M)存在下用HBTU和HOBt(二者都是在DMF中的0.45M)活化Fmoc保护的氨基酸。不进行封端步骤。在最后Fmoc断开步骤后,测得该树脂的肽取代量为0.47毫摩尔/克。在配有玻璃料过滤器(孔径P2)的反应器中将XGO-succ人工缀合到树脂结合肽上。将XGO-succ(260毫克,2当量)溶解在DMF(6毫升)中,并在DIPEA(66毫升,4当量)存在下用HBTU(215毫克,6当量)和HOBt(87毫克,6当量)活化。然后加入树脂结合肽(200毫克,1当量)。在1小时后通过用乙醇、NMP、DIPEA(在DCM中,5%)、NMP和DCM(各10毫升)充分洗涤该树脂来结束偶联。该树脂随后在真空下干燥。在室温下使用3毫升TFA/H2O/TIS(95∶2.5∶2.5)用30分钟从该树脂中断掉糖肽,同时除去侧链保护基。用水(40毫升)稀释该反应,用tBME(3×40毫升)萃取,并通过玻璃纤维过滤。冷冻干燥水相,产生白色固体(82毫克,47%收率)。在相同条件下,从75毫克树脂中将未改性的肽断开和脱保护,产生15毫克GRGDS(90%收率)。
GRGDS:1H NMR(500MHz,D2O,25℃):δ=1.52-1.81(m,4H;2Hβ-Arg,2Hχ-Arg),2.65(d,J=6.5Hz,2H;Hβ-Asp),3.16(t,J=7Hz,2H;Hδ-Arg),3.80-3.92(m,6H;4Hα-Gly,2Hβ-Ser ),4.26(t,J=7Hz,1H;Hα-Arg),4.35(t,J=5Hz,1H;Hα-Ser),4.60(t,J=6.5Hz,1H;Hα-Asp).ESI-MS:[M+H]+ 490.2376计算值(490.2109实测值)XGO-succ-GRGDS:δ=1.53-1.86(m,4H;2Hβ-Arg,2Hχ-Arg),2.55-2.60(m,2H;Hβ-Asp),2.80-2.92(m,4H;XGO-NH-COCH2CH2CO-Gly),3.12-3.16(m,2H;Hδ-Arg),3.25-3.98(m:Hα-Gly,Hβ-Ser,Gal、Glc、1-脱氧-1-氨基琥珀酸盐-Glc的H-2至H-6和Xyl的H-2至H-5),4.25-4.30(m,1H;Hα-Arg),4.34-4.36(m,1H;Hα-Ser),4.68-4.74(m,Glc和Gal的H-1),4.87-4.91(m,Xyl的H-1),5.09-5.11(m,带有Gal-□(l-2)的Xyl的H-1)。ESI-MS:XXXG-succ-GRGDS[M+H+Na]2+,828.2988计算值(828.3080实测值);XXLG-succ-GRGDS和XLXG-succ-GRGDS[M+H+2Na]3+613.8800计算值(613.8911实测值),[M+H+Na]2+909.3252计算值(909.3289实测值);XLLG-succ-GRGDS[M+H+2Na]3+,667.8976计算值(667.9045实测值),[M+3Na]3+675.2249计算值(675.2198实测值),[M+H+Na]2+990.3516计算值(990.3554实测值)。
如下利用木葡聚糖内糖基转移酶(XET)介导的偶联来制备最终木葡聚糖-GRGDS糖缀合物。将罗望子木葡聚糖(Megazyme,Ireland)溶解在水(2毫克/毫升)中,并将200毫升与XGO-succ-GRGDS(100毫升,在H2O中2毫克/毫升)、H2O(50毫升)和PttXET16A酶溶液(0.4单位/毫升,50毫升,在100mMNaOAc中,pH 5.5)混合。在35分钟后,通过将该溶液加热至85℃1小时,终止该反应。通过在玻璃纤维过滤器上过滤,除去变性酶,并通过添加乙醇(3倍体积)从滤液中沉淀出产物。将沉淀物收集在玻璃纤维过滤器上,并通过搅拌和温和加热该过滤器使其重新溶解在水(20毫升)中。将所得溶液冷冻干燥以产生390毫克XG-GRGDS。通过在DMSO中的HP-SEC分析表明,该产物具有32000的Mw值(Mw/Mn 1.7)。使用相同程序制备具有类似分子量(Mw36000(Mw/Mn1.5))的未改性木葡聚糖,不同之处在于用XGO代替XGO-succ-GRGDS。
制备木葡聚糖和木葡聚糖-GRGDS的替代途径
