CN101439283B - 纳米管组件、双极板及其制造方法 - Google Patents

纳米管组件、双极板及其制造方法 Download PDF

Info

Publication number
CN101439283B
CN101439283B CN2008101619371A CN200810161937A CN101439283B CN 101439283 B CN101439283 B CN 101439283B CN 2008101619371 A CN2008101619371 A CN 2008101619371A CN 200810161937 A CN200810161937 A CN 200810161937A CN 101439283 B CN101439283 B CN 101439283B
Authority
CN
China
Prior art keywords
valve metal
oxide
assembly
bipolar plates
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101619371A
Other languages
English (en)
Other versions
CN101439283A (zh
Inventor
M·H·阿布德埃尔哈米德
G·V·达希奇
C·A·王
Y·M·米克海尔
M·J·卢基特施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101439283A publication Critical patent/CN101439283A/zh
Application granted granted Critical
Publication of CN101439283B publication Critical patent/CN101439283B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Fuel Cell (AREA)

Abstract

本发明通常涉及的领域包括金属氧化物纳米管、双极板和燃料电池。具体而言,本发明涉及纳米管组件、双极板及其制造方法。本发明的一种实施方案包含一种含有阀金属氧化物纳米管的金属氧化物组件。本发明的另一个实施方案为双极板,其具有多个配置用于流体通过的通道。该双极板包含阀金属板,该阀金属板具有沉积在其至少部分表面上的金属氧化物纳米管组件。该金属氧化物纳米管组件除了提供防腐性和导电性之外,还提供改进的水管理。

