CN101302036A - A kind of preparation method of doped titanium dioxide nanotube - Google Patents
A kind of preparation method of doped titanium dioxide nanotube Download PDFInfo
- Publication number
- CN101302036A CN101302036A CNA2008100537374A CN200810053737A CN101302036A CN 101302036 A CN101302036 A CN 101302036A CN A2008100537374 A CNA2008100537374 A CN A2008100537374A CN 200810053737 A CN200810053737 A CN 200810053737A CN 101302036 A CN101302036 A CN 101302036A
- Authority
- CN
- China
- Prior art keywords
- doped
- titanium dioxide
- adulterated
- titania nanoparticles
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 22
- 239000002071 nanotube Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000002105 nanoparticle Substances 0.000 claims abstract description 8
- 230000007062 hydrolysis Effects 0.000 claims abstract description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 5
- 238000003980 solgel method Methods 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000000047 product Substances 0.000 claims description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 239000002244 precipitate Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 239000006228 supernatant Substances 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 238000001308 synthesis method Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims 2
- 239000002253 acid Substances 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 238000000975 co-precipitation Methods 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- -1 oxonium ion Chemical class 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 230000001699 photocatalysis Effects 0.000 abstract 1
- 238000007146 photocatalysis Methods 0.000 abstract 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- 229910010413 TiO 2 Inorganic materials 0.000 description 11
- 239000011858 nanopowder Substances 0.000 description 9
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 2
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【技术领域】 【Technical field】
本发明涉及一种掺杂二氧化钛纳米管的制备方法,属于纳米材料领域。The invention relates to a method for preparing doped titanium dioxide nanotubes, which belongs to the field of nanomaterials.
【背景技术】 【Background technique】
自从发现了碳纳米管具有韧性强、比表面积大、强度高等优异性能以来,人们展开了对各种物质的纳米管的广泛研究。同时,由于二氧化钛具有价格低廉、稳定性好等优点,二氧化钛纳米管在有机物降解,光电转换,光解水制氢,光传感器等方面的应用倍受世界科学家关注。Since the discovery that carbon nanotubes have excellent properties such as strong toughness, large specific surface area, and high strength, people have launched extensive research on nanotubes of various substances. At the same time, due to the advantages of low price and good stability of titanium dioxide, the application of titanium dioxide nanotubes in organic matter degradation, photoelectric conversion, hydrogen production by photolysis of water, and optical sensors has attracted the attention of scientists all over the world.
但是由于二氧化钛禁带宽度为3.2eV,只能吸收波长小于387nm的紫外光,而太阳光中大部分为可见光,紫外光的成分仅占5%。目前,太阳光利用率低成为阻碍二氧化钛应用的主要问题。近年为了提高二氧化钛的可见光利用率,单相或多相掺杂和复合调控技术被人们用来加强二氧化钛纳米粒子或薄膜对可见光的吸收。同时,掺杂元素形成的浅能级可以成为光生电子或空穴的捕获中心,有利于光生载流子分离,从而提高光量子效率。2001年,R.Asahi教授等制备出了N掺杂的高活性TiO2可见光催化剂,引发了非金属掺杂的热潮。2006年,In等制备出了B,N共掺杂高可见光活性的二氧化钛催化剂。Sn、Fe、In、P、S、C等其他元素掺杂二氧化钛也吸引了人们的极大兴趣。但是,由于二氧化钛纳米管的制备工艺比较复杂不利用掺杂或复合,因此关于掺杂或复合型纳米管的报道比较少。However, since titanium dioxide has a band gap of 3.2eV, it can only absorb ultraviolet light with a wavelength less than 387nm, and most of the sunlight is visible light, and the ultraviolet light only accounts for 5%. At present, the low utilization rate of sunlight has become the main problem hindering the application of titanium dioxide. In recent years, in order to improve the utilization rate of visible light of titanium dioxide, single-phase or multi-phase doping and compound regulation technology have been used to enhance the absorption of visible light by titanium dioxide nanoparticles or thin films. At the same time, the shallow energy level formed by doping elements can become the capture center of photogenerated electrons or holes, which is beneficial to the separation of photogenerated carriers, thereby improving the photon quantum efficiency. In 2001, Professor R.Asahi and others prepared N-doped highly active TiO 2 visible photocatalysts, which triggered an upsurge of non-metallic doping. In 2006, In et al. prepared B, N co-doped titanium dioxide catalyst with high visible light activity. TiO2 doped with other elements such as Sn, Fe, In, P, S, C, etc. has also attracted great interest. However, because the preparation process of titanium dioxide nanotubes is relatively complicated and does not use doping or compounding, there are relatively few reports on doped or compounded nanotubes.
