CN101627058B - 利用烷基铝的分阶段加入的气相丙烯聚合法 - Google Patents

利用烷基铝的分阶段加入的气相丙烯聚合法 Download PDF

Info

Publication number
CN101627058B
CN101627058B CN2008800072233A CN200880007223A CN101627058B CN 101627058 B CN101627058 B CN 101627058B CN 2008800072233 A CN2008800072233 A CN 2008800072233A CN 200880007223 A CN200880007223 A CN 200880007223A CN 101627058 B CN101627058 B CN 101627058B
Authority
CN
China
Prior art keywords
polymerization
component
catalyst
reactor
reactor drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800072233A
Other languages
English (en)
Other versions
CN101627058A (zh
Inventor
米歇尔·克拉朗博
杰罗姆·A·斯特里奇
安德烈亚斯·B·厄恩斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos USA LLC
Original Assignee
BP Corp North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Corp North America Inc filed Critical BP Corp North America Inc
Publication of CN101627058A publication Critical patent/CN101627058A/zh
Application granted granted Critical
Publication of CN101627058B publication Critical patent/CN101627058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

烯烃聚合方法包括使用高活性齐格勒-纳塔催化剂体系在超过一个聚合区中进行至少一种烯烃单体的气相聚合,所述高活性齐格勒-纳塔催化剂体系包括固体的镁承载的含钛组分和烷基铝组分,所述方法包括:将含钛组分和烷基铝组分引入到第一聚合区中;然后将另外的烷基铝组分引入到随后的未加入含钛组分的聚合区中。