用纤维素酶消化罗望子仁粉TKP(木葡聚糖,Mw:1百万-1.5百万道尔顿),以形成低分子量的木葡聚糖(低Mw的XG),Mw5000-50000道尔顿。在GRGDS肽连接到低Mw的XG上之前,用琥珀酸盐活化该低Mw的XG(见上文的描述)。该GRGDS肽用标准固相Fmoc化学合成,并根据上文的描述将其连接到琥珀酸化的低Mw的XG上。这些GRGDS肽-低Mw的XG可直接用于将细菌纤维素改性。
实施例2
刚果红的吸附
通过测定刚果红染料(Direct Red 28,购自Riedel-de 
Figure G2008800062123D00221
Germany)最大吸附量来评测细菌纤维素和作为参比的棉的比表面积。在各吸附浓度下使用6张Whatman 1号纸和6份细菌纤维素凝胶。将该纤维素材料在含0.5、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0(w/w)刚果红的4毫升水溶液中暴露于刚果红中,并在60℃下以100∶1的液体比染色24小时。加入NaCl(20%w/w)作为电解质。利用标准曲线由492纳米下的UV吸收来计算刚果红的残留浓度[E,毫克/毫升]。由结合反应前后该溶液在492纳米下的吸附差值除以每体积溶液的纤维质量来计算纤维上的刚果红吸附量[A,mg/g]。
实施例3
木葡聚糖(XG)和木葡聚糖-GRGDS(XG-GRGDS)的吸附
通过测定XG和XG-GRGDS的最大吸附量来评测细菌纤维素和作为参比的棉绒的比表面积。在各吸附浓度下使用6张Whatman1号纸和6份细菌纤维素凝胶。将该纤维素材料浸在含5、10、15、20%(w/w)木葡聚糖或木葡聚糖-GRGDS的4毫升水溶液中。通过Kooiman等人描述的比色法(Recueil des Travaux Chimiques desPays-Bas et de 1a Belgique 79(1960)675-678)测量吸附的XG。在从0至48小时的各时间间隔下抽取200微升,并将其与5∶1的20%(w/v)Na2SO4和三碘化物溶液(0.5%I2+1%KI)的1毫升溶液混合。利用标准曲线由620纳米下的吸收计算XG的残留浓度[E,毫克/毫升]。由结合反应前后该溶液在620纳米下的吸附差值除以每体积溶液的纤维质量来计算吸附在纤维上的XG的量[A,mg/g]。
实施例4
比表面积
利用由朗缪尔吸附理论得出的公式1计算由刚果红相对木葡聚糖和木葡聚糖-GRGDS的吸附得到的棉绒和细菌纤维素的比表面积:
[ E ] [ A ] = 1 K ads [ A ] max + [ E ] [ A ] max - - - ( 1 )
其中[E]是吸附平衡时被吸附物的浓度(毫克/毫升),[A]是吸附到纤维素表面上的被吸附物的量(毫克/克纤维素样品),[Amax]是吸附到纤维素表面上的被吸附物的最大量(毫克/克纤维素样品),Kads是吸附平衡常数。比表面积Asp表示为:
A sp = [ A ] max N A A CR 10 21 Mw - - - ( 2 )
其中Mw是刚果红(653克/摩尔);木葡聚糖(36000克/摩尔);木葡聚糖-GRGDS(32000克/摩尔)的分子量,NA是阿伏加德罗常数,ACR是被一个刚果红(1.73平方纳米);木葡聚糖(69平方纳米);木葡聚糖-GRGDS(61平方纳米)占据的面积。Ougiya等人,Bioscience,Biotechnology,and Biochemistry 62(1998)1714-1719计算过刚果红的值。通过假设木葡聚糖占据面积随分子量线性下降,即将Ougiya等人的高分子量木葡聚糖(980000克/摩尔)的ACR 1870平方纳米的值外推至较低分子量的木葡聚糖,即32000和36000克/摩尔,由此得到木葡聚糖和木葡聚糖-GRGDS的值。
如图3B中所示,由公式(1)获得直线,表明刚果红在这两种底物上的吸附都符合朗缪尔模型。因此刚果红最可能以单层形式吸附在这两种纤维素表面上。对这两种表面而言,由斜率值计算出的吸附最大值(Amax)都达到47mg/g。BC的比表面积(79平方米/克)与棉绒的(72平方米/克)大致相等,参见公式(2)。棉绒的比表面积相当好地对应于在关于染料吸附研究的文献中找到的值,而BC的比表面积略低于早先报道的值。但是,这种差异是预期的,因为BC在这种情况下没有崩解,并且极其可能具有更少的用于吸附的暴露面积。