本发明采用两步预合成法:先合成掺杂二氧化钛纳米颗粒,再将纳米颗粒通过水热法制成掺杂二氧化钛纳米管。该方法简单可行,制备出的纳米管管壁薄,管径小,比表面积大。但是水热法在强碱环境下对二氧化钛进行反应,不利于其他掺杂离子的存在,掺杂离子也不容易进入已经形成的二氧化钛晶格。因此,用水热法制可见光响应的掺杂纳米管一直是需要攻克的难题。The invention adopts a two-step pre-synthesis method: first synthesizing doped titanium dioxide nanometer particles, and then making the doped titanium dioxide nanometer tubes from the nanometer particles through a hydrothermal method. The method is simple and feasible, and the prepared nanotube has thin wall, small diameter and large specific surface area. However, the hydrothermal method reacts titanium dioxide in a strong alkaline environment, which is not conducive to the existence of other dopant ions, and the dopant ions are not easy to enter the formed titanium dioxide lattice. Therefore, the preparation of doped nanotubes responsive to visible light by hydrothermal method has always been a difficult problem to be overcome.
【发明内容】 【Content of invention】
本发明的主要目的是制备一种具有可见光响应的掺杂纳米管。采用预掺杂两步合成法,具体步骤如下:The main purpose of the present invention is to prepare a doped nanotube with visible light response. A pre-doped two-step synthesis method is adopted, and the specific steps are as follows:
1.用溶胶凝胶法或水解法等方法制备出掺杂的纳米二氧化钛粉末。掺杂量应比较大,而且应使掺杂原子进入二氧化钛晶格。1. Prepare doped nano-titanium dioxide powder by sol-gel method or hydrolysis method. The doping amount should be relatively large, and the dopant atoms should enter the titanium dioxide lattice.
2.钛酸盐纳米管的制备。将浓碱溶液与一定量的掺杂纳米二氧化钛粉末放入高压反应釜混合搅拌30min,然后加热到100℃以上反应20h左右,自然冷却。2. Preparation of titanate nanotubes. Put the concentrated alkali solution and a certain amount of doped nano-titanium dioxide powder into the high-pressure reactor, mix and stir for 30 minutes, then heat it to above 100°C for about 20 hours, and cool naturally.
3.将得到产物离心后倒去上层清液,用去离子水对沉淀洗涤至中性后,用稀盐酸浸泡30min左右,再次离心后对沉淀进行洗涤至中性。3. Centrifuge the obtained product and pour off the supernatant, wash the precipitate with deionized water until it is neutral, soak it in dilute hydrochloric acid for about 30 minutes, and then centrifuge again to wash the precipitate until it is neutral.
4.将中性产物烘干后,放入马弗炉400℃下煅烧2.5个小时,即得锐钛矿型可见光响应二氧化钛纳米管。4. After drying the neutral product, put it into a muffle furnace for calcination at 400° C. for 2.5 hours to obtain anatase-type visible light-responsive titanium dioxide nanotubes.
本发明采用两步预合成法制得的纳米管具有较强的可见光吸收,而且管壁薄,比表面积大,晶型好,掺杂量可控,而且本制备方法工艺简单,易于操作,适用于各种元素的掺杂。The nanotube prepared by the two-step pre-synthesis method in the present invention has strong visible light absorption, and the tube wall is thin, the specific surface area is large, the crystal form is good, and the doping amount is controllable. Moreover, the preparation method is simple in process and easy to operate, and is suitable for Doping of various elements.
【附图说明】 【Description of drawings】
图1实施例1中N掺杂TiO2纳米管的透射电子显微镜(TEM)图片。Fig. 1 Transmission electron microscope (TEM) picture of N - doped TiO nanotubes in Example 1.