Description

利用烷基铝的分阶段加入的气相丙烯聚合法
技术领域
本发明涉及烯烃的聚合,特别地涉及包括丙烯与α-烯烃和乙烯共聚的丙烯的气相聚合,所述气相聚合利用高活性含钛催化剂组分以及烷基铝助催化剂的分阶段加入以控制在一个或多个阶段中的产物分布。
背景技术
多种类型的热塑性烯烃聚合物的制造目前是公知的,并且通常在商业上基于齐格勒-纳塔催化剂体系实践。有用的使用齐格勒-纳塔催化剂的烯烃聚合物的商业制造方法从使用惰性烃稀释剂的复杂淤浆法,发展到使用液体丙烯稀释剂的有效率的本体法,再发展到其中固体聚合物直接由聚合气态烯烃单体形成的更有效率的气相法。
通常使用的气相法包括水平和垂直搅拌的亚流化床(sub-fluidizedbed)反应器***、流化床***以及多区循环式反应器***。采用这些方法制造的热塑性烯烃聚合物包括乙烯和C3-C10+α-烯烃单体的聚合物,并且包括两种以上这类单体的共聚物,如统计(无规)共聚物或多相(橡胶改性或抗冲)共聚物。
包含结晶聚丙烯链段的丙烯聚合物有利地在气相中制造。这类丙烯聚合物包括其中基本上所有的单体单元是丙烯的聚丙烯均聚物和丙烯与达到50摩尔百分数(50摩尔%)的乙烯或C4+烯烃单体的一种或多种的共聚物。通常,丙烯/乙烯共聚物包含达到约30重量%、典型地达到约20重量%的乙烯单体单元。根据所需用途,这类共聚物可以具有乙烯单体单元的无规分布或统计分布,或者可以由均聚物链和无规共聚物链的紧密混合物组成,通常被称为橡胶改性共聚物或抗冲共聚物。在这类橡胶改性共聚物或抗冲共聚物中,高乙烯含量的无规共聚物典型地起弹性体组分或橡胶组分的作用,以改变组合的聚合物材料的抗冲性能。
在丙烯聚合中,在聚合物链中的丙烯单元的立构规整性影响产物性质。作为全同立构规整度或全同立构指数测量的立构规整性的程度可以通过工艺条件如立构规整调节剂如硅烷的量或组成进行调节。
另外,烯烃聚合物、特别是丙烯聚合物的分子量典型地通过在聚合气体混合物中使用氢进行调节。较高浓度的氢将导致较低的分子量。有时被称为多分散性的聚合物组合物的分子量分布可以影响聚合物性质。
包含具有不同物理性质的聚合物组分的聚合物组合物已发现具有所需的性质。因此,以多峰分布方式包含不同量的单独聚合物的总聚合物组合物可以导致性质与聚合物组分中的任一种都不同的聚合物。产生多峰聚合物的常规方法是通过物理手段如掺混器或掺混挤出机对单独聚合物进行掺混。获得多峰产物组合物的更有效率的方法是在聚合反应器中直接产生产物。在这种原地生产中,可以多次产生更紧密的混合物,其产生了比通过物理掺混所产生的性质更有利的性质。
产生多峰产物典型地要求这样的方法,即在该方法中聚合在不同条件下在不同的时间或地点进行。尽管单一反应器可以被用于间歇法中以模拟多反应器连续法,但是间歇法在商业上通常是不切实际的。可以采用多反应器***,其使用两个或更多个反应容器。
气相(gas-phase or vapor-phase)烯烃聚合法一般地公开于″Polypropylene Handbook″,第293-298页,Hanser Publications,NY(1996)中,更充分地描述于″Simplified Gas-Phase Polypropylene ProcessTechnology″,Petrochemical Review,March,1993中。这些出版物作为参考并入本文。
气相反应器***可以起活塞流反应器作用,在活塞流反应器中,当产物通过反应器时该产物未经历回混并且在反应器的一部分处的条件可以不同于在反应器的另一部分处的条件。回混***的例子是诸如在美国专利4,003,712和6,284,848中所述的流化床反应器或如美国专利6,689,845中所述的多区***。基本上活塞流***的例子是水平搅拌的亚流化床***,如在美国专利3,957,448;3,965,083;3,971,768;3,970,611;4,129,701;4,101,289;4,130,699;4,287,327;4,535,134;4,640,963;4,921,919;6,069,212;6,350,054;和6,590,131中所述。所有这些专利作为参考并入本文。尽管单一反应器可以用于间歇法中,以模拟其中在聚合期间在不同时间使用不同条件的多反应器连续法,但是间歇法在商业上通常是不切实际的。
术语“活塞流反应器”是指这样的反应器,该反应器用于在使得混合基本上只在相对于流动物流横向的方向上发生的流量下,进行无强制混合的连续流体流动过程。工艺物流的搅拌可能是所希望的,特别是当存在粒状组分时;如果进行搅拌,则搅拌将以使得基本上没有回混的方式进行。不能实现理想的活塞流,因为扩散总会导致一些混合,工艺流动状态是湍流而非层流。因为实际上未实现理想的活塞流条件,所以活塞流反应器***有时被描述为在基本上活塞流条件下操作。通常,活塞流反应器可以水平或垂直布置,并且被设计成它们的长度大于宽度(纵向尺寸与横向尺寸的比例大于1,并优选大于2),位于工艺物流前面的端部被称为反应器头或前端,出口孔或排放孔(take-off)位于该反应器的相反端或后端。
根据制造工艺条件,可以控制烯烃聚合物的多种物理性质。可以改变的典型的条件包括温度、压力、停留时间、催化剂组分浓度、分子量控制调节剂(诸如氢)浓度等等。
在气相烯烃聚合方法中,特别是在丙烯聚合方法中,使用包括固体的含钛催化剂组分和烷基铝助催化剂组分的齐格勒-纳塔催化剂体系。在需要控制聚丙烯结晶度的量的丙烯聚合中,另外的调节剂组分通常被引入到总催化剂体系中。
对于丙烯的聚合,目前的典型的催化剂体系包括高活性的、卤化镁承载的、包含过渡金属的组分,烷基铝组分,及优选外部调节剂或电子供体组分。公知的高活性丙烯催化剂体系基于在卤化镁上承载的固体的含钛组分,并包含有机内部供电子材料。在聚合期间,固体的含镁、含钛、含电子供体的组分与烷基铝助催化剂组分以及外部供电子组分组合。在典型的高活性催化剂中,内部供电子材料是邻苯二甲酸烷基酯并且外部供电子材料是有机硅烷。
在常规的单反应器或多反应器气相聚合***中,固体的含钛组分连同烷基铝助催化剂组分和另外的调节剂组分一起、但是彼此单独地加入到单一反应器的前端中或加入到多反应器***的第一反应器中。催化剂组分和助催化剂组分的分离是所希望的,从而避免了如果单体存在于催化剂给料管道中时发生聚合。典型地,将催化剂组分在液体单体中注射到聚合气相反应器中。
在常规的聚合方法中,烷基铝助催化剂组分与含钛组分的相对量通过加入足够使含钛组分完全活化的量的助催化剂来确定。典型地,加入比完全活化催化剂体系所需更多的助催化剂组分不增加聚合活性。因此,如果初始催化剂已完全被活化的话,则在随后的聚合阶段中加入另外的助催化剂不会增加催化剂活性。
尽管催化剂活性随着停留时间而降低,但是在随后的聚合阶段中加入另外的催化剂(含钛组分和烷基铝组分二者)产生不希望的产物性质和操作困难。含钛组分的另外加入会引入具有不同范围的活性位点的催化剂并且会具有不同的停留时间。新加入的催化剂会在聚合方法流程的末端产生具有更小尺寸的聚合物粒子。
在使用典型的高活性镁承载的齐格勒-纳塔催化剂的烯烃聚合中,聚合速率典型地作为时间的函数或者在连续法中作为通过聚合反应器的输送的函数而下降。在基本上活塞流***如搅拌的、水平的、亚流化床方法中,催化剂和助催化剂典型地在反应器的一端被注射并且聚合物通过机械搅拌被输送通过反应器。催化剂活性将随着聚合物沿着反应器被输送而下降。在多反应器***中,无论是流化床***还是非流化床***,包含活性催化剂的聚合物从一个反应器被输送到另一个反应器。如果无另外的催化剂被加入到随后的反应器,则聚合速率将在该随后的反应器中下降。
用于描述聚合反应速率的典型的动力学模型是假定一阶(firstorder)失活速率(kd)及反应速率对单体和活性位点浓度的一阶依赖性的简易模型。因此,
kp=kp0×e(-kd×t)
其中kp是聚合速率(克丙烯/小时×巴×毫克Ti),kp0是在该方法已按装置的制度操作(lined out)后的时刻(t=0)的初始聚合速率,kd是一阶失活速率。
美国专利3,957,448和4,129,701描述了水平的、搅拌床式、气相烯烃聚合反应器,其中催化剂和助催化剂组分可以沿着反应器的不同位置被引入。
美国专利6,900,281描述了烯烃聚合***,其中超过一种外部电子供体被加入到气相聚合反应体系中。
美国专利5,994,482描述了共聚物合金的产生,其中供体和助催化剂被加入到液体池和气相反应器二者中。
Shimizu等人,J.Appl.Poly.ScL,Vol.83,第2669-2679页(2002)描述了在液体池聚合中烷基铝和烷氧基硅烷在齐格勒-纳塔催化剂失活作用中的影响。
需要一种烯烃聚合方法,其中产物组成、特别是在不同的聚合区中的产物组成可以得到控制。另外,需要能够控制催化剂失活速率的聚合方法。
在本发明的一个方面,通过在不同的聚合区中多次加入烷基铝助催化剂来改变气相烯烃聚合的动力学曲线。
在本发明另一个的方面,在不同的聚合区中加入烷基铝助催化剂降低在随后的聚合区中的催化剂失活,其导致昂贵的含钛催化剂组分的总使用量降低。
