CN101573778B - 用于纳米线生长的***与方法 - Google Patents

用于纳米线生长的***与方法 Download PDF

Info

Publication number
CN101573778B
CN101573778B CN2007800493702A CN200780049370A CN101573778B CN 101573778 B CN101573778 B CN 101573778B CN 2007800493702 A CN2007800493702 A CN 2007800493702A CN 200780049370 A CN200780049370 A CN 200780049370A CN 101573778 B CN101573778 B CN 101573778B
Authority
CN
China
Prior art keywords
temperature
nano wire
growth
nano
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800493702A
Other languages
English (en)
Other versions
CN101573778A (zh
Inventor
D·泰勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanosys Inc
Original Assignee
Nanosys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanosys Inc filed Critical Nanosys Inc
Publication of CN101573778A publication Critical patent/CN101573778A/zh
Application granted granted Critical
Publication of CN101573778B publication Critical patent/CN101573778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02606Nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Abstract

本发明针对用于纳米线生长的***与方法。在一个实施例中,提供了用于纳米线生长与掺杂的方法,其中包括用于垂直定向的纳米线外延生长的方法,包括:在反应室中提供其上沉积了一个或多个成核颗粒的衬底材料,在第一温度下将蚀刻剂气体引入反应室,该气体有助于清洁衬底材料的表面,使成核颗粒与至少第一前驱气体接触以启动纳米线生长,将合金小滴加热至第二温度,由此使纳米线在成核核颗粒的位置生长。也可在导线生长期间将蚀刻剂气体引入反应室,以提供锥度低的纳米线。

