CN101612552A - 傅氏反应后交联吸附剂及其制备方法 - Google Patents

傅氏反应后交联吸附剂及其制备方法 Download PDF

Info

Publication number
CN101612552A
CN101612552A CN200810125084A CN200810125084A CN101612552A CN 101612552 A CN101612552 A CN 101612552A CN 200810125084 A CN200810125084 A CN 200810125084A CN 200810125084 A CN200810125084 A CN 200810125084A CN 101612552 A CN101612552 A CN 101612552A
Authority
CN
China
Prior art keywords
adsorbent
pore volume
crosslinked
pore
copolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200810125084A
Other languages
English (en)
Inventor
徐满才
张峥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Priority to CN200810125084A priority Critical patent/CN101612552A/zh
Priority to EP09155564A priority patent/EP2138229A3/en
Priority to JP2009130279A priority patent/JP2010007068A/ja
Priority to AU2009202192A priority patent/AU2009202192A1/en
Priority to US12/456,018 priority patent/US20090325798A1/en
Publication of CN101612552A publication Critical patent/CN101612552A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/16Homopolymers or copolymers of alkyl-substituted styrenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种傅氏反应后交联吸附剂及其制备方法,所述傅氏反应后交联吸附剂包含:聚合单元(a)至少47wt%的至少一种多乙烯基芳香族单体和(b)不超过53wt%的至少一种单乙烯基芳香族单体;及0-0.2mmol/g的悬挂双键;其中,干燥后所述的吸附剂的BET比表面积的范围为700-1500m2/g,BET平均孔径为6.0-11.8nm,BET孔容为1.2-3.5mL/g,BJH吸附微孔体积占总BJH吸附孔体积的20%以下,HK吸附微孔体积占总BJH吸附孔体积的24%以下。