在本发明的另一个方面,改变聚合区当中的反应速率将允许控制在每个所述区中所制得的产物的量并且将允许基于在所述区中的不同反应条件控制产物组分分布。
在本发明的另一个方面,在其中聚丙烯均聚物在第一反应器中产生并且丙烯/乙烯共聚物橡胶组分在第二反应器中产生的多反应器***中,增加在第二反应器中的催化剂反应性将控制在最终产物中的橡胶组分的量并将控制在最终产物组合物中的乙烯单元的量和分布。
发明内容
烯烃聚合法包括使用高活性齐格勒-纳塔催化剂体系在超过一个聚合区中进行至少一种烯烃单体的气相聚合,所述高活性齐格勒-纳塔催化剂体系包括固体的镁承载的含钛组分和烷基铝组分,该方法包括将含钛组分和烷基铝组分引入到第一聚合区中,然后将另外的烷基铝组分引入到随后的未加入含钛组分的聚合区中。
具体实施方式
在本发明的方法中,包括丙烯的烯烃单体以及丙烯与乙烯和其它α-烯烃的混合物使用高活性齐格勒-纳塔催化剂体系在多个聚合区中在气相中聚合,所述高活性齐格勒-纳塔催化剂体系包括固体的含钛组分与至少一种烷基铝助催化剂。
在该方法的操作中,固体的含钛组分和烷基铝组分被引入到第一聚合区中,然后将另外的烷基铝助催化剂引入到随后的聚合区中。结果是,全部聚合的动力学曲线得到控制,从而使得催化剂失活速率在随后的聚合区中变小,这典型地导致在该区中产生更多产物。
如本发明所使用的,聚合区可以是分离的聚合反应容器或者可以代表在基本上活塞流反应器中的不同的位置,在所述不同的位置存在不同的聚合条件。例如,如美国专利6,900,281中所述的基本上活塞流聚合反应器不要求物理上分离的反应区,尽管聚合条件在所述反应器的前端和后端可能是不同的。
在本发明的一个方面,另外的烷基铝助催化剂与另外的外部调节剂组分如硅烷组合被引入到随后的未加入固体的含钛组分的聚合区中。
聚合的控制可以通过在第一反应区和随后的反应区中采用不同量的助催化剂来实现。例如,在第一聚合区中可以使用低于常用量的烷基铝助催化剂组分,然后在随后的区中使用较高量的烷基铝组分。这将改变在每个区中所制得的产物的相对量。这结合其它工艺条件可以改变在各自区中所制得的各产物的物理特性。例如,有效的氢浓度在每个区中可以是不同的,其将导致不同的分子量(如熔体流动速率所反映的)。另外,可以在各聚合区中使用不同量的共聚单体。而且,可以通过使用不同的硅烷外部调节剂或通过使用不同的Si/Al摩尔比影响聚合物性质。
本发明的另一个方面是在各聚合区中使用不同的烷基铝助催化剂化合物。因此,在第二聚合区中使用典型的助催化剂TEA之前,可以在第一聚合区中采用包含C3-12烷基的烷基铝助催化剂(如三正己基铝),其趋向于产生具有不同失活速率的催化剂以及乙烯聚合应答(response)(在丙烯/乙烯共聚中)。
在本发明的方法中,烷基铝助催化剂被引入到超过一个聚合区中。在多级反应器***中,烷基铝以及含钛催化剂组分被加入到第一反应器中,而另外的烷基铝助催化剂(其与第一助催化剂可能相同或不同)被加入到第二聚合反应器中。如果超过二个聚合区存在于聚合***中,则另外的助催化剂可以被加入到一个或多个这类聚合区中。
在活塞流反应器或多活塞流反应器***中,另外的烷基铝助催化剂可以在一个或多个活塞流反应器的不同位置处被加入。典型地,助催化剂在第一活塞流聚合反应器的前端(或初始聚合区)处被加入。另外的助催化剂可以被加入到该相同反应器的随后的聚合区中,即,被加入到聚合反应器的下游。如果存在超过一个反应器,则另外的助催化剂还可以被加入到随后的反应器中。这类被加入的助催化剂不必在第二反应器的前端被加入,而是可以沿着该反应器被加入。
常规地用于气相法中的聚合催化剂体系包括高活性承载的固体的基于钛的催化剂组分,三烷基铝活化剂组分或助催化剂组分和外部调节剂或供体组分。单独地,催化剂组分是非活性的;因此,催化剂和活化剂组分可以被悬浮在丙烯或烃液体如矿物油中并作为单独的物流被供应给反应器,而不在给料管道中引发聚合物形成。如果需要,则含钛组分和烷基铝组分可以在进入聚合区之前接触,优选如果不存在可聚合的单体的话。在此情况下,催化剂组分被悬浮在聚合惰性烃液体中。
典型的齐格勒-纳塔催化剂体系包含过渡金属(典型地是IUPAC第4至6族金属)组分,优选含钛组分,以及有机金属化合物如烷基铝物种。典型的和优选的含钛组分是基于四卤化钛或三卤化钛的卤化钛化合物,其可以被承载或与其它材料组合。这些体系目前是本领域公知的。
对于烯烃聚合,可以用于本发明的高活性承载的(HAC)含钛组分典型地被承载在烃不溶的、含镁化合物上。对于α-烯烃如丙烯的聚合,固体的过渡金属组分还典型地包含电子供体化合物以促进立体专一性。这种承载的含钛烯烃聚合催化剂组分典型地通过使钛(IV)卤化物、有机电子供体化合物和含镁化合物反应形成。任选地,这种承载的含钛反应产物可以通过采用另外的电子供体或路易斯酸物种进一步化学处理而得到进一步处理或改性。
适当的含镁化合物包括卤化镁;卤化镁如氯化镁或溴化镁与有机化合物如醇或有机酸酯或与第1、2或13族金属的有机金属化合物的反应产物;镁的醇化物;或烷基镁。
承载的固体的含钛催化剂的例子通过使氯化镁、烷氧基氯化镁或芳氧基氯化镁与卤化钛如四氯化钛反应,并进一步引入电子供体化合物来制备。在优选制备中,含镁化合物在相容的液体介质如烃中被溶解或者为浆料形式,以产生适当的催化剂组分粒子。乙烯聚合催化剂还可以承载在诸如二氧化硅、氧化铝或二氧化硅氧化铝(silica alumina)的氧化物上。
常用于气相法中的聚合催化剂体系包括高活性、承载的固体的基于钛的催化剂组分、三烷基铝活化剂组分或助催化剂组分和外部调节剂或供体组分。单独地,催化剂组分是非活性的;因此,催化剂和活化剂组分可以被悬浮在丙烯中并作为单独的物流被供应给反应器,而不在给料管道中引发聚合物形成。适当的固体的承载的钛催化剂体系描述于美国专利4,866,022、4,988,656、5,013,702、4,990,479和5,159,021中,所述专利作为参考并入本文。这些可能的固体的催化剂组分仅仅是可用于本发明且本领域已知的许多可能的固体的、含镁的、基于卤化钛的、烃不溶性催化剂组分的示例。本发明不局限于特定的承载的催化剂组分。
在本发明的典型的承载的催化剂中,镁与钛的原子比高于约1∶1,并且可以变化至约30∶1。更优选地,镁与钛的比从约10∶1变化至约20∶1。内部电子供体组分典型地以达到相对于钛化合物中的每克钛原子为约1摩尔、优选相对于钛化合物中的每克钛原子为约0.5至约2.0摩尔的总量并入固体的承载的催化剂组分中。内部供体的典型量相对于每克钛原子为至少0.01摩尔,相对于每克钛原子优选高于约0.05,并且典型地高于约0.1摩尔。而且,内部供体的量相对于每克钛原子典型地低于1摩尔,并且相对于每克钛原子典型地在约0.5摩尔以下。
固体的含钛组分优选包含约1重量%至约6重量%的钛、约10重量%至约25重量%的镁和约45重量%至约65重量%的卤素。典型的固体的催化剂组分包含约1.0重量%至约3.5重量%的钛、约15重量%至约21重量%的镁和约55重量%至约65重量%的氯。
固体的催化剂组分的待用量随着聚合技术、反应器大小、待聚合的单体以及本领域技术人员公知的其它因素的选择而变,并且可以根据下文给出的实施例确定。本发明的催化剂的典型用量相对于每克所产生的聚合物从约0.2变化至0.01毫克的催化剂。
可以用于本发明的内部电子供体材料在固体的承载的催化剂组分形成期间被并入到该组分中。典型地,在处理固体的含镁的材料期间,这种电子供体材料与钛(IV)化合物一起或在单独的步骤中被加入。最典型地,使四氯化钛和内部电子供体调节剂材料的溶液与含镁的材料接触。这种含镁的材料典型地为离散粒子的形式并且可以包含其它材料如过渡金属和有机化合物。
优选的电子供体化合物包括芳香酸的酯。一羧酸和二羧酸以及被卤素、羟基、氧、烷基、烷氧基、芳基和芳氧基取代的芳族一羧酸和二羧酸的电子供体是优选的。其中,优选其中烷基含1至6个碳原子的苯甲酸和卤代苯甲酸的烷基酯,如苯甲酸甲酯、溴苯甲酸甲酯、苯甲酸乙酯、氯苯甲酸乙酯、溴苯甲酸乙酯、苯甲酸丁酯、苯甲酸异丁酯、苯甲酸己酯和苯甲酸环己酯。其它优选的酯包括对甲氧基苯甲酸乙酯和对甲苯甲酸甲酯。特别优选的芳香酯是其中烷基包含约2至10个碳原子的邻苯二甲酸二烷基酯。优选的邻苯二甲酸酯的例子是邻苯二甲酸二异丁酯、邻苯二甲酸二乙酯、邻苯二甲酸乙基丁基酯和邻苯二甲酸二正丁酯。其它有用的内部供体是被取代的二醚化合物、被取代的琥珀酸的酯、被取代的戊二酸的酯、被取代的丙二酸的酯和被取代的富马酸或马来酸的酯。
助催化剂组分优选是不含卤素的有机铝化合物。适当的不含卤素的有机铝化合物包括,例如,式AlR3的烷基铝化合物,其中R表示具有1至10个碳原子的烷基,例如三甲基铝(TMA)、三乙基铝(TEA)和三异丁基铝(TIBA)。
