CN101626299B - 可堆叠交换机、交换机堆叠***与线缆热插拔方法 - Google Patents

可堆叠交换机、交换机堆叠***与线缆热插拔方法 Download PDF

Info

Publication number
CN101626299B
CN101626299B CN200910090419XA CN200910090419A CN101626299B CN 101626299 B CN101626299 B CN 101626299B CN 200910090419X A CN200910090419X A CN 200910090419XA CN 200910090419 A CN200910090419 A CN 200910090419A CN 101626299 B CN101626299 B CN 101626299B
Authority
CN
China
Prior art keywords
socket
port
stackable switch
single channel
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910090419XA
Other languages
English (en)
Other versions
CN101626299A (zh
Inventor
王春杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Star Net Ruijie Networks Co Ltd
Original Assignee
Beijing Star Net Ruijie Networks Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Star Net Ruijie Networks Co Ltd filed Critical Beijing Star Net Ruijie Networks Co Ltd
Priority to CN200910090419XA priority Critical patent/CN101626299B/zh
Publication of CN101626299A publication Critical patent/CN101626299A/zh
Application granted granted Critical
Publication of CN101626299B publication Critical patent/CN101626299B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electronic Switches (AREA)

Abstract

本发明公开了一种可堆叠交换机、交换机堆叠***与线缆热插拔方法,其中,可堆叠交换机包括主板与堆叠子板,所述主板包括数据交换专用集成电路ASIC,所述堆叠子板上设置有堆叠插座,所述ASIC与所述堆叠插座之间以印制电路板PCB走线连接,所述ASIC与所述堆叠插座之间的PCB走线上设置有保护电路,用于在所述堆叠插座与对端可堆叠交换机上的堆叠插座插接、且所述可堆叠交换机与所述对端可堆叠交换机正常上电以后接通所述PCB走线,在所述堆叠插座与对端可堆叠交换机上的堆叠插座拔出前断开所述PCB走线。本发明实施例可以避免线缆的热插拔对可堆叠交换机造成的损伤。