Description

傅氏反应后交联吸附剂及其制备方法
技术领域
本发明属于聚合物化学领域,特别是涉及一种后交联的聚合物。
背景技术
分离和纯化有机化合物的吸附剂广泛采用多孔性的高度交联的芳香族共聚物。聚合物吸附剂的吸附能力通常随比表面积和孔容的提高而增强,一种有效地提高交联的芳香族聚合物的比表面积和孔容的方法是提高交联度,即去除共聚物中致孔剂和升温干燥后,在Lewis酸催化剂存在下提高温度,通过增加交联化学键以达到高度交联的程度,如US4543365,US5218004,US5885638,US6147127,US6235802,US6541527,A.K.Nyhus等,Journal of PolymerScience,Part A:Polymer Chemistry,John Wiley & Sons,Inc.,Vol.38,1366-1378(2000),C.Zhou等,Journal of Applied Polymer Science,JohnWiley & Sons,Inc.,Vol.83,1668-1677(2002),和K.Aleksieva等,Polymer,Elsevier Science Publishers,Vol.47,6544-6550(2006)中所描述。与起始的共聚物相比,后交联的共聚物具有高孔容和高比表面积,增大比表面积后表现出良好的吸附性,特别对小分子。然而,致孔剂的蒸馏去除和初始共聚物的干燥会导致微孔含量的增加,微孔孔容可以达到甚至超过总孔容的30%,当高微孔含量的吸附剂用于有机化合物的分离回收时,尽管吸附剂的吸附量很大,被吸附的化合物却难以快速完全地从吸附剂的微孔洗脱下来。
发明内容
所要解决的技术问题
本发明所要解决的技术问题是为了克服现有吸附剂的不足,例如由于吸附剂中的高微孔含量带来的低洗脱速率,提高后交联的吸附剂的吸附和洗脱两种性能。相应地,本发明提供一种生产大孔交联的芳香族共聚物的方法,即在傅氏反应催化剂存在下,共聚反应后不去除致孔剂,以便在后交联的吸附剂中减少微孔含量。
技术方案
本发明的第一个方面是提供一种后交联的吸附剂,包含:
聚合单元(a)至少47wt%的至少一种多乙烯基芳香族单体和(b)不超过53wt%的至少一种单乙烯基芳香族单体;及
0-0.2mmol/g的悬挂双键;
其中,干燥后所述的吸附剂的BET比表面积的范围为700-1500m2/g,BET平均孔径为6.0-11.8nm,BET孔容为1.2-3.5mL/g,BJH吸附微孔体积占总BJH吸附孔体积的20%以下,HK吸附微孔体积占总BJ H吸附孔体积的24%以下。
如本发明所用,“BET”指基于多层吸附模型的Brunauer-Emmett-Teller理论,BET平均孔径计算式为D=4V/A,其中,D为孔径,V为孔容,A为比表面积。
如本发明所用,“BJH”指按照Barret-Joyner-Halenda方法计算的从氮吸附数据获得的孔径分布。
如本发明所用,“HK”指按照Horvath-Kawazoe方法测出的从低压吸附等温数据获得的微孔尺寸分布。
在悬浮共聚反应的单体中包含至少一种多乙烯基芳香族单体,所述的多乙烯基芳香族单体包括由二乙烯基苯(即间-和对-二乙烯基苯及其混合物)、三乙烯基苯、二乙烯基甲苯、二乙烯基二甲苯、二乙烯基萘,及其衍生物例如卤代物,比如氯代二乙烯基苯等组成的一类化合物。这些化合物可以单独或者以两种或以上的混合物使用。特别优选的多乙烯基芳香族单体混合物由间-和对-二乙烯基苯组成。
在本发明的第一个方面中,所述的多乙烯基芳香族单体(a)的量为以共聚物干重计至少47wt%,优选55wt%,特别优选63-80wt%。
如本文所述,术语“至少”在一个百分比范围内是指在大于等于端值到小于但不等于100%范围之间的任何一个值和所有的值。