适当的烷基R的例子包括甲基、乙基、丁基、己基、癸基、十四烷基和二十烷基。优选烷基铝,并且最优选使用每个烷基包含1至约6个碳原子的三烷基铝,特别是三乙基铝和三异丁基铝或其组合。在本发明的要求活性较低的烷基铝组分与活性较高的烷基铝组分的组合的方面中,三乙基铝是优选的活性较高组分并且活性较低组分包括三正丁基铝(TNBA)、三正己基铝(TNHA)、三正辛基铝(TNOA)等等。
在本发明的方法中,烷基铝化合物的混合物可以用作在一个或多个聚合区中的助催化剂组分。这种烃基化物的混合物可以用来控制在这些聚合区中制得的产物的性质。尽管不优选,但是如果需要的话,则可以采用具有一个或多个卤素或氢化物基的烷基铝,如二氯化乙基铝、氯化二乙基铝可以用作助催化剂组分。
本领域所公开的用于这类方法的齐格勒-纳塔聚合催化剂体系包括过渡金属化合物组分和助催化剂组分,优选有机铝化合物。任选地,催化剂体系可以包括少量的催化剂调节剂和电子供体。典型地,催化剂/助催化剂组分通过一个或多个阀控制的孔被一起或单独地加入到位于工艺物流前面的反应容器中。催化剂组分可以通过单一给料管道被加入到工艺物流中,更优选地可以通过不同的孔隙被单独地注射以防止在给料管道中的堵塞。
烯烃单体可以通过循环气体和其中未反应的单体作为尾气被除去的骤冷液体***被供应给反应器,经过部分缩合并与新鲜的进料单体混合,并被注射到反应容器中。可以加入氢以控制分子量。将骤冷液体注射到工艺物流中以控制温度。在丙烯聚合中,骤冷液体可以是液体丙烯。在其它的烯烃聚合反应中,骤冷液体可以是液体烃如丙烷、丁烷、戊烷或己烷,优选异丁烷或异戊烷。根据所用的特定反应器***,骤冷液体可以被注射到反应器中的聚合物粒子床的上方或内部。
在一些应用中,烷基锌化合物如二乙基锌(DEZ)可以作为另外的外部调节剂被加入以产生高MFR聚合物,如作为参考并入本文的美国专利6,057,407所述。少量DEZ与TEOS组合使用可能是有益的,因为需要更少量的氢来产生高MFR聚合物。少量的DEZ允许在更低的氢浓度下并以更高收率产生高MFR聚合物。
为了优化该助催化剂体系在α-烯烃聚合中的活性和立体专一性,优选采用一种或多种外部调节剂,典型地是电子供体如硅烷、无机酸、硫化氢的有机金属硫族化物衍生物、有机酸、有机酸酯及其混合物。
可作为用于上述的助催化剂体系的外部调节剂使用的有机电子供体是包含氧、硅、氮、硫和/或磷的有机化合物。这类化合物包括有机酸、有机酸酐、有机酸酯、醇、醚、醛、酮、硅烷、胺、胺氧化物、酰胺、硫醇、各种亚磷酸酯和酰胺等等。还可以使用有机电子供体的混合物。
上述的助催化剂体系有利地和优选地包含脂肪族或芳族的硅烷外部调节剂。可用于上述的助催化剂体系的优选的硅烷包括包含具有1至约20个碳原子的烃部分的被烷基、芳基和/或烷氧基取代的硅烷。特别优选式SiY4的硅烷,其中每个Y基团是相同的或不同的并且是含1至约20个碳原子的烷基或烷氧基。优选的硅烷包括异丁基三甲氧基硅烷、二异丁基二甲氧基硅烷、二异丙基二甲氧基硅烷、正丙基三乙氧基硅烷、异丁基甲基二甲氧基硅烷、异丁基异丙基二甲氧基硅烷、二环戊基二甲氧基硅烷、正硅酸四乙酯、二环己基二甲氧基硅烷、二苯基二甲氧基硅烷、二叔丁基二甲氧基硅烷、叔丁基三甲氧基硅烷和环己基甲基二甲氧基硅烷。可以使用硅烷的混合物。
电子供体与齐格勒-纳塔催化剂体系一起被采用,以通过控制产物中的全同立构聚合物和无规立构聚合物的相对量(其可以通过沸腾庚烷提取或核磁共振(nmr)五价物(pentad)分析进行测量)来控制立构规整性。立构规整性更高的全同立构聚合物典型地结晶性更高,其导致具有更高弯曲模量的材料。这类高结晶性的全同立构聚合物还显示更低的熔体流动速率,这是由于在聚合期间与催化剂结合的电子供体的氢应答减小所致。本发明的优选的电子供体是作为与齐格勒-纳塔催化剂组合使用的立构规整调节剂来使用的外部电子供体。因此,本文使用的术语“电子供体”特别地是指外部电子供体材料,还被称为外部供体。
优选地,适当的外部电子供体材料包括有机硅化合物,典型地是具有式Si(OR)nR′4-n的硅烷,其中R和R′独立地选自C1-C10烷基和环烷基,并且n=1-4。优选地,R和R′基团独立地选自C2-C6烷基和环烷基如乙基、异丁基、异丙基、环戊基、环己基等等。适当的硅烷的例子包括四乙氧基硅烷(TEOS)、二环戊基二甲氧基硅烷(DCPDMS)、二异丙基二甲氧基硅烷(DIPDMS)、二异丁基二甲氧基硅烷(DIBDMS)、异丁基异丙基二甲氧基硅烷(IBIPDMS)、异丁基甲基二甲氧基硅烷(IBMDMS)、环己基甲基二甲氧基硅烷(CHMDMS)、二叔丁基二甲氧基硅烷(DTBDMS)、正丙基三乙氧基硅烷(NPTEOS)、异丙基三乙氧基硅烷(IPTEOS)、辛基三乙氧基硅烷(OTEOS)等等。有机硅化合物作为外部电子供体的使用例如描述于作为参考并入本文的美国专利4,218,339;4,395,360;4,328,122;和4,473,660中。尽管一般地已知大量的化合物作为电子供体,但是特定的催化剂可以具有与其特别相容并且可以通过常规试验进行确定的特定的化合物或化合物组。
用于α-烯烃的聚合或共聚的典型的催化剂体系通过将本发明的承载的含钛催化剂或催化剂组分与作为助催化剂的烷基铝化合物以及至少一种典型地是电子供体并优选是硅烷的外部调节剂组合而形成。典型地,在这类催化剂体系中有用的铝对钛的原子比为约10至约500,且优选为约30至约300。典型地,足够的烷基铝被加入到聚合***中以使含钛组分完全活化。
在本发明的方法中,在第一聚合区中铝对钛的比率典型地为至少10,典型地为至少20,并且可以根据所选择的工艺条件的要求变化至约300。对于加入的助催化剂,Al/Ti的比率可以低于或高于在第一聚合中被加入的。该比率基于与最初被加入的含钛组分的量成比例加入的烷基铝的量来计算。对于在随后聚合区中被加入的助催化剂,典型的Al/Ti的比率为至少10,优选为至少15,典型地为至少30。
在本发明的一个用途中,在第一聚合区中使用低于典型量的助催化剂,而在随后的聚合区中使用另外的助催化剂。在这种***中,将低于使含钛组分完全活化所需量的量的烷基铝组分加入到第一反应区中,而在随后的区中加入另外的烷基铝。
在一个方面,在初始聚合区中的催化剂体系不包含使催化剂完全活化而用于烯烃聚合的足够的烷基铝助催化剂。完全活化催化剂体系所需的量可以通过改变***中的Al/Ti的比率并且发现产生最大聚合活性的最小量的烷基铝而实验确定。在该方面,催化剂体系通过在后面的聚合区中加入更多的助催化剂而被完全活化。
在另一个方面,在第一聚合区中使用比如TEA具有更低还原能力的烷基铝物种,然后在后面的聚合区中使用具有更大还原能力的烷基铝。烷基铝的混合物可以用来进一步控制该过程。
另外,含钛组分在第一聚合区中的浓度可以高于典型用量,同时该催化剂不被助催化剂完全活化。向随后的聚合区中加入另外的助催化剂(其可以与第一材料相同或不同)将增加在后面的区中的有效的催化剂浓度,因此可以用来控制该方法,包括控制产物分布。
在这类催化剂体系中的典型的铝对电子供体的摩尔比(例如Al/Si)为约1至约60。在这类催化剂体系中的典型的铝对硅烷化合物的摩尔比高于约1.5,优选高于2.5,更优选为约3。该比率可以变化至200以上,通常变化至约150,优选不超过120。典型范围为约1.5至约20。过度高的Al/Si或低的硅烷量将导致可操作性问题如低的全同立构粘性粉末。
本发明的齐格勒-纳塔催化剂或催化剂组分的用量随着聚合或共聚技术、反应器大小、待聚合或待共聚的单体以及本领域技术人员公知的其它因素的选择而变,并且可以根据下文给出的实施例确定。本发明的催化剂或催化剂组分的典型用量相对于所产生的每克聚合物或共聚物从约0.2变化至0.02毫克的催化剂。
本发明的方法可用于乙烯和含3个以上碳原子的α-烯烃如丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯和1-己烯以及它们的混合物以及它们与乙烯的混合物的聚合或共聚。典型的烯烃单体包括达到C14α-烯烃,优选达到C8α-烯烃,更优选达到C6α-烯烃。本发明的方法在丙烯或丙烯与达到约50摩尔%(优选达到约30摩尔%)的乙烯或更高级α-烯烃的混合物的立体专一性聚合或共聚中特别有效。根据本发明,通过使至少一种α-烯烃与上述的催化剂或催化剂组分在适当的聚合或共聚条件下与产生自由基的化合物接触,制备支链的结晶聚烯烃均聚物或共聚物。这类条件包括聚合或共聚温度和时间、单体的压力、催化剂污染的避免、用于控制均聚物或共聚物分子量的添加剂的使用以及本领域技术人员公知的其它条件。
与所用的聚合或共聚方法无关,聚合或共聚应该在这样的温度下进行,该温度高得足以确保合理的聚合速率或共聚速率并避免过长的反应器停留时间、但是该温度又不能高得以至于由于过快的聚合速率或共聚速率而导致产生不合理高水平的立体无规产物的条件。一般地,温度从约0℃变化至约120℃,从获得良好的催化剂性能和高生产率的立场上考虑,该温度范围优选为约20℃至约95℃。更优选地,本发明的聚合在从约50℃至约80℃的温度下进行。
本发明的烯烃聚合或共聚在为约大气压力或更高的单体压力下进行。一般地,单体压力从约1.2变化至约40巴(120至4000千帕(kPa)),尽管在气相聚合或共聚中,单体压力应该不低于在待聚合或共聚的α-烯烃的聚合温度或共聚温度下的蒸气压。