Description

纳米管组件、双极板及其制造方法
技术领域
[0001]本发明通常涉及的领域包括金属氧化物纳米管、双极板和燃料电池。
背景技术
[0002]纳米材料已经被广泛的开发来作为高级功能材料的基础结构单元。具有大表面积和高长径比的纳米管具有最大的希望来提供新材料的独特和提高的性能。虽然这里有许多不同的制造纳米管的方法,但是将纳米管组织和控制成为特定组件来产生产品规模上的真实世界结构是具有挑战性的。
[0003]由于燃料电池高的能量效率和低的排放,它已经被认为是最有前景的能源装置之一。但是,对于燃料电池的商业化设计和制造而言,还存在着许多的技术和经济上的挑战。纳米材料例如纳米管可以潜在的帮助克服一些这样的挑战。例如,在防腐、水管理能力和耐久性领域需要改进燃料电池双极板。
[0004]燃料电池通常由一系列以交替的方式堆栈在一起的膜电极组件和双极板组成。膜电极组件典型的是由夹入在阳极和阴极部分之间的离子传导膜制成,该阳极和阴极每一个位于该膜相对的一侧。双极板是类似电导体的板,其具有多个用于流体通过的通道。反应性气体流经这些通道而到达阳极和阴极部分,在此处该气体发生电化学反应来产生电。收集由电化学反应产生的电并通过双极板传导到外部电路。因此双极板需要具有高电导率或者低接触电阻来避免能量损失。由于反应性气体、电化学反应和在所述加工中从膜电解质产生的污染物导致的苛刻环境,因此双极板还需要满足非常苛刻的耐腐蚀需要。在氢燃料电池的情况中,水管理是另外一个关键的挑战。水在氢燃料电池中连续产生,并且离子传导膜需要保持确定的水合度。当氢燃料电池在低电流密度例如0.2A/cm2运行时,这里将没有足够的气流来除去在阴极部分所产生的水。水滴可能在流体通道中形成并阻塞反应气体的流动。不供给反应物气体时,燃料电池阻塞的部分将不会产生电。由于不均匀的电流分布,燃料电池的性能将会劣化。这样的现象被称作低功率稳定性(LPS)。虽然有几种最近的方案通过使所述的板通道表面亲水来扩散冷凝水以改进LPS,但是仍然需要进一步的提高水管理。
发明内容
[0005]在一种实施方案中是一种组件,其包含多个阀金属氧化物纳米管。阀金属可以包含至少一种的钛、锆、铌、钽、铪或者其混合物或者合金。阀金属氧化物纳米管可被制造来提供光催化活性。
[0006]在另外一种实施方案中,提供一种双极板,其具有多个配置用于流体通过的通道。该双极板包含阀金属板,该阀金属板具有沉积在其至少部分表面上的金属氧化物纳米管组件。该金属氧化物纳米管组件除了提供防腐性和导电性之外,还提供改进的水管理。
[0007]本发明另外一种实施方案包括一种制造金属氧化物纳米管组件的方法,其包括:
提供阀金属,其选自钛、锆、铌、钽、铪、或者其任何的混合物;在电解质溶液中阳极化所述的阀金属来在该阀金属表面上形成纳米管组件;并在电解质溶液中在阳极化电势或电压下钝化所述的阀金属,目的是使流经该阀金属的电流达到最小的程度。
[0008]本发明其它示例性实施方案将由下文提供的详细说明而变得显而易见。应当理解该详细说明和特定的实施例(虽然公开了本发明示例性的实施方案)目的仅仅是说明而非限制本发明的范围。
[0009]除非另有明确指示,否则此处所述方法实施方案不拘泥于具体的次序或者顺序。某些所述的实施方案或者其元素可以存在或者在同样的时间点进行。
附图说明
[0010]从下面的详细说明和附图,本发明的示例性实施方案将变得更充分清楚,其中:
[0011]图1是一种示例性电化学电池的示意图,用于阳极化和钝化阀金属来制备金属氧化物纳米管组件。
[0012]图2表示阀金属氧化物纳米管组件的顶视图和横截面图的场发射扫描电子显微图。
[0013]图3表示在阳极化加工的不同阶段产生的阀金属氧化物纳米管组件的几张场发射扫描电子显微图。
[0014]图4表示根据本发明的一种实施方案的燃料电池的横截面示意图。
具体实施方式
[0015]下面的描述的实施方案(一种或多种)本质上仅仅是示例性的,并且绝非限制本发明、它的应用或用途。
[0016]阀金属是金属材料,其表现出在该金属表面上形成天然的保护性氧化物层的性能,有效的保护金属免于腐蚀。阀金属的实例包括钛、锆、铌、钽、铪或者其任何的混合物或者合金。该天然的保护性阀金属氧化物膜典型的是薄的和致密的结构。该天然的氧化物膜因此具有小的表面积。
[0017]纳米管在此处指的是一种类似管状的结构,这里该管的直径范围是1纳米-300纳米。该管通常是拉长的。由于纳米管的中空结构和小的尺寸,因此其典型的具有大的表面积。