Description

可堆叠交换机、交换机堆叠***与线缆热插拔方法
技术领域
本发明涉及通信技术,尤其是一种可堆叠交换机、交换机堆叠***与线缆热插拔方法。 
背景技术
随着现代超大规模集成电路的发展,互补型金属氧化物半导体(complementary metaloxide semi-conductor,以下简称:CMOS)晶体管工艺特征尺寸急剧缩小,栅极厚度也相应的快速变薄,导致CMOS晶体管对于高电压和大电流的承受能力不断降低。例如:尺寸为180nm的CMOS晶体管的栅极厚度只有4nm左右,只能承受10V左右的静态电压。而在日常生活中普遍存在的静电现象,当能够被人体察觉到时,其电压已经高达3000V,远远超过了CMOS晶体管能够承受的范围。 
在以太网交换机技术领域,由于对交换数据容量和带宽需求的剧增,超高速数据交换专用集成电路(Application Specific Integrated Circuit,以下简称:ASIC)应运而生。在ASIC芯片中,采用了更小尺寸的设计工艺以便降低功耗,这也就使得交换机***面临着日益严峻的高电压和大电流破坏的危险。在交换机堆叠***中,这种风险就更为严重。所谓交换机堆叠***,是由两台或者两台以上的可堆叠交换机,根据特定的拓扑结构,使用可插拔堆叠线缆相互连接起来的***。交换机堆叠***中所有的单台交换机在逻辑上形成一个整体。在交换机堆叠***中,存在一台主机设备(Master)和多台从机设备(Slave)。如图1所示,为现有技术交换机堆叠***的一个拓扑结构示意图。其中,A、B、......、N是交换机堆叠***中的各单台交换机。如图2所示,为图1中单台交换机的一个结构示意图。 
在交换机堆叠***中,本地设备为当前分析的某台交换机设备,在交换机堆叠***中可以泛指任何一台交换机,远端设备与本地设备通过堆叠线缆直接连接的交换机设备,远端设备相对于本地设备而言。线缆热插拔是在交换机堆叠***中,当本地设备和远端设备中至少有一个处于带电状态时,对堆叠线缆进行的插拔操作。 
在堆叠应用中,不可避免地要经常进行堆叠线缆热插拔。现有技术在线缆热插拔的过程中,主要存在如下两种风险: 
第一种是,在线缆热***和热拔出的瞬间,尤其是在远端设备没有正常上电时,通过堆叠线缆与已经上电的本地设备对接,则与堆叠线缆相连接的远端设备上的容性负载被充电。在充电过程中,远端设备上的容性负载将在线缆***的瞬间从本地设备的***电源吸纳大量的电流,导致本地设备的***电压瞬间跌落,从而影响本地设备的正常运行。在拔出线缆的过程中,远端设备上的负载电容放电,也会产生瞬间大电流,也称为浪涌电流,浪涌电流携带大量的能量,透过堆叠插座;连接的印刷电路板(Printed circuit board,以下简称:PCB)走线,可能直接灌入数据交换ASIC内部,造成数据交换ASIC的永久损伤。 
第二种是,在堆叠线缆的热插拔过程中,随着堆叠线缆的移除和***,在堆叠插座处产生了带电物体的相对移动,为静电的产生提供了先决条件。并且,在堆叠线缆的热插拔过程中,人体等外部静电荷载体很有可能直接触碰到堆叠插座,从而发生静电放电。而一旦发生静电放电,瞬间高压就会透过堆叠插座窜到交换机内部,使对静电敏感的数据交换ASIC造成不可恢复损伤。 
发明内容
本发明实施例的目的是:提供一种可堆叠交换机、交换机堆叠***与线缆热插拔方法,避免线缆的热插拔对可堆叠交换机造成的损伤。 
本发明实施例提供的一种可堆叠交换机,包括主板与堆叠子板,所述主板包括数据交换专用集成电路ASIC,所述堆叠子板上设置有堆叠插座,所述ASIC与所述堆叠插座之间以印制电路板PCB走线连接,所述ASIC与所述堆叠插座之间的PCB走线上设置有保护电路,所述堆叠插座上设置有接地端GND、第一接收数据端口对RD+/-、第一发送数据端口对TD+/-、与控制信号端口对Pre_R/Pre_L;所述RD+/-分别与对端可堆叠交换机上的堆叠插座上的TD+/-对接,所述Pre_R/Pre_L分别与所述对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R对接;在所述堆叠插座上,所述GND的针脚长度最长,所述RD+/-与所述TD+/-的针脚长度次之,所述Pre_R/Pre_L的针脚长度最短; 
所述保护电路具体用于在所述堆叠插座上的Pre_R/Pre_L分别与所述对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R插接、且所述可堆叠交换机与所述对端可堆叠交换机正常上电以后接通所述PCB走线,在所述堆叠插座上的Pre_R/Pre_L分别与所述对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R断开时断开所述PCB走线,所述ASIC上设置有第二发送数据端口对TX+/-与第二接收数据端口对RX+/-; 
所述保护电路包括切换开关,该切换开关包括:第一差分信号输入端、第二差分信号输入端、第三差分信号输入端、第一差分信号输出端、第二差分信号输出端、第一双通道单路选通逻辑器、第二双通道单路选通逻辑器与第三双通道单路选通逻辑器; 
所述第一差分信号输入端上的输入端口IN+/-分别通过电容与所述TX+/-对应连接,所述第一差分信号输入端上的输出端口分别与所述第二双通道单路选通逻辑器上的一个通道端口、所述第三双通道单路选通逻辑器上的一个通道端口连接; 
所述第二差分信号输入端上的输入端口IN0+/-分别通过电容下拉到GND,所述第二差分信号输入端上的输出端口分别与所述第三双通道单路选通逻辑器上的另一个通道端口、所述第一双通道单路选通逻辑器上的一个通道端口连接; 
所述第三差分信号输入端上的输入端口IN1+/-分别通过电容与所述TD+/-对应连接,所述第三差分信号输入端上的输出端口分别与所述第一双通道单路选通逻辑器上的另一个通道端口、所述第二双通道单路选通逻辑器上的另一个通道端口连接; 