聚合或共聚时间在间歇法中一般将从约1/2小时变化至若干小时,其与在连续法中的平均停留时间相对应。聚合或共聚时间在高压釜型反应中通常从约1小时变化至约4小时。
在被用于α-烯烃的聚合或共聚中之前,还可以进行本发明的催化剂或催化剂组分的预聚合或密封(encapsulation)。特别有用的预聚合步骤描述于作为参考被并入本文的美国专利4,579,836中。
其中本发明的催化剂或催化剂组分是可用的气相聚合共聚方法的例子包括搅拌床反应器和流化床反应器***二者,并且在全部作为参考并入本文的美国专利3,957,448;3,965,083;3,971,768;3,970,611;4,129,701;4,101,289;4,535,134;4,640,963;6,069,212;6,284,848;6,350,054;和6,590,131中描述。典型的气相烯烃聚合或共聚反应器***包括至少一个可以向其中加入烯烃单体和催化剂组分并且包含形成聚合物粒子的搅拌床的反应器。典型地,催化剂组分通过一个或多个阀控制的孔被一起或单独地加入到单一反应器或第一反应器中。烯烃单体典型地通过其中作为尾气被除去的未反应的单体和新鲜的进料单体被混合并被注射到反应器中的循环气体***被供应给反应器。对于抗冲共聚物的制造,使由第一反应器内的第一单体形成的均聚物与在第二反应器内的第二单体反应。可以为液体单体的骤冷液体通过循环气体***被加入到聚合或共聚中的烯烃中以控制温度。
反应器包括用于将催化剂或催化剂组分引入到在反应器中所包含的多个区域的装置,从而允许将催化剂和骤冷液体直接受控引入到形成聚合物固体的搅拌的亚流化床之内或之上,并在该床之内或之上聚合气相的单体。当在该方法中产生的固体聚合物积聚时,其横向穿过反应器长度并经由穿过位于反应器出口端的排放孔屏障被连续地除去。
反应器可以任选地被间隔,反应器的各隔室被分离结构物理分离,所述分离结构被构造得用来控制在隔室之间蒸气混合,但是允许游离的聚合物粒子从一个隔室沿着排放孔的方向向另一个隔室移动。各隔室可以包括一个或多个聚合区域,所述聚合区域任选地被堰或其它适当成型的挡板所分离,从而防止或抑制在区域之间的全部回混。
单体或单体混合物以及任选的氢被大量地或全部地引入到聚合物床下方,骤冷液体被引入到床的表面上。在尽可能完全地从尾气物流中除去聚合物细粒之后,反应器尾气沿着反应器的顶部被除去。这类反应器尾气被引向分离区,从而骤冷液体与任何另外的聚合物细粒和一些催化剂组分一起与聚合单体和如果使用的氢至少部分地分离。单体和氢然后被循环至沿着一般位于聚合物床表面下方的反应器的多个聚合区域间隔布置的入口。包括另外的聚合物细粒的一部分骤冷液体从分离区被取出,并且大部分返回到沿着反应器隔室的顶部间隔布置的入口。不含聚合物细粒和催化剂组分的第二小部分的分离的骤冷液体可以被供应到用于催化剂稀释的催化剂补充区中,使得不必为此目的引入新鲜的骤冷液体。在反应器中可以规定以不同速率引入催化剂组分和骤冷液体到一个或多个聚合区域中,从而帮助控制聚合温度和聚合物产率。催化剂组分可以被加入到床表面上方或床表面下方。
用于聚合的总的反应器温度范围取决于正被聚合的特定单体和由其获得的所需产物,并且同样是本领域技术人员公知的。通常,使用的温度范围在约40℃至高达约床的软化温度之间变化。在多反应器***中,可以在各反应器中使用不同的聚合温度以控制在那些区中的聚合物性质。
所述方法的循环***被设计为使得其与反应器一起实质上等压地工作。也就是说,优选地,在循环***和反应器中存在不超过±70kPa的气压变化,更优选不超过±35kPa的气压变化,其是从操作预期得到的常压变化。
总聚合压力由单体压力、蒸发的骤冷液体压力和氢压力以及任何存在的惰性气体压力组成,并且该总压力通常可以从约大气压以上变化至约600磅/平方英寸(psig)(4200kPa)。构成总压力的单独的组分分压决定了聚合发生的速率,待产生的聚合物的分子量和分子量分布。
与聚合或共聚技术无关,聚合或共聚有利地在排除了氧、水和其它的担当催化剂毒物的材料的条件下进行。而且,根据本发明,聚合或共聚可以在存在添加剂以控制聚合物或共聚物分子量的条件下进行。以本领域技术人员公知的方式典型地将氢用于这一目的。尽管通常不需要,但是当聚合或共聚完成时,或者当希望终止聚合或共聚时或至少暂时使本发明的催化剂或催化剂组分失活时,可以本领域技术人员已知的方式使催化剂与水、醇、丙酮或其它适当的催化剂去活化剂接触。
根据本发明的方法产生的产物通常是固体、主要是全同立构的聚α-烯烃。均聚物或共聚物的收率相对于所用催化剂的量足够高,从而无需分离催化剂剩余物即可获得有用的产物。另外,立体无规的副产物的水平足够低,从而无需分离该副产物即可获得有用的产物。在所发明的催化剂存在的条件下产生的聚合和共聚产物可以通过挤出、注射成型、热成形和其它普通技术被制成有用的制品。
根据本发明制造的丙烯聚合物主要包含丙烯的高结晶性聚合物。具有实质上聚丙烯结晶度含量的丙烯聚合物现在是本领域公知的。很久以来已经承认被描述为“全同立构”聚丙烯的结晶性丙烯聚合物包含散置有一些非晶畴的结晶畴。非结晶度可能是起因于在规则的全同立构聚合物链中的缺陷,该缺陷防止了全整的聚合物晶体形成。
在聚合后,典型地通过分离的室或吹箱,通过本领域已知的方法从聚合反应器中取得聚合物粉末,并且优选将其转移到聚合物整理设备中,在该整理设备中将适当的添加剂掺入到聚合物中,在挤出机中典型地通过机械剪切和附加热将聚合物加热到熔融温度以上,挤出通过模具,并形成非连续的颗粒。在通过挤出机进行加工之前,可以使聚合物粉末与空气和水蒸气接触,从而使任何剩余的催化剂物种失活。
实验性试验(experimental runs)
本发明通过以下实验性试验说明,但不限于此。
在装备有机械搅拌器及单体和催化剂注射孔的5升不锈钢垂直反应容器中进行聚合试验。在无氧和无水条件下进行聚合,并且使用利用水-蒸汽调节的双层包封加热罩控制反应温度。单体流量通过质量流量计进行测量并且气体组成采用质谱仪进行分析。在这些试验中,最初将烷基铝(TEA或TNOA)和硅烷(DIPDMS)在氮气层下在室温下加入到反应器中,然后加入20克的粒状惰性籽晶床。封闭反应器并使用丙烯和被加入以控制分子量的氢将氮从反应器中吹扫出。通过以450rpm搅拌将反应介质均化。反应器温度被设置为62℃,单体和氢总压力为8巴。将高活性镁承载的含钛催化剂(69.34毫克的
Figure G2008800072233D00201
1000M(BASF),其含1.5重量%的Ti和20.2重量%的Mg)注射到含在约12巴下的一些丙烯的反应器中,并且将聚合反应器温度保持在65℃并且压力为10巴。在一小时后,通过使用轻微的氩超压进行注射将另外的TEA和硅烷注射到反应器中。在聚合时间末尾,给反应器开孔并分离产物。结果示于下表1。
用于描述聚合反应速率的动力学模型是假定一阶失活速率(kd)和反应速率对单体和活性位点浓度的一阶依赖性的简易模型。因此,
kp=kp0×e(-kd×t),
其中kp是聚合速率(克丙烯/小时×巴×毫克Ti),kp0是在某时的初始聚合速率,kd(小时-1)是一阶失活速率常数。
用于阶段1和阶段2的速率kp0和kd由在按装置的制度操作后的约30分钟的聚合期间获得的聚合流量计算。
计算的速率常数kp0和kd在批与批之间有差异,特别是在第一阶段中。然而,在第二阶段中kd从0.8降低至0-0.1是显著的。在表1中,试验1、2和5对试验4的比较表明TEA(其中Al/Mg:9-10)的分阶段加入显著降低在第二阶段期间的kd,并且增加总聚合物的生产率。这表明烷基铝助催化剂的分阶段加入增加在第二阶段期间的生产量,从而在两个阶段之间获得更均匀的产物分布。
表1
  试验   1   2   3   4   5   6
  阶段1
  加入的烷基铝   TEA   TEA   TEA   TEA   TNOA   TNOA
  Al/Ti(摩尔比)   60   60   60   60   80   80
  Al/Si(摩尔比)   1.5   1.5   1.5   1.5   3.0   3.0
  Si/Ti(摩尔比)   40   40   40   40   26   26
  kd(小时-1)   0.6   0.7   0.9   0.7   0.4   0.4
  Kp0(克C3/小时×巴×毫克Ti)   38.4   32.2   40.9   32.7   34.2   40.7
  阶段2
  加入的烷基铝   TEA   TEA   TEA   TEA   TEA
  Al/Ti(摩尔比)   120   120   30   0   131   33
  Al/Si(摩尔比)   1.5   3.0   0.8   0.0   3.0   0.8
  Si/Ti(摩尔比)   80   40   40   0   44   44