在悬浮共聚反应的单体中包含至少一种单乙烯基芳香族单体,所述的单乙烯基芳香族单体包括但不限于,例如,苯乙烯和C1-C4烷基取代的苯乙烯,比如乙基苯乙烯(即间-和对-乙基苯乙烯及其混合物)、甲基苯乙烯、乙烯基吡啶,及其衍生物例如卤代物,比如氯代苯乙烯和氯代乙基苯乙烯。这些化合物可以单独或者以两种或以上的混合物使用。优选地,选自混合物如间-和对-乙基苯乙烯混合物和苯乙烯、间-和对-乙基苯乙烯的混合物。
在本发明的第一个方面中,所述的单乙烯基芳香族单体(b)的量为以共聚物干重计不超过53wt%,优选不超过45wt%,最优选为20-37wt%。
如本文所述,“不超过”指在大于零到小于等于端点值范围之间的任何一个值和所有的值。
在极端的情况下的一种实施方式中,所述的共聚物包含下列单体,以共聚物干重计:(a)接近100wt%的间-和对-二乙烯基苯的混合物;和(b)几乎0wt%的间-和对-乙基苯乙烯的混合物。
在有些情况下,单体单元还可以含有以共聚物干重计不超过10wt%,优选5wt%的共聚的极性乙烯单体,例如丙烯腈、甲基丙烯酸甲酯、丙烯酸甲酯。这类单体中不含有前面叙述的其他各类单体。
在本发明的一个实施方式中,所述的共聚物包含下列单体,以共聚物干重计:(a)55-80wt%的至少一种多乙烯基芳香族单体,选自间-二乙烯基苯、对-二乙烯基苯、以及间-和对-二乙烯基苯的混合物;和(b)20-45wt%的至少一种多乙烯基芳香族单体,选自间-乙基苯乙烯、对-乙基苯乙烯、苯乙烯、间-和对-乙基苯乙烯的混合物、以及苯乙烯与间-和对-乙基苯乙烯的混合物。
在本发明的另一个更加优选的实施方式中,所述的共聚物包含下列单体,以共聚物干重计:(a)约55wt%的间-和对-二乙烯基苯的混合物;和(b)约45wt%的间-和对-乙基苯乙烯的混合物。
后交联的吸附剂中的悬挂双键的含量范围为0-0.2mmol/g,这比传统的后交联反应之前的共聚的多孔芳香族聚合物低很多。
本发明第一个方面的吸附剂优选由以下方法制备,步骤依次包括:
(i)在共聚反应致孔剂存在下,悬浮共聚包含至少一种多乙烯基芳香族单体和至少一种单乙烯基芳香族单体的单体;
(ii)在傅氏反应催化剂存在下,以共聚反应致孔剂为后交联共溶剂,后交联所述的共聚物;和
(iii)分离所述的后交联的吸附剂。
本发明的第二个方面是提供一种制备共聚的吸附剂的方法,依次包括如下步骤:
(i)在共聚反应致孔剂存在下,悬浮共聚包含至少一种多乙烯基芳香族单体和至少一种单乙烯基芳香族单体的单体;
(ii)在傅氏反应催化剂存在下,以共聚反应致孔剂为后交联共溶剂,后交联所述的共聚物;和
(iii)分离所述的后交联的吸附剂。
所述的共聚的吸附剂的制备方法包括单体共聚和共聚物后交联两步反应,致孔剂在两步反应之中均存在。如本发明所用,术语“在同一反应容器中进行”是指共聚合和后交联反应的完成不用在共聚反应之后去除致孔剂,也不用像现有技术所描述的那样,在后交联之前分离起始的共聚物。
本发明的第二个方面的悬浮共聚反应中的各聚合单元与本发明的第一个方面的各聚合单元除含量差异外没有区别。本发明所揭示的共聚的吸附剂的制备方法可以适用于任何技术上可接受的各聚合单元含量,并不受本发明第一个方面所指定的吸附剂的各聚合单元含量的限制。优选地,第二个方面的各聚合单元含量为至少47wt%的至少一种多乙烯基芳香族单体和不超过53wt%的至少一种单乙烯基芳香族单体;更加优选55-80wt%的至少一种多乙烯基芳香族单体和20-45wt%的至少一种单乙烯基芳香族单体。
在悬浮共聚中使用的致孔剂选自,如现有技术所揭示的:有机氯,例如,二氯甲烷、二氯乙烷和二氯丙烷;芳基氯,例如,氯苯和氯甲苯。致孔剂与单体的体积比为1∶2到3∶1,优选1∶1到2∶1。
共聚合反应按传统的方法实现,优选在一个包含悬浮助剂(例如分散剂、保护胶体和缓冲液)的连续的水相溶液中,然后将其与含单体、致孔剂和引发剂的有机相溶液混合,在梯度上升的温度下单体共聚合,共聚物为珠状。
上述悬浮聚合获得的共聚物珠随后在傅氏反应催化剂存在下进行后交联,以制备一种后交联的增加了比表面积和孔容的共聚物珠,可作为聚合的吸附剂、离子交换树脂、萃淋树脂和螯合树脂。