Description

用于纳米线生长的***与方法
相关申请的交叉参照
本申请要求于2006年11月7日提交的美国临时专利申请号60/857,450的申请日的利益,所述临时专利申请通过全文引用包括在此。
发明背景
本发明涉及纳米线,尤其涉及用于纳米线生长的改进方法。
纳米结构,特别是纳米线,有可能促成一种全新一代的电子设备。出现这种基于纳米结构的新一代电子设备的主要障碍在于有效地生长具有一致特性的纳米线与纳米结构的能力。当前生长纳米线的诸方法并不利于大量生产,而且通常得不到一致的纳米线性能特征。
因此,需要能生长具有一致的性能特征的纳米线的***与方法。
发明概述
本发明提供用于生产具有诸如低锥度等均一特征的垂直对准型外延纳米线(如硅纳米线)的方法,包括:在反应室内提供其上沉积了一个或多个成核颗粒的衬底材料;以第一温度把蚀刻气体引入反应室,该气体有助于清洁衬底材料(和成核颗粒)的表面;使成核颗粒与至少第一前驱气体接触以启动纳米线生长;并将衬底材料加热至第二温度,由此使纳米线在成核颗粒的位置处生长。本发明的工艺中所使用的衬底材料优选是结晶体,但也可选用非晶体。相适应地,衬底材料包括结晶硅,其或是多晶体,或是单晶体。在其它实施例中,衬底可以是非晶SiO2、Si3N4或氧化铝。
在一个目前优选的实施例中,前驱气体包括SiH4,但也可包括诸如Si2H6等其它前驱气体。在一些合适的实施例中,为清洁衬底表面而引入蚀刻气体的第一温度要高于在存在前驱气体时发生纳米线生长的第二温度。相适应地,第一温度可以比第二温度高至少约100℃,例如比第二温度高约200℃,并且可以例如达约800℃的温度。在其它实施例中,为清洁衬底表面而引入蚀刻剂气体的第一温度可与在存在前驱气体时发生纳米线生长的第二温度基本上一样。例如,第一与第二温度可以约为600℃。实现本发明所用的成核颗粒适宜是一种金属催化剂,并包括与第一前驱气体反应来形成析出Si的共晶体的金属。合适的金属催化剂包括Au、Al、Pt、Fe、Ti、Ga、Ni、Sn或In,且在某些此类实施例中,可以是Au胶体或Au膜。
于是,高质量单晶硅纳米线可用例如基于气液固(VLS)生长工艺的金属催化型化学气相沉积(CVD)来生长。在生长期间,前驱气体(如SiH4)在成核颗粒催化剂表面分解,Si在催化剂内扩散,然后在出现超饱和时,Si原子在催化剂-衬底界面析出,以形成直径与催化剂成核颗粒的直径相似的硅纳米线。
在利用结晶衬底的诸实施例中,在衬底材料上生长的导线能较佳地从衬底外延生长。按本发明工艺生产的纳米线以轴向对准的垂直定向生长出衬底材料的平面,且能输运电荷。业已发现,本发明的方法提供沿其长度锥度极低的纳米线,例如沿其长度的锥度率小于约2纳米/微米,譬如小于约1.5纳米/微米,小于约1.0纳米/微米、小于约0.5纳米/微米,小于约0.3纳米/微米。
本发明工艺所采用的第一前驱气体适宜包含SiH4(或Si2H6),且还可包含一种或多种掺杂剂气体,诸如B2H6、POCl3或PH3。本发明工艺使用的前驱气体可通过等离子体增强型溅射沉积来合适地引入。溅射沉积可通过普通技术人员都知道的任何方法,例如二极管、射频与直流沉积来实现。
在本发明的另一个适合的实施例中,为充分利用这种纳米线生长法的自底向上(bottom-up)潜能,对于互补金属氧化物半导体(CMOS)器件制造而言,诸如轴向掺杂剂调节等原地掺杂是理想的。例如,VLS生长法十分适用于轴向掺杂剂调节,例如可在其端部用诸如硼或磷等掺杂剂物质只掺杂导线的某些部分(非整个导线长度)。例如,对于构建诸如使用纳米线的晶体管之类的CMOS器件,在某些情况下希望生长带有掺杂的端部的导线,其中为改善与导线的欧姆接触,应在掺杂的端部形成与导线的电极触点。然而,业已表明,引入诸如乙硼烷和磷化氢等掺杂剂气体影响了硅烷的分解速率。实际上,已表明,乙硼烷增大了硅烷的分解速率,而磷化氢则减小了硅烷的分解速率。因而在导线生长期间,乙硼烷会导致在纳米线侧壁沉积大量未催化的Si,这在生长与掺杂剂掺入期间明显增大了沿导线的锥度率。
因此,在本发明另一个合适的实施例中,在纳米线生长期间和/或掺杂剂掺入期间,还将诸如氯化氢等蚀刻剂气体引入反应室。HCl在导线生长温度下(例如对垂直定向外延导线约为600℃)将产生相对低的导线蚀刻速率,导致在导线上形成Cl钝化层,其阻止了Si的侧壁生长,由此能很好地控制导线均一性(如低锥度导线),而且还在空间上阻止了掺杂剂的侧壁掺入,从而允许对垂直对准型外延导线作轴向调节的电子掺杂。在于上述的预清洁步骤中和导线生长和/或掺杂剂掺入期间都将诸如氯化氢等蚀刻剂气体引入反应室的实施例中,为了最小化导线在生长期间的过蚀刻,通常预清洁步骤期间的HCL分压要比纳米线生长过程中被引入反应室的HCl的分压(如约0.15托)更高(如约1.0托)。
再举一例,根据本发明的另一个方面,本发明的教示还允许将不同材料的纳米线沿该纳米线的长度纵向地合成,例如在不同材料的交替或周期性分段或多段式纳米线的情况中,其中至少有两段包含不同的材料。其一个示例是相邻的分段具有不同的化学成分,诸如Si、Ge和/或SiGe。在这些不同分段的纳米线生长过程中使用HCl将产生极低的蚀刻速率,并且形成阻止SiH4或GeH4的侧壁分解的Cl钝化层,从而提供了对锥度极低的垂直对准型异质结构纳米线的Si/Ge与SixGe(1-x)轴向调节的改善的控制。可以理解,对这些其它材料而言,也可使用不同的前驱气体来生长使用不同半导体材料(诸如PbSe)的各种其它纳米线结构。
本发明的其它实施例、特征与优点以及本发明各实施例的结构与操作将在下面参照附图予以详述。
附图简述
本发明参照附图来描述。附图中用相同的标号指示相同或功能上相似的元件。某元件首次出现的附图用相应标号中最左面的数字指示。
图1A是单晶半导体纳米线的图示。
图1B是按芯-壳结构掺杂的纳米线的图示。
图2是根据本发明一实施例使用HCl预清洁来制备纳米线的方法的流程图。
图3是根据本发明一实施例,在纳米线生长过程中使用HCl预清洁步骤与HCl的引入的组合来制备纳米线的方法的流程图。
图4A和4B是示出21微米长、锥度率约0.2纳米/微米的纳米线的底部(4A)与相应顶部(4B)的TEM,该纳米线是根据本发明的方法在纳米线和长过程中使用HCl预清洁步骤与HCl的引入的组合来生长的。
发明详述
应当理解,此处所示和描述的特定实现都是本发明的示例,并不旨在以任何方式另外限制本发明的范围。实际上,为简短起见,本文并不详述诸***(和诸***的各个操作部件的诸元件)的常规电子设备、制造、半导体器件和纳米线(NW)、纳米棒、纳米管与纳米带技术和其它功能方面。另外,为了简明起见,本文通常将本发明描述成与纳米线相关。
应当理解,虽然在本文所描述的技术中频繁地提及纳米线,但是本分所述的技术也适用于其它纳米结构,诸如纳米棒、纳米管、纳米四脚体、纳米带和/或其组合。还应明白,本文描述的诸制造技术可用来创建任一种半导体器件类型和其它电子组件类型。此外,这些技术还适用于电气***、光学***、消费类电子设备、工业电子设备、无线***、空间应用或任何其它应用。
如本文所使用的,“纵横比”是纳米结构的第一轴长度除以该纳米结构的第二轴与第三轴长度的平均值,其中第二轴与第三轴是其长度彼此几乎相等的两根轴。例如,完美棒的纵横比应该是其长轴的长度除以垂直于(正交于)该长轴的截面的直径。
术语“异质结构”当在参照纳米结构使用时指以至少两种不同的和/或可区分的材料类型为特征的纳米结构。通常,纳米结构的一个区域包含第一材料类型,而该纳米结构的第二区域包含第二材料类型。在一些实施例中,纳米结构包括第一材料的芯和至少一个第二(或第三等)材料的壳,其中不同的材料类型围绕例如纳米线长轴、分支纳米晶体臂长轴或纳米晶体中心径向分布。壳无需完全覆盖相邻的被视为壳的材料或被视为异质结构的纳米结构。例如,以被第二材料的小岛覆盖的一种材料的芯为特征的纳米晶体就是一种异质结构。在其它实施例中,不同的材料类型分布在纳米结构内的不同位置。例如,诸材料类型可以沿纳米线的主(长)轴或沿分支纳米晶体的长轴或臂分布。异质结构内不同区域可包含完全不同的材料,或者不同区域可包含同一种基底材料。
如本文中所使用的,“纳米结构”是一种具有至少一个区域或特征维度的结构,该区域或特性维度的尺寸小于约500纳米,比如小于约200纳米、小于约100纳米、小于约50纳米,或甚至小于约20纳米。通常,该区域或特征维度应沿该结构的最小轴。此类结构的示例包括纳米线、纳米棒、纳米管、分支纳米晶体、纳米四脚体、三脚体、两脚体、纳米晶体、纳米点、量子点、纳米颗粒、分支四脚体(如无机树状物(dendrimer))等。就材料特性而言,纳米结构基本上为同质,或在某些实施例中可以为异质(如异质结构)。例如,纳米结构可以基本上为结晶体、基本上为单晶体、多晶体、非晶体或其组合。在一个方面,纳米结构的三个维度中的每一个维度的尺寸都小于约500纳米,比如小于约200纳米、小于约100纳米、小于约50纳米,或甚至小于约20纳米。
如本文所使用的,术语“纳米线”一般指任一种细长的导电或半导电材料(或本文描述的其它材料),这种材料包括至少一个小于500纳米、较佳地小于100纳米的截面维度,且其纵横比(长∶宽)大于10,较佳地大于50,更佳地大于100。
本发明的纳米线的材料特性基本上为同质,或在某些实施例中可以是异质(如纳米线异质结构)。这些纳米线可从基本上任一种或多种便利的材料制造,并且可以是例如基本上结晶体、基本上单晶体、多晶体或非晶体。纳米线可以具有可变的直径或可以具有基本上均一的直径,即在最大可变性区域上和在至少为5纳米(比如至少10纳米、20纳米或50纳米)的线性维度上表现出小于约20%(比如小于约10%、5%或1%)偏差的直径。通常,直径以离开纳米线端部的方向(例如在纳米线中央20%、40%、50%或80%)估算。纳米线在其长轴的全长或其一部分上呈笔直或呈曲线或弯曲。在某些实施例中,纳米线或其一部分可呈现出二维或三维的量子界限。根据本发明的纳米线明确地排除碳纳米管,并且在某些实施例中还排除“晶须”或“纳米晶须”,尤其是直径大于100纳米或大于约200纳米的晶须。
此类纳米线的示例包括如在已公布的国际专利申请WO02/17362、WO02/48701和WO01/03208号中所描述的半导体纳米线、碳纳米管和其它同类尺寸的细长型导电或半导电结构,这些申请通过引用包括在此。
如本文所使用的,术语“纳米棒”一般指类似于纳米线的任一种细长型导电或半导电材料(或本文描述的其它材料),但其纵横比(长∶宽)小于纳米线的纵横比。注意,两根或更多根纳米棒可以沿它们的纵轴耦接在一起,使耦接的纳米棒沿路横跨在电极之间。或者,两根或更多根纳米棒沿它们的纵轴基本上对准但不耦接在一起,使得两根或更多根纳米棒的端部之间有一小间隙。在这一情况下,电子通过从一根纳米棒跳到另一根纳米棒而穿越该小间隙,可从一根纳米棒流向另一根纳米棒。两根或更多根纳米棒可以基本上对准,使它们形成一条电子能在电极间行进的路径。
可对纳米线、纳米棒、纳米管和纳米带使用各种各样的材料,包括选自例如下列的半导体材料:Si、Ge、Sn、Se、Te、B、C(包括金刚石)、P、B-C、B-P(BP6)、B-Si、Si-C、Si-Ge、Si-Sn和Ge-Sn、SiC、BN/BP/BAs、AlN/AlP/AlAs/AlSb、GaN/GaP/GaAs/GaSb、InN/InP/InAs/InSb、ZnO/ZnS/ZnSe/ZnTe、CdS/CdSe/CdTe、HgS/HgSe/HgTe、BeS/BeSe/BeTe/MgS/MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、AgF、AgCl、AgBr、AgI、BeSiN2、CaCN2、ZnGeP2、CdSnAs2、ZnSnSb2、CuGeP3、CuSi2P3、(Cu、Ag)(Al、Ga、In、Tl、Fe)(S、Se、Te)2、Si3N4、Ge3N4、Al2O3、(Al、Ga、In)2(S、Se、Te)3、Al2CO及两种或更多种此类半导体的合适组合。
纳米线还可由其它材料构成,诸如像金、镍、钯、铱、钴、铬、铝、钛、锶等金属、金属合金、聚合物、导电聚合物、陶瓷和/或其组合。可以采用其它现在已知或将来研发的导电或半导体材料。
在某些方面中,半导体可包括来自由以下各项构成的组的掺杂剂:来自周期表III族的p型掺杂剂;来自周期表V族的n型掺杂剂;选自B、Al与In的p型掺杂剂;选自P、As与Sb的n型掺杂剂;来自周期表II族的p型掺杂剂;选自Mg、Zn、Cd与Hg的p型掺杂剂;来自周期表IV族的p型掺杂剂;选自C与Si的p型掺杂剂;或选自Si、Ge、Sn、S、Se与Te的n型掺杂剂。可以采用其它现在已知或将来研发的掺杂剂材料。