  kd(小时-1)   0.0   0.1   0.7   0.8   0.0   0.3
  Kp0(克C3/小时×巴×毫克Ti)   23.5   22.9   29.1   35.7   27.6   39.1
  总Al/Ti(摩尔比)   180   180   90   60   211   113
  总反应时间(分钟)   120   120   142   120   120   120
  产物分析
  Mg(ppm)   23   25   24   32   23   20
  Ti(ppm)   1.8   2   2.1   2.5   1.8   1.6
  生产率(克聚丙烯/克催化剂/小时)
  通过Mg分析   4167   3750   3014   3000   4167   4688
  通过Ti分析   4391   4040   3551   3156   4391   5050
  H2/C3 (摩尔比)   0.04   0.04   0.05   0.03   0.04   0.04
  C2 /C3 (摩尔比)   0.03   0.03   0.04   0.03   0.06   0.06
  MFR(克/10分钟)   12   15   15   11   14   20
  C2总量(重量%)   5.4   4.6   4.3   3.9   4.2   5.3
  堆积密度(kg/L)   0.38   0.36   0.36   0.36   0.39   0.39
在两个反应器连续聚合反应器***中进行另外系列的丙烯聚合实验性试验。两个反应器的每个反应器是3.8升气相、横向的、圆筒形反应器,测量的直径为10厘米和长度为30厘米。级间气体交换***位于两个反应器之间,其可以捕获第一反应器聚合产物,被开孔以除去第一反应器气体并用得自第二反应器的气体再填充。该气体交换***存在的目的是保持在每个反应器阶段中的不同气体组成。第一反应器装备有尾气孔,用于循环反应器气体通过冷凝器并通过循环管道回到反应器中的喷嘴。在第一反应器中,液体丙烯用作骤冷液体以帮助控制聚合温度。反应器以连续方式运转。第二反应器装备有尾气孔,用于循环反应器气体,但是在该情况下不存在冷凝器。第二反应器装备有将水循环至卷绕在反应器外侧的传热蛇管的恒温浴***以保持反应器温度。
通过向第一反应器中引入根据美国专利4,886,022生产的高活性承载的含钛催化剂组分来引发聚合。通过经液体丙烯冲洗的催化剂加料喷嘴,引入作为在己烷中的浆料(0.5至1.5重量%)的含钛催化剂组分。有机硅烷调节剂(DIPDMS)和三烷基铝(TEA或TNHA)助催化剂在己烷中的混合物以Al/Si比率为6通过不同的经液体丙烯冲洗的加料喷嘴被单独地供应给第一反应器。在聚合期间,活性聚合物粉末从第一反应器被捕获,暴露在一系列气体通风和再加压步骤下,然后将粉末加入到第二反应器中。通过在各反应器***上的单独的Brooks质量流量仪将氢供应给各反应器,以便实现所需的粉末熔体流动速率(MFR)。乙烯和丙烯通过质量流量仪被单独地供应给第二反应器,以便维持两种气体的所需比率。
在这些试验期间,按装置的制度操作第一反应器,以在第二反应器开始操作之前产生特定的熔体流动速率均聚物。然后使用乙烯和丙烯的混合物在第二反应器中进行按装置的制度的操作,以在乙丙橡胶(EPR)相中产生目标乙烯含量和在最终产物中产生目标水平的EPR链段。一旦在两个反应器中都完成了按装置的制度的操作时,通过向第二反应器中加入另外的烷基铝使***扰动。通过测量所得的EPR链段水平的变化来评价向最终产物的转化。
在试验7-13中,获得了由于在两个反应器之间分阶段加入相同的烷基铝所致的效果。设置实验,使得TEA被加入到第一反应器中以导致Al/Ti比率为34(Al/Mg为2.5),其低于在这些实验中使用的用于含钛组分的Al/Mg为6(Al/Ti为80)的典型值。另外的TEA被加入到第二反应器中以导致最终的Al/Ti为102(Al/Mg为7.5)。将所得数据分成两个部分。第一部分(试验7-9)代表在向第二反应器中加入TEA之前的按装置的制度的操作。第二部分(试验10-13)表明当TEA被加入到第二反应器中时的操作。尽管两个时段的气体组成基本上相同,但是当TEA被加入到第二反应器中时,被加入到第二反应器中的EPR链段的百分比增加超过30%。因此,通过在降低的TEA浓度下操作第一反应器,然后在第二反应器中增加TEA浓度,在第二反应器中的催化剂生产率得以增加。
进行第二系列的实验(试验14-18)来评价由于使用不同的烷基铝来操作反应器的效果。在该实验中,TNHA(三正己基铝)以Al/Ti为55(Al/Mg为4)被加入到第一反应器中。将TEA加入到第二反应器中以增加最终的Al/Ti达到135(Al/Mg为10)。再次将数据分成两个部分。第一部分(试验14-16)代表在向第二反应器中加入TEA之前的按装置的制度的操作。第二部分(试验17-18)表明当TEA被加入到第二反应器中时的操作。尽管两个时段的气体组成基本上相同,但是当TEA被加入到第二反应器中时,被加入到第二反应器中的EPR链段的百分比增加超过60%。因此,通过采用作为效力较低的还原剂的烷基铝操作第一反应器,然后向第二反应器中加入作为较强的还原剂的TEA,在第二反应器中的催化剂生产率得以增加。
表2所示数据被分成两个部分。还显示了每个操作时段的平均值。表2列举了在每个反应器(R1和R2)中的氢/丙烯(H2/C3 )摩尔比,在第二反应器中的乙烯对丙烯(C2 /C3 )的摩尔比,在第二反应器中所制得的产物的量(链段%),无规共聚物组分的乙烯含量(RCC2),最终产物的总乙烯含量和最终产物的MFR(克/10分钟)。MFR根据ASTM D1238,条件(Condition)L(230℃,2.16Kg载荷)进行测量。
表2
试验        R-1        R-2                                             最终
            H2/C3     H2/C3     C2 /C3   链段%  RCC2    总C2     MFR
7           0.0585     0.00657    0.47793    8.8     52.2    4.6      14.1
8           0.05819    0.00633    0.40996    10.7    48.7    5.2      12.8
9           0.06209    0.00587    0.3452     9.8     46.7    4.6      13.3
试验7-9的   0.0596     0.0063     0.4110     9.8     49.2    4.8      13.4
平均值
10          0.05985    0.00622    0.36398    12.6    45.6    5.8      12.2
11          0.05793    0.00649    0.41733    11.1    49.4    5.5      12.4
12          0.06114    0.00677    0.44447    13.6    48.6    6.6      13.6
13          0.06167    0.00691    0.45008    15.6    49.3    7.7      10.5
试验10-13   0.0601     0.0066     0.4190     13.2    48.2    6.4      12.2
的平均值
14          0.05253    0.00664    0.42548    25.1    51.4    12.9     7.4
15          0.05324    0.00627    0.42935    28.8    56.1    16.2     5.7
16          0.05527    0.00584    0.48536    26.8    52.3    14       7.1
试验14-16   0.0537     0.0063     0.4467     26.9    53.3    14.4     6.7
的平均值
17          0.05767    0.00485    0.43707    46.2    57.5    26.5     2.5
18          0.05565    0.00483    0.40251    43.2    54      23.3     3.5
试验17-18   0.0567     0.0048     0.4198     44.7    55.8    24.9     3
的平均值