[0018]在本发明的一种实施方案中,阀金属是在电解质溶液中在足够的电化学电势或电压下被阳极化的。这可导致产生粗糙的表面,初始产生多孔表面。双电极电解池或者三电极电解池可以用于所述的阳极化加工中。在双电极电解池中,阳极和阴极被浸入到电解质溶液中,并将一种受控的电压交叉施加到这两个电极上。阀金属材料被用作所述的阳极。在三电极电解池中,将参考电极(例如银/氯化银参考电极)、工作电极和对电极浸入到电解质溶液中。工作电极是板形或其它构造的阀金属。对电极典型的是惰性导电材料例如铂或者石墨。通过控制在参考电极和工作电极之间的电压来将电化学电势施加到工作电极。如果有,则这里有最小程度的电流流经参考电极。在阳极化过程中产生的电流仅仅在工作电极和对电极之间流动。工作电极的电势因此设定在阀金属的氧化电势或者超过来产生阀金属表面的阳极化。在初始阶段可以产生相对大的电流流动来开始表面粗糙化。进一步的阳极化导致形成规则的金属氧化物纳米管组件和阀金属表面的钝化。当形成纳米管组件时,电流典型的下降。当阀金属表面被钝化时,电流降低最低程度。阀金属表面可以基本上用这样的防腐金属氧化物纳米管组件覆盖。在该组件中的纳米管可以基本上彼此平行并以并排的方式互连。不仅制备了相对均匀的金属氧化物纳米管组件,而且获得了具有优异的防腐保护层的钝化的阀金属材料。
[0019]用于阳极化加工中的电解质可以包括任何的在阳极化条件下可以提供离子传导性和电化学稳定性的材料。该电解质典型的包含有机或无机酸或盐的水溶液。还可以使用不同的盐和酸的混合物。在一种实施方案中,可以使用一种含有离子的电解质溶液(其能够至少部分的渗透天然的阀金属氧化物膜和/或与阀金属形成络合物)来在阳极化过程中产生初始的表面粗糙化,以便于形成纳米管。该电解质溶液可以包含氯化物、氟化物或草酸根离子。
[0020]图1表示了一种使用双电极电解池的阳极化加工的示意图,这里将阀金属阳极10和阴极30浸入到电解质溶液20中。将受控电压40交叉的施加到这两个电极上,目的是电化学氧化所述的阀金属。在一种实施方案中,钛试样(coupon)被用作阳极,不锈钢板被用作阴极。将这两个电极浸入到0.2M的氟化氢水溶液中。在室温下在该阳极和阴极之间施加20伏电压15分钟。当开始施加电压时,电流快速发生尖峰。电流随后降低并且当试样表面被氧化钛纳米管组件钝化时,达到最小值。
[0021]图2表示在阳极化加工之后的钛试样表面的场发射扫描电子显微图。显微图A表示该阳极化加工所形成的氧化钛纳米管组件的顶视图。显微图B是同样的纳米管组件的横截面图。氧化钛纳米管的平均直径是大约60-75纳米(nm),并且该纳米管的长度范围为大约15nm-大约300nm。在一种类似的但是独立的试验中,将钛试样阳极和不锈钢阴极在室温下浸入到0.2M的氟化氢溶液中。将20V电压交叉的施加到该阳极和阴极,并在电压施加后的不同的时间点使用场发射扫描电子显微镜检查钛阳极表面。图3表示在不同的时间点的钛电极表面的场发射扫描电子显微图。如图3所示,在2分钟和初始阶段之内,表面粗糙化是清晰可见的。在5分钟时,在表面上零星的形成一些氧化钛纳米管。在10分钟时,纳米管组件实质上覆盖了整个表面。在15和210分钟时,稳定的纳米管仅仅具有轻微增加的纳米管直径,表明金属表面已经基本上钝化了。因此产生平行的和互连的氧化钛纳米管组件。同样获得具有氧化钛纳米管组件的钝化的钛金属。
[0022]与天然的致密的氧化物膜相比,所述的阀金属氧化物纳米管组件具有非常大的表面积。该组件因此表现出优异的催化剂或者催化剂载体性能。在一种实施方案中,氧化钛纳米管组件是如上所述来制造的,该氧化钛纳米管组件表现出光催化活性。此外,可以制造高光催化活性的富含锐钛矿晶体(50%-大约99%)型的二氧化钛纳米管组件。锐钛矿是二氧化钛三种晶型(金红石、锐钛矿和板钛矿)之一。富含锐钛矿型的二氧化钛纳米管组件可以通过在300℃到大约700℃的温度煅烧上述组件来获得。作为光催化剂,当曝露于UV光时,二氧化钛可以进行水解,即,将水分解为氢和氧。从该过程收集的氢气可以用作燃料。这种方法的效率可以通过用碳、氮、或其它元素掺杂所述氧化物来很大的提高。该光催化纳米管组件也可以用作自洁净表面例如汽车挡风玻璃表面。
[0023]所述的由阳极化而制备的阀金属氧化物纳米管组件提高了阀金属的防腐性和耐磨性,并提供了比裸金属更好的对于油漆底漆和胶水的粘合性。上述纳米管组件通常比大部分油漆和电镀具有结实得多的并具有更好的附着性,这使得它们较少可能发生裂纹和剥落。
[0024]在仍然另外一种实施方案中,一种用于燃料电池的双极板是通过在所述的板表面上形成阀金属氧化物纳米管组件而制备的。首先压印一种薄的阀金属板例如钛金属板来形成多个作为流体例如反应性气体通过的通道。然后将该阀金属如上所述在电解质溶液中阳极化来在它的表面上形成阀金属氧化物纳米管组件。以这种方式制造的双极板不仅表现出优异的防腐性,而且提高了水管理性。在一种示例性实施方案中,将一种钛金属片用气流通道的图案进行压印。然后将该作为阳极的压印钛板与不锈钢阴极一起浸入到0.2M氟化氢水溶液。然后可以交叉施加20V电压到这两个电极上大约15分钟来在双极板表面上形成氧化钛纳米管组件。在纳米管组件刚刚形成之后,该双极板表现出小于15度的水接触角。将双极板在实验室环境中在开放的空气中放置大约1星期来测试其表面抗空气污染物的稳固性,所述的空气污染物典型的会明显提高水接触角。曝露于实验室空气中1星期之后的接触角轻微的增加到大约22度。这样低的水接触角表明该组件为双极板提供水管理性的稳固性和燃料电池的LPS(低的功率稳定性)的提高。虽然本申请人不希望局限于具体的理论,但是据信所述组件的大表面积和纳米多孔结构(其通过氧化物化学而扩张并且其倾向于保持水)提供了这样的提高的水管理性能。所述组件不仅有效的扩散水滴来防止气流通道堵塞,而且还将薄层水吸收到它的多孔结构中。