在后交联中使用的傅氏反应催化剂包括:金属卤化物,例如,卤化铁、卤化锌、卤化铝、卤化锡和卤化硼,优选FeCl3,ZnCl2,AlCl3,SnCl4和BF3,特别是它们的无水化合物。合适的傅氏反应催化剂用量为共聚物干重的约5%到约20%。
优选在傅氏反应催化剂处理之前从含致孔剂的共聚物中去除水相溶液,所述的水相溶液去除步骤可以包括从反应容器中虹吸或排干水相溶液,随后加入致孔剂或与致孔剂相似相溶的溶剂。优选地,随后在梯度上升的情况下共沸蒸馏直至蒸馏液变清。
典型的后交联步骤包括在共聚物和致孔剂溶剂混合物中加入傅氏反应催化剂,使共聚物与傅氏反应催化剂的重量比为20∶1-20∶3,以形成共聚物-溶剂-傅氏反应催化剂混合物,按现有技术的反应条件保温该混合物。
傅氏反应后交联优选的反应条件包括提高温度,从大约25℃,优选从30℃,到低于致孔剂的溶剂在常压下的沸点5-40℃,后交联反应时间取决于温度的选择,优选在较高温度下的较短反应时间,通常反应时间至少约1小时,优选4-16小时。
傅氏反应后交联的后处理可以包括在共聚物-溶剂-催化剂混合物中加入酸性水溶液,升温共沸蒸馏去除致孔剂的溶剂,用与水相似相溶的有机溶剂和水洗涤共聚物,以去除催化剂,最后获得分离的吸附剂珠。
要强调的是,共聚合反应和后交联反应的条件对共聚物珠的比表面积和孔容有影响,所述的共聚合反应条件包括,例如,苯乙烯和乙基苯乙烯的摩尔比、二乙烯基苯作为交联单体的量、交联的程度、和致孔剂的存在与否和种类;后交联反应条件包括,例如,催化剂的量、反应时间、和溶剂的种类。
有益效果
本发明克服了现有技术中聚合物吸附剂性能的不足,提供了一种高比表面积的树脂,该树脂能高容量地吸附有机化合物,这种高孔容和低微孔含量的吸附剂使被吸附的化合物能够容易地从吸附剂上洗脱下来。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
下列实施例中未注明具体条件的实验方法,通常按照常规条件,如:聚合物化学操作手册,或按照制造厂商所建议的条件。
缩写含义:
DVB-divinylbenzene二乙烯基苯
EVB-ethylvinylbenzene乙基苯乙烯
EDC-ethylene dichloride二氯乙烷
TBP-tert-butyl peroxy-2-ethylhexanoate 2-乙基过氧己酸叔丁酯
本发明的后交联的聚合物吸附剂的BET比表面积和BET孔容用Micromeritics TriStar 3000测试和分析,BET比表面积的测定值允许有±5%的误差;BET平均孔径的测定值允许有±1%的误差;BJH吸附孔容和HK微孔体积用Quantachrome Nova Instrument测试和分析。
按K.L.Hubbard等,Reactive and Functional Polymers,ElsevierScience Publishers,vol.36,pp17-30(1998)方法,用IR和Raman光谱测定悬挂双键含量。
实施例1
在一个装有机械搅拌、回流冷凝器、温度计、氮气保护、加热装置和温度控制器的2升四颈烧瓶中,加入预混的由820g去离子水、0.82g分散剂、2.5g硼酸和0.74g氢氧化钠组成的水相,预设搅拌速度124rpm并开始低速氮气流。关掉搅拌,加入预混的有机相200g 55%DVB/45%EVB,500g EDC和2.0gTBP,开启搅拌,加热混合物至60-80℃,恒温15小时。
反应混合物冷却至50℃,虹吸去除共聚物-EDC混合物中的水相,加入800g EDC,共聚物-EDC混合物进一步加热,通过共沸蒸馏来除去水,同时持续加入EDC以维持分散体系的流动性。
冷却后,加入30.0g无水氯化铁,共聚物-EDC-氯化铁混合物搅拌加热到60-80℃,并保温8小时。
然后将共聚物-EDC-氯化铁混合物冷却到50℃,加入300g 5%HCl水溶液,加热共沸蒸馏从混合物中去处EDC,同时持续加入5%HCl水溶液以维持分散体系的流动性。