Claims (8)

1.一种烯烃聚合方法,其包括使用高活性齐格勒-纳塔催化剂体系在超过一个聚合区中进行至少一种烯烃单体的气相聚合,所述高活性齐格勒-纳塔催化剂体系包括固体的、镁承载的、含钛组分和烷基铝助催化剂组分,所述方法包括:
a)将含钛组分和C3-C12烷基铝组分引入到第一聚合区中;和
b)将三乙基铝组分引入到随后的未加入含钛组分的聚合区中。
2.权利要求1的方法,其中烯烃是丙烯或丙烯和乙烯的混合物。
3.权利要求1的方法,其中丙烯在第一反应区中聚合并且丙烯和乙烯的混合物在第二聚合区中聚合。
4.权利要求1的方法,其中在不同的反应区中使用不同的氢浓度。
5.权利要求1的方法,其中有机硅烷作为外部电子供体被加入到聚合中。
6.权利要求5的方法,其中不同的有机硅烷外部电子供体被加入到不同的聚合区中。
7.权利要求5的方法,其中在不同的聚合区中使用不同的铝/硅摩尔比。
8.权利要求1的方法,其中使用烷基铝助催化剂组分的混合物。
CN2008800072233A 2007-03-06 2008-03-03 利用烷基铝的分阶段加入的气相丙烯聚合法 Active CN101627058B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90528607P 2007-03-06 2007-03-06
US60/905,286 2007-03-06
PCT/US2008/002803 WO2008109042A1 (en) 2007-03-06 2008-03-03 Gas-phase propylene polymerization process using staged addition of aluminum alkyl