图2所有实施例中产物的X射线衍射(XRD)图(与纯TiO2比较)The X-ray diffraction (XRD) pattern (with pure TiO 2 comparison) of product in Fig. 2 all embodiments
图3实施例1中N掺杂TiO2纳米管的紫外可见漫反射吸收图(与纯TiO2比较)The ultraviolet-visible diffuse reflection absorption figure (compared with pure TiO 2 ) of N-doped TiO 2 nanotubes in Fig. 3 embodiment 1
【具体实施方式】 【Detailed ways】
实施例1:In掺杂TiO2纳米管Example 1: In doped TiO nanotubes
1.采用溶胶-凝胶法制备In掺杂TiO2纳米粉末。取12ml钛酸四丁酯缓慢滴入混有40ml无水乙醇,2ml去离子水和1ml盐酸的烧杯中,搅拌半小时后,加入0.2ml三氯化铟滴入烧杯;得到透明溶胶,静置一段时间,凝胶后,于100℃恒温干燥10~12个小时,得到干凝胶;研磨后,450℃煅烧2.5小时后取出,得到In掺杂TiO2纳米粉末。1. Preparation of In-doped TiO2 nanopowders by sol-gel method. Take 12ml of tetrabutyl titanate and slowly drop it into a beaker mixed with 40ml of absolute ethanol, 2ml of deionized water and 1ml of hydrochloric acid. After stirring for half an hour, add 0.2ml of indium trichloride and drop it into the beaker; a transparent sol is obtained and left to stand After a period of time, after gelling, dry at a constant temperature of 100°C for 10-12 hours to obtain dry gel; after grinding, calcine at 450°C for 2.5 hours and take it out to obtain In-doped TiO 2 nanopowder.
2.将0.4g In掺杂TiO2纳米粉末与18ml 10mol/L的的NaOH溶液混合加入反应釜进行搅拌,半个小时后,将高压釜置于烘箱中加热到110℃,保温20h。2. Mix 0.4g of In-doped TiO 2 nanopowder with 18ml of 10mol/L NaOH solution and add it to the reactor for stirring. After half an hour, put the autoclave in an oven and heat it to 110°C and keep it warm for 20h.
3.将反应完的高压釜取出,待自然冷却后,离心,倒掉上层清液,将沉淀用去离子水洗直至中性,再用0.1mol/L盐酸浸泡半个小时,之后再次用去离子水将产物洗涤到中性。3. Take out the autoclave after the reaction, after cooling naturally, centrifuge, pour off the supernatant, wash the precipitate with deionized water until it is neutral, then soak it in 0.1mol/L hydrochloric acid for half an hour, and then use deionized water again Water washed the product to neutrality.
4.将所得产物平铺到表面皿中,放入烘箱中以100℃烘12h,取出烘干后的块体进行轻轻研磨。将研磨后的产物放入马弗炉以400℃温度下烧结2.5h,然后再经过再次轻轻研磨后即制得所需的TiO2纳米管。4. Spread the obtained product on a watch glass, put it in an oven and dry it at 100°C for 12 hours, take out the dried block and grind it lightly. The ground product was put into a muffle furnace for sintering at 400° C. for 2.5 h, and then lightly ground again to obtain the required TiO 2 nanotubes.
实施例2:N掺杂TiO2纳米管Example 2: N-doped TiO2 nanotubes
1.采用TiCl4水解法制备N掺杂TiO2纳米粉末。25%的氨水在剧烈搅拌下逐滴加入到200mL的浓度约为0.1molL-1的四氯化钛水溶液中,体系中立刻产生白色沉淀,当体系的pH值达到5.5时停止加入氨水。然后静置陈化24h,过滤,所得沉淀在70℃烘干,研磨成粉末,并在400℃烧结4小时。即得到N掺杂TiO2纳米粉末1. Preparation of N-doped TiO 2 nanopowders by TiCl 4 hydrolysis method. 25% ammonia water was added dropwise to 200 mL of titanium tetrachloride aqueous solution with a concentration of about 0.1 molL under vigorous stirring, and a white precipitate was formed in the system immediately, and the addition of ammonia water was stopped when the pH value of the system reached 5.5. Then it was left to age for 24 hours, filtered, and the obtained precipitate was dried at 70°C, ground into powder, and sintered at 400°C for 4 hours. That is, N-doped TiO 2 nanopowder is obtained
2.将0.4g N掺杂TiO2纳米粉末与18ml 10mol/L的的NaOH溶液混合加入反应釜进行搅拌,半个小时后,将高压釜置于烘箱中加热到110℃,保温20h。2. Mix 0.4g of N-doped TiO 2 nano powder and 18ml of 10mol/L NaOH solution into the reactor for stirring. After half an hour, heat the autoclave in an oven to 110°C and keep it warm for 20h.