冷却后,虹吸去除液相,用甲醇和水洗涤所获的共聚物。收获的后交联的共聚物呈现琥珀色半透明的珠状。通过表征共聚物的孔结构,其具备以下特征:未测出含有悬挂双键,BET孔容1.62mL/g,BET比表面积880m2/g,BET平均孔径7.36nm.BJH吸附孔容1.62mL/g,BJH吸附微孔体积0.265mL/g(占总BJH吸附孔容的占总BJH吸附孔容的16.4%),HK微孔体积0.316mL/g(占总BJH吸附孔容的19.5%)。
实施例2-9按照实施例1相同的方法,不同之处在于预混的有机相。
实施例2
预混有机相188g 55%DVB/45%EVB,519g EDC,和2.0g TBP,未测出含有悬挂双键,BET孔容1.66mL/g,BET比表面积830m2/g,BET平均孔径8.00nm.BJH吸附孔容1.71mL/g,BJH吸附微孔体积0.283mL/g(占总BJH吸附孔容的16.5%),HK微孔体积0.323mL/g(占总BJH吸附孔容的18.9%)。
实施例3
预混有机相187g 63%DVB/37%EVB,518g EDC,和2.0g TBP,0.1mmol/g悬挂双键,BET孔容2.10mL/g,BET比表面积1062m2/g,BET平均孔径7.91nm,BJH吸附孔容2.28mL/g,BJH吸附微孔体积0.360mL/g(占总BJH吸附孔容的15.8%),HK微孔体积0.453mL/g(占总BJH吸附孔容的19.9%)。
实施例4
预混有机相225g 55%DVB/45%EVB,463g EDC,和2.4g TBP,未测出含有悬挂双键,BET孔容1.39mL/g,BET比表面积841m2/g,BET平均孔径6.61nm BJH吸附孔容1.40mL/g,BJH吸附微孔体积0.271mL/g(占总BJH吸附孔容的19.4%),HK微孔体积0.311mL/g(占总BJH吸附孔容的22.2%).
实施例5
预混有机相237g 55%DVB/45%EVB,443g EDC,和2.4g TBP,未测出含有悬挂双键,BET孔容1.26mL/g,BET比表面积840m2/g,BET平均孔径6.00nm BJH吸附孔容1.28mL/g,BJH吸附微孔体积0.255mL/g(占总BJH吸附孔容的19.9%),HK微孔体积0.301mL/g(占总BJH吸附孔容的23.6%).
实施例6
预混有机相164g 63%DVB/37%EVB,24g苯乙烯,519g EDC,和2.0g TBP,未测出含有悬挂双键,BET孔容1.65mL/g,BET比表面积838m2/g,BET平均孔径7.88nm。BJH吸附孔容1.70mL/g,BJH吸附微孔体积0.281mL/g(占总BJH吸附孔容的16.5%),HK微孔体积0.321mL/g(占总BJH吸附孔容的18.9%)。
实施例7
预混有机相188g 47%DVB/53%EVB,519g EDC,和2.0g TBP,未测出含有悬挂双键,BET孔容1.20mL/g,BET比表面积701m2/g,BET平均孔径6.85nm。BJH吸附孔容1.35mL/g,BJH吸附微孔体积0.208mL/g(占总BJH吸附孔容的15.4%),HK微孔体积0.253mL/g(占总BJH吸附孔容的18.7%)。
实施例8
预混有机相187g 80%DVB/20%EVB,518g EDC,和2.0g TBP,0.2mmol/g悬挂双键,BET孔容3.02mL/g,BET比表面积1498m2/g,BET平均孔径8.06nm,BJH吸附孔容3.08mL/g,BJH吸附微孔体积0.475mL/g(占总BJH吸附孔容的15.4%),HK微孔体积0.583mL/g(占总BJH吸附孔容的18.9%)。
实施例9
预混有机相175g 80%DVB/20%EVB,537g EDC,和2.0g TBP,0.2mmol/g悬挂双键,BET孔容3.50mL/g,BET比表面积1195m2/g,BET平均孔径11.7nm,BJH吸附孔容3.68mL/g,BJH吸附微孔体积0.480mL/g(占总BJH吸附孔容的13.0%),HK微孔体积0.588mL/g(占总BJH吸附孔容的16.0%)。