另外,纳米线或纳米带还包括碳纳米管或由导电或半导电有机聚合物材料(比如并五苯和过渡金属氧化物)构成的纳米管。
因此,虽然本文的通篇描述中为说明起见叙述了术语“纳米线”,但是本文的描述还包括了对纳米管的使用(例如其其中轴向地贯穿形成空心管的纳米线类结构)。如本文对纳米线所描述的那样,纳米管能以组合/纳米管薄膜的形式独立地或与纳米线组合地构成,以提供本文所描述的诸特性与优点。
如本文所使用的,术语“锥度率”指细长型纳米结构(诸如纳米线)从其底端部分测得的直径减去该纳米结构从其顶端部分测得的直径再除以该纳米结构的长度。
应该理解,本文所作的空间描述(例如“以上”、“以下”、“上”、“下”、“顶”、“底”等)仅为了说明,本发明的器件可以按任意定向或方式作空间排列。
纳米线及其合成的类型
图1A示出一种单晶半导体纳米线芯(下称“纳米线”)100。图1A示出的纳米线100是一种均匀掺杂的单晶纳米线。此类单晶纳米线能以良好受控的方式被掺杂为p型或n型半导体。诸如纳米线100等掺杂的纳米线显现出改进的电子特性。例如,此类纳米线可被掺杂以具有相当于块状单晶材料的载流子迁移率水平。
图1B示出具有芯-壳结构的纳米线110。通过形成纳米线的外层,诸如通过对纳米线作钝化退火和/或对纳米线使用芯-壳结构,能减弱表面散射。可在纳米线上形成诸如氧化物涂层等绝缘层作为壳层。另外,例如对于具有氧化物涂层的硅纳米线,在氢气(H2)中对纳米线退火能明显减少表面态。在诸实施例中,芯-壳组合被配置成满足下列约束:(1)壳能级应高于芯能级,使传导载流子被限制在芯内;和(2)芯与壳材料应具有良好的晶格匹配,且几乎没有表面态与表面电荷。也可使用其它更复杂的NW芯-壳结构,包括单晶半导体芯、栅电介质内壳和共形栅外壳。这可以通过例如在Si/SiOx芯-壳结构(如上所述)周围沉积一层TaAlN、WN或高度掺杂的非晶硅作为外栅壳来实现。
对于p型掺杂的导线,绝缘壳的价带能低于芯的价带,或对于n型掺杂的导线,壳的导带能高于芯的导带。一般而言,芯纳米结构可用任何金属性或半导体材料制成,并且沉积在芯上的一个或多个壳层可用相同或不同的材料制作。例如,第一芯材料可包括选自下列的第一半导体:II-VI族半导体、III-V族半导体、VI族半导体及其合金。同样地,一个或多个壳层的第二材料可以包括与第一半导体相同或不同的例如选自下列的氧化物层(即第二半导体):II-VI族半导体、III-V族半导体、IV族半导体及其合金。示例半导体包括但不限于CdSe、CdTe、InP、InAs、CdS、ZnS、ZnSe、ZnTe、HgTe、GaN、GaP、GaAs、GaSb、InSb、Si、Ge、AlAs、AlSb、PbSe、PbS和PbTe。如上所述,可将诸如金、铬、锡、镍、铝等金属材料及其合金用作芯材料,并且该金属芯可被涂刷一种合适的壳材料,诸如二氧化硅或其它绝缘材料,接着再涂上一层或多层上述材料的附加壳层,以构成更复杂的芯-壳-壳纳米线结构。
可用众多适合不同材料的便利方法中的任一种方法来制造纳米结构并控制其尺寸。例如,下列文献都描述了各种成分的纳米晶体的合成:Peug等人(2000)的“Shape Control of CdSe Nanocrystals(CdSe纳米晶体的形状控制)”Nature(自 然)404,59-61;Puntes等人(2001)的“Colloidal nanocrystal shape and size control:The case of cobalt(胶状纳米晶体形状和尺寸控制:钴的情况)”Science(科学)291,2115-2117;授予Alivisatos等人(2001年10月23日)的题为“Process for formingshaped group III-V semiconductor nanocrystals,and product formed using process(用于形成成型的III-V族半导体纳米晶体的工艺和使用该工艺形成的产品)”的USPN 6,306,736;授予Alivisatos等人(2001年5月1日)的题为“Process for formingshaped group II-VI semiconductor nanocrystals,and product formed using process(用于形成成型的II-VI半导体纳米晶体的工艺以及使用该工艺形成的产品)”的USPN 6,225,198;授予Alivisatos等人(1996年4月9日)的题为“Preparation of III-Vsemiconductor nanocrystals(III-V半导体纳米晶体的制备)”的USPN 5,505,928;授予Alivisatos等人(1998年5月12日)的题为“Semiconductor nanocrystals covalentlybound to solid inorganic surfaces using self-assembled monolayers(使用自组装单层共价键合到固体无机表面的半导体纳米晶体)”的USPN 5,751,018;授予Gallagher等人(2000年4月11日)的题为“Encapsulated quantum sized doped semiconductorparticles and method of manufacturing same(密封的量子尺寸掺杂半导体颗粒及其制造方法)”的USPN 6,048,616;和授予Weiss等人(1999年11月23日)的题为“Organo luminescent semiconductor nanocrystal probes for biolongical applicationsand process for making and using such probes(用于生物应用的有机发光半导体纳米晶体探针及其制造和使用工艺)”的USPN 5,990,479。
下列文献描述了具有各种纵横比的纳米线,包括具有受控直径的纳米线的生长:Gundiksen等人(2000年)的“Diameter-selective synthesis of semiconductornanowires(半导体纳米线的直径选择性合成)”,J.Am.Chem.Soc(美国化学会志)122,8801-8802;Cui等人(2001)的“Diameter-controlled synthesis of single-crystalsilicon nanowires(单晶硅纳米线的直径受控合成)”Appl.Phys Lett.(应用物理学 快报)78,2214-2216;Gudiksen等人(2001)的“Synthetic control oft he diameter andlength of single crystal semicondcutor nanowires(单晶半导体纳米线的直径和长度的合成控制)”J.Phys Chem.B(物理化学杂志B辑)105,4062-4064;Morales等人(1998)的“A laser ablation method for the synthesis of crystalline semiconductornanowires(用于结晶半导体纳米线的合成的激光烧蚀方法)”Science(科学)279,208-211;Duan等人(2000)的“General synthesis of compound semiconductornanowires(复合半导体纳米线的一般合成)”Adv.Mater(先进材料)12,298-302;Cui等人(2000)的“Doping and electrical transport in silicon nanowires(硅纳米线中的掺杂和电输运)”J.Phys.Chen.B(物理化学杂志B辑)104,5213-5216;Peng等人(2000)的“Shape control of CdSe nancorystals(CdSe纳米晶体的形状控制)”Nature(自然)434,59-61;Puntes等人(2001)的“Colloidal nanocrystal shape and sizecontrol:The case of cobalt(胶状纳米晶体形状和尺寸控制:钴的情况)”Science (科学)291,2215-2217;授予Alivisatos等人(2001年10月23日)的题为“Processfor forming shaped group III-V semiconductor nanocrystals,and product formedusing process(用于形成成型的III-V族半导体纳米晶体的工艺和使用该工艺形成的产品)”的USPN 6,306,736;授予Alivisatos等人(2001年5月1日)的题为“Processfor forming shaped group II-V semiconductor nanocrystals,and product formed usingprocess(用于形成成型的II-VI半导体纳米晶体的工艺以及使用该工艺形成的产品)”的USPN 6,225,198;授予Lieber等人(2000年3月14日)的题为“Mechod ofproducing metal oxide nanorods(金属氧化物纳米棒的生产方法)”的USPN6,036,774;授予Lieber等人(1999年4月27日)的题为“Metal oxide nanorods(金属氧化物纳米棒)”的USPN 5,897,945;授予Lieber等人(1999年12月7日)的题为“Preparation of carbide nanorods(碳化物纳米棒的制备)”的USPN 5,997,832;Urban等人(2002)的“Synthesis of single-crystalline perovskite nanowires composedof barium titanate and strontium titanate(由钛酸钡和钛酸锶组成的单晶钙钛矿纳米线的合成)”J.Am.Chem.Soc.(美国化学会志)124,1186;和Yun等人(2002)的“Ferroelectric properties of Individual Barium Titanate Nanowires Investiguted byScanned Probe Microscopy(通过扫描的探针显微术探查到的独立钛酸钡纳米线的铁电特性)”Nano Letters(纳米快报)2,447。
例如,下列文献描述了分支纳米线(如纳米四脚体、三脚体、二脚体与分支四脚体)的生长:Jun等人(2001)的“Controlled synthesis of multiarmed CdS nanorodarchitectures using monosurfactant system(使用单表面活化剂***的多臂CdS纳米杆架构的受控合成)”J.Am.Chem.Soc.(美国化学会志)123,515-515;和Manna等人(2000)的“Synthesis of Soluble and Processable Red-Arrow-Teardrop-andTetrapod-Shaped CdSe Nanocrystals(可溶解和可加工杆形、箭形、水滴形和四脚形CdSe纳米晶体的合成)”J.Am.chem.Soc.(美国化学会志)122,12700-12706。
例如,下列文献描述了纳米颗粒的合成:授予小Clark等人(1997年11月25日)的题为“Method for producing semiconductor particles(用于生产半导体颗粒的方法)”的USPN 5,690,807;授予El-Shall等人(2000年10月24日)的题为“Nanoparticles of silicon oxide alloys(氧化硅合金的纳米颗粒)”的USPN 6,136,156;授予Ying等人(2002年7月2日)的题为”Synthesis of nanometer-sized particles byreverse micelle mediated techniques(通过反向胶束媒介技术的纳米尺寸颗粒的合成)”的USPN 6,413,489;和Liu等人(2001)的“Sol-Gel Synthesis of Free-StandingFerroelectric Lead Zirconate Titanate Nanoparticles(独立式铁电锆酸钛酸铅纳米颗粒的溶胶-凝胶合成)”J.Am.Chem.Soc(美国化学会志)123,4344。上述文献还对纳米晶体、纳米线和分支纳米线的生长描述了纳米颗粒的合成,得出的纳米结构的纵横比小于约1.5。