木葡聚糖和木葡聚糖-GRGDS也符合朗缪尔吸附行为,参见图4B和5B。XG和XG-GRGDS的吸附最大值(Amax)在BC上达到大约180毫克/克,且仅为在棉绒上的值的大约3倍,参见图4A和5A。用木葡聚糖和木葡聚糖-GRGDS测得的BC的比表面积为大约200平方米/克,棉绒的比表面积小几乎三倍,60平方米/克。这两种纤维素表面都符合线性关系,即较大表面积对应于较高的木葡聚糖吸附量,参见图6。
木葡聚糖吸附量的差异可能通过细菌纤维素的溶胀网络和相比棉绒更多的暴露和可达到的体积来解释。已知被吸附物分子的尺寸对可达到的表面积具有显著影响,这可以得出结论:较少的棉表面可用于吸附木葡聚糖。刚果红分子沿其纵轴的长度为大约2.5纳米,而DP为26的完全伸展的木葡聚糖骨架为大约30纳米。吸附到这两种纤维素底物上的木葡聚糖的比表面积差异还可能是由于结晶结构差异。细菌纤维素和棉绒具有相同的晶体结构,即纤维素I,参见图7,且这两种底物的相对结晶度均为70%。但是,该材料具有不同量的结晶亚-同质异晶(Iα或Iβ),在BC中为60%Iα:40%Iβ,在棉绒中为仅30%Iα:70%Iβ。这可能影响纤维素的物理性质,因为同质异晶具有不同的晶体堆积、分子构象和氢键合。
实施例5
扫描电子显微术(SEM)
使用SEM研究未改性和改性纤维素材料的表面形态。将该细菌纤维素材料在冷冻干燥之前在液氮中骤冷。然后在分析之前用金涂布表面,这用在10kV下运行的Zeiss DSM 940A进行。
实施例6
共聚焦激光显微术
使用配有纤维耦合ArKr激光器的共聚焦显微术研究细菌纤维素在其湿状态下的形态和整个凝胶中的改性。针对染料的发射波长[λex=495nm且λem=516]选择过滤器。该湿细菌纤维素样品用荧光标记的木葡聚糖(XG-FITC)进行荧光标记。按Brumer,H.等人,Journal of the American Chemical Society,2004.126(18):第5715-5721页中所述合成XG-FITC。用2毫克/毫升XG-FITC储液将该湿凝胶染色24小时。染色后,通过在温和搅拌下将样品置于去离子水中过夜,除去过量XG-FITC。
实施例7
ESCA
在用木葡聚糖表面改性之前和之后,用ESCA测定细菌纤维素的化学组成。在改性之后和在测量之前,将该材料在30℃下烘干。使用Physical Electronics的Quantum 2000进行测量。被分析的面积为500×500平方微米,光束尺寸为100微米。样品与检测器之间的角度为45°。测量峰强度,并使用Physical Electronics的MultiPak软件进行曲线拟合。纤维素的特征ESCA光谱具有在286.7eV对应于与氧单键合的碳的一个峰,和在287.9eV对应于与两个氧键合的碳的一个峰。用最高分辨率C1s峰的高斯曲线拟合计算不同键合碳的相对量。C-C、C-O、O-C-O或C=O和O-C=O的不同位置分别为285.0±0.2eV、286.7±0.2eV、281.1±0.2eV和289.4±0.2eV。
ESCA表明,该表面已经用木葡聚糖改性。可以看到键合到木葡聚糖侧基的氧上的碳量略微增加。但是,可能由于该基团尺寸小并可能在烘干时嵌入和指向凝胶内部,所以无法量化GRGDS的量。木葡聚糖和纤维素本身也存在痕量氮,这使表征进一步复杂化。
实施例8
与水的动态接触角
在6张烘干的纤维素薄膜(未改性以及用XG或XG-GRGDS改性的纤维素)上进行静态接触角测量。在各纤维素表面上施加5微升液滴。使用测角仪通过记录在该固体和与液滴表面的切线之间形成的角度来测量接触角θe
相比较未改性的细菌纤维素,用木葡聚糖和木葡聚糖-GRGDS改性时,润湿性略高(表1)。
表1
 表面  接触角,θe±SD
 细菌纤维素  44±5.3
 细菌纤维素+XG  29±4.8
 细菌纤维素+XG-GRGDS  32±5.8
未改性的细菌纤维素与水的接触角相对大是由于压实结构、较少的孔(对毛细力而言)和较少的可用羟基(由于高结晶度)。用木葡聚糖改性增加了可用的羟基,并由此提高润湿性。引入GRGDS不会显著降低润湿性,参见图8中的结构。润湿性仍高于未改性BC。
实施例9