[0025]上述双极板的电接触电阻可以通过涂覆一种薄层贵金属、碳、金属碳化物、金属氮化物或导电氧化物来提高。施涂该导电涂层来提供小于大约50mohm平方厘米(mohm cm2)的表面接触电阻,或者优选小于10mohm cm2的接触电阻。不同于大部分的贱金属,贵金属是抗腐蚀或者氧化的金属。贵金属的实例包括金、银、钽、铂、钯和铑。任何的表现出高导电性和防腐性的氧化物同样可以用来提高双极板的接触电阻。混合的金属氧化物、单个金属氧化物和掺杂的金属氧化物可以通过化学气相沉积、真空沉积、溅射、离子电镀、喷涂、浸涂、原子层沉积等而沉积在所述双极板上。导电金属涂层非限定的实例包括氟掺杂的氧化锡,钽掺杂的二氧化钛,铌掺杂的二氧化钛,氧化铱,氧化钌,混合的氧化钛和氧化钌,以及具有氧空位的氧化钛。在一种具体的实施方案中,如上所述来制备一种具有氧化钛纳米管组件的钛双极板。该双极板的接触电阻在纸张测试样品上是大约380mohm/cm2。然后将该双极板使用3wt%的氯化钌的乙醇溶液浸渍涂覆,随后干燥并在450℃煅烧15分钟来将氯化钌转化为氧化钌。所形成的双极板具有大约6-8mohm cm2的接触电阻。
[0026]所述的纳米管组件可以包含至少两种不同的金属氧化物的混合物。例如,一种金属合金可以在上述的方法中被阳极化。由该合金形成的金属氧化物纳米管因此包含了金属氧化物混合物,其具有类似于该合金的天然氧化物层的组分。该纳米管组件的组分可以通过使用不同的金属合金作为阳极材料而变化。通过改变所述的组分,可以制备具有优异的防腐性和导电性的混合氧化物。导电混合氧化物的实例可以包括任何的氧化钛,氧化钌,氧化钽和氧化铌的混合物。
[0027]所述的导电涂层和/或金属氧化物纳米管组件可以在双极板的全部表面上形成,或者选择性的在气流通道表面或者接触区域的表面上形成。为了在双极板上所选择的区域形成导电涂层或者组件,非待处理区域可以首先用掩模板或者可以除去的保护层来掩蔽。制备双极板的选择性沉积方法的一个实例描述于美国专利申请20060105222中。
[0028]现在参考图4,本发明一种实施方案包含含有燃料电池12的产品10。燃料电池12可以包含第一燃料电池双极板14,该双极板14包含具有反应物气体流场(其中通过多个槽脊18和通道20所确定的)的第一面16。该反应物气体流场可以将燃料传送到双极板的一侧并将氧化剂传送到双极板的另外一侧。槽脊18的表面可以包括导电涂层或者裸露的金属表面。该导电涂层可以是一种如上所述的贵金属,碳,金属碳化物,金属氮化物或者导电氧化物的薄层。双极板可以通过压印一种阀金属薄片例如钛片来形成用于流体通过的通道20的设定图案而制备。
[0029]根据本发明的一种实施方案,所述的包括槽脊18和通道20的全部表面可以用包含阀金属氧化物纳米管组件的涂层11和任选的导电涂层进行涂覆。燃料电池12还可以包含第二燃料电池双极板22,该双极板22包括具有反应物气体流场(其中通过多个槽脊26和通道28所确定的)的第一面24。槽脊18或者16和通道20或者28可以在双极板14或者22上通过机器加工、蚀刻、压印、模塑等形成。根据另外一种实施方案,包含阀金属氧化物纳米管组件的涂层11被选择性的沉积在部分双极板22上,例如仅仅沉积在双极板22中形成的通道28所确定的表面上。氧化钌、金或者碳导电涂层可以在槽脊18上通过化学涂覆、煅烧、真空沉积、溅射或其它本领域普通技术人员已知的沉积方法而进行沉积。
[0030]一种软工具(goods)部分30可以在第一燃料电池双极板14和第二燃料电池双极板22之间提供。第一燃料电池双极板14和第二燃料电池双极板22可以包含多种材料,包括但不限于金属、金属合金和/或导电复合材料。在本发明一种实施方案中,第一燃料电池双极板14和第二燃料电池双极板22可以是不锈钢。
[0031]软工具部分30可以包含聚合物电解质膜32,该电解质膜包含第一面34和第二面36。阴极电极可以位于聚合物电解质膜32的第一面34上。第一气体扩散介质层40可以位于阴极电极38上,并且任选第一微孔层42可以位于第一气体扩散介质层40和阴极电极38之间。第一气体扩散介质层40可以是疏水的。第一双极板14可以位于第一气体扩散介质层40之上。如果期望,一种亲水层(未示出)可以介于第一燃料电池双极板14和第一气体扩散介质层40之间。