例如,下列文献描述了芯-壳纳米结构异质结构,即纳米晶体与纳米线(如纳米棒)芯-壳异质结构的合成;美国专利号6,882,051;Peng等人(1997)的“Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals withphotostability and electronic accessibility(具有耐光性和电子可存取性的高发光CdSe/CdS芯/壳纳米晶体的外延生长)”J.Am.Chem.Soc.(美国化学会志)119,7019-7029;Dabbousi等人(1997)的“(CdSe)ZnS cove-shell quantum dots:Synthesis and characterization of a size series of highly luminescent nanocrysallites((CdSe)AnS芯-壳量子点:一系列尺寸的高发光纳米晶体的合成和特性描述)”J.Phys.Chem B(美国物理化学杂志B辑)101,9463-9475;Manna等人(2002)的“Epitaxial growth and photochemical annealing of graded CdS/ZnS shells oncolloidal CdSe nanorods(胶状CdSe纳米棒上的分级CdS/ZnS壳的外延生长和光化学退火)”J.Am.Chem.Soc.(美国化学会志)124,7136-7145;和Cao等人(2000)的“Growth and properties of semiconductor core/shell nanocrystal s with InAs cores(具有InAs芯的半导体芯/壳纳米晶体的生长和特性)”J.Am.Chem.Soc.(美国化学会志)122,9692-9702。类似方法适用于其它芯-壳纳米结构的生长。
例如,下列文献描述了纳米线异质结构的生长,其中不同的材料沿纳米线的长轴分布于不同位置:美国专利号6,882,501;Gudikson等人(2002)的“Growthof nanowire superlattice structures for nanoscale photonics and electrons(用于纳米级光子和电子的纳米线超点阵结构的生长)”Nature(自然)415,617-620;Bjork等人(2002)的“One-dimensional steeplechase for electrons realized(用于实现的电子的一维障碍)”Nano Letters(纳米快报)2,86-90;Wu等人(2002)的“Block-by-blockgrowth of single-crystalline Si/SiGe superlattice nanowires(单晶Si/SiGe超点阵纳米线的逐块生长)”Nano Letters(纳米快报)2,83-86;和美国专利号7,067,867。类似方法适用于其它异质结构的生长。
使用蚀刻剂预清洁步骤的外延定向的纳米线生长
诸如硅纳米线之类的高质量单晶纳米线通常通过金属催化的化学气相沉积(CVD)来生长。在这种气液固(VLS)生长过程中,一般使用诸如金成核颗粒等纳米尺度的金属催化剂来催化诸如硅烷(SiH4)等前驱气体的分解。形成液态Au-Si合金,并且在达到超饱和时,硅就析出,以形成与催化剂颗粒相似直径的硅纳米线。用于该方法较佳的纳米线生长方向可包括<111>、<110>和<112>。
对许多工艺而言,垂直对准型纳米线生长十分适于生产诸如具有一致性能特性的晶体管等器件。这一定向可通过具有合适晶体结构的单晶衬底(如SiC(111)晶片)上的外延生长来实现。外延生长要求成核颗粒(如Au颗粒)与衬底之间有清洁的界面。正如本领域所知,天然氧化物(SiOx)可在生长之前利用氢氟(HF)酸蚀刻去除。不幸的是,在大多数场合中,观察到由金纳米颗粒成核的垂直定向的硅纳米线的低成品率外延生长,并且须作其它表面清洁处理。
另外,在外延硅纳米线生长所需的生长温度下,会发生硅烷的未催化的热分解,造成产生锥度纳米线的硅的侧壁生长。根据生长条件,添加到纳米线侧壁的硅可以是多晶硅、非晶硅和/或外延硅的组合。除了外延硅以外的其它硅形式由于其损害导线的固有电子特性,因而并不理想。理想的是能生长诸如硅纳米线之类的纳米线,这类纳米线减小了锥度,以产生基于此类导线的具有一致性能特征的器件。
图2是根据本发明一个实施例使用氯化氢预清洁步骤来制备纳米线的方法200的流程图。方法200始于步骤201。在步骤201,首先用氢氟酸气体蚀刻剂钝化诸如硅晶片等晶片的表面,以便在衬底表面上沉积成核颗粒之前先从晶片表面除去天然氧化物(如SiOx)。在步骤202,在衬底材料上沉积一个或多个成核颗粒,适宜地是诸如Au胶粒等金属催化剂,来为纳米线生长创建成核位置。如步骤204所示,在在衬底上沉积成核颗粒之后,在反应室内将衬底加热至第一温度,并将例如氯化氢气体等蚀刻剂气体引入反应室,以清洁涂有成核颗粒的衬底表面。蚀刻剂气体有助于既清洁衬底表面,又清洁衬底表面上的成核颗粒。接下来,将成核颗粒加热至第二温度(或与第一温度相同或低于第一温度),并使成核颗粒与第一前驱气体(如硅烷)接触,形成液态合金小滴并启动纳米线生长(由标记206指示),直到它们达到所需的尺寸与定向,如步骤208所示。
在合适的实施例中,纳米线在其上生长的衬底材料是结晶衬底。术语“结晶衬底”包括包含了以重复或周期性阵列位于较大原子距离(一般为10埃
Figure G2007800493702D00111
或10埃以上的量级)上的原子的任何衬底材料。此类结晶衬底可以是多晶体,或可以包括单晶体。适宜地,本发明的工艺中所用的结晶衬底是硅(Si)。其它合适的结晶材料包括但不限于锗(Ge)、砷化镓(GaAs)、氮化镓(GaN)、蓝宝石、石英和锗化硅(SiGe)。在本发明其它实施例中,衬底材料可包括非晶材料。可用于实现本发明的合适的非晶衬底材料包括但不限于SiO2、Si3N4和氧化铝。
如图2所示,在某些实施例中,本发明的方法包括首先在衬底材料上沉积成核颗粒。可用于实现本发明的成核颗粒包括金属催化剂,并且可以是与前驱气体反应而形成共晶相的任何金属。此种混合物具有使所有成分都处于溶解状态中的最小熔点。在添加了前驱气体分子(如硅)后,达到晶相图中的饱和点,使得半导体颗粒(如Si)开始从金属合金中析出,从而形成生长的纳米线。连续地添加前驱气体将使共晶不断饱和,从而产生用于纳米线生长的附加材料。
在合适的实施例中,成核颗粒将是金属催化剂,并且可以包括来自周期表的任一种过渡金属,包括但不限于铜、银、金、镍、钯、铂、钴、铑、铱、铟、铁、钌、锡、锇、锰、铬、钼、钨、钒、铌、钽、钛、锆和镓,包括这些金属中的一种或多种的混合物。在本发明优选的实施例中,金属催化剂可包括金(Au)胶体(即Au纳米颗粒)或Au膜。在某些此类实施例中,可使用20-150纳米(nm)直径的金胶体。目标是实现密度在0.14-6颗粒/平方微米(μm)之间的金纳米颗粒的均匀沉积。关键在于最小化金粒团形成。粒团会造成不合需要的较大直径的纳米线生长。可对沉积应用旋涂与自组装方法(例如参见美国专利号7,067,867,该专利通过全文引用包括在此)。
旋涂是种相当直截了当的工艺。通过改变金粒在前驱胶体中的浓度,调整硅晶片的表面化学特性,再改变旋涂速度,就能控制沉积密度。旋涂的缺点是金胶体溶液的利用率低。若要使用,可在生产阶段应用回收工艺。
自组装涉及已知化学特性的某种应用。4英寸二氧化硅涂布晶片的表面用(3-氨基丙基)-三甲氧基硅烷(APTES)或(3-硫基丙基)-三甲氧基硅烷(MPTES)功能化,然后与金胶体溶液接触。金粒在表面上组装。比较两种不同化学特性的差异,并可使用通过控制接触时间与接触溶液中的金粒浓度来控制金粒密度的可能性。
用来实现本发明的成核颗粒还可通过加热衬底表面上的金膜涂层而形成于该表面上。
在一个实施例中,本发明包括将第一前驱气体加热至某一温度,在该温度下:(1)气体离解成其自由组成原子,并且(2)成核颗粒(如金属催化剂)熔化为液体。于是,自由气体分子能扩散到金属催化剂中而形成合金液滴。本领域的技术人员通常将该工艺称为化学气相沉积(CVD)。
在本发明的合适的实施例中,第一前驱气体可选自,但不限于,SiH4或Si2H6。把这些Si前驱气体加热到超过热能足以破坏气态分子间的键能的温度产生了自由Si原子(例如Si-H键:93千卡/摩尔,Si-Cl键:110千卡/摩尔,Si-Si键:77千卡/摩尔,参见M-T-Swihart与R.W.Carr的著作,物理化学A志102:1542-1549(1998))。只要该温度还高得足以使金属催化剂液化,则自由Si原子将扩散到该金属中且生成共晶相。Si2H6与SiH4的离解温度分别约为300℃-500℃,且较佳地,生长出现在约600℃的温度,以产生垂直定向的外延导线。
在本发明的所有实施例中,在任何纳米线生长过程中使用的前驱气体还可包含一种或多种掺杂气体。适合用于实现本发明的掺杂气体的示例包括但不限于B2H6、POCl3与PH3。在导线的许多应用中,对互补金属氧化物半导体(CMOS)器件制造必须采用原位掺杂。在本发明的合适的实施例中,可在每种前驱气体混合物中使用同一种掺杂气体来生长导线。在此类实施例中,根据掺杂剂的选用,所得的整根导线不是p型就是n型。在本发明的其它实施例中,可以在整个过程中引入不同的掺杂气体作为前驱气体的成分。例如,导线生长可以使用含n型掺杂剂(如P、As或Sb)的前驱气体来启动,然后用使用利用p型掺杂剂(如B、Al或In)的前驱气体来继续。在其它实施例中,在启动期间使用p型掺杂气体,然后在生长期间使用n型掺杂气体。
在其它实施例中,例如对于导线的轴向调节掺杂,在整个生长过程中,可像切换前驱气体那样多次切换掺杂气体的类型。因而所得的纳米线在其整个长度上可以包含若干不同的掺杂剂部分。例如,通过本发明生产的纳米线可以包括形成了与源电极的电接触的n型基底、p型中间部分以及形成了与漏电极的电接触的n型顶部,或者普通技术人员设想的任一种合适的组合。本发明的此类实施例能让n型导线在p型衬底上生长,反之亦然。
如上所述,VLS生长方法非常适用于掺杂剂的轴向调节,以便例如用诸如硼等掺杂剂物质只掺杂导线的某些部分(非导线的全长),比如在其端部掺杂。例如,在本发明一个实施例中,第一前驱气体可以包含SiH4和合适的载气,诸如H2、He、Ar或其它惰性气体。将该气体混合物加热到足够高的温度,例如约600℃,就产生自由Si原子。在此类合适的实施例中,第一前驱气体可包含一种或多种选自本申请通篇描述的掺杂剂气体中的掺杂剂气体。在前驱气体混合物中出现诸如B2H6之类的掺杂剂气体时,还将产生B原子。第一前驱气体混合物越过在总压力约5-50托下沉积在衬底材料上的成核颗粒,适宜地是金属催化剂颗粒(比如金纳米粒),同时把成核颗粒加热至约600℃温度。在本发明的其它实施例中,气体压力可以增减,因而要求修正离解前驱气体混合物所需的温度。
Si与B将扩散到金属催化剂中并产生合金液滴。由于前驱气体溶合在金属催化剂内,所以金属催化剂与前驱气体的这种共晶相将继续存在下去。一旦达到过饱和,Si/B原子就析出并启动纳米线生长。为使纳米线生长继续,要求不断供应Si前驱气体与掺杂气体。不过发现,引入诸如乙硼烷与磷化氢之类的掺杂剂气体影响了硅烷的热分解速率。实际上,乙硼烷已被证明可提高硅烷的热分解速率,而磷化氢则降低硅烷的热分解速率。因此,在导线生长期间,乙硼烷会在纳米线侧壁上引起基本上未催化的硅生长,从而在导线生长与掺杂剂掺入期间明显增大了沿导线的锥度率。
因此,在图3所示的本发明另一个合适的实施例中,在纳米线生长期间和/或掺杂剂掺入期间,还可以将诸如氯化氢等蚀刻剂气体引入反应室。图3中的步骤301、302、304、306和308同图2中对应的步骤201、202、204、206和208相同。图3还包括附加的步骤310,用于在导线生长过程306期间添加诸如HCl等蚀刻剂气体。