使用QCM的蛋白质吸附
使用QCM-D仪器(Q-sense AB,
Figure G2008800062123D00261
Sweden)研究蛋白质在纤维素表面上的吸附受表面改性的影响。
在镀金QCM-D晶体上制备模型纤维素表面。将表面在UV/臭氧室中清洗10分钟,然后在Milli-Q水、H2O2(30%)和NH3(25%)的5∶1∶1混合物中于70℃下浸渍10分钟。该表面用Milli-Q洗涤并用氮气干燥。将三甲基甲硅烷基纤维素(在甲苯中,1毫克/毫升)以4000rpm、1分钟旋涂到金表面上。除去三甲基甲硅烷基,并在氯化氢蒸汽(10%溶液)上生成纤维素。在第三谐波(15Hz)下进行测量。f的变化反映偶联到晶体表面上的质量。对于薄的均匀分布的刚性薄膜,如Sauerbrey公式所述将吸附诱发的频移(Δf)与质量吸取相关联:
m A = Cf n r
其中m是质量(ng),A是面积(cm2),nr是谐波数(=1,3...)C是质量灵敏度常数(17.7ng/cm2/Hz)。一式三份地进行测量。在2毫克/毫升浓度下吸附木葡聚糖和木葡聚糖-GRGDS。在引入细胞培养基之后,在各吸附后进行用水解吸的步骤。使用与细胞接种中所用相同的培养基研究蛋白质吸附。该细胞培养基含有蛋白质混合物,包括含RGD基序的细胞粘附蛋白粘连蛋白。为了阐明用XG-GRGDS改性是否造成从细胞培养基中吸附蛋白质(特别是粘连蛋白)的增加,使用QCM-D在模型纤维素表面上进行吸附研究。在引入细胞培养基之后引入粘连蛋白抗体(粘连蛋白抗体(Biotin)(ab6584),Abcam),以证实任何可能被吸附的蛋白质是否是粘连蛋白。在所有吸附后进行用水解吸的步骤。
如图9中所示,大约100纳克/平方厘米来自细胞培养基的蛋白质被吸附到未改性的纤维素表面上。当先吸附木葡聚糖时,没有蛋白质被吸附。当用带有粘附五肽的木葡聚糖将纤维素改性时,与未改性的纤维素相比,更少蛋白质被吸附(50纳克/平方厘米)。在用木葡聚糖-GRGDS和细胞培养基改性后引入粘连蛋白抗体IgG。抗粘连蛋白的IgG不吸附,表明所吸附的蛋白质不是粘附蛋白粘连蛋白或至少不是活化形式。
实施例10
广角X-射线散射(WAXS)
将BC的冷冻干燥丸粒压成直径1厘米的丸粒。在SiemensD5000衍射仪上记录X-射线衍射图。使用波长
Figure G2008800062123D00271
的CuKα阳极。通过2θ=5-30°进行扫描。测量非晶衍射的晶体衍射峰的强度。相对结晶度测定为晶体部分与总部分之间的比率。
实施例11
细胞接种
使用酶促法从人隐静脉的健康部位分离出内皮细胞(HSVEC)。细胞在M199(PAA Laboratories GmbH,Linz,Austria)中培养,该M199补充有含1.7-3.4g/dl清蛋白且总蛋白质含量为3-4.5g/ml的20%胎牛血清(FBS;PAA Laboratories GmbH)、青霉素-链霉素(100U/mL;PAA Laboratories GmbH)、1.2mM L-谷氨酰胺(PAA)、牛脑提取物(75mg/500mL;实验室中制得)和肝素(13U/mL;LeoPharma,
Figure G2008800062123D00281
Sweden),并将其保持在37℃下含5%CO2的加湿培养器中。在细胞铺板之前,用相当于BC干重量的15%的木葡聚糖和XG-GRGDS将该BC改性过夜。在细胞铺板之前,将改性纤维素用PBS洗涤两遍。
为了评估细胞形态,将HSVEC以3×105个细胞/平方厘米的密度铺板在改性和未改性的BC板上。在第1天和第3天取出样品进行评测。将细胞固定在3.7%甲醛中并在0.2%Triton X-100中透化处理。为了使f-肌动蛋白可见,用结合到Alexa
Figure G2008800062123D00282
546(MolecularProbes Inc.,Eugene,OR,USA)上的鬼笔环肽将细胞染色。将细胞核用DAPI(Sigma-Aldrich Sweden AB,Stockholm,Sweden)复染色。将样品装在SlowfadeTM Antifade封固剂(Molecular Probes Inc.)中并用Axio Imager M1(Carl Zeiss,
Figure G2008800062123D00283