3.将反应完的高压釜取出,待自然冷却后,离心,倒掉上层清液,将沉淀用去离子水洗直至中性,再用0.1mol/L盐酸浸泡半个小时,之后再次用去离子水将产物洗涤到中性。3. Take out the autoclave after the reaction, after cooling naturally, centrifuge, pour off the supernatant, wash the precipitate with deionized water until it is neutral, then soak it in 0.1mol/L hydrochloric acid for half an hour, and then use deionized water again Water washed the product to neutrality.
4.将所得产物平铺到表面皿中,放入烘箱中以100℃烘12h,取出烘干后的块体进行轻轻研磨。将研磨后的产物放入马弗炉以400℃温度下烧结2.5h,然后再经过再次轻轻研磨后即制得所需的TiO2纳米管。4. Spread the obtained product on a watch glass, put it into an oven and bake at 100°C for 12 hours, take out the dried block and grind it lightly. The ground product was put into a muffle furnace for sintering at 400° C. for 2.5 h, and then lightly ground again to obtain the required TiO 2 nanotubes.
实施例3:N、Sn双掺杂TiO2纳米管Embodiment 3: N, Sn double-doped TiO 2 nanotubes
1.采用溶胶-凝胶法制备N、Sn双掺杂TiO2纳米粉末。取12ml钛酸四丁酯缓慢滴入混有40ml无水乙醇,2ml去离子水和1ml盐酸的烧杯中,搅拌半小时后,加入0.2ml四氯化锡,再过半小时,加入3ml氨水,得到透明溶胶,静置一段时间,凝胶后,于100℃恒温干燥10~12个小时,得到干凝胶;研磨后,450℃煅烧2.5小时后取出,得到N、Sn双掺杂TiO2纳米粉末。1. N, Sn double-doped TiO 2 nanopowders were prepared by sol-gel method. Take 12ml of tetrabutyl titanate and slowly drop it into a beaker mixed with 40ml of absolute ethanol, 2ml of deionized water and 1ml of hydrochloric acid. After stirring for half an hour, add 0.2ml of tin tetrachloride, and after another half hour, add 3ml of ammonia water to obtain Transparent sol, let it stand for a period of time, after gelation, dry at 100°C for 10-12 hours to obtain xerogel; after grinding, take it out after calcination at 450°C for 2.5 hours, to obtain N, Sn double-doped TiO 2 nano powder .
2.将0.4g N、Sn双掺杂TiO2纳米粉末与18ml 10mol/L的的NaOH溶液混合加入反应釜进行搅拌,半个小时后,将高压釜置于烘箱中加热到110℃,保温20h。2. Mix 0.4g of N, Sn double-doped TiO 2 nanopowder with 18ml of 10mol/L NaOH solution and add to the reaction kettle for stirring. After half an hour, put the autoclave in an oven and heat it to 110°C and keep it warm for 20h .
3.将反应完的高压釜取出,待自然冷却后,离心,倒掉上层清液,将沉淀用去离子水洗直至中性,再用0.1mol/L盐酸浸泡半个小时,之后再次用去离子水将产物洗涤到中性。3. Take out the autoclave after the reaction, after cooling naturally, centrifuge, pour off the supernatant, wash the precipitate with deionized water until it is neutral, then soak it in 0.1mol/L hydrochloric acid for half an hour, and then use deionized water again Water washed the product to neutrality.