所述第一差分信号输出端上的输出端口OUT+/-分别通过电容与所述RX+/-对应连接,所述第一差分信号输出端上的输入端口与所述第一双通道单路选通逻辑器上的单路端口连接; 
所述第二差分信号输出端上的输出端口OUT0+/-分别通过电容与所述RD+/-对应连接,所述第二差分信号输出端上的输入端口与所述第二双通道单路选通逻辑器上的单路端口连接,所述第二差分信号输出端上设置有第一使能逻辑控制单元OE0,该OE0通过电阻下拉到GND,用于在逻辑值为0时,使OUT0+/-输出高阻态,在逻辑值为1时,使OUT0+/-正常输出; 
所述第一双通道单路选通逻辑器上的另一个通道端口还与所述第二双通道单路选通逻辑器上的另一个通道端口连接,所述第一双通道单路选通逻辑器上的输出通道切换逻辑控制管脚MUX通过电阻下拉到GND,在逻辑值为0时,建立所述IN0+/-与所述OUT+/-之间的输出通道,在逻辑值为1时,建立所述IN1+/-与所述OUT+/-之间的输出通道; 
所述第二双通道单路选通逻辑器上的输出通道切换逻辑控制管脚MUX0通过电阻下拉到GND,在逻辑值为0时,建立所述IN+/-与所述OUT0+/-之间的输出通道,在逻辑值为1时,建立所述IN1+/-与所述OUT0+/-之间的输出通道; 
所述第三双通道单路选通逻辑器上的单路端口悬空,所述第三双通道单路选通逻辑器上的输出通道切换逻辑控制管脚MUX1通过电阻下拉到 GND,在逻辑值为0时,建立所述IN0+/-与所述第三双通道单路选通逻辑器上的单路端口之间的输出通道,在逻辑值为1时,建立所述IN+/-与所述第三双通道单路选通逻辑器上的单路端口之间的输出通道; 
所述Pre L通过电阻上拉到***电源VCC;所述Pre R通过电阻下拉到GND,并同时连接与门电路的一个输入端,所述与门电路的另一个输入端通过电阻下拉到GND,所述与门电路的输出端分别与所述OE0及所述MUX连接。 
本发明实施例提供的一种交换机堆叠***,包括多个如本发明上述实施例提供的可堆叠交换机。 
本发明实施例提供的一种线缆热插拔方法,包括: 
ASIC与堆叠插座之间的PCB走线上设置的保护电路,在检测到所述堆叠插座与对端可堆叠交换机上的堆叠插座插接、且所述可堆叠交换机与所述对端可堆叠交换机正常上电时,接通所述PCB走线,在检测到所述堆叠插座与对端可堆叠交换机上的堆叠插座将要拔出时,断开所述PCB走线。 
基于本发明上述实施例提供的可堆叠交换机、交换机堆叠***与线缆热插拔方法,在ASIC与堆叠插座之间的PCB走线上设置了保护电路,可以检测堆叠插座与对端可堆叠交换机上的堆叠插座是否插接以及可堆叠交换机与对端可堆叠交换机是否正常上电,在堆叠插座与对端可堆叠交换机上的堆叠插座插接且可堆叠交换机与对端可堆叠交换机正常上电后,才接通ASIC与堆叠插座之间的PCB走线,以及在检测到堆叠插座与对端可堆叠交换机上的堆叠插座将要拔出时,断开ASIC与堆叠插座之间的PCB走线,从而避免线缆的热插拔对ASIC造成损伤,进而有效防止在线缆的热插拔过程中对可堆叠交换机造成损伤,提高整个交换机堆叠***的热插拔防护能力。 
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。 
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。 
图1为现有技术交换机堆叠***的一个拓扑结构示意图; 
图2为图1中单台交换机的一个结构示意图; 
图3为本发明可堆叠交换机一个实施例的结构示意图; 
图4为本发明可堆叠交换机另一个实施例的结构示意图; 
图5为本发明可堆叠交换机又一个实施例的结构示意图; 
图6为本发明保护电路一个实施例的结构示意图; 
图7a为本发明第一差分信号输入端的结构示意图; 
图7b为本发明第二差分信号输入端的结构示意图; 
图7c为本发明第三差分信号输入端的结构示意图; 
图7d为本发明第一差分信号输出端的结构示意图; 
图7e为本发明第二差分信号输出端的结构示意图; 
图7f为本发明第一双通道单路选通逻辑器的结构示意图; 
图7g为本发明第二双通道单路选通逻辑器的结构示意图; 
图7h为本发明第三双通道单路选通逻辑器的结构示意图; 
图8为本发明保护电路另一个实施例的结构示意图; 
图9为本发明第三差分信号输出端的结构示意图; 
图10为本发明静电防护电路的一个结构示意图; 
图11为本发明交换机堆叠***一个实施例的结构示意图。 
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 
本发明实施例中,在可堆叠交换机的数据交换ASIC与堆叠插座之间,设置一个保护电路,来避免传统交换机堆叠***中两个可堆叠交换机在线缆热插拔过程中存在的、对作为可堆叠交换机核心部件的数据处理ASIC产生损伤,从而提高整个交换机堆叠***的热插拔防护能力。 
图3为本发明可堆叠交换机一个实施例的结构示意图。如图3所示,该实施例的可堆叠交换机包括主板11与堆叠子板12。其中,主板11包括数据交换ASIC111,堆叠子板12上设置有堆叠插座121。ASIC111与堆叠插座121之间以PCB走线13连接。在ASIC111与堆叠插座121之间的PCB走线13上,设置有保护电路14,用于在堆叠插座121与对端可堆叠交换机上的堆叠插座插接、且可堆叠交换机与对端可堆叠交换机正常上电以后接通该PCB走线13,在堆叠插座121与对端可堆叠交换机上的堆叠插座拔出前断开该PCB走线13。由于保护电路14设置在ASIC111与堆叠插座121之间的PCB走线13上,本发明实施例的保护电路14具备输入输出通道管理功能并且支持热插拔。 
其中,作为本发明的一个具体实施例,可堆叠交换机与对端可堆叠交换机正常上电具体可以是:堆叠插座上的电压值属于预先设置的正常电压值范围。 