Germany)分析。用AxioCam HRc(Zeiss)对图片进行数字捕获。
细胞粘附
初始细胞粘附研究表明,细胞粘附在木葡聚糖-GRGDS改性的纤维素上比在未改性的和木葡聚糖改性的纤维素上更快更好。光学显微图像表明,在改性表面上存在更多细胞,且伸展和粘附更发达,参见图10。
实施例12
形态
棉绒和细菌纤维素的形态在许多方面不同。棉绒由其表面被微原纤维覆盖的纤维组成。纤维尺寸为大约6微米。另一方面,细菌纤维素是由尺寸为70-100纳米的纳米原纤维组成的溶胀三维网络。
在水相中用木葡聚糖改性细菌纤维素不会改变该形态(图11C)。如果在有机溶剂(例如丙酮)中进行改性则情况并非如此,此时网络明显收缩,比较图11A和11B。为了保持BC的网络,优选在水中改性。用荧光木葡聚糖(木葡聚糖-FITC)改性的细菌纤维素的共聚焦Z-扫描表明,该纳米纤维素材料整个被均匀改性。
结论
本发明的发明人描述了在纳米原纤维网络的形态不受影响的情况下将纤维素纳米原纤维改性的新方法。如用比色法证实的那样,用木葡聚糖-GRGDS将细菌纤维素成功改性。吸附量达到最多190毫克/克。如通过SEM和在共聚焦显微术中的z-扫描观察到的那样,纳米纤维素材料的整个材料被均匀改性。此外,在水相中改性比在有机溶剂中明显有利于保持形态。该改性提高润湿性,这可能解释QCM-D所示的被吸附蛋白质减少或量可忽略不计。初始细胞研究已经证实,当BC水凝胶用木葡聚糖-GRGDS改性时,内皮细胞的粘附改进。如QCM-D证实的,改进的细胞粘附并不是由于从培养基中非特异性吸附粘连蛋白,而是由于因XG的特异性呈递RGD表位。
尽管已经通过实施例详细描述本发明的具体实施方案,但本领域技术人员显然能想到对本发明进行修改和调整。但是,要明确理解到,这类修改和调整在如权利要求所述的本发明范围内。

Claims (33)

1.通过将聚合碳水化合物材料(PCM)改性来制备可植入材料的方法,所述改性通过使包含化学基团的碳水化合物连接分子(CLM)结合到PCM上,其中所述化学基团赋予所述PCM改进的生物相容性。
2.根据权利要求1的方法,其中所述包含化学基团的CLM通过包括下列步骤的方法制备:由木葡聚糖聚合物制备木葡聚糖片段;和将一个或多个化学基团连接到所述木葡聚糖片段的还原端和/或侧链上,由此制得适用于结合到所述PCM上的包含化学基团的CLM。
3.根据权利要求1的方法,其中将所述PCM改性的步骤利用下列步骤进行:
(a)提供包含化学基团的碳水化合物聚合物片段(CPF);
(b)使所述包含化学基团的CPF与可溶性聚合碳水化合物(SCP)在导致形成由所述包含化学基团的CPF和SCP组成的复合物的条件下接触,所述CPF和SCP一起形成碳水化合物连接分子(CLM);和
(c)使所述CLM与要改性的PCM在使所述CLM结合到所述PCM上的条件下接触。
4.根据权利要求1的制备可植入材料的方法,其通过结合木葡聚糖源分子将纤维素材料改性,在所述木葡聚糖源分子上已连接有赋予所述纤维素材料改进的生物相容性的化学基团。
5.根据权利要求4的制备可植入材料的方法,所述方法通过将纤维素材料改性来进行,并包括下列步骤:
(a)提供其上已连接有赋予改进的生物相容性的化学基团的木葡聚糖-寡糖;
(b)使所述木葡聚糖-寡糖与来自于木葡聚糖的碳水化合物聚合物在导致形成碳水化合物连接分子(CLM)的条件下接触,所述连接分子包含带有连接的化学基团的木葡聚糖-寡糖和来自于木葡聚糖的碳水化合物聚合物;和
(c)使所述CLM与要改性的纤维素材料在使CLM结合到纤维素材料上并改进纤维素材料的生物相容性的条件下接触。
6.根据权利要求4-5的方法,其中所述赋予改进的生物相容性的化学基团是蛋白质或肽。
7.根据权利要求4-6的方法,其中使共价连接的化学基团连接到木葡聚糖-寡糖的还原端。
8.根据权利要求5的方法,其中所述CLM的形成通过木葡聚糖内糖基转移酶(XET,EC 2.4.1.207)催化。
9.根据权利要求3的方法,其中所述PCM是纤维素材料,所述SCP来自于木葡聚糖,所述CPF来自于木葡聚糖并含有3-100个聚合物骨架单糖单元,所述化学基团是赋予改进的生物相容性的因子。
10.根据权利要求9的方法,其中所述来自于木葡聚糖的CPF含有4-10个聚合物骨架单糖单元。