4.将所得产物平铺到表面皿中,放入烘箱中以100℃烘12h,取出烘干后的块体进行轻轻研磨。将研磨后的产物放入马弗炉以400℃温度下烧结2.5h,然后再经过再次轻轻研磨后即制得所需的TiO2纳米管。4. Spread the obtained product on a watch glass, put it into an oven and bake at 100°C for 12 hours, take out the dried block and grind it lightly. The ground product was put into a muffle furnace for sintering at 400° C. for 2.5 h, and then lightly ground again to obtain the required TiO 2 nanotubes.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100537374A CN101302036A (en) | 2008-07-03 | 2008-07-03 | A kind of preparation method of doped titanium dioxide nanotube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100537374A CN101302036A (en) | 2008-07-03 | 2008-07-03 | A kind of preparation method of doped titanium dioxide nanotube |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101302036A true CN101302036A (en) | 2008-11-12 |
Family
ID=40112170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100537374A Pending CN101302036A (en) | 2008-07-03 | 2008-07-03 | A kind of preparation method of doped titanium dioxide nanotube |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101302036A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD4063C1 (en) * | 2010-02-18 | 2011-03-31 | Технический университет Молдовы | Method for producing nanotubes of titanium dioxide on a titanium substrate |
CN102157732A (en) * | 2011-03-24 | 2011-08-17 | 河南大学 | Titanium dioxide/carbon composite nanotube and preparation and application thereof |
CN102863046A (en) * | 2012-09-09 | 2013-01-09 | 桂林理工大学 | Application of Au/TiO2 Nanotube Arrays to Photocatalytic Degradation of Sugar Wastewater |
WO2013139174A1 (en) * | 2012-03-19 | 2013-09-26 | The Hong Kong University Of Science And Technology | Incorporating metals, metal oxides and compounds on the inner and outer surfaces of nanotubes and between the walls of the nanotubes and preparation thereof |
CN103531762A (en) * | 2013-10-23 | 2014-01-22 | 山东大学 | Preparation method of titanium dioxide nano tube doped with heterovalent metal salt |
CN104084205A (en) * | 2014-07-24 | 2014-10-08 | 哈尔滨工业大学 | Preparation method and application of ferrum loaded titanium dioxide nanotube with catalytic oxidation activity |
CN104722294A (en) * | 2015-02-15 | 2015-06-24 | 福建工程学院 | A Preparation Technology of Pt-TiO2 Nanotubes under Normal Pressure |
CN105271388A (en) * | 2015-10-10 | 2016-01-27 | 同济大学 | Preparation method of ultra-long TiO2 nanotubes with high specific surface area |
CN105800680A (en) * | 2016-03-14 | 2016-07-27 | 武汉理工大学 | Preparation method of titanium dioxide nanotube doped with transition metal |
CN108187651A (en) * | 2017-12-28 | 2018-06-22 | 山东纳安环保科技有限公司 | A kind of preparation method and application for carrying zinc nano-titanium dioxide |
CN108465461A (en) * | 2018-03-26 | 2018-08-31 | 江苏奥净嘉环保科技有限公司 | A kind of preparation method of photocatalysis air-cleaning material |
CN111364051A (en) * | 2020-03-23 | 2020-07-03 | 江苏大学 | Method for doping In ions to titanium dioxide photoelectrode by flame |
CN112742414A (en) * | 2019-10-29 | 2021-05-04 | 中国石油化工股份有限公司 | Water-resistant and sulfur-resistant low-temperature SCR denitration catalyst and preparation method and application thereof |
CN113368865A (en) * | 2021-06-08 | 2021-09-10 | 中国科学院山西煤炭化学研究所 | Denitration catalyst, preparation method thereof and waste gas denitration method |
CN116159559A (en) * | 2022-12-16 | 2023-05-26 | 中国科学院福建物质结构研究所 | Preparation method and application of ruthenium-doped titania nanotube catalyst |
CN117860704A (en) * | 2024-03-12 | 2024-04-12 | 天津医科大学总医院 | Nanocomposite Fe/TNT@NM and preparation method and application thereof |
-
2008
- 2008-07-03 CN CNA2008100537374A patent/CN101302036A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD4063C1 (en) * | 2010-02-18 | 2011-03-31 | Технический университет Молдовы | Method for producing nanotubes of titanium dioxide on a titanium substrate |
CN102157732A (en) * | 2011-03-24 | 2011-08-17 | 河南大学 | Titanium dioxide/carbon composite nanotube and preparation and application thereof |
CN104350011A (en) * | 2012-03-19 | 2015-02-11 | 香港科技大学 | Method for doping metal, metal oxide and metal complex on inner surface and outer surface of nanotube and between nanotube layers and preparation method of nanotube |