在导线生长温度下(如约600℃),HCl将产生相对低的导线蚀刻速率。在生长垂直对准型外延硅纳米线所需的约600℃的生长温度范围内,观察到采用HCl的硅蚀刻速率相当低,而且硅纳米线表面覆盖了一层或多层的Cl与H的单层。这种钝化层有助于最小化硅的侧壁沉积,从而形成低锥度导线,并且还能在空间上阻止硼(或其它掺杂剂气体)晶格掺入纳米线侧壁,从而促进轴向掺杂剂掺入(相比之下,更不希望侧壁掺杂剂掺入)。在该实施例中,在以上图2所示的预清洁步骤中以及在导线生长和/或掺杂剂掺入期间,都把诸如氯化氢等蚀刻剂气体引入反应室,通常在预清洁步骤期间的的HCl的分压(如约1.0托)要高于在纳米线生长过程中被引入反应室的的HCl的分压(如约0.15托),以最小化导线在生长期间的过蚀刻。
连续地供给前驱气体将使纳米线继续生长,直到按要求终止或因局部条件变化而引起的停止。纳米线的质量取决于金纳米颗粒的质量、蚀刻剂气体浓度、衬底上金纳米颗粒分布的控制以及生长条件,生长条件包括温度、掺杂剂/前驱气体比率、前驱气体分压及前驱气体在反应器里的驻留时间。已经发现,本发明诸方法提供了沿其长度的锥度极低的纳米线,例如锥度率小于约2纳米/微米,小于约1纳米/微米,小于约0.5纳米/微米,小于约0.3纳米/微米。在本发明的合适的实施例中,可以利用计算机控制的8″半导体炉来实现本发明的工艺。图4A与4B是示出锥度率约0.2纳米/微米的21微米长纳米线的基底(4A)和相应顶部(4B)的TEM,该纳米线根据本发明诸方法在纳米线生长过程中使用HCl预清洁步骤与HCl的引入的组合来生长。
使用本发明的教示还可生长诸如硅/锗纳米线等的高质量单晶纳米线异质结构。此类导线通常通过金属催化型化学气相沉积(CVD)来生长,该方法基于气液固(VLS)生长工艺。在生长期间,处理气体(如SiH4与GeH4)在催化剂表面分解,Si(Ga)在催化剂中扩散,接着在出现超饱和时,硅(锗)在催化剂-衬底界面析出,以形成直径与催化剂直径相似的硅/锗纳米线。Si与Ge的主要差别在于垂直对准型外延锗纳米线能在近200℃的温度下生长,这比硅纳米线的生长温度低。这在生长Si/Ge和SixGe1-x轴向调节型结构时导致问题,在该结构中,在硅纳米线生长所需的温度下,GeH4的未催化的热分解会造成侧壁生长而产生有锥度的纳米线。不希望对纳米线侧壁添加锗,因为这会导致径向和轴向成分调节。这会劣化这种成分调节型导线的电子特性。
该VLS生长技术十分适合Si与Ge的轴向调节,其中通过断续地引入和停止SiH4(GeH4)以形成轴向调节型生长,可控制过渡。根据本发明的教示,可在Si/Ge纳米线生长期间提供受控量的HCl,从而允许对垂向纳米线作轴向Si/Ge和SixGe1-x调节而没有前驱气体物质的侧壁生长。在生长垂直对准型外延硅纳米线所需的生长温度范用内(如接近600℃),硅的蚀刻速率极低,并且Si/Ge纳米线的表面覆盖着单层的Cl与H。这种钝化层防止了硅烷(和/或锗气体)的侧壁分解。这样就防止了在先前用不同的SixGe1-x固体成分生长的纳米线的段上的侧壁沉积。这允许受控的轴向调节而不会用不希望的不同成份的材料对纳米线作径向包封。
在合适的实施例中,在本发明任一工艺中引入的前驱气体可通过等离子体增强型溅射沉积(或等离子体增强型化学气相沉积(PECVD)来引入(参见Hofmann等人的“Gold Catalyzed Growth of Silicon Nanowires by Plasma Enhanced ChemicalVapor Deposition(通过等离子体增强型化学气相沉积的硅纳米线的金催化生长)”,J.Appl.Phys.(应用物理杂志)94:6005-6012(2003))。本发明这些特定实施例中的硅纳米线的直径分布由比如金属(最好是金)纳米颗粒等成核颗粒的直径分布确定。市售的金胶体的直径分布为±10%。纳米线中也可达到同样的分布。根据生长条件,金纳米颗粒可***为更小的纳米颗粒,得到更小直径的纳米线。为最小化这一现象,可以优化生长条件。在给定的生长条件下,通过改变生长持续时间可以控制纳米线长度。硅纳米线的结晶度和掺杂剂浓度也是生长条件相关的。它们可以同其它重要的纳米线特性一起与以优化与控制。
根据本发明任一工艺生产的纳米线将适当地生长出衬底材料的平面。这种生长包括以与衬底呈任一角度伸出衬底材料平面的纳米线。例如,相对于衬底材料的平面,纳米线能以约1°至约90°和这些值之间的任一角度生长。本发明要求用本文描述的工艺生产的纳米线必须伸出衬底的平面。即本发明诸工艺生产的纳米线延离衬底材料平面的距离必须大于单个分子的尺寸。这样,根据本发明生产的纳米线有别于诸如薄膜与量子点之类的结构,此类结构在衬底材料表面上扩展,而非以伸出衬底平面的距离超过例如单个Si分子的原子直径的方式生长。
适宜地,根据本发明任一工艺生产的纳米线伸出衬底材料的平面,以便达到约100纳米至小于约50微米,比如在约15微米与25微米之间的最终长度。本发明的纳米线的直径适宜地至少为约1纳米至小于约1微米。对于在电子器件中的使用,本发明的纳米线的直径约为几纳米至几百纳米,使它们在电子器件中得以收获和应用(参见2005年12月29日提交的美国专利申请号60/754,520中对纳米线收获的描述,该申请通过引用包括在此)。
在本发明的合适的实施例中,纳米线当在结晶衬底(无论是多晶还是单晶)上生长时,较佳地为外延生长。然而,本发明也可在结晶衬底上实现生长,其中纳米线不以外延定向生长。如本文所使用的,术语“外延”在其涉及纳米线生长时表示纳米线具有与在其上生长的衬底材料同样的结晶特性。例如,衬底材料的定向可以是普通技术人员都知道的任何结晶定向,包括但不限于<111>、<110>、<100>和<211>。因而在合适的实施例中,通过本发明诸工艺生产的纳米线可以按任何结晶定向生长,而且适宜地按与衬底材料相同的定向生长,包括贯穿本文讨论的且为普通技术人员熟悉的那些定向。
在本发明的其它合适的实施例中,衬底材料的结晶平面可以是0°水平面的离轴。正在这类衬底材料的表面上生长的纳米线能以某个角度伸出衬底材料,使导线能与结晶平面正交(即与结晶平面成90°),或者相对于结晶平面离轴,使它们能与0°水平面正交。
在本发明的利用非晶衬底的实施例中,由于非晶材料不含结晶定向,因此按本发明诸工艺生产的纳米线并不外延生长。但如上所述,在此类衬底上生长的纳米线可相对于水平面以任何角度伸出衬底平面。
本发明诸工艺生产的纳米线可在空间两点之间运送电子并且起到传输电荷的作用。以此方式,本发明的纳米线还有别于纳米点,并且其尺寸与定向有别于半导体膜。
本发明还提供含本发明任一工艺生产的纳米线的电子电路。适宜地,按本发明诸工艺生产的纳米线的汇集是用于高性能电子设备的构件块。以基本上同一方向定向的纳米线汇集具有高的迁移率值。另外,纳米线能在溶液中灵活加工,以实现廉价制造。纳米线汇集能容易地从溶液里组装到任一种衬底上,以实现纳米线薄膜。例如,可将用于半导体器件的纳米线薄膜形成为包含2根、5根、10根、100根以及界于这些根数之间或大于这些根数任何其它数量的纳米线,以供高性能电子设备使用。
本发明的纳米线在与诸如有机半导体材料等聚合物/材料相结合时还可用来制作高性能合成材料,这类材料可在任一种衬底上灵活地旋铸。纳米线/聚合物合成可提供优于纯聚合物材料的特性。
本发明的纳米线汇集或薄膜可被对准成基本上相互平行,或可保持不对准或随机。不对准的纳米线汇集或薄膜提供与多晶硅材料相当或更优的电子特性,其迁移率值范围一般为1-10cm2/V·S。
能以多种方式获得本发明的对准型纳米线薄膜。例如可用下列技术生产对准型纳米线薄膜:(a)Langmuir-Blodgett膜对准;(b)诸如美国专利号6,872,645描述的流体流动法,该专利通过全文引用包括在此;(c)应用机械剪切力;和(d)使用交流电场,如美国专利申请Nanosys(纳米***),代理人案卷号01-008200所描述的。使用这些技术,再把期望的聚合物旋铸到所形成的纳米线薄膜上,就得到了对准型纳米线薄膜/聚合物合成件。例如,纳米线可在液态聚合物溶液中沉积,然后按这些或其它对准工艺之一执行对准,再固化对准的纳米线(如紫外固化、交联等)。以机械方式拉伸随机定向的纳米线薄膜/聚合物合成件,也可得到对准型纳米线薄膜/聚合物合成件。
可以将本发明诸工艺生产的p掺杂纳米线和n掺杂纳米线分开制作,并在均质混合物中将它们沉积到诸如宏电子衬底之类的表面上。在宏观层面,得到的材料似乎含高浓度的n与p两种掺杂剂。通过形成这类p与n掺杂纳米线的混合物,就能制造如同进行了n与p两种掺杂那样作出响应的宏电子器件。例如,最后得到的包括n与p两种掺杂纳米线的纳米线薄膜能呈现出n与p两种掺杂纳米线的特性。例如,可将二极管、晶体管和其它已知的电气器件制造成包括p掺杂的纳米线与n掺杂的纳米线的组合。
本发明诸工艺生产的纳米线还可使用本文描述的纳米线异质结构来用于生产电气器件,诸如p-n二极管、晶体管和其它电气器件类型。纳米线异质结构沿该纳米线长度有多个p-n结,并且沿其长度可包括交替的不同掺杂的部分或分段。
本发明的纳米线在示例器件与应用中的使用
许多电子设备与***可以包含带有通过本发明诸方法生产的纳米线薄膜的半导体器件或其它类型的器件。下文或本文其它地方描述的本发明的某些示例应用用于说明目的,而非加以限制。本文描述的各种应用可以包括对准型或不对准型纳米线薄膜,并且可包括合成或非合成纳米线薄膜。
半导体器件(或其它类型的器件)能被耦合到其它电子电路的信号,和/或能够与其它电子电路相集成。半导体器件可形成于大型衬底上,之后可将大型衬底分离或切割成较小的衬底。另外,在大型衬底上(即比常规半导体晶片大得多的衬底),可将形成在其上的诸半导体器件互连起来。
通过本发明诸工艺生产的纳米线也可被包含在要求单个半导体器件和多个半导体器件的应用中。例如,通过本发明诸工艺生产的纳米线特别适用于在其上形成了多个半导体器件的大面积宏电子衬底。这类电子器件可包括用于有源矩阵液晶显示器(LCD)、有机LED显示器和场致发射显示器的显示驱动电路。其它有源显示器可用纳米线-聚合物、量子点-聚合物合成件构成(该合成件起到发射体与有源驱动矩阵的双重功能)。通过本发明诸工艺生产的纳米线还适用于智能库、***、大面积阵列传感器和射频识别(RFID)标记,包括智能卡、智能库存标记等。
通过本发明诸工艺生产的纳米线也适用于数字与模拟电路应用。特别地,通过本发明的工艺生产的纳米线适用于要求在大面积衬底上作超大规模集成的应用。例如,可在逻辑电路、存储器电路、处理器、放大器和其它数字与模拟电路上实现通过本发明诸工艺生产的纳米线薄膜。
本发明诸工艺生产的纳米线可用于光电应用。在此类应用中,可使用清洁的导电衬底来增强特定光电器件的光电特性。例如,这种清洁的导电衬底可用作铟钨氧化物(ITO)等的柔性大面积替代物。衬底可以涂布有纳米线薄膜,该纳米线薄膜被形成为具有大带隙,即大于可见光的带隙,以使其不吸收,但被形成为其HOMO或LUMO能带与形成在其顶部的光电器件的活性材料相匹配。清洁的导体可位于吸收型光电材料的两侧,以便从该光电器件里运出电流。可选用两种不同的纳米线材料,一种材料的HOMO与光电材料HOMO能带的HOMO相匹配,另一种材料的LUMO与光电材料的LUMO能带相匹配。这两种纳米线材料的带隙被选成比光电材料的带隙大得多。根据该实施例,对纳米线作浅掺杂,以便减小纳米线薄膜的电阻,同时让衬底基本上保持不吸收。
因此,各种各样的军用与消费类物品都可包含通过本发明诸工艺生产的纳米线。例如,这类物品可包括:个人计算机、工作站、服务器、联网设备、诸如PDA和掌上导向器等手持式电子设备、电话机(如蜂窝与标准)、无线电、电视机、电子游戏机与游戏***、家庭安保***、汽车、飞机、船舶、其它家用与商用电器等。
结论
已提出了本发明的诸示例性实施例,本发明不限于这些示例。这些示例在文中出于说明目的而提出,而不作为限制。根据此处所包含的教示,替换方案(包括本文描述的那些方案的各种等效方案、扩展、变型、变异等)对相关领域的技术人员而言将是显而易见的。此类替换方案都落在本发明的范围与精神内。
本说明书提到的所有出版物、专利与专利申请都表明本发明所属领域中的技术人员的技术水平,并且正如每份单独的出版物、专利或专利申请被专门单独地指出要通过引用结合的那样,这些内容通过引用包括在此。