11.根据权利要求10-11的方法,其中使所述化学基团共价连接到CPF的还原端。
12.根据权利要求1-11中任一项的方法,其中使包含化学基团的CLM与PCM接触并结合的步骤在水性条件下进行。
13.根据权利要求3、5-7或9-12中任一项的方法,其中使包含所述化学基团的CPF与SCP在具有糖基转移活性的酶的存在下接触,所述酶能够促进形成由所述包含化学基团的CPF和SCP的至少一部分组成的复合物。
14.根据权利要求13的方法,其中所述具有糖基转移活性的酶是木葡聚糖内糖基转移酶(XET,EC 2.4.1.207)。
15.根据权利要求3或12-14中任一项的方法,其中所述CPF是木葡聚糖-寡糖(XGO),所述SCP的至少一部分来自于木葡聚糖(XG)。
16.根据权利要求1-15中任一项的方法,其中所述PCM是纤维素材料形式。
17.根据权利要求1-16中任一项的方法,其中所述PCM是微生物源纤维素,优选所述微生物源纤维素由木醋杆菌(Acetobacterxylinum)生成。
18.根据权利要求1-17中任一项的方法,其中所述赋予PCM改进的生物相容性的化学基团包含下列至少一种:细胞外基质(ECM)粘附分子、生长因子、细胞粘附分子或粘附肽片段。
19.根据权利要求1-18中任一项的方法,其中所述赋予PCM改进的生物相容性的化学基团包含抗凝血因子。
20.根据权利要求18的方法,其中所述粘附肽片段是:含Arg-Gly-Asp(RGD)的肽序列;含Tyr-Ile-Gly-Ser-Arg(YIGSR)的肽序列;和/或含Ile-Lys-Val-Ala-Val(IKVAV)的肽序列。
21.根据权利要求20的方法,其中所述化学基团包含至少一个含RGD的肽序列。
22.根据权利要求21的方法,其中所述化学基团包含至少一个Gly-Arg-Gly-Asp-Ser(GRGDS)肽序列。
23.根据权利要求1-22中任一项的方法制成的医疗或手术用的可植入材料。
24.根据权利要求1-22中任一项的方法制成的可植入材料用于制造组织工程用支架的用途。
25.根据权利要求24的用途,其用于制造人造血管、人造皮肤、神经支架或整形外科植入物。
26.根据权利要求24的用途,其用于制造人造血管。
27.包含根据权利要求1-22中任一项的方法制成的材料的组织工程用支架。
28.根据权利要求27的支架,其中所述组织工程用支架已体外预接种细胞。
29.包含根据权利要求1-22中任一项的方法制成的材料的人造血管。
30.根据权利要求29的人造血管,其中所述人造血管已体外预接种细胞。
31.体内组织置换和/或再生的方法,包括下列步骤:
a)提供包含根据权利要求1-22中任一项制成的可植入材料的组织工程用支架;和
b)将所述材料植入需要它的对象的合适植入位置。
32.根据权利要求31的方法,其中在植入所述组织工程用支架的步骤之前,将所述支架体外预接种细胞。
33.根据权利要求31-32中任一项的方法,其中所述组织工程用支架是人造血管。
CN200880006212.3A 2007-02-26 2008-02-26 包含纤维素和糖肽木葡聚糖-grgds的可植入材料 Expired - Fee Related CN101668552B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US89153607P 2007-02-26 2007-02-26
EP07103055A EP1961432A1 (en) 2007-02-26 2007-02-26 Implantable material comprising cellulose and the glycopeptide xyloglucan-GRGDS
EP07103055.5 2007-02-26
US60/891,536 2007-02-26
PCT/EP2008/052286 WO2008104528A2 (en) 2007-02-26 2008-02-26 Implantable material comprising cellulose and the glycopeptide xyloglucan-grgds

Publications (2)

Publication Number Publication Date
