CN101378985A - 利用全息光学镊子处理纳米导线的***和方法 - Google Patents

利用全息光学镊子处理纳米导线的***和方法 Download PDF

Info

Publication number
CN101378985A
CN101378985A CN200680002215.0A CN200680002215A CN101378985A CN 101378985 A CN101378985 A CN 101378985A CN 200680002215 A CN200680002215 A CN 200680002215A CN 101378985 A CN101378985 A CN 101378985A
Authority
CN
China
Prior art keywords
conducting wire
class conducting
class
optical
traps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200680002215.0A
Other languages
English (en)
Inventor
大卫·G·格里尔
里特什·阿加瓦尔
于桂华
查尔斯·M·利伯
库斯塔·拉德维克
耶尔·罗伊切曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
New York University NYU
Original Assignee
Harvard College
New York University NYU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard College, New York University NYU filed Critical Harvard College
Publication of CN101378985A publication Critical patent/CN101378985A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0077Adaptation of holography to specific applications for optical manipulation, e.g. holographic optical tweezers [HOT]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Laser Beam Processing (AREA)
  • Microscoopes, Condenser (AREA)
  • Micromachines (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

一种在有全息光学陷阱阵列的溶液中用于操作和处理纳米导线的***和方法。本发明的***和方法能够建立几百个分别受控的光学陷阱,该陷阱具有沿三维方向操作物体的能力。在单个陷阱没有可辨别影响的条件下,横截面小于20nm和长度超过20μm的各个纳米导线能够被隔离,平移,旋转和沉积到有全息光学陷阱阵列的基片上。被高度聚焦陷阱诱发的空间定域光热和光化学过程还可用于熔化局部区域到各个纳米导线上并熔合纳米导线接合点。