[0032]阳极电极46可以位于聚合物电解质膜32的第二面36之下。第二气体扩散介质层48可以位于阳极层46之下,并且任选第二微孔层50可以介于第二气体扩散介质层48和阳极电极46之间。该第二气体扩散介质层48可以是疏水的。第二燃料电池双极板22可以位于第二气体扩散介质层48之上。如果期望,一种第二亲水层(未示出)可以介于第二燃料电池双极板22和第二气体扩散介质层48之间。
[0033]在不同的实施方案中,聚合物电解质膜32可以包含多种不同类型的膜。在本发明不同的实施方案中有用的聚合物电解质膜32可以是离子传导材料。合适的膜的实例公开在美国专利No.4272353和3134689,以及Journal of Power Sources第28卷(1990)第367-387页中。这样的膜也被称作离子交换树脂膜。所述树脂在它们的聚合物结构中包含离子基团;一种离子组分通过聚合物基质而固定或保持,至少一种其它离子组分是与该固定组分静电连接的可移动可替代离子。该可移动的离子能够在适当的条件下用其它离子代替,这赋予这些材料离子交换特性。
[0034]离子交换树脂可以通过聚合混合物成分来制造,该混合物成分之一包含离子构分。一种广泛种类的阳离子交换、质子传导树脂是所谓的磺酸阳离子交换树脂。在磺酸膜中,阳离子交换基团是结合在聚合物主链上的磺酸基团。
[0035]这些离子交换树脂形成膜或斜槽对本领域技术人员来说是公知的。优选的类型是全氟化磺酸聚合物电解质,其中全部的膜结构具有离子交换特性。这些膜是市售的,并且市售的磺酸全氟化碳质子传导膜的一种典型实例是由E.I.DuPont D Nemours&Company在商标名NAFION下销售的。其它这样的膜获自Asahi Glass和Asahi ChemicalCompany。使用的其它类型膜例如但不限于全氟化阳离子交换膜、烃基阳离子交换膜以及阴离子交换膜同样也在本发明的范围内。
[0036]在一种实施方案中,第一气体扩散介质层40或者第二气体扩散介质层48可以包含任何导电多孔材料。在不同的实施方案中,该气体扩散介质层可以包含无纺碳纤维纸或机织碳布(其可以用疏水材料处理),例如但不限于聚合物聚偏1,1-二氟乙烯(PVDF),氟化乙烯丙烯或聚四氟乙烯(PTFE)。气体扩散介质层可以具有5-40微米的平均孔尺寸。气体扩散介质层可以具有大约100-大约500微米的厚度。
[0037]在一种实施方案中,电极(阴极层和阳极层)可以是催化剂层,其可以包含催化剂粒子例如铂,和混合有该粒子的离子传导材料例如质子导电离聚物。质子传导材料可以是离聚物例如全氟磺酸聚合物。催化剂材料可以包括金属例如铂,钯和金属混合物例如铂和钼,铂和钴,铂和钌,铂和镍,铂和锡,其它铂过渡金属合金,以及其它本领域已知的燃料电池电催化剂。如果期望,催化剂材料可以是细微分散的。催化剂材料可以是无载体的或者在多种材料上负载的,该载体材料是例如但不限于细微分散的碳粒子。
[0038]在一种实施方案中,阴极电极38和阳极电极46可以是催化剂层,其可以包含催化剂粒子例如铂,和混合有该粒子的离子传导材料例如质子导电离聚物。质子传导材料可以是离聚物例如全氟磺酸聚合物。催化剂材料可以包括金属例如铂,钯,和金属混合物例如铂和钼,铂和钴,铂和钌,铂和镍,铂和锡,其它铂过渡金属合金,和其它本领域已知的燃料电池电催化剂。如果期望,催化剂材料可以是细微分散的。催化剂材料可以是无载体的或者在多种材料上负载的,该载体材料是例如但不限于细微分散的碳粒子。
[0039]在一种实施方案中,第一微孔层42或者第二微孔层50可以由材料例如炭黑和疏水成分例如聚四氟乙烯(PTFE)和聚偏1,1-二氟乙烯(PVDF)制成,并且可以具有大约2-大约100微米的厚度。在一种实施方案中,该微孔层可以包含多个粒子例如包括石墨化碳,和粘合剂。在一种实施方案中,该粘合剂可以包括疏水聚合物例如但不限于,聚偏1,1-二氟乙烯(PVDF),氟化乙烯丙烯(FEP),聚四氟乙烯(PTFE),或者其它有机或无机疏水材料。所述的粒子和粘合剂可以被包含于液相中来提供分散体,该液相可以是例如有机溶剂和水的混合物。在不同的实施方案中,溶剂可以包含至少一种的2-丙醇,1-丙醇或者乙醇等等。所述分散体可以施涂到燃料电池基底,例如气体扩散介质层或者在气体扩散介质层上的疏水涂层上。在另外一种实施方案中,该分散体可以被施涂到电极上。该分散体可以干燥(通过溶剂蒸发)并且所形成的干燥的微孔层可以包含60-90重量%的粒子和10-40重量%的粘合剂。在多种其它的实施方案中,粘合剂可以占干燥的微孔层的10-30重量%。
[0040]上面描述的本发明的实施方案本质上仅仅是示例性的,并且因此其变化不被认为是脱离了本发明的主旨和范围。