Claims (10)

1.一种后交联的吸附剂,包含:
聚合单元(a)至少47wt%的至少一种多乙烯基芳香族单体和(b)不超过53wt%的至少一种单乙烯基芳香族单体;及
0-0.2mmol/g的悬挂双键;
其中,干燥后所述的吸附剂的BET比表面积的范围为700-1500m2/g,BET平均孔径为6.0-11.8nm,BET孔容为1.2-3.5mL/g,BJH吸附微孔体积占总BJH吸附孔体积的20%以下,HK吸附微孔体积占总BJH吸附孔体积的24%以下。
2.如权利要求1所述的后交联的吸附剂,其特征在于,所述的吸附剂由依次包括如下步骤的方法制备:
(i)在共聚反应致孔剂存在下,悬浮共聚包含至少一种多乙烯基芳香族单体和至少一种单乙烯基芳香族单体的单体;
(ii)在傅氏反应催化剂存在下,以共聚反应致孔剂为后交联共溶剂,后交联所述的共聚物;和
(iii)分离所述的后交联的吸附剂。
3.一种制备共聚的吸附剂的方法,依次包括如下步骤:
(i)在共聚反应致孔剂存在下,悬浮共聚包含至少一种多乙烯基芳香族单体和至少一种单乙烯基芳香族单体的单体;
(ii)在傅氏反应催化剂存在下,以共聚反应致孔剂为后交联共溶剂,后交联所述的共聚物;和
(iii)分离所述的后交联的吸附剂。
4.如权利要求3所述的制备共聚的吸附剂的方法,其特征在于,所述的多乙烯基芳香族单体为间-和对-二乙烯基苯的混合物。
5.如权利要求4所述的制备共聚的吸附剂的方法,其特征在于,所述的单乙烯基芳香族单体选自间-和对-乙基苯乙烯混合物,以及苯乙烯、间-和对-乙基苯乙烯混合物。
6.如权利要求3所述的制备共聚的吸附剂的方法,其特征在于,所述的聚合单元包含(a)至少47wt%的至少一种多乙烯基芳香族单体和(b)不超过53wt%的至少一种单乙烯基芳香族单体。
7.如权利要求6所述的制备共聚的吸附剂的方法,其特征在于,所述的聚合单元包含(a)55-80wt%的至少一种多乙烯基芳香族单体和(b)20-45wt%的至少一种单乙烯基芳香族单体。
8.如权利要求3所述的制备共聚的吸附剂的方法,其特征在于,所述的傅氏反应催化剂选自金属卤化物。
9.如权利要求8所述的制备共聚的吸附剂的方法,其特征在于,所述的金属卤化物为氯化铁。
10.如权利要求3所述的制备共聚的吸附剂的方法,其特征在于,所述的悬浮共聚中使用的致孔剂选自二氯甲烷、二氯乙烷、二氯丙烷、氯苯和氯甲苯。
CN200810125084A 2008-06-26 2008-06-26 傅氏反应后交联吸附剂及其制备方法 Pending CN101612552A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200810125084A CN101612552A (zh) 2008-06-26 2008-06-26 傅氏反应后交联吸附剂及其制备方法
EP09155564A EP2138229A3 (en) 2008-06-26 2009-03-19 Friedel-Crafts Post-Crosslinked Adsorbent and Method of Preparation
JP2009130279A JP2010007068A (ja) 2008-06-26 2009-05-29 フリーデルクラフツ後架橋された吸着剤および製造方法
AU2009202192A AU2009202192A1 (en) 2008-06-26 2009-06-01 Friedel-Crafts post-crosslinked adsorbent and method of preparation
US12/456,018 US20090325798A1 (en) 2008-06-26 2009-06-10 Friedel-crafts post-crosslinked adsorbent and method of preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810125084A CN101612552A (zh) 2008-06-26 2008-06-26 傅氏反应后交联吸附剂及其制备方法