Claims (21)

1.一种生产纳米线的方法,包括:
(a)在反应室中提供其上沉积了一个或多个成核颗粒的衬底材料;
(b)在反应室内将衬底加热至第一温度,并将蚀刻剂气体引入反应室以清洁衬底表面,其中所述蚀刻剂气体有助于既清洁衬底表面,又清洁衬底表面上的成核颗粒;
(c)将成核颗粒加热至第二温度,使所述成核颗粒与至少第一前驱气体接触以启动纳米线生长,其中所述第二温度与第一温度相同或低于第一温度;以及
(d)在所述成核颗粒的位置处生长纳米线;
其中所述的步骤(b)在执行步骤(c)之前执行。
2.如权利要求1所述的方法,其特征在于,所述前驱气体包括SiH4或Si2H6
3.如权利要求1所述的方法,其特征在于,步骤(b)中的所述引入在800℃的温度下发生。
4.如权利要求1所述的方法,其特征在于,步骤(b)中的所述引入在600℃的温度下发生。
5.如权利要求3所述的方法,其特征在于,所述第一温度高于所述第二温度。
6.如权利要求5所述的方法,其特征在于,所述第二温度在600℃与700℃之间。
7.如权利要求5所述的方法,其特征在于,所述第二温度为600℃。
8.如权利要求5所述的方法,其特征在于,所述第一温度与所述第二温度相同。
9.如权利要求8所述的方法,其特征在于,所述第一与第二温度为600℃。
10.如权利要求1所述的方法,其特征在于,所述蚀刻剂气体包括氯化氢(HCl)。
11.如权利要求10所述的方法,其特征在于,所述氯化氢在步骤(b)中以1托的分压被引入所述反应室。
12.如权利要求11所述的方法,还包括在步骤(c)和/或步骤(d)中将氯化氢气体引入所述反应室。
13.如权利要求12所述的方法,其特征在于,所述氯化氢在步骤(c)和/或(d)中以0.15托的分压被引入所述反应室。
14.如权利要求1所述的方法,还包括在步骤(c)和/或步骤(d)中将一种或多种掺杂剂气体引入所述反应室。
15.如权利要求14所述的方法,还包括在步骤(c)和/或步骤(d)中至少一种掺杂剂气体引入所述反应室以掺杂所述纳米线的一个或多个端部。
16.如权利要求14所述的方法,其特征在于,所述至少一种掺杂剂气体包括含硼气体。
17.如权利要求1所述的方法,其特征在于,所述提供含一个或多个成核颗粒的衬底的步骤包括在所述衬底上沉积多个成核颗粒,所述颗粒包括Au、Al、Pt、Fe、Ti、Ga、Ni、Sn或In。
18.如权利要求17所述的方法,其特征在于,所述成核颗粒包括金属胶体。
19.如权利要求18所述的方法,其特征在于,所述金属胶体包括Au胶体。
20.如权利要求1所述的方法,其特征在于,提供含一个或多个成核颗粒的衬底的步骤包括在所述衬底上沉积金属膜。
21.如权利要求20所述的方法,其特征在于,所述金属膜包括金膜。
CN2007800493702A 2006-11-07 2007-11-06 用于纳米线生长的***与方法 Active CN101573778B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US85745006P 2006-11-07 2006-11-07
US60/857,450 2006-11-07
PCT/US2007/023434 WO2008057558A2 (en) 2006-11-07 2007-11-06 Systems and methods for nanowire growth