Publications (2)

Publication Number Publication Date
CN101627058A CN101627058A (zh) 2010-01-13
CN101627058B true CN101627058B (zh) 2012-11-07

Family

ID=39523395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800072233A Active CN101627058B (zh) 2007-03-06 2008-03-03 利用烷基铝的分阶段加入的气相丙烯聚合法

Country Status (6)

Country Link
US (1) US20100210795A1 (zh)
EP (1) EP2118147A1 (zh)
CN (1) CN101627058B (zh)
BR (1) BRPI0808544A8 (zh)
RU (1) RU2464282C2 (zh)
WO (1) WO2008109042A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100125124A1 (en) * 2008-11-17 2010-05-20 Fina Technology, Inc. Methods of catalyst activation
KR101547380B1 (ko) * 2009-02-20 2015-08-25 이네오스 테크놀로지스 유에스에이 엘엘씨 수평 교반 기상 반응기에서 제조되는 폴리올레핀 물질의 분자량 분포의 확장
CN103665212B (zh) * 2009-02-20 2015-09-30 伊内奥斯技术美国公司 加宽在水平搅拌气相反应器中制造的聚烯烃材料的分子量分布
CN102884093B (zh) * 2010-01-22 2014-03-12 中国石油化工股份有限公司 一种具有高熔体强度的丙烯均聚物及其制备方法
CN102174134B (zh) * 2011-01-27 2013-07-24 大唐国际化工技术研究院有限公司 制备高熔融指数聚丙烯的催化剂组合物、制备方法和用途
ES2602161T3 (es) 2011-03-18 2017-02-17 Ineos Manufacturing Belgium Nv Copolímero aleatorio de propileno-etileno
EP2543684B1 (en) * 2011-07-07 2016-12-21 Borealis AG Process for the manufacture of isotactic polypropylene
US10696765B2 (en) 2014-02-07 2020-06-30 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and propylene polymer
US10308740B2 (en) 2014-02-07 2019-06-04 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US11267916B2 (en) 2014-02-07 2022-03-08 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US10647795B2 (en) 2014-02-07 2020-05-12 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US9593179B2 (en) 2014-02-07 2017-03-14 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US10723824B2 (en) 2014-02-07 2020-07-28 Eastman Chemical Company Adhesives comprising amorphous propylene-ethylene copolymers
CN111269341B (zh) * 2020-04-09 2023-03-21 青岛科技大学 一种合成高等规聚丁烯的催化剂及其制备方法
CN115322275A (zh) * 2022-03-07 2022-11-11 陕西延长中煤榆林能源化工有限公司 一种丙烯/1-丁烯共聚聚丙烯树脂的工业化生产方法
CN114478888B (zh) * 2022-03-15 2023-11-07 山东京博石油化工有限公司 一种聚烯烃弹性体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587436A (en) * 1992-11-12 1996-12-24 Quantum Chemical Corporation Process for controlling the polymerization of propylene and ethylene and copolymer products
CN1612901A (zh) * 2002-01-03 2005-05-04 Bp北美公司 使用双供体催化剂体系的烯烃气相聚合
CN1918200A (zh) * 2003-12-19 2007-02-21 波利亚里斯技术有限公司 用于制备烯烃聚合物的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093415A (en) * 1987-05-19 1992-03-03 Union Carbide Chemicals & Plastics Technology Corporation Process for producing stereoregular polymers having a narrow molecular weight distribution
US4882380A (en) * 1987-07-07 1989-11-21 Union Carbide Chemicals And Plastics Company Inc. Process for the production of impact polypropylene copolymers
US5047468A (en) * 1988-11-16 1991-09-10 Union Carbide Chemicals And Plastics Technology Corporation Process for the in situ blending of polymers
US4990478A (en) * 1989-09-21 1991-02-05 Amoco Corporation Silane-modified supported polyolefin catalyst to produce a broadened molecular weight distribution product
US5169913A (en) * 1991-05-31 1992-12-08 Procedyne Corp. Fluidized multistaged reaction system for polymerization
US6686433B1 (en) * 1994-02-04 2004-02-03 Exxonmobil Chemical Patents Inc. Dual donor catalyst system for the polymerization of olefins
ES2119401T3 (es) * 1994-02-04 1998-10-01 Exxon Chemical Patents Inc Sistema catalizador para la polimerizacion de olefinas con dos donantes.
US5548042A (en) * 1994-08-19 1996-08-20 Union Carbide Chemical & Plastics Technology Corporation Process for the production of polypropylene
IT1275573B (it) * 1995-07-20 1997-08-07 Spherilene Spa Processo ed apparecchiatura per la pomimerizzazione in fase gas delle alfa-olefine
US6015854A (en) * 1997-10-24 2000-01-18 Union Carbide Chemicals & Plastics Technology Corporation Polypropylene impact copolymers with high clarity
US6184299B1 (en) * 1999-03-31 2001-02-06 Union Carbide Chemicals & Plastics Technology Corporation Staged reactor process
US6187866B1 (en) * 1999-06-04 2001-02-13 Union Carbide Chemicals & Plastics Technology Corporation Staged reactor process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587436A (en) * 1992-11-12 1996-12-24 Quantum Chemical Corporation Process for controlling the polymerization of propylene and ethylene and copolymer products
CN1612901A (zh) * 2002-01-03 2005-05-04 Bp北美公司 使用双供体催化剂体系的烯烃气相聚合
CN1918200A (zh) * 2003-12-19 2007-02-21 波利亚里斯技术有限公司 用于制备烯烃聚合物的方法

Also Published As

Publication number Publication date
WO2008109042A1 (en) 2008-09-12
BRPI0808544A2 (pt) 2014-08-26
RU2464282C2 (ru) 2012-10-20
RU2009136640A (ru) 2011-04-20
EP2118147A1 (en) 2009-11-18
BRPI0808544A8 (pt) 2018-02-06
CN101627058A (zh) 2010-01-13
US20100210795A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
CN101627058B (zh) 利用烷基铝的分阶段加入的气相丙烯聚合法
CN103025771B (zh) 卧式搅拌床反应器中的h2分布控制
EP2638080B1 (en) Improved process for polymerising propylene
US10647796B2 (en) Methods of catalyst activation
US20180237555A1 (en) Method of Regulating Hydrogen to a Polymerization Reactor
EP3109261B1 (en) Process for producing lldpe resins
CN103360528B (zh) 一种高性能抗冲聚丙烯的制备方法和设备
EP2452959B1 (en) Process for producing propylene random copolymers and their use
CN103360527A (zh) 一种高性能抗冲聚丙烯的制备方法和设备
CN104903365B (zh) 制备丙烯共聚物的方法
CN109929185A (zh) 一种生产聚丙烯组合物的方法
KR101547380B1 (ko) 수평 교반 기상 반응기에서 제조되는 폴리올레핀 물질의 분자량 분포의 확장
CN104768977B (zh) 生产聚丙烯组合物的多步方法
CN103665212B (zh) 加宽在水平搅拌气相反应器中制造的聚烯烃材料的分子量分布
US20090131616A1 (en) Methods for Improving Heat Transfer in Polymerization Processes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: INEOS USA LLC

Free format text: FORMER OWNER: BP CORP. NORTH AMERICA INC.

Effective date: 20150106

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150106

Address after: Illinois State

Patentee after: INEOS USA LLC

Address before: Illinois State

Patentee before: BP Corp. North America Inc.