Publications (1)

Publication Number Publication Date
CN101612552A true CN101612552A (zh) 2009-12-30

Family

ID=41166752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810125084A Pending CN101612552A (zh) 2008-06-26 2008-06-26 傅氏反应后交联吸附剂及其制备方法

Country Status (5)

Country Link
US (1) US20090325798A1 (zh)
EP (1) EP2138229A3 (zh)
JP (1) JP2010007068A (zh)
CN (1) CN101612552A (zh)
AU (1) AU2009202192A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847521A (zh) * 2011-06-28 2013-01-02 于杰 大孔吸附树脂及其应用
CN103316643A (zh) * 2013-05-23 2013-09-25 蚌埠市辽源新材料有限公司 一种改性吸附树脂及其制备方法
CN103739860A (zh) * 2014-01-13 2014-04-23 湖南师范大学 一种超高交联聚苯乙烯吸附树脂的合成方法
CN105392546A (zh) * 2013-08-06 2016-03-09 陶氏环球技术有限责任公司 使用于从天然气提取天然气液的吸附介质再生的包含微波加热***的方法
CN107847847A (zh) * 2015-04-17 2018-03-27 陶氏环球技术有限责任公司 用于从气流选择性去除硫化氢的交联大孔聚合物
CN107955093A (zh) * 2017-12-13 2018-04-24 万华化学集团股份有限公司 一种高比表面积高分子吸附剂的制备方法
CN109589947A (zh) * 2018-11-27 2019-04-09 艾美科健(中国)生物医药有限公司 一种含多酚羟基聚苯乙烯系大孔吸附树脂制备方法及应用
CN110476064A (zh) * 2017-04-13 2019-11-19 豪夫迈·罗氏有限公司 用于诊断应用的高度多孔聚合物颗粒的制备方法
CN112358563A (zh) * 2020-12-01 2021-02-12 西安蓝深环保科技有限公司 一种林可霉素提取用大孔吸附树脂及其合成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612553B (zh) * 2008-06-26 2013-11-06 罗门哈斯公司 自由基后交联吸附剂及其制备方法
CN109174208A (zh) * 2018-08-30 2019-01-11 深圳市纯水号水处理科技有限公司 一种树脂吸附去除微量金属离子溶液
CN111530431B (zh) * 2018-11-30 2021-10-01 北京化工大学 一种磁性超交联有机聚合物材料、制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163903A (ja) 1984-02-02 1985-08-26 Mitsubishi Chem Ind Ltd 架橋共重合体の多孔化方法
US5218004A (en) 1990-08-16 1993-06-08 Rohm And Haas Company Process for enhancing the surface area of an adsorbent copolymer
KR100332859B1 (ko) * 1993-07-28 2002-11-23 롬 앤드 하스 캄파니 밀도가높고,표면적이넓은흡착제
US5460725A (en) * 1994-06-21 1995-10-24 The Dow Chemical Company Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture
US5885638A (en) 1995-10-30 1999-03-23 Mitsubishi Chemical Corporation Adsorbent, process for producing the same, and method of treating fruit juice
US6147127A (en) * 1999-01-07 2000-11-14 Rohm And Haas Company High surface area adsorbents and methods of preparation
KR100323249B1 (ko) 1999-01-16 2002-02-04 윤덕용 고분자 수지입자의 표면적과 세공부피의 조절방법 및 그를 이용한 표면적과 세공부피가 증가된 고분자 수지입자의 제조방법
CN101612553B (zh) * 2008-06-26 2013-11-06 罗门哈斯公司 自由基后交联吸附剂及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847521A (zh) * 2011-06-28 2013-01-02 于杰 大孔吸附树脂及其应用
CN102847521B (zh) * 2011-06-28 2013-07-10 于杰 医用大孔吸附树脂及其应用
CN103316643A (zh) * 2013-05-23 2013-09-25 蚌埠市辽源新材料有限公司 一种改性吸附树脂及其制备方法
CN105392546A (zh) * 2013-08-06 2016-03-09 陶氏环球技术有限责任公司 使用于从天然气提取天然气液的吸附介质再生的包含微波加热***的方法
CN103739860A (zh) * 2014-01-13 2014-04-23 湖南师范大学 一种超高交联聚苯乙烯吸附树脂的合成方法
CN103739860B (zh) * 2014-01-13 2015-08-26 湖南师范大学 一种超高交联聚苯乙烯吸附树脂的合成方法
CN107847847A (zh) * 2015-04-17 2018-03-27 陶氏环球技术有限责任公司 用于从气流选择性去除硫化氢的交联大孔聚合物
CN110476064A (zh) * 2017-04-13 2019-11-19 豪夫迈·罗氏有限公司 用于诊断应用的高度多孔聚合物颗粒的制备方法
CN110476064B (zh) * 2017-04-13 2022-12-27 豪夫迈·罗氏有限公司 用于诊断应用的高度多孔聚合物颗粒的制备方法
CN107955093A (zh) * 2017-12-13 2018-04-24 万华化学集团股份有限公司 一种高比表面积高分子吸附剂的制备方法
CN109589947A (zh) * 2018-11-27 2019-04-09 艾美科健(中国)生物医药有限公司 一种含多酚羟基聚苯乙烯系大孔吸附树脂制备方法及应用
CN109589947B (zh) * 2018-11-27 2021-11-30 艾美科健(中国)生物医药有限公司 一种含多酚羟基聚苯乙烯系大孔吸附树脂制备方法及应用
CN112358563A (zh) * 2020-12-01 2021-02-12 西安蓝深环保科技有限公司 一种林可霉素提取用大孔吸附树脂及其合成方法
CN112358563B (zh) * 2020-12-01 2023-04-25 西安蓝深新材料科技股份有限公司 一种林可霉素提取用大孔吸附树脂及其合成方法