CN101668552A true CN101668552A (zh) 2010-03-10
CN101668552B CN101668552B (zh) 2013-07-31

Family

ID=42331080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880006212.3A Expired - Fee Related CN101668552B (zh) 2007-02-26 2008-02-26 包含纤维素和糖肽木葡聚糖-grgds的可植入材料

Country Status (2)

Country Link
JP (1) JP2010518998A (zh)
CN (1) CN101668552B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102812168A (zh) * 2010-04-13 2012-12-05 赛佩荷兰服务有限公司 纤维素基纤维的制造方法及由此获得的纤维
CN106062276A (zh) * 2014-03-05 2016-10-26 诺维信公司 用于将材料功能化并且进行连接的组合物和方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737864B2 (ja) * 2018-12-04 2020-08-12 第一工業製薬株式会社 化学修飾セルロース繊維およびその製造方法
CN110028840B (zh) * 2019-04-29 2022-12-27 江苏大学 一种纳米纤维素生物打印凝胶油墨的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272772A (ja) * 1989-04-28 1991-12-04 Ajinomoto Co Inc 中空状微生物セルロース、その製法および同セルロースからなる人工血管
WO2004094646A1 (en) * 2003-04-21 2004-11-04 University Of Georgia Research Foundation, Inc. Xyloglucan conjugates useful for modifying cellulosic textiles
CN100337695C (zh) * 2005-01-10 2007-09-19 北京市意华健科贸有限责任公司 一种可植入机体可显影的多孔医用复合材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102812168A (zh) * 2010-04-13 2012-12-05 赛佩荷兰服务有限公司 纤维素基纤维的制造方法及由此获得的纤维
CN102812168B (zh) * 2010-04-13 2014-11-12 赛佩荷兰服务有限公司 纤维素基纤维的制造方法及由此获得的纤维
CN106062276A (zh) * 2014-03-05 2016-10-26 诺维信公司 用于将材料功能化并且进行连接的组合物和方法
CN106062276B (zh) * 2014-03-05 2019-06-11 诺维信公司 用于将材料功能化并且进行连接的组合物和方法

Also Published As

Publication number Publication date
CN101668552B (zh) 2013-07-31
JP2010518998A (ja) 2010-06-03

Similar Documents

Publication Publication Date Title
Jin et al. Polysaccharide-based biomaterials in tissue engineering: a review
Bodin et al. Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering
Chahal et al. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering
Klemm et al. Nanocelluloses as innovative polymers in research and application
Gatenholm et al. Bacterial nanocellulose as a renewable material for biomedical applications
KR100674177B1 (ko) 교차 결합된 히알루론산과 그것의 의학적 용도
Malafaya et al. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications
Nehra et al. Eco-friendly nanocellulose and its biomedical applications: current status and future prospect
US20100278893A1 (en) Implantable material comprising cellulose and the glycopeptide xyloglucan-grgds
Li et al. Hyaluronic acid oligosaccharides modified mineralized collagen and chitosan with enhanced osteoinductive properties for bone tissue engineering
CN102277737A (zh) 聚己内酯/天然高分子复合多孔支架的制备方法及应用
EP3181152A1 (en) Multi-layered wound care product
Cassimjee et al. Proteosaccharide combinations for tissue engineering applications
Wang et al. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique
CN101668552B (zh) 包含纤维素和糖肽木葡聚糖-grgds的可植入材料
CN106860915A (zh) 一种透明质酸寡糖修饰的矿化胶原仿生骨修复材料及其制备方法
Zhai et al. Coaxial electrospinning of P (LLA‐CL)/heparin biodegradable polymer nanofibers: Potential vascular graft for substitution of femoral artery
CN110193098A (zh) 一种多层梯度生物膜及其制备方法
CN109310706A (zh) 用于组织修复的多糖组合物
Janeni et al. Nanocellulose biopolymer-based biofilms: Applications and challenges
Klemm et al. Bacterial nanocellulose hydrogels designed as bioartificial medical implants
Rimondo et al. Polysaccharide-based scaffold for tissue-regeneration
TW201016722A (en) Porous composite biomaterials and production method of the same
Fioricaa et al. A fibrillar biodegradable scaffold for blood vessels tissue engineering
Cesur et al. Construction of vascular graft by 3D printing using bacterial cellulose formulation as bioink

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130731

Termination date: 20140226