Publications (2)

Publication Number Publication Date
CN101573778A CN101573778A (zh) 2009-11-04
CN101573778B true CN101573778B (zh) 2013-01-02

Family

ID=39365129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800493702A Active CN101573778B (zh) 2006-11-07 2007-11-06 用于纳米线生长的***与方法

Country Status (6)

Country Link
US (2) US7776760B2 (zh)
EP (1) EP2082419A4 (zh)
JP (1) JP2010509171A (zh)
KR (1) KR20090087467A (zh)
CN (1) CN101573778B (zh)
WO (1) WO2008057558A2 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
KR20100044854A (ko) * 2007-07-19 2010-04-30 캘리포니아 인스티튜트 오브 테크놀로지 반도체의 정렬된 어레이의 구조
KR20100067088A (ko) 2007-08-28 2010-06-18 캘리포니아 인스티튜트 오브 테크놀로지 수직으로 배열된 와이어 어레이의 성장을 위한 웨이퍼 재사용 방법
KR101445877B1 (ko) * 2008-03-24 2014-09-29 삼성전자주식회사 산화아연 나노와이어의 제조방법
WO2009137241A2 (en) 2008-04-14 2009-11-12 Bandgap Engineering, Inc. Process for fabricating nanowire arrays
KR101475524B1 (ko) * 2008-08-05 2014-12-23 삼성전자주식회사 실리콘 풍부산화물을 포함하는 나노와이어 및 그의제조방법
US8029851B2 (en) * 2008-08-29 2011-10-04 Korea University Research And Business Foundation Nanowire fabrication
JP5598805B2 (ja) * 2008-09-26 2014-10-01 独立行政法人物質・材料研究機構 有機高分子ナノワイヤーとその製造方法
US8247325B2 (en) * 2008-10-10 2012-08-21 Uchicago Argonne, Llc Direct growth of metal nanoplates on semiconductor substrates
CN101649491A (zh) * 2009-07-17 2010-02-17 宁波工程学院 一种定向生长SiC单晶纳米线阵列的方法
WO2011025733A1 (en) * 2009-08-24 2011-03-03 International Solartech, Inc. Nanowire-based photovoltaic energy conversion devices and related fabrication methods
US8274138B2 (en) * 2009-09-30 2012-09-25 Eastman Kodak Company II-VI semiconductor nanowires
US20110076841A1 (en) * 2009-09-30 2011-03-31 Kahen Keith B Forming catalyzed ii-vi semiconductor nanowires
EP2507843A2 (en) * 2009-11-30 2012-10-10 California Institute of Technology Semiconductor wire array structures, and solar cells and photodetectors based on such structures
WO2011156042A2 (en) 2010-03-23 2011-12-15 California Institute Of Technology Heterojunction wire array solar cells
SG185123A1 (en) * 2010-05-05 2012-11-29 Spawnt Private Sarl Nano-wires made of novel precursors and method for the production thereof
KR101777894B1 (ko) * 2010-05-11 2017-09-13 큐나노 에이비 와이어의 기상 합성
US8680510B2 (en) * 2010-06-28 2014-03-25 International Business Machines Corporation Method of forming compound semiconductor
FR2965280A1 (fr) * 2010-09-29 2012-03-30 Commissariat Energie Atomique Croissance de fils de silicium dope au bore avec controle du diametre et de la densite
JP5002703B2 (ja) * 2010-12-08 2012-08-15 株式会社東芝 半導体発光素子
US8834831B2 (en) 2011-01-11 2014-09-16 The United States Of America As Represented By The Secretary Of The Army Controlling morpholoy of titanium oxide using designed peptides
PL2736837T3 (pl) 2011-07-26 2021-12-27 Oned Material, Inc. Sposób produkcji nanodrutów krzemowych
EP3896759A1 (en) 2011-10-05 2021-10-20 OneD Material, Inc. Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto
US10026560B2 (en) 2012-01-13 2018-07-17 The California Institute Of Technology Solar fuels generator
US9545612B2 (en) 2012-01-13 2017-01-17 California Institute Of Technology Solar fuel generator
US9476129B2 (en) 2012-04-02 2016-10-25 California Institute Of Technology Solar fuels generator
WO2013126432A1 (en) 2012-02-21 2013-08-29 California Institute Of Technology Axially-integrated epitaxially-grown tandem wire arrays
WO2013152132A1 (en) 2012-04-03 2013-10-10 The California Institute Of Technology Semiconductor structures for fuel generation
CN103854971B (zh) * 2012-12-04 2016-10-05 中芯国际集成电路制造(上海)有限公司 纳米线的制造方法、纳米线场效应晶体管的制造方法
FR3000612B1 (fr) * 2012-12-28 2016-05-06 Commissariat Energie Atomique Dispositif optoelectronique a microfils ou nanofils
US9553223B2 (en) 2013-01-24 2017-01-24 California Institute Of Technology Method for alignment of microwires
DE102013201608A1 (de) 2013-01-31 2014-07-31 Wacker Chemie Ag Verfahren zur Abscheidung von polykristallinem Silicium
EP3035374B1 (en) * 2013-08-13 2022-10-05 Japan Science and Technology Agency Tunnel field-effect transistor, method for manufacturing same, and switch element
US10276370B2 (en) * 2014-12-29 2019-04-30 Georgia Tech Research Corporation Methods for the continuous, large-scale manufacture of functional nanostructures
CN105185879B (zh) * 2015-10-10 2017-08-18 厦门市三安光电科技有限公司 一种三维掺杂的氮化物发光二极管及其制作方法
JP7155104B2 (ja) 2016-07-15 2022-10-18 ワンディー マテリアル、 インコーポレイテッド 電池における使用のために炭素系粉末上にシリコンナノワイヤを作るための製造装置および方法
US11139402B2 (en) 2018-05-14 2021-10-05 Synopsys, Inc. Crystal orientation engineering to achieve consistent nanowire shapes
CN109962010B (zh) * 2018-11-08 2022-05-27 中国科学院半导体研究所 圆晶级大面积半导体纳米片及其制备方法
US11264458B2 (en) 2019-05-20 2022-03-01 Synopsys, Inc. Crystal orientation engineering to achieve consistent nanowire shapes
US11515147B2 (en) 2019-12-09 2022-11-29 Micron Technology, Inc. Material deposition systems, and related methods
KR102271030B1 (ko) * 2019-12-20 2021-07-01 서울대학교산학협력단 선택적 영역 성장을 이용한 cmos 소자의 제조 방법
CN111893454B (zh) * 2020-07-08 2023-03-14 陕西科技大学 一种常压下锗锡纳米材料的制备方法