Also Published As

Publication number Publication date
EP2138229A3 (en) 2011-08-10
US20090325798A1 (en) 2009-12-31
JP2010007068A (ja) 2010-01-14
EP2138229A2 (en) 2009-12-30
AU2009202192A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
CN101612552A (zh) 傅氏反应后交联吸附剂及其制备方法
CN101612553B (zh) 自由基后交联吸附剂及其制备方法
Chen et al. Adsorption characteristics of Cu (II) from aqueous solution onto poly (acrylamide)/attapulgite composite
US5369132A (en) Method for producing a spherical acrylonitrile crosslinked copolymer
Zeng et al. Preparation and characterization of polar polymeric adsorbents with high surface area for the removal of phenol from water
Wang et al. Tunable porosity and polarity of polar post-cross-linked resins and selective adsorption
CN105504128A (zh) 一种用于处理含酚废水的吸附树脂及其制备方法和应用
CN103435725B (zh) 水乳液型聚氯乙烯树脂终止剂及其制备方法
CN101987291A (zh) 一种大孔吸附树脂及其制备方法和应用
CN105859962A (zh) 一种咪唑修饰后交联树脂的制备方法及应用
CN106397652A (zh) 一种制备超大孔高比表面积聚合物的方法
EP2997073B1 (en) Sulfonyl-containing polymers based on free-radically polymerizable spirobisindane monomers
Coutinho et al. Characterization of sulfonated poly (styrene–divinylbenzene) and poly (divinylbenzene) and its application as catalysts in esterification reaction
CN113698524A (zh) 一种大孔吸附树脂及其合成方法
Liu et al. Preparation and characterization of crosslinked polymer beads with tunable pore morphology
CN107118294A (zh) 一种乙烯基吡啶修饰悬挂双键后交联树脂及其制备方法和应用
Podkościelna et al. Synthesis and characterization of organic–inorganic hybrid microspheres
Toro et al. Sulfonation of macroporous poly (styrene-co-divinylbenzene) beads: Effect of the proportion of isomers on their cation exchange capacity
CN102962100B (zh) 一种低温甲醇脱水制二甲醚催化剂及制备方法和应用
JP2000202284A (ja) 高表面積吸着剤およびその調製法
JPH07100375A (ja) 高密度大表面積吸着剤
KR100323249B1 (ko) 고분자 수지입자의 표면적과 세공부피의 조절방법 및 그를 이용한 표면적과 세공부피가 증가된 고분자 수지입자의 제조방법
Šálek et al. Hypercrosslinked polystyrene microspheres by suspension and dispersion polymerization
KR20180085898A (ko) 유기 고분자 흡착제, 유기 고분자 흡착제 조성물 및 유기 고분자 흡착제 제조 방법
CN111303321A (zh) 一种超高比表面积吸附树脂的合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20091230

C20 Patent right or utility model deemed to be abandoned or is abandoned