Description

利用全息光学镊子处理纳米导线的***和方法
技术领域
[0003]本发明一般涉及半导体和金属纳米导线。本发明具体涉及在有全息光学陷阱阵列的溶液中操作和处理半导体和金属纳米导线。
背景技术
[0004]半导体和金属纳米导线是具有独特电学和光学性质的一维结构,它们可用作纳米尺度装置的基本单元。它们的低维数意味着具有量子约束效应。由于这个和其他的原因,这种纳米导线是用于组装功能电子和光子装置的各种基本单元。实现它们的潜在能力需要有把它们组装成复杂和具体组织结构的有效方法。
发明内容
[0005]本发明的一个目的是提供一种用于操作半导体和金属纳米导线的改进***和方法。
[0006]本发明的另一个目的是提供一种用于增大力的量的改进***和方法,在减小辐射损伤的同时,该力可以作用到半导体和金属纳米导线上。
[0007]本发明的另一个实施例是提供一种用于平移半导体和金属纳米导线的改进***和方法。
[0008]按照以上的目的和以下解释的其他目的,本发明涉及一种利用全息光学镊子阵列的***和方法,它可以把纳米导线组装成精密组织的二维和三维结构。横截面小至20nm和长度超过20μm的各个纳米导线能够利用其他的方法被隔离,平移,旋转,操作,并在单个陷阱没有可辨别影响的条件下,它们被沉积到有全息光学陷阱阵列的基片上。被高度聚焦陷阱诱发的空间定域光热和光化学过程还可用于熔化局部区域到各个纳米导线上并熔合纳米导线接合点。
[0009]根据以下结合附图的详细描述,本发明的这些和其他目的,优点和特征以及它们的组织和操作方式是显而易见的,其中相同的元件在以下描述的几个附图中有相同的参考数字。
附图说明
[0010]图1(a)是线性60-陷阱阵列的聚焦光束的图像;和
[0011]图1(b)是被光学陷阱阵列旋转和平移的单个CdS纳米导线的多次曝光图像。
具体实施方式
[0012]本发明提供一种在有全息光学陷阱阵列的溶液中操作和处理纳米导线的***和方法。在本发明的一个实施例中,CdS和Si纳米导线被分散在水中以实现本发明。在这个具体的实施例中,CdS纳米导线的标称直径是80nm和长度高达20μm,而Si纳米导线有更大的纵横比,其直径可以小至20nm。这些样本被注入到约40μm厚的缝隙中,它是通过密封透明玻璃盖片的边缘到显微镜载片的表面上制成的。这两种材料的密度远远大于水的密度(ρCdS=4.8g/cm3,ρSi=2.3g/cm3),并快速地沉积到较低的玻璃壁上,其中CdS样本基本上完全是在该平面上。在本发明的这个实施例中,密封的样本被安装到Zeiss Axiovert S100-TV显微镜的平台上便于观察和操作,它装备100xNA 1.4 S-Plan Apo油浸物镜。这个透镜用于建立被分散纳米导线的明场图像并把连续波(CW)倍频Nd:YVO4激光器的光聚焦成光学陷阱,该激光器工作在532nm(Coherent Verdi)。
[0013]高度聚焦的单个光束形成称之为光学镊子的光学陷阱,它能够沿三维方向捕获中型物体。然而,在低于约1W的激光功率下,单个光学镊子似乎不能够移动任何类型的半导体纳米导线。每当焦点传输通过纳米导线时,在较高功率下的快速加热可以导致汽泡的形成。这种快速加热还可以导致纳米导线本身的明显变化,其中包括弯曲,球状体的形成,和甚至裂纹。这是与在很大的光子通量传输通过聚焦体积时形成的光吸收加热一致。
[0014]为了在减小辐射损伤的同时有更大的力作用到纳米导线上,利用动态全息光学镊子技术,投射大量衍射受限的光学陷阱。这种方法利用空间光调制器(SLM)(Hamamatsu X7550 PAL-SLM)印制计算机设计的相位全息图,它可以在聚焦之前编码理想的陷阱阵列到激光束的波前上。通过投射一系列编码中间捕获配置序列的全息图,该陷阱阵列中的每个陷阱可以沿三维方向独立地平移。
[0015]图1(a)中的图像表示来自线性60-陷阱阵列的聚焦光,它可以移动图1(b)中所示的CdS纳米导线。在这种情况下,该陷阱阵列被聚焦成在0.5μm内的纳米导线平面和每个陷阱提供3mW的功率。即使在这种比较低的激光功率下,初始取向垂直于光学陷阱阵列的纳米导线旋转成在几秒内的重合。给定陷阱之间隔开的距离为0.4μm,在它的最终配置中大致有15个陷阱被同时排列到这个纳米导线上。
[0016]给定以上的条件,一旦纳米导线与陷阱阵列对齐,通过在视场上移动该阵列或相对于该阵列移动样本平台,就能够以大致u=10μm/sec的速度平移该纳米导线。应当注意,通过增大功率,优化激光波长,或利用增大每个陷阱的有效力的任何各种其他机构,平移纳米导线的速度可以大于u=10μm/sec。作用在长度L和半径a的圆柱体上的曳力近似地可以由以下的公式给出,其中该圆柱体平移通过低Reynolds数的粘滞度η的无界液体
F=4πη(ε+0.193ε2+0.215ε3)Lu,     (1)
其中ε=[ln(L/A)]-1,它设定作用到这个横截面的CdS纳米导线上的光学力0.2fn/trap的下限。通过限制玻璃表面与纳米导线中心的距离为h≈0.5μm,可以大大增强作用到这个纳米导线上的实际曳力,并可以由以下公式中a/h的最低级次表示
F ( h ) = 4 πηLu ln ( 2 h a ) , - - - ( 2 )
它至少可以使捕获力的估算值增大2倍。
[0017]以上的估算值说明,单个光学镊子应当能够移动一个纳米导线。然而,即使是这种情况,该纳米导线会旋转成这样的取向,它使沿运动方向的曳力最小化,因而可以从陷阱中逃逸。全息光学镊子阵列提供的空间延伸捕获势保持该纳米导线的取向,从而能够实现可控的平移。
[0018]当单个陷阱被转换成光学涡流时,可以进一步展示纳米导线对光学镊子响应的常规性质,其中利用SLM施加螺旋形相位分布到捕获的激光波前上。在这种情况下, r → = ( r , θ ) 是在相对于光束轴的光束垂直的平面上的极坐标,和l是限定波前螺旋性的整数绕组数。这种调制效应是把点状光学镊子变换成环状陷阱,它的环半径与绕组数成线性关系,除了它们的本征自旋角动量以外,环状陷阱中的每个光子还具有轨道角动量lh。这个角动量可以转移到被光环照明的物体上,从而得到与光强成正比的净转矩。
[0019]Si和CdS纳米导线都有与光环的切线方向对准的趋势。一旦它们沿切线取向,经受辐射压力的横截面变得较大,且它们得到沿径向朝外的推力。然而,在光学涡流陷阱区中时,纳米导线在与常规微米尺度介质球相同方向的圆周上确实获得推力。这些观察是与这样的解释一致,尽管它们有极小的横截面,纳米导线经历与常规光学梯度力陷阱相同的光学镊子。
[0020]光学镊子也可以沿与光轴垂直的方向移动单个纳米导线,并可以把它们压向基片。除非采取特别措施以稳定纳米导线免遭沉积,否则它可以导致Van der Waals相互作用而使纳米导线可逆地固定到基片上。在纳米导线被稳定的情况下,例如,利用一层吸收型聚合物表面活化剂,通过选择性的光化学或光热过程,它们仍然可以被固定。最简单的方法涉及增大激光功率,直至稳定层被解吸或破坏。这种选择性的接触沉积可以给纳米导线的受控组合到预制功能基片上提供基础。这种光学处理的更积极形式可用于有选择地熔化纳米导线之间的触点,从而把它们熔合成永久性结构。更精确的方案可以利用线性或非线性光化学过程,它是有选择地在纳米导线结合点诱发光化学变化以建立具体的功能。
[0021]通过投射特定强度或特定波长的光到纳米导线上,还可以改变上述类型的纳米导线。可以选取相应的强度和波长以实现沿纳米导线长度方向的具体变化。可以实现的变化包括:纳米导线的熔化,纳米导线的切割,和化学变换。这些变化都可以发生在包含类似或不同材料纳米导线之间的结合点上。这种变换还可以导致在纳米导线之间以及在纳米导线与其他基片之间形成机械触点,电触点或光触点。
[0022]此处给出的结果说明,全息光学镊子阵列可用于把半导体纳米导线组装成紧密组织的二维和三维结构。通过调谐激光波长以增强光学捕获力,可以优化这种过程,并随着全息捕获技术的进展可以变得更快和高度平行。
[0023]以上描述的本发明实施例是为了说明和描述的目的。我们不打算详尽地说明或限制本发明到此处公开的形式,鉴于以上描述的内容,各种改动和变化是可能的,或可以根据本发明的实践得到这种改动和变化。我们选取和描述的实施例是为了解释本发明的原理以及它的实际应用,从而能使专业人员利用各种实施例中的本发明,并使各种改动适合于预期的具体应用。