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332910A (en) * 1991-03-22 1994-07-26 Hitachi, Ltd. Semiconductor optical device with nanowhiskers
US5196396A (en) * 1991-07-16 1993-03-23 The President And Fellows Of Harvard College Method of making a superconducting fullerene composition by reacting a fullerene with an alloy containing alkali metal
US5274602A (en) * 1991-10-22 1993-12-28 Florida Atlantic University Large capacity solid-state memory
EP0613585A4 (en) * 1991-11-22 1995-06-21 Univ California SEMICONDUCTOR NANOCRYSTALS COVALENTLY LINKED TO SOLID INORGANIC SURFACES USING SELF-ASSEMBLED MONO-LAYERS.
US5505928A (en) * 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US5252835A (en) * 1992-07-17 1993-10-12 President And Trustees Of Harvard College Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale
US5338430A (en) * 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
US6048616A (en) * 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
AU8070294A (en) * 1993-07-15 1995-02-13 President And Fellows Of Harvard College Extended nitride material comprising beta -c3n4
US5962863A (en) * 1993-09-09 1999-10-05 The United States Of America As Represented By The Secretary Of The Navy Laterally disposed nanostructures of silicon on an insulating substrate
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US20030044777A1 (en) 1993-10-28 2003-03-06 Kenneth L. Beattie Flowthrough devices for multiple discrete binding reactions
EP0812434B1 (en) 1995-03-01 2013-09-18 President and Fellows of Harvard College Microcontact printing on surfaces and derivative articles
US5674592A (en) * 1995-05-04 1997-10-07 Minnesota Mining And Manufacturing Company Functionalized nanostructured films
US6190634B1 (en) * 1995-06-07 2001-02-20 President And Fellows Of Harvard College Carbide nanomaterials
US5690807A (en) * 1995-08-03 1997-11-25 Massachusetts Institute Of Technology Method for producing semiconductor particles
JP3478012B2 (ja) * 1995-09-29 2003-12-10 ソニー株式会社 薄膜半導体装置の製造方法
US5869405A (en) * 1996-01-03 1999-02-09 Micron Technology, Inc. In situ rapid thermal etch and rapid thermal oxidation
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
EP0792688A1 (en) * 1996-03-01 1997-09-03 Dow Corning Corporation Nanoparticles of silicon oxide alloys
US5640343A (en) * 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
JPH10106960A (ja) * 1996-09-25 1998-04-24 Sony Corp 量子細線の製造方法
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
US5997832A (en) * 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6413489B1 (en) * 1997-04-15 2002-07-02 Massachusetts Institute Of Technology Synthesis of nanometer-sized particles by reverse micelle mediated techniques
JPH1186719A (ja) * 1997-09-05 1999-03-30 Yamaha Corp 電界放射型素子の製造方法
US6004444A (en) * 1997-11-05 1999-12-21 The Trustees Of Princeton University Biomimetic pathways for assembling inorganic thin films and oriented mesoscopic silicate patterns through guided growth
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US5990479A (en) * 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6159742A (en) * 1998-06-05 2000-12-12 President And Fellows Of Harvard College Nanometer-scale microscopy probes
US6235675B1 (en) * 1998-09-22 2001-05-22 Idaho Research Foundation, Inc. Methods of forming materials containing carbon and boron, methods of forming catalysts, filaments comprising boron and carbon, and catalysts
US6128214A (en) * 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6256767B1 (en) * 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
US6815218B1 (en) * 1999-06-09 2004-11-09 Massachusetts Institute Of Technology Methods for manufacturing bioelectronic devices
AU782000B2 (en) 1999-07-02 2005-06-23 President And Fellows Of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
US6438025B1 (en) * 1999-09-08 2002-08-20 Sergei Skarupo Magnetic memory device
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US6196396B1 (en) * 1999-10-10 2001-03-06 Erith Lestine Bennett Apparel accessories rack
RU2173003C2 (ru) * 1999-11-25 2001-08-27 Септре Электроникс Лимитед Способ образования кремниевой наноструктуры, решетки кремниевых квантовых проводков и основанных на них устройств
KR100480773B1 (ko) * 2000-01-07 2005-04-06 삼성에스디아이 주식회사 카본 나노 튜브를 이용한 3극 전계방출소자의 제작방법
US6248674B1 (en) * 2000-02-02 2001-06-19 Hewlett-Packard Company Method of aligning nanowires
US6306736B1 (en) * 2000-02-04 2001-10-23 The Regents Of The University Of California Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
US6225198B1 (en) * 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
US7335603B2 (en) 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
WO2001081487A1 (en) * 2000-04-21 2001-11-01 Science & Technology Corporation @ Unm Prototyping of patterned functional nanostructures
KR100360476B1 (ko) * 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
US6586785B2 (en) * 2000-06-29 2003-07-01 California Institute Of Technology Aerosol silicon nanoparticles for use in semiconductor device fabrication
WO2002003482A1 (de) * 2000-07-04 2002-01-10 Infineon Technologies Ag Feldeffekttransistor
US6515339B2 (en) 2000-07-18 2003-02-04 Lg Electronics Inc. Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
US6447663B1 (en) * 2000-08-01 2002-09-10 Ut-Battelle, Llc Programmable nanometer-scale electrolytic metal deposition and depletion
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20060175601A1 (en) * 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
KR100984585B1 (ko) 2000-08-22 2010-09-30 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 반도체 성장 방법 및 디바이스 제조 방법
KR20090049095A (ko) 2000-12-11 2009-05-15 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서
US7014795B2 (en) 2001-01-23 2006-03-21 Quantum Polymer Technologies Corporation Quantum devices based on crystallized electron pairs and methods for their manufacture and use
WO2002065515A2 (en) 2001-02-14 2002-08-22 Science & Technology Corporation @ Unm Nanostructured devices for separation and analysis
US6593065B2 (en) 2001-03-12 2003-07-15 California Institute Of Technology Method of fabricating nanometer-scale flowchannels and trenches with self-aligned electrodes and the structures formed by the same
CA2451882A1 (en) 2001-03-14 2002-09-19 University Of Massachusetts Nanofabrication
US6797336B2 (en) 2001-03-22 2004-09-28 Ambp Tech Corporation Multi-component substances and processes for preparation thereof
US6882051B2 (en) 2001-03-30 2005-04-19 The Regents Of The University Of California Nanowires, nanostructures and devices fabricated therefrom
US7084507B2 (en) 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
US6858455B2 (en) 2001-05-25 2005-02-22 Ut-Battelle, Llc Gated fabrication of nanostructure field emission cathode material within a device
US6896864B2 (en) 2001-07-10 2005-05-24 Battelle Memorial Institute Spatial localization of dispersed single walled carbon nanotubes into useful structures
NZ513637A (en) 2001-08-20 2004-02-27 Canterprise Ltd Nanoscale electronic devices & fabrication methods
EP1423861A1 (en) 2001-08-30 2004-06-02 Koninklijke Philips Electronics N.V. Magnetoresistive device and electronic device
US6821847B2 (en) * 2001-10-02 2004-11-23 Mosel Vitelic, Inc. Nonvolatile memory structures and fabrication methods
US6773616B1 (en) * 2001-11-13 2004-08-10 Hewlett-Packard Development Company, L.P. Formation of nanoscale wires
WO2003050854A2 (en) 2001-12-12 2003-06-19 The Pennsylvania State University Chemical reactor templates: sacrificial layer fabrication and template use
US7049625B2 (en) 2002-03-18 2006-05-23 Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell
US20040026684A1 (en) 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6831017B1 (en) * 2002-04-05 2004-12-14 Integrated Nanosystems, Inc. Catalyst patterning for nanowire devices
US6760245B2 (en) * 2002-05-01 2004-07-06 Hewlett-Packard Development Company, L.P. Molecular wire crossbar flash memory
US6815750B1 (en) * 2002-05-22 2004-11-09 Hewlett-Packard Development Company, L.P. Field effect transistor with channel extending through layers on a substrate
US7358121B2 (en) 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
AU2003298998A1 (en) 2002-09-05 2004-04-08 Nanosys, Inc. Oriented nanostructures and methods of preparing
AU2003279708A1 (en) 2002-09-05 2004-03-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
EP1537445B1 (en) 2002-09-05 2012-08-01 Nanosys, Inc. Nanocomposites
US7115916B2 (en) 2002-09-26 2006-10-03 International Business Machines Corporation System and method for molecular optical emission
US7051945B2 (en) 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
EP1563480A4 (en) 2002-09-30 2010-03-03 Nanosys Inc INTEGRATED ADS WITH NANOWIRE TRANSISTORS
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
JP5336031B2 (ja) 2002-09-30 2013-11-06 ナノシス・インク. 大面積ナノ可能マクロエレクトロニクス基板およびその使用
CA2499950A1 (en) 2002-09-30 2004-04-15 Nanosys, Inc. Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
KR20060079209A (ko) 2003-09-04 2006-07-05 나노시스, 인크. 나노결정의 처리 방법과, 나노결정을 포함하는 조성물,장치 및 시스템
US7067328B2 (en) 2003-09-25 2006-06-27 Nanosys, Inc. Methods, devices and compositions for depositing and orienting nanostructures
US7628974B2 (en) 2003-10-22 2009-12-08 International Business Machines Corporation Control of carbon nanotube diameter using CVD or PECVD growth
US7208094B2 (en) * 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
US7018549B2 (en) 2003-12-29 2006-03-28 Intel Corporation Method of fabricating multiple nanowires of uniform length from a single catalytic nanoparticle
US20050279274A1 (en) 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
CA2564220A1 (en) * 2004-04-30 2005-12-15 Nanosys, Inc. Systems and methods for nanowire growth and harvesting
US7129154B2 (en) * 2004-05-28 2006-10-31 Agilent Technologies, Inc Method of growing semiconductor nanowires with uniform cross-sectional area using chemical vapor deposition
EP1807919A4 (en) * 2004-11-02 2011-05-04 Nantero Inc DEVICES FOR PROTECTING ELECTROSTATIC DISCHARGES OF NANOTUBES AND NON-VOLATILE AND VOLATILE SWITCHES OF CORRESPONDING NANOTUBES
US7087920B1 (en) * 2005-01-21 2006-08-08 Hewlett-Packard Development Company, L.P. Nanowire, circuit incorporating nanowire, and methods of selecting conductance of the nanowire and configuring the circuit
US20070037365A1 (en) 2005-08-15 2007-02-15 Ranganath Tirumala R Semiconductor nanostructures and fabricating the same
US20070186627A1 (en) * 2006-02-10 2007-08-16 Sungsoo Yi High aspect ratio AFM probe and method of making

Also Published As

Publication number Publication date
KR20090087467A (ko) 2009-08-17
CN101573778A (zh) 2009-11-04
WO2008057558A3 (en) 2008-08-21
JP2010509171A (ja) 2010-03-25
WO2008057558A2 (en) 2008-05-15
EP2082419A4 (en) 2014-06-11
EP2082419A2 (en) 2009-07-29
US7776760B2 (en) 2010-08-17
US20090127540A1 (en) 2009-05-21
US20110156003A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
CN101573778B (zh) 用于纳米线生长的***与方法
CN101010780B (zh) 纳米线生长和获取的体系和方法
AU2006343556B2 (en) Methods for oriented growth of nanowires on patterned substrates
US7344961B2 (en) Methods for nanowire growth
US7785922B2 (en) Methods for oriented growth of nanowires on patterned substrates
US20100279513A1 (en) Systems and Methods for Nanowire Growth and Manufacturing
JPH01132118A (ja) 半導体結晶の形成方法及びその方法により得られる半導体結晶物品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: 1D MATERIALS LLC

Free format text: FORMER OWNER: NANOSYS INC.

Effective date: 20150520

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150520

Address after: American California

Patentee after: NANOSYS INC

Address before: American California

Patentee before: Nanosys Inc.