在上述实施例提供的可堆叠交换机中,由于在ASIC与堆叠插座之间的PCB走线上设置了保护电路,可以检测堆叠插座与对端可堆叠交换机上的堆叠插座是否插接以及可堆叠交换机与对端可堆叠交换机是否正常上电,在堆叠插座与对端可堆叠交换机上的堆叠插座插接且可堆叠交换机与对端可堆叠交换机正常上电后,才接通ASIC与堆叠插座之间的PCB走线,以及在检测 到堆叠插座与对端可堆叠交换机上的堆叠插座将要拔出时,断开ASIC与堆叠插座之间的PCB走线,从而避免线缆的热插拔过程对ASIC造成损伤,进而有效防止线缆的热插拔过程对可堆叠交换机造成损伤。 
图4为本发明可堆叠交换机另一个实施例的结构示意图。如图4所示,与图3所示的实施例相比,该实施例的可堆叠交换机中,主板11与堆叠子板12之间以板间插座15连接。相应的,ASIC111与堆叠插座121之间以PCB走线13连接具体为:ASIC111与板间插座15之间以第一PCB走线131连接,板间插座15、保护电路14与堆叠插座121之间以第二PCB走线132连接。相应的,保护电路14可以设置在第一PCB走线131上,也可以设置在第二PCB走线132上。 
图5为本发明可堆叠交换机又一个实施例的结构示意图。图6为本发明保护电路一个实施例的结构示意图。同时参见图5与图6,与本发明上述实施例的可堆叠交换机相比,该实施例中,堆叠插座121上设置有接地端(GND)、第一接收数据端口对RD+/-、第一发送数据端口对TD+/-、与控制信号端口对Pre_R/Pre_L。其中,RD+/-分别与对端可堆叠交换机上的堆叠插座上的TD+/-对接,Pre_R/Pre_L分别与对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R对接。在堆叠插座121上,GND的针脚长度最长,RD+/-与TD+/-的针脚长度次之,Pre_R/Pre_L的针脚长度最短。相应的,在该实施例中,保护电路14具体用于在堆叠插座121上的Pre_R/Pre_L分别与对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R插接、且可堆叠交换机与对端可堆叠交换机正常上电以后接通PCB走线,具体来说,就是建立第一PCB走线131与第二PCB走线132之间的通道,在堆叠插座121上的Pre_R/Pre_L分别与对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R断开时断开PCB走线。 
另外,ASIC111上设置有第二发送数据端口对TX+/-与第二接收数据端口对RX+/-。作为本发明的一个具体实施例,保护电路14包括切换开关,该切换开关包括:第一差分信号输入端、第二差分信号输入端、第三差分 信号输入端、第一差分信号输出端、第二差分信号输出端、第一双通道单路选通逻辑器、第二双通道单路选通逻辑器与第三双通道单路选通逻辑器。其中,如图7a、7b、7c、7d、7e、7f、7g、7h所示,分别为本发明第一差分信号输入端、第二差分信号输入端、第三差分信号输入端、第一差分信号输出端、第二差分信号输出端、第一双通道单路选通逻辑器、第二双通道单路选通逻辑器与第三双通道单路选通逻辑器的结构示意图。其中,图7f中示出了第一双通道单路选通逻辑器在逻辑值为0时,建立了IN0+/-与OUT+/-之间的输出通道;图7g示出了第二双通道单路选通逻辑器在逻辑值为1时,建立IN1+/-与OUT0+/-之间的输出通道;图7h示出了第三双通道单路选通逻辑器在逻辑值为1时,建立IN+/-与第三双通道单路选通逻辑器上的单路端口之间的输出通道。 
其中,第一差分信号输入端上的输入端口IN+/-分别通过电容与TX+/-对应连接,第一差分信号输入端上的输出端口分别与第二双通道单路选通逻辑器上的一个通道端口、第三双通道单路选通逻辑器上的一个通道端口连接。第二差分信号输入端上的输入端口IN0+/-分别通过电容下拉到GND,第二差分信号输入端上的输出端口分别与第二双通道单路选通逻辑器上的另一个通道端口、第一双通道单路选通逻辑器上的一个通道端口连接。第三差分信号输入端上的输入端口IN1+/-分别通过电容与TD+/-对应连接,第三差分信号输入端上的输出端口分别与第一双通道单路选通逻辑器上的另一个通道端口、第二双通道单路选通逻辑器上的一个通道端口连接。第一差分信号输出端上的输出端口OUT+/-分别通过电容与RX+/-对应连接,第一差分信号输出端上的输入端口与第一双通道单路选通逻辑器上的单路端口连接。第二差分信号输出端上的输出端口OUT0+/-分别通过电容与RD+/-对应连接,第二差分信号输出端上的输入端口与第二双通道单路选通逻辑器上的单路端口连接,第二差分信号输出端上设置有第一使能逻辑控制单元OE0,该OE0通过电阻下拉到GND,用于在逻辑值为0时, 使OUT0+/-输出高阻态,在逻辑值为1时,使OUT0+/-正常输出。第一双通道单路选通逻辑器上的另一个通道端口还与第二双通道单路选通逻辑器上的另一个通道端口连接,第一双通道单路选通逻辑器上的输出通道切换逻辑控制管脚MUX通过电阻下拉到GND,在逻辑值为0时,建立IN0+/-与OUT+/-之间的输出通道,使IN0+/-上的信号输入到OUT+/-,在逻辑值为1时,建立IN1+/-与OUT+/-之间的输出通道,使IN1+/-上的信号输入到OUT+/-。第二双通道单路选通逻辑器上的输出通道切换逻辑控制管脚MUX0通过电阻下拉到GND,在逻辑值为0时,建立IN+/-与OUT0+/-之间的输出通道,使IN+/-上的信号输入到OUT0+/-,在逻辑值为1时,建立IN1+/-与OUT0+/-之间的输出通道,使IN1+/-上的信号输入到OUT0+/-。第三双通道单路选通逻辑器上的单路端口悬空,第三双通道单路选通逻辑器上的输出通道切换逻辑控制管脚MUX1通过电阻下拉到GND,在逻辑值为0时,建立IN0+/-与第三双通道单路选通逻辑器上的单路端口之间的输出通道,使IN0+/-上的信号从第三双通道单路选通逻辑器上的单路端口输出,在逻辑值为1时,建立IN+/-与第三双通道单路选通逻辑器上的单路端口之间的输出通道,使IN+/-上的信号从第三双通道单路选通逻辑器上的单路端口输出。Pre L通过电阻上拉倒***电源VCC;Pre R通过电阻下拉到GND,并同时连接与门电路的一个输入端,与门电路的另一个输入端通过电阻下拉到GND,与门电路的输出端分别与OE0及MUX连接。 