Claims (11)

1.一种借助于提供至少第一纳米导线处理纳米导线的方法,这种改进包括以下步骤:输入多个光束,形成多个光学陷阱,投射该多个光学陷阱到第一纳米导线上,和处理该至少第一纳米导线。
2.按照权利要求1的方法,其中处理该至少第一纳米导线的步骤包括:操作,隔离,加热和化学变换该至少第一纳米导线中的至少之一。
3.按照权利要求1的方法,其中该至少第一纳米导线包括:金属纳米导线和半导体纳米导线中的至少之一。
4.按照权利要求1的方法,其中该至少第一纳米导线包括:CdS和Si中的至少之一。
5.按照权利要求1的方法,还包括步骤:通过改变光学陷阱阵列相对于该至少第一纳米导线的位置,平移该至少第一纳米导线。
6.按照权利要求1的方法,还包括以下步骤:
提供第二纳米导线;和
通过增大至少一个光学陷阱阵列投射的功率,熔合该至少第一纳米导线到第二纳米导线上。
7.按照权利要求1的方法,还包括以下步骤:
把多个光学陷阱中的至少一个光学陷阱变换成至少一个光学涡流;和
利用该至少一个光学涡流沿径向平移该至少第一纳米导线。
8.按照权利要求1的方法,其中该多个光束具有预定的波长,为的是在该至少第一纳米导线中产生该至少部分的变化。
9.按照权利要求1的方法,其中该多个光束具有预定的强度,为的是在该至少第一纳米导线中产生该至少部分的变化。
10.按照权利要求1的方法,其中该至少第一纳米导线和第二纳米导线选自相同材料和不同材料的组。
11.按照权利要求1的方法,其中该变化在该至少第一纳米导线与第二纳米导线,第二纳米导线与非纳米导线基片,和该至少第一纳米导线与非纳米导线基片中的至少两个之间形成触点,其中该触点选自由机械触点,电触点和光触点构成的组。
CN200680002215.0A 2005-01-12 2006-01-11 利用全息光学镊子处理纳米导线的***和方法 Pending CN101378985A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64338405P 2005-01-12 2005-01-12
US60/643,384 2005-01-12

Publications (1)

Publication Number Publication Date
CN101378985A true CN101378985A (zh) 2009-03-04

Family

ID=38288042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680002215.0A Pending CN101378985A (zh) 2005-01-12 2006-01-11 利用全息光学镊子处理纳米导线的***和方法

Country Status (5)