Claims (9)

1.一种包含双极板的产品,该双极板包含阀金属板和并排互连的阀金属氧化物纳米管组件,所述的阀金属板具有多个配置用于流体通过的通道,所述的阀金属氧化物纳米管组件布置在所述的阀金属板的至少部分的表面上,所述的阀金属包含钛、锆、铪、或者其合金或者混合物中的至少一种。
2.权利要求1所述的产品,其中所述的组件进一步包含导电涂层,目的是使得所述的双极板的接触电阻是50mohm/cm2或者以下,所述的导电涂层含有贵金属、含有碳、或者含有钌的氧化物、铂的氧化物、铑的氧化物、钯的氧化物、锇的氧化物或铱的氧化物。
3.权利要求2所述的产品,其中所述的接触电阻是8mohm/cm2或者以下。
4.权利要求1所述的产品,其中所述的阀金属氧化物纳米管被配置成具有10nm-100nm的直径和10nm-1000nm的长度。
5.权利要求1所述的产品,其中所述的阀金属是钛。
6.权利要求1所述的产品,其中所述的组件被配置来提供最多22度的水接触角。
7.权利要求1所述的产品,其中所述的阀金属氧化物纳米管进一步包含氧空位或者包含钽或铌、钌、铱中至少之一的掺杂元素。
8.权利要求1所述的产品,其中所述的阀金属氧化物是含有至少两种不同的阀金属元素的混合氧化物。
9.权利要求1所述的产品,其进一步包含位于所述双极板下面的气体扩散介质层、位于该气体扩散介质层下面的电极和位于该气体扩散介质层下面的聚合物电解质膜。
CN2008101619371A 2007-09-27 2008-09-27 纳米管组件、双极板及其制造方法 Expired - Fee Related CN101439283B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/862,644 US9011667B2 (en) 2007-09-27 2007-09-27 Nanotube assembly, bipolar plate and process of making the same
US11/862,644 2007-09-27
US11/862644 2007-09-27