图8为本发明保护电路另一个实施例的结构示意图。与图6所示的实施例相比,该实施例中,切换开关还包括第三差分信号输出端口,如图9所示,为本发明第三差分信号输出端的结构示意图。请同时参见图5、图8与图9,该第三差分信号输出端上的输出端口OUT1+/-悬空,图5中未示出,该第三差分信号输出端上的输入端口与第三双通道单路选通逻辑器上的单路端口连接,第三差分信号输出端上设置有第二使能逻辑控制单元OE1,该OE1通过电阻下拉到GND,用于在逻辑值为0时,使OUT1+/- 输出高阻态,在逻辑值为1时,使OUT1+/-正常输出。相应的,MUX1在逻辑值为0时,建立IN0+/-与OUT1+/-之间的输出通道,使IN0+/-上的信号输入到OUT1+/-,在逻辑值为1时,建立IN+/-与OUT1+/-之间的输出通道,使IN+/-上的信号输入到OUT1+/-。如下表1所示,为本发明切换开关的控制单元/管脚及其功能说明。 
表1 切换开关的各管脚及其功能说明 
Figure GSB00000598153500111
参见图5,根据本发明的一个具体应用,设置切换开关的默认状态为: 
MUX通过10K欧姆电阻下拉到GND,配置MUX上的逻辑值为0,也记为:MUX=0,使IN0+/-上的信号可以输入到OUT+/-; 
MUX0通过10K欧姆电阻下拉到GND,配置MUX0上的逻辑值为0,也记为:MUX0=0,使IN+/-上的信号可以同时输入到OUT0+/-; 
MUX1通过10K欧姆电阻下拉到GND,配置MUX1上的逻辑值为0,也记为:MUX1=0,使IN0+/-上的信号可以输入到OUT1+/-; 
OE0通过10K欧姆电阻下拉到GND,配置OE0上的逻辑值为0,也记为:OE0=0,设置OUT0+/-为高阻状态,以便在Pre L有效之前,确保数据交换ASIC的端口TX+/-不受外部静电电压或浪涌电流破坏; 
OE1通过10K欧姆电阻下拉到GND,配置OE1上的逻辑值为0,也记为:配置OE1=0,设置OUT1+/-为高阻状态; 
IN0+/-通过电容下拉到GND,以确保在Pre_R有效之前,数据交换ASIC的端口RX+/-不受外部静电电压或浪涌电流破坏; 
Pre_L通过1K电阻上拉到***电源VCC,在物理连接上与远端可堆叠交换机的Pre_R相连接; 
Pre_R为所在的可堆叠交换机与远端可堆叠交换机有连接并且已经正常上电的确认信号,高有效,在物理连接上和远端可堆叠交换机上的Pre_L相连接。在堆叠插座上,此信号插针比GND、RD+/-以及TD+/-短。只有当堆叠线缆完全***插座,且远端设备也已经正常上电时,Pre_R信号才被拉高,即:逻辑值为1;否则,Pre_R保持为低,即:逻辑值为0。 
在Pre_R=0时,可能有三种情况:第一种是:本地可堆叠交换机上的堆叠插座悬空,即:没有插接堆叠线缆;第二种是:有堆叠线缆悬空,即:该堆叠线缆连接远端的可堆叠交换机;第三种是:本地可堆叠交换机与远端可堆叠交换机通过堆叠线缆连接,但是远端可堆叠交换机没有正常上电。在这三种情况下,本地可堆叠交换机上的切换开关始终保持上述默认状态,将数 据交换ASIC与堆叠插座等外部隔离,即便是在堆叠插座处窜入静电电压,也会被耐压高达4KV的切换开关化解。 
在Pre_R=1时,表示可堆叠交换机与远端可堆叠交换机通过堆叠线缆连接且远端可堆叠交换机已经正常上电。此时,切换开关连通交换数据ASIC与堆叠插座,使差分信号可以从堆叠插座传输到交换数据ASIC,同样,的远端可堆叠交换机上也会有同样的动作,则本地可堆叠交换机和远端可堆叠交换机就可以实现正常通信。 
在图5所示的具体应用中,103表示电容的容值,也即:0.01μf。作为本发明实施例的另一个具体应用,电容的容值也可以取104。另外,也可以根据具体的应用需求选择具有其它阻值的电阻。 
另外,在本发明上述实施例的可堆叠交换机中,IN+/-、IN0+/-、IN1+/-、OUT+/-、OUT0+/-与OUT1+/-上可以分别连接一个静电防护电路,用于检测该静电防护电路所连接的端口上的电压值,在检测到的电压值大于预设电压值时,泄放所连接的端口上的电流。具体地,作为本发明的一个实施例,静电防护电路包括电容,IN+/-、IN0+/-、IN1+/-、OUT+/-、OUT0+/-与OUT1+/-中的每个端口分别连接一个电容,电容的另一端下拉到GND。具体地,电容的抗静电等级为4KV,另外也可以为大于4KV的更高抗静电等级,例如:6KV。如图10所示,为本发明静电防护电路的一个结构示意图。其中的端口为IN+/-、IN0+/-、IN1+/-、OUT+/-、OUT0+/-或OUT1+/-,在检测到的电压值大于预设电压值时,泄放所连接的端口上的电流。 
在差分信号输入/输出端口处设置静电防护电路后,当施加在端口上的电压值在预设电压值范围内时,静电防护电路不会启动,如图10中箭头1所示,差分信号可以通过端口正常送入切换开关的内层电路。而当施加在端口上的电压值超过预设电压值时,静电防护电路自动启动,如图10中箭头2所示,将流入的电流能量安全泄放,以切换保护开关的内部电路。当端口上的电压值降低到预设电压值范围内时,静电防护电路自动关闭。根据本发明的一个 具体实例,预设电压值可以是一个具体的数值,例如:3.3KV,也可以是一个可堆叠交换机常用电压值的倍数,例如:1.1倍,此时,静电防护电路可以防护从正常电压值的1.1倍到抗静电等级的电压范围。 