Country Link
US (2) US7772543B2 (zh)
EP (1) EP1851166A2 (zh)
JP (1) JP2008531298A (zh)
CN (1) CN101378985A (zh)
WO (1) WO2007084114A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545815A (zh) * 2018-10-18 2019-03-29 泉州市盛维电子科技有限公司 一种微型发光二极管的巨量转移方法
CN112897458A (zh) * 2021-01-20 2021-06-04 暨南大学 一种基于光镊***的介质纳米颗粒的组装与固定方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050104034A (ko) * 2004-04-27 2005-11-02 삼성에스디아이 주식회사 나노와이어 제조방법
WO2007079411A2 (en) * 2005-12-30 2007-07-12 The Regents Of The University Of California Alignment, transportation and integration of nanowires using optical trapping
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
US8404160B2 (en) 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
US20090194414A1 (en) * 2008-01-31 2009-08-06 Nolander Ira G Modified sputtering target and deposition components, methods of production and uses thereof
US8506849B2 (en) 2008-03-05 2013-08-13 Applied Nanotech Holdings, Inc. Additives and modifiers for solvent- and water-based metallic conductive inks
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
EP2412007B1 (en) 2009-03-27 2020-07-22 Ishihara Chemical Co., Ltd. Buffer layer to enhance photo and/or laser sintering
US8422197B2 (en) 2009-07-15 2013-04-16 Applied Nanotech Holdings, Inc. Applying optical energy to nanoparticles to produce a specified nanostructure
EP2620249B1 (en) * 2010-09-21 2019-12-11 Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences Laser micro/nano processing system and method
TW201419315A (zh) 2012-07-09 2014-05-16 Applied Nanotech Holdings Inc 微米尺寸銅粒子的光燒結法
AT15050U1 (de) * 2015-12-18 2016-11-15 Plansee Composite Mat Gmbh Beschichtungsquelle mit Strukturierung
US10108069B2 (en) * 2017-01-24 2018-10-23 The Boeing Company Electromagnetic effect resistant spatial light modulator
KR102308273B1 (ko) * 2018-12-20 2021-10-01 미쓰비시덴키 가부시키가이샤 케이블 길이 계산 시스템 및 케이블 길이 계산 방법
CN112993120A (zh) * 2020-08-14 2021-06-18 重庆康佳光电技术研究院有限公司 微器件的转移方法和转移***
CN113740214B (zh) * 2021-11-08 2022-01-25 深圳大学 一种基于全息倏逝波光镊的智能分析方法与装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2651382A1 (de) 1976-11-11 1978-05-18 Philips Patentverwaltung Verfahren zur kathodenzerstaeubung
US4299678A (en) * 1979-07-23 1981-11-10 Spin Physics, Inc. Magnetic target plate for use in magnetron sputtering of magnetic films
JPS61291964A (ja) 1985-06-17 1986-12-22 Anelva Corp スパツタ用樹脂タ−ゲツト
US4834860A (en) * 1987-07-01 1989-05-30 The Boc Group, Inc. Magnetron sputtering targets
WO1992004482A1 (en) 1990-08-30 1992-03-19 Materials Research Corporation Pretextured cathode sputtering target and method of preparation thereof and sputtering therewith
JP3129471B2 (ja) 1991-06-01 2001-01-29 科学技術振興事業団 マルチビーム微粒子操作方法
US20030052000A1 (en) * 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
US5827414A (en) * 1997-07-25 1998-10-27 International Business Machines Corporation Single piece slotted ferromagnetic sputtering target and sputtering apparatus
JPH11189867A (ja) 1997-12-24 1999-07-13 Olympus Optical Co Ltd スパッタリングターゲット
US6117281A (en) * 1998-01-08 2000-09-12 Seagate Technology, Inc. Magnetron sputtering target for reduced contamination
US6071389A (en) * 1998-08-21 2000-06-06 Tosoh Smd, Inc. Diffusion bonded sputter target assembly and method of making
JP3628554B2 (ja) * 1999-07-15 2005-03-16 株式会社日鉱マテリアルズ スパッタリングターゲット
US6780794B2 (en) * 2000-01-20 2004-08-24 Honeywell International Inc. Methods of bonding physical vapor deposition target materials to backing plate materials
TWI294636B (en) 2000-08-22 2008-03-11 Harvard College Doped elongated semiconductor articles, growing such articles, devices including such articles and fabricating such devices
JP2002105634A (ja) 2000-09-29 2002-04-10 Shibaura Mechatronics Corp スパッタリング装置
US6887356B2 (en) * 2000-11-27 2005-05-03 Cabot Corporation Hollow cathode target and methods of making same
KR100824928B1 (ko) * 2000-12-15 2008-04-28 토소우 에스엠디, 인크 고전력 스퍼터링 작업을 위한 마찰 끼워 맞춤 타겟 조립체
CA2442985C (en) * 2001-03-30 2016-05-31 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6991939B2 (en) * 2001-07-19 2006-01-31 Tufts University Optical array device and methods of use thereof for screening, analysis and manipulation of particles
US6737634B2 (en) 2002-01-16 2004-05-18 The University Of Chicago Use of multiple optical vortices for pumping, mixing and sorting
US20030183518A1 (en) * 2002-03-27 2003-10-02 Glocker David A. Concave sputtering apparatus
ES2430963T3 (es) * 2002-07-31 2013-11-22 Premium Genetics (Uk) Limited Sistema y procedimiento de clasificación de materiales usando dirección de láser holográfica
US6848608B2 (en) * 2002-10-01 2005-02-01 Cabot Corporation Method of bonding sputtering target materials
ATE425277T1 (de) * 2002-10-21 2009-03-15 Cabot Corp Verfahren zur herstellung eines sputtertargets und sputtertarget
CN1798858B (zh) * 2003-04-02 2010-06-16 西北大学 控制纳米颗粒生长的方法
US6929720B2 (en) * 2003-06-09 2005-08-16 Tokyo Electron Limited Sputtering source for ionized physical vapor deposition of metals
KR20060023115A (ko) 2003-06-11 2006-03-13 허니웰 인터내셔널 인코포레이티드 증착 챔버내 입자 포착을 위한 트랩
US6992261B2 (en) * 2003-07-15 2006-01-31 Cabot Corporation Sputtering target assemblies using resistance welding
CN1234612C (zh) 2003-09-02 2006-01-04 浙江大学 硫化镉纳米棒的制备方法
JP2007510160A (ja) * 2003-10-28 2007-04-19 アリックス インコーポレイテッド ホログラフィック光トラッピングを用いて物質を操作し、処理するためのシステム及び方法
US7442339B2 (en) * 2004-03-31 2008-10-28 Intel Corporation Microfluidic apparatus, Raman spectroscopy systems, and methods for performing molecular reactions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545815A (zh) * 2018-10-18 2019-03-29 泉州市盛维电子科技有限公司 一种微型发光二极管的巨量转移方法
CN109545815B (zh) * 2018-10-18 2020-11-10 泉州市盛维电子科技有限公司 一种微型发光二极管的巨量转移方法
CN112897458A (zh) * 2021-01-20 2021-06-04 暨南大学 一种基于光镊***的介质纳米颗粒的组装与固定方法