Publications (2)

Publication Number Publication Date
CN101439283A CN101439283A (zh) 2009-05-27
CN101439283B true CN101439283B (zh) 2012-12-05

Family

ID=40508744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101619371A Expired - Fee Related CN101439283B (zh) 2007-09-27 2008-09-27 纳米管组件、双极板及其制造方法

Country Status (3)

Country Link
US (1) US9011667B2 (zh)
CN (1) CN101439283B (zh)
DE (1) DE102008048632A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301894A1 (en) * 2008-06-09 2009-12-10 Carsten Ehlers Method of fabricating an integrated circuit
US20100116733A1 (en) * 2008-11-12 2010-05-13 Korea Electrotechnology Research Institute Nanoporous oxide ceramic membranes of tubular and hollow fiber shape and method of making the same
US9520600B2 (en) * 2009-09-22 2016-12-13 GM Global Technology Operations LLC Conductive and hydrophilic bipolar plate coatings and method of making the same
US8685593B2 (en) * 2009-09-22 2014-04-01 GM Global Technology Operations LLC Carbon based bipolar plate coatings for effective water management
US20110104551A1 (en) * 2009-11-05 2011-05-05 Uchicago Argonne, Llc Nanotube composite anode materials suitable for lithium ion battery applications
TWI385004B (zh) * 2009-12-01 2013-02-11 Metal Ind Res & Dev Ct 鈦人工植體之表面處理方法
US8617759B2 (en) 2010-03-19 2013-12-31 GM Global Technology Operations LLC Selectively coated bipolar plates for water management and freeze start in PEM fuel cells
JP5635933B2 (ja) * 2010-03-31 2014-12-03 積水化学工業株式会社 多孔質酸化チタン構造体及び多孔質酸化チタン構造体の製造方法
WO2013048597A2 (en) 2011-09-29 2013-04-04 Uchicago Argonne, Llc High capacity electrode materials for batteries and process for their manufacture
CN103173835B (zh) * 2011-12-22 2016-01-06 中国科学院大连化学物理研究所 一种金属钛材料的处理方法
CN102723510A (zh) * 2012-06-29 2012-10-10 上海锦众信息科技有限公司 一种燃料电池极板的制造方法
EP2770564B1 (en) * 2013-02-21 2019-04-10 Greenerity GmbH Barrier layer for corrosion protection in electrochemical devices
FI127743B (en) * 2014-12-31 2019-01-31 Teknologian Tutkimuskeskus Vtt Oy Process for the preparation of catalytic nano-coating
CN104638273B (zh) * 2015-02-03 2017-07-11 大连交通大学 RuO2改性的燃料电池双极板及其制备方法
KR101813405B1 (ko) * 2016-10-28 2017-12-28 인하대학교 산학협력단 바나듐 레독스 플로우 배터리용 이리듐 산화물이 코팅된 타이타늄 기반 바이폴라 플레이트 및 이의 제조방법
CN108123142B (zh) 2016-11-28 2022-01-04 财团法人工业技术研究院 抗腐蚀结构及包含其抗腐蚀结构的燃料电池
DE102019108660A1 (de) * 2019-04-03 2020-10-08 Friedrich-Alexander-Universität Erlangen-Nürnberg Schichtsystem, Bipolarplatte mit einem solchen Schichtsystem und damit gebildete Brennstoffzelle
US20230002911A1 (en) * 2019-11-21 2023-01-05 Callidus Process Solutions Pty Ltd Bi-layer protective coatings for metal components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1753219A (zh) * 2004-09-24 2006-03-29 鸿富锦精密工业(深圳)有限公司 一种燃料电池、其催化剂层及该催化剂层的制造方法
CN1845367A (zh) * 2005-04-08 2006-10-11 鸿富锦精密工业(深圳)有限公司 燃料电池及其导流板结构
CN1974875A (zh) * 2006-11-21 2007-06-06 北京工业大学 高长径比氧化钛纳米管阵列薄膜的制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE590159A (zh) * 1959-04-27
US3134689A (en) * 1961-03-24 1964-05-26 Intellux Inc Thin film structure and method of making same
US3445353A (en) * 1966-07-11 1969-05-20 Western Electric Co Electrolyte and method for anodizing film forming metals
US3915838A (en) * 1968-04-02 1975-10-28 Ici Ltd Electrodes for electrochemical processes
US4272353A (en) * 1980-02-29 1981-06-09 General Electric Company Method of making solid polymer electrolyte catalytic electrodes and electrodes made thereby
JP3335757B2 (ja) * 1994-03-17 2002-10-21 株式会社半導体エネルギー研究所 陽極酸化方法
CA2233339A1 (en) * 1997-03-26 1998-09-26 Rong Yue Coated subtrate and process for production thereof
US6649031B1 (en) * 1999-10-08 2003-11-18 Hybrid Power Generation Systems, Llc Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities and method of making the same
US6804081B2 (en) * 2001-05-11 2004-10-12 Canon Kabushiki Kaisha Structure having pores and its manufacturing method
US20040247978A1 (en) * 2001-09-18 2004-12-09 Takayuki Shimamune Bipolar plate for fuel cell and method for production thereof
JP2003268567A (ja) * 2002-03-19 2003-09-25 Hitachi Cable Ltd 導電材被覆耐食性金属材料
US6866958B2 (en) * 2002-06-05 2005-03-15 General Motors Corporation Ultra-low loadings of Au for stainless steel bipolar plates
JPWO2004057064A1 (ja) * 2002-12-21 2006-04-20 財団法人大阪産業振興機構 酸化物ナノ構造体及びそれらの製造方法並びに用途
JP4327489B2 (ja) * 2003-03-28 2009-09-09 本田技研工業株式会社 燃料電池用金属製セパレータおよびその製造方法
JP4585212B2 (ja) * 2004-03-19 2010-11-24 Jx日鉱日石エネルギー株式会社 ナノチューブ形状を有するチタニア及びその製造方法
US7011737B2 (en) * 2004-04-02 2006-03-14 The Penn State Research Foundation Titania nanotube arrays for use as sensors and method of producing
US7709145B2 (en) * 2004-11-12 2010-05-04 Gm Global Technology Operations, Inc. Hydrophilic surface modification of bipolar plate
US7727372B2 (en) * 2004-12-06 2010-06-01 Greatbatch Ltd. Anodizing valve metals by self-adjusted current and power
US20060229715A1 (en) * 2005-03-29 2006-10-12 Sdgi Holdings, Inc. Implants incorporating nanotubes and methods for producing the same
JP5474352B2 (ja) 2005-11-21 2014-04-16 ナノシス・インク. 炭素を含むナノワイヤ構造
US20070171596A1 (en) * 2006-01-20 2007-07-26 Chacko Antony P Electrode compositions containing carbon nanotubes for solid electrolyte capacitors
TWI458862B (zh) * 2009-05-12 2014-11-01 Nat Univ Tsing Hua 二氧化鈦鍍膜方法及其使用之電解液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1753219A (zh) * 2004-09-24 2006-03-29 鸿富锦精密工业(深圳)有限公司 一种燃料电池、其催化剂层及该催化剂层的制造方法
CN1845367A (zh) * 2005-04-08 2006-10-11 鸿富锦精密工业(深圳)有限公司 燃料电池及其导流板结构
CN1974875A (zh) * 2006-11-21 2007-06-06 北京工业大学 高长径比氧化钛纳米管阵列薄膜的制备方法