基于本发明上述实施例提供的可堆叠交换机,在堆叠线缆***过程中,由于在堆叠插座上,GND的针脚长度最长,差分信号的针脚包括RD+/-与TD+/-的长度次之,首先是GND和差分信号的针脚依次插接到位,然后是Pre_L和Pre_R插接到位,PRE_R被拉高,即:逻辑值变为1。一旦PRE_R被拉高,意味着堆叠线缆插接已经到位,且远端可堆叠交换机已经正常上电,也就不存在负载电容未充电的情况,则OE0与MUX被拉高,即:逻辑值置为1。OE0在逻辑值置为1时,使与IN+/-相连接的OUT0+/-由高阻态变为正常输出,也即导通了IN+/-到堆叠线缆之间的通路。而MUX在逻辑值置为1时,断开IN0+/-与OUT+/-之间的输出通道,同时建立IN1+/-与OUT+/-之间的输出通道,使IN1+/-上的信号输入到OUT+/-,也即导通了堆叠线缆与OUT+/-之间的通路。通过上述流程,选通本地可堆叠交换机数据交换AISC和堆叠插座的差分信号通路,则可以避免因为负载电容的瞬间充电导致浪涌电流,从而起到保护交换数据ASIC的目的。 
在可堆叠线缆拔出过程中,由于在堆叠插座插针上较短,首先是Pre_L和PRE_R被拔出,则Pre_R立即被拉低,即:逻辑值变为0。Pre_R立即被拉低后,OE0与MUX被拉低,即:逻辑值置为0。OE0在逻辑值置为0时,使与IN+/-相连接的OUT0+/-由正常输出变为高阻态,也即切断了IN+/-到堆叠线缆之间的通路。而MUX在逻辑值置为0时,断开IN1+/-与OUT+/-之间的输出通道,也即切断了堆叠线缆与OUT+/-之间的通路,同时建立IN0+/-与OUT+/-之间的输出通道,使IN0+/-上的信号输入到OUT+/-。通过上述流程,切换开关关闭数据交换ASIC和堆叠插座的差分信号通道。而此时本地和远端可堆叠交换机上的GND还处于连接状态,确保两端参考电平一致,避免负载电容放电时产生浪涌电流,且即便产生浪涌电流,也可以被 支持热插拔功能的切换芯片化解,从而起到保护交换数据ASIC的目的。 
本发明实施例还提供了一种交换机堆叠***,其包括多个如本发明上述实施例提供的可堆叠交换机。在该交换机堆叠***中,对于每一个可堆叠交换机,与其连接的另一个可堆叠交换机都称为对端可堆叠交换机。如图11所示,为本发明交换机堆叠***一个实施例的结构示意图,该示意图中示出了交换机堆叠***中任意两个可堆叠交换机之间的连接关系。 
本发明实施例提供的一种基于上述实施例可堆叠交换机的线缆热插拔方法,包括:ASIC与堆叠插座之间的PCB走线上设置的保护电路,在检测到堆叠插座与对端可堆叠交换机上的堆叠插座插接、且可堆叠交换机与对端可堆叠交换机正常上电时,接通PCB走线,在检测到堆叠插座与对端可堆叠交换机上的堆叠插座将要拔出时,断开PCB走线。 
作为本发明线缆热插拔方法的一个具体实施例,在堆叠插座与对端可堆叠交换机上的堆叠插座插接前,MUX的逻辑值为0,IN0+/-与OUT+/-建立输出通道;MUX0的逻辑值为0,IN+/-与OUT0+/-之间建立输出通道;MUX1的逻辑值为0,IN0+/-与OUT1+/-之间建立输出通道;OE0的逻辑值为0,使OUT0+/-输出高阻态;OE1的逻辑值为0,使OUT1+/-输出高阻态;Pre_R上的值为无效值。 
相应的,检测到堆叠插座与对端可堆叠交换机上的堆叠插座插接、且可堆叠交换机与对端可堆叠交换机正常上电包括:堆叠插座上的Pre_R/Pre_L分别与对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R插接,且Pre_R上的值被置为有效值。接通PCB走线包括:MUX在Pre_R上的值为有效值时,将逻辑值置为1,建立IN1+/-与OUT+/-之间的输出通道,以及OE0在Pre_R上的值为有效值时,将逻辑值置为1,使OUT0+/-正常输出。检测到堆叠插座与对端可堆叠交换机上的堆叠插座将要拔出包括:堆叠插座上的Pre_R/Pre_L分别与对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R断开,且Pre_R上的值被置为无效值。断开PCB走线包括:MUX在Pre_R上的值 为无效值时,将逻辑值置为0,建立IN0+/-与OUT+/-之间的输出通道,以及OE0在Pre_R上的值为无效值时,将逻辑值置为0,使OUT0+/-输出高阻态。 
进一步地,本发明线缆热插拔方法的具体实施例中,还可以包括:IN+/-、IN0+/-、IN1+/-、OUT+/-、OUT0+/-与OUT1+/-上连接的静电防护电路分别检测所连接的端口上的电压值是否大于预设电压值,并在所连接的端口上的电压值是否大于预设电压值时,泄放所连接的端口上的电流。 
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。 
本发明实施例可以检测堆叠插座与对端可堆叠交换机上的堆叠插座是否插接以及可堆叠交换机与对端可堆叠交换机是否正常上电,在堆叠插座与对端可堆叠交换机上的堆叠插座插接且可堆叠交换机与对端可堆叠交换机正常上电后,才接通ASIC与堆叠插座之间的PCB走线,以及在检测到堆叠插座与对端可堆叠交换机上的堆叠插座将要拔出时,断开ASIC与堆叠插座之间的PCB走线,从而避免线缆的热插拔对ASIC造成损伤,进而有效防止在线缆的热插拔过程中对可堆叠交换机造成损伤,提升端口的插拔抗静电浪涌能力,提高整个交换机堆叠***的热插拔防护能力与可靠性。 
最后所应说明的是:以上实施例仅用以说明本发明的技术方案,而非对本发明作限制性理解。尽管参照上述较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这种修改或者等同替换并不脱离本发明技术方案的精神和范围。 