Also Published As

Publication number Publication date
JP2008531298A (ja) 2008-08-14
WO2007084114A2 (en) 2007-07-26
US20090120784A1 (en) 2009-05-14
US7772543B2 (en) 2010-08-10
US7850829B2 (en) 2010-12-14
US20060240591A1 (en) 2006-10-26
EP1851166A2 (en) 2007-11-07
WO2007084114A3 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
CN101378985A (zh) 利用全息光学镊子处理纳米导线的***和方法
Oscurato et al. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials
Sugioka Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review
US5939716A (en) Three-dimensional light trap for reflective particles
Dufresne et al. Optical tweezer arrays and optical substrates created with diffractive optics
JP4897382B2 (ja) 光学的勾配力を適用するための装置
Cui et al. Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application
Daria et al. Dynamic array of dark optical traps
US6624915B1 (en) Holographic recording and micro/nanofabrication via ultrafast holographic two-photon induced photopolymerization (H-TPIP)
Lasagni Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns
CN101243342A (zh) 准晶光子异质结构的组装
Chen et al. Optical trapping and rotating of micro-particles using the circular Airy vortex beams
RU2291511C2 (ru) Устройство для приложения оптических градиентных сил
CN106932914A (zh) 一种三维阵列空心光斑的产生方法及装置
Plain et al. Multiscale optical imaging of complex fields based on the use of azobenzene nanomotors
Kotlyar et al. Single metalens for generating polarization and phase singularities leading to a reverse flow of energy
Pan et al. Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures
Cipparrone et al. Reversible photoinduced chiral structure in amorphous polymer for light polarization control
Sharma et al. Optical orbital angular momentum read-out using a self-assembled plasmonic nanowire
Zhou et al. Plasmon-based photopolymerization: near-field probing, advanced photonic nanostructures and nanophotochemistry
Zhang et al. Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers
Zhang et al. Optically driven gold nanoparticles seed surface bubble nucleation in plasmonic suspension
Xin et al. Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing
US10317342B2 (en) Nanometer scale microscopy via graphene plasmons
Hosein Light-directed organization of polymer materials from photoreactive formulations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1125618

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090304

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1125618

Country of ref document: HK