Also Published As

Publication number Publication date
CN101439283A (zh) 2009-05-27
US20090087716A1 (en) 2009-04-02
US9011667B2 (en) 2015-04-21
DE102008048632A1 (de) 2009-05-20

Similar Documents

Publication Publication Date Title
CN101439283B (zh) 纳米管组件、双极板及其制造方法
Tong et al. A 4× 4 cm2 nanoengineered solid oxide electrolysis cell for efficient and durable hydrogen production
Kang et al. Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production
Kang et al. Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells
KR102061922B1 (ko) 전기 전도성이고 내부식성인 금속 표면
Jayashree et al. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells
EP0819320B1 (de) Brennstoffzelle mit festen polymerelektrolyten
Mandal et al. Analysis of inkjet printed catalyst coated membranes for polymer electrolyte electrolyzers
US20090293262A1 (en) Bipolar plate for fuel cell and method for manufacturing same
CN105734606B (zh) 一种spe水电解用超薄膜电极的结构及其制备和应用
KR20080096408A (ko) 물 전해장치
CN1446383A (zh) 不锈钢基材处理
US20090130514A1 (en) Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
US8815335B2 (en) Method of coating a substrate with nanoparticles including a metal oxide
KR101939666B1 (ko) 부식방지 기체 확산층 및 그 제조방법과 이를 구비한 막전극접합체
CN106086989A (zh) 一种银改性二氧化钛纳米管复合阳极及其制备方法
WO2006083036A1 (ja) 燃料電池
US20090092874A1 (en) Stable hydrophilic coating for fuel cell collector plates
Plankensteiner et al. Freestanding μm-thin nanomesh electrodes exceeding 100x current density enhancement for high-throughput electrochemical applications
JP2007066750A (ja) 燃料電池用ガス拡散体、燃料電池用セパレータ及び燃料電池
WO2018216356A1 (ja) 有機ハイドライド製造装置
JP4846371B2 (ja) 燃料電池用膜−電極接合体及びこれを含む燃料電池システム
Sambandam et al. Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications
US8871294B2 (en) Method of coating a substrate with nanoparticles including a metal oxide
JP5045911B2 (ja) 膜電極接合体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121205

Termination date: 20200927