Claims (11)

1.一种可堆叠交换机,包括主板与堆叠子板,所述主板包括数据交换专用集成电路ASIC,所述堆叠子板上设置有堆叠插座,所述ASIC与所述堆叠插座之间以印制电路板PCB走线连接,其特征在于,
所述ASIC与所述堆叠插座之间的PCB走线上设置有保护电路;
所述堆叠插座上设置有接地端GND、第一接收数据端口对RD+/-、第一发送数据端口对TD+/-、与控制信号端口对Pre_R/Pre_L;所述RD+/-分别与对端可堆叠交换机上的堆叠插座上的TD+/-对接,所述Pre_R/Pre_L分别与所述对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R对接;在所述堆叠插座上,所述GND的针脚长度最长,所述RD+/-与所述TD+/-的针脚长度次之,所述Pre_R/Pre_L的针脚长度最短;
所述保护电路具体用于在所述堆叠插座上的Pre_R/Pre_L分别与所述对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R插接、且所述可堆叠交换机与所述对端可堆叠交换机正常上电以后接通所述PCB走线,在所述堆叠插座上的Pre_R/Pre_L分别与所述对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R断开时断开所述PCB走线,所述ASIC上设置有第二发送数据端口对TX+/-与第二接收数据端口对RX+/-;
所述保护电路包括切换开关,该切换开关包括:第一差分信号输入端、第二差分信号输入端、第三差分信号输入端、第一差分信号输出端、第二差分信号输出端、第一双通道单路选通逻辑器、第二双通道单路选通逻辑器与第三双通道单路选通逻辑器;
所述第一差分信号输入端上的输入端口IN+/-分别通过电容与所述TX+/-对应连接,所述第一差分信号输入端上的输出端口分别与所述第二双通道单路选通逻辑器上的一个通道端口、所述第三双通道单路选通逻辑器上的一个通道端口连接;
所述第二差分信号输入端上的输入端口IN0+/-分别通过电容下拉到 GND,所述第二差分信号输入端上的输出端口分别与所述第三双通道单路选通逻辑器上的另一个通道端口、所述第一双通道单路选通逻辑器上的一个通道端口连接;
所述第三差分信号输入端上的输入端口IN1+/-分别通过电容与所述TD+/-对应连接,所述第三差分信号输入端上的输出端口分别与所述第一双通道单路选通逻辑器上的另一个通道端口、所述第二双通道单路选通逻辑器上的另一个通道端口连接;
所述第一差分信号输出端上的输出端口OUT+/-分别通过电容与所述RX+/-对应连接,所述第一差分信号输出端上的输入端口与所述第一双通道单路选通逻辑器上的单路端口连接;
所述第二差分信号输出端上的输出端口OUT0+/-分别通过电容与所述RD+/-对应连接,所述第二差分信号输出端上的输入端口与所述第二双通道单路选通逻辑器上的单路端口连接,所述第二差分信号输出端上设置有第一使能逻辑控制单元OE0,该OE0通过电阻下拉到GND,用于在逻辑值为0时,使OUT0+/-输出高阻态,在逻辑值为1时,使OUT0+/-正常输出;
所述第一双通道单路选通逻辑器上的另一个通道端口还与所述第二双通道单路选通逻辑器上的另一个通道端口连接,所述第一双通道单路选通逻辑器上的输出通道切换逻辑控制管脚MUX通过电阻下拉到GND,在逻辑值为0时,建立所述IN0+/-与所述OUT+/-之间的输出通道,在逻辑值为1时,建立所述IN1+/-与所述OUT+/-之间的输出通道;
所述第二双通道单路选通逻辑器上的输出通道切换逻辑控制管脚MUX0通过电阻下拉到GND,在逻辑值为0时,建立所述IN+/-与所述OUT0+/-之间的输出通道,在逻辑值为1时,建立所述IN1+/-与所述OUT0+/-之间的输出通道;
所述第三双通道单路选通逻辑器上的单路端口悬空,所述第三双通道 单路选通逻辑器上的输出通道切换逻辑控制管脚MUX1通过电阻下拉到GND,在逻辑值为0时,建立所述IN0+/-与所述第三双通道单路选通逻辑器上的单路端口之间的输出通道,在逻辑值为1时,建立所述IN+/-与所述第三双通道单路选通逻辑器上的单路端口之间的输出通道;
所述Pre_L通过电阻上拉到***电源VCC;所述Pre_R通过电阻下拉到GND,并同时连接与门电路的一个输入端,所述与门电路的另一个输入端通过电阻下拉到GND,所述与门电路的输出端分别与所述OE0及所述MUX连接。
2.根据权利要求1所述的可堆叠交换机,其特征在于,所述主板与所述堆叠子板之间以板间插座连接;
所述ASIC与所述堆叠插座之间以印制电路板PCB走线连接具体为:所述ASIC与所述板间插座之间以第一PCB走线连接,所述板间插座与所述保护电路之间以第二PCB走线连接。
3.根据权利要求1所述的可堆叠交换机,其特征在于,所述可堆叠交换机与所述对端可堆叠交换机正常上电具体为:所述堆叠插座上的电压值属于预先设置的正常电压值范围。
4.根据权利要求1所述的可堆叠交换机,其特征在于,所述IN+/-、所述IN0+/-、所述IN1+/-、所述OUT+/-与所述OUT0+/-上分别连接一个静电防护电路,用于检测所连接的端口上的电压值,在检测到的电压值大于预设电压值时,泄放所连接的端口上的电流。
5.根据权利要求4所述的可堆叠交换机,其特征在于,所述静电防护电路包括电容,所述IN+/-、所述IN0+/-、所述IN1+/-、所述OUT+/-、所述OUT0+/-与所述OUT1+/-中的每个端口分别连接一个电容,电容的另一端下拉到GND。
6.根据权利要求5所述的可堆叠交换机,其特征在于,所述电容的抗静电等级为4KV。 
7.一种交换机堆叠***,其特征在于,包括多个如权利要求1至6任意一项所述的可堆叠交换机。
8.一种基于权利要求1至6任意一项可堆叠交换机的线缆热插拔方法,其特征在于,包括:
ASIC与堆叠插座之间的PCB走线上设置的保护电路,在检测到所述堆叠插座与对端可堆叠交换机上的堆叠插座插接、且所述可堆叠交换机与所述对端可堆叠交换机正常上电时,接通所述PCB走线,在检测到所述堆叠插座与对端可堆叠交换机上的堆叠插座将要拔出时,断开所述PCB走线。
9.根据权利要求8所述的方法,其特征在于,所述堆叠插座与对端可堆叠交换机上的堆叠插座插接前,MUX的逻辑值为0,IN0+/-与OUT+/-建立输出通道;MUX0的逻辑值为0,IN+/-与OUT0+/-之间建立输出通道;OE0的逻辑值为0,使OUT0+/-输出高阻态;Pre_R上的值为无效值。
10.根据权利要求9所述的方法,其特征在于,检测到所述堆叠插座与对端可堆叠交换机上的堆叠插座插接、且所述可堆叠交换机与所述对端可堆叠交换机正常上电包括:所述堆叠插座上的Pre_R/Pre_L分别与所述对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R插接,且所述Pre_R上的值被置为有效值;
接通所述PCB走线包括:所述MUX在所述Pre_R上的值为有效值时,将逻辑值置为1,建立所述IN1+/-与所述OUT+/-之间的输出通道,以及所述OE0在所述Pre_R上的值为有效值时,将逻辑值置为1,使OUT0+/-正常输出;
检测到所述堆叠插座与对端可堆叠交换机上的堆叠插座将要拔出包括:所述堆叠插座上的Pre_R/Pre_L分别与所述对端可堆叠交换机上的堆叠插座上的Pre_L/Pre_R断开,且所述Pre_R上的值被置为无效值;
断开所述PCB走线包括:所述MUX在所述Pre_R上的值为无效值时,将逻辑值置为0,建立所述IN0+/-与所述OUT+/-之间的输出通道,以及所 述OE0在所述Pre_R上的值为无效值时,将逻辑值置为0,使OUT0+/-输出高阻态。
11.根据权利要求9所述的方法,其特征在于,还包括:
所述IN+/-、所述IN0+/-、所述IN1+/-、所述OUT+/-与所述OUT0+/-上连接的静电防护电路分别检测所连接的端口上的电压值是否大于预设电压值,并在所连接的端口上的电压值大于预设电压值时,泄放所连接的端口上的电流。 
CN200910090419XA 2009-08-04 2009-08-04 可堆叠交换机、交换机堆叠***与线缆热插拔方法 Expired - Fee Related CN101626299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910090419XA CN101626299B (zh) 2009-08-04 2009-08-04 可堆叠交换机、交换机堆叠***与线缆热插拔方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910090419XA CN101626299B (zh) 2009-08-04 2009-08-04 可堆叠交换机、交换机堆叠***与线缆热插拔方法

Publications (2)

Publication Number Publication Date
CN101626299A CN101626299A (zh) 2010-01-13
CN101626299B true CN101626299B (zh) 2012-03-07

Family

ID=41521996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910090419XA Expired - Fee Related CN101626299B (zh) 2009-08-04 2009-08-04 可堆叠交换机、交换机堆叠***与线缆热插拔方法

Country Status (1)

Country Link
CN (1) CN101626299B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641578B (zh) * 2014-11-25 2017-05-10 索尔思光电(成都)有限公司 直流电平检测电路,包含该电路的***和制造、使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1459906A (zh) * 2002-05-22 2003-12-03 上海贝尔有限公司 一种新型分布式供电***
CN1614851A (zh) * 2003-11-06 2005-05-11 明基电通股份有限公司 保护电路和具有保护电路的***装置及其应用
CN1630155A (zh) * 2003-12-19 2005-06-22 明基电通股份有限公司 电源保护装置和具有保护装置的电子装置
CN1731362A (zh) * 2005-08-24 2006-02-08 杭州华为三康技术有限公司 硬盘热插拔保护***及方法
CN101378339A (zh) * 2008-10-07 2009-03-04 北京星网锐捷网络技术有限公司 热插拔控制方法与装置、业务板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1459906A (zh) * 2002-05-22 2003-12-03 上海贝尔有限公司 一种新型分布式供电***
CN1614851A (zh) * 2003-11-06 2005-05-11 明基电通股份有限公司 保护电路和具有保护电路的***装置及其应用
CN1630155A (zh) * 2003-12-19 2005-06-22 明基电通股份有限公司 电源保护装置和具有保护装置的电子装置
CN1731362A (zh) * 2005-08-24 2006-02-08 杭州华为三康技术有限公司 硬盘热插拔保护***及方法
CN101378339A (zh) * 2008-10-07 2009-03-04 北京星网锐捷网络技术有限公司 热插拔控制方法与装置、业务板

Also Published As

Publication number Publication date
CN101626299A (zh) 2010-01-13

Similar Documents

Publication Publication Date Title
CN102045608B (zh) 用于光通信的网络设备及其自动配置交换接口的方法
US5432916A (en) Precharge for non-disruptive bus live insertion
US5016223A (en) Memory card circuit
CN101127026A (zh) 一种可移动存储卡的热插拔检测方法
CN102970432B (zh) 一种移动终端及其控制sim卡热插拔的方法
CN101493490A (zh) 一种端口***检测电路
CN101459521A (zh) 一种路由器线卡热插拔实现方法及装置
CN105354116A (zh) 一种热插拔检测方法、装置、***及移动终端
CN102096620A (zh) 一种串口连接状态检测方法、装置及通信***
CN101697531A (zh) 一种端口复用方法、装置和设备
CN102164070A (zh) 交换机及其复用网口串口的方法
CN101626299B (zh) 可堆叠交换机、交换机堆叠***与线缆热插拔方法
CN201707675U (zh) 一种计算机隔离卡
CN101789984B (zh) 一种sim卡接口电路及移动电话
CN101459860B (zh) 用于机架式设备标准槽位扩展的转接板及实现方法
CN102544919A (zh) 电缆
CN108401043A (zh) 基于单刀双掷开关的防烧卡电路、方法和移动终端
CN201956074U (zh) 基于sas接口的存储***中存储卡在位检测电路
CN205123779U (zh) 一种支持卡载usb存储设备的网络安全隔离装置
EP1869563B1 (en) Configurable data port for i2c or single-wire broadcast interface
CN2790053Y (zh) 混合型网络隔离***
US20100312929A1 (en) Universal serial bus device and universal serial bus system
CN102184154A (zh) 一种实现设备热插拔的***及方法
CN101950160B (zh) 一种电器抗干扰的方法、控制***及相应电器
CN105630722B (zh) 电子设备及信号处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120307

Termination date: 20210804