WO2013139174A1 (en) * | 2012-03-19 | 2013-09-26 | The Hong Kong University Of Science And Technology | Incorporating metals, metal oxides and compounds on the inner and outer surfaces of nanotubes and between the walls of the nanotubes and preparation thereof |
US10238762B2 (en) | 2012-03-19 | 2019-03-26 | The Hong Kong University Of Science And Technology | Incorporating metals, metal oxides and compounds on the inner and outer surfaces of nanotubes and between the walls of the nanotubes and preparation thereof |
CN104350011B (en) * | 2012-03-19 | 2016-09-28 | 香港科技大学 | Method for doping metal, metal oxide and metal complex on inner surface and outer surface of nanotube and interlayer of nanotube and nanotube |
CN102863046A (en) * | 2012-09-09 | 2013-01-09 | 桂林理工大学 | Application of Au/TiO2 Nanotube Arrays to Photocatalytic Degradation of Sugar Wastewater |
CN103531762A (en) * | 2013-10-23 | 2014-01-22 | 山东大学 | Preparation method of titanium dioxide nano tube doped with heterovalent metal salt |
CN103531762B (en) * | 2013-10-23 | 2015-08-26 | 山东大学 | A kind of preparation method of titania nanotube of aliovalent slaine doping |
CN104084205A (en) * | 2014-07-24 | 2014-10-08 | 哈尔滨工业大学 | Preparation method and application of ferrum loaded titanium dioxide nanotube with catalytic oxidation activity |
CN104722294A (en) * | 2015-02-15 | 2015-06-24 | 福建工程学院 | A Preparation Technology of Pt-TiO2 Nanotubes under Normal Pressure |
CN105271388A (en) * | 2015-10-10 | 2016-01-27 | 同济大学 | Preparation method of ultra-long TiO2 nanotubes with high specific surface area |
CN105800680A (en) * | 2016-03-14 | 2016-07-27 | 武汉理工大学 | Preparation method of titanium dioxide nanotube doped with transition metal |
CN108187651A (en) * | 2017-12-28 | 2018-06-22 | 山东纳安环保科技有限公司 | A kind of preparation method and application for carrying zinc nano-titanium dioxide |
CN108465461A (en) * | 2018-03-26 | 2018-08-31 | 江苏奥净嘉环保科技有限公司 | A kind of preparation method of photocatalysis air-cleaning material |
CN112742414A (en) * | 2019-10-29 | 2021-05-04 | 中国石油化工股份有限公司 | Water-resistant and sulfur-resistant low-temperature SCR denitration catalyst and preparation method and application thereof |
CN112742414B (en) * | 2019-10-29 | 2022-10-21 | 中国石油化工股份有限公司 | Water-resistant and sulfur-resistant low-temperature SCR denitration catalyst and preparation method and application thereof |
CN111364051A (en) * | 2020-03-23 | 2020-07-03 | 江苏大学 | Method for doping In ions to titanium dioxide photoelectrode by flame |
CN113368865A (en) * | 2021-06-08 | 2021-09-10 | 中国科学院山西煤炭化学研究所 | Denitration catalyst, preparation method thereof and waste gas denitration method |
CN113368865B (en) * | 2021-06-08 | 2022-12-02 | 中国科学院山西煤炭化学研究所 | Denitration catalyst, preparation method thereof and waste gas denitration method |
CN116159559A (en) * | 2022-12-16 | 2023-05-26 | 中国科学院福建物质结构研究所 | Preparation method and application of ruthenium-doped titania nanotube catalyst |
CN116159559B (en) * | 2022-12-16 | 2024-07-23 | 中国科学院福建物质结构研究所 | Preparation method and application of ruthenium-doped titanium dioxide nanotube catalyst |
CN117860704A (en) * | 2024-03-12 | 2024-04-12 | 天津医科大学总医院 | Nanocomposite Fe/TNT@NM and preparation method and application thereof |
CN117860704B (en) * | 2024-03-12 | 2024-05-24 | 天津医科大学总医院 | A nanocomposite material Fe/TNT@NM and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101302036A (en) | A kind of preparation method of doped titanium dioxide nanotube | |
CN104148047B (en) | Macro preparation method for carbon doped zinc oxide-based visible-light catalyst | |
CN105645459B (en) | A kind of surface modification sea urchin shape ZnO/TiO2Composite and preparation method thereof | |
CN101564688B (en) | Method for preparing titanic oxide nano composited tube | |
CN101597084B (en) | Method for synthesizing anatase phase titanium dioxide nanometer particle by microreactor | |
CN102553563B (en) | Method for preparing high catalytic activity sodium tantalate photocatalyst by hydrothermal method | |
CN103318956B (en) | A kind of method preparing titanium dioxide nano thread | |
CN102674451A (en) | Preparation method of {001} face exposed titanium dioxide nanocrystals | |
CN103395837B (en) | Preparation method of Bi12TiO20 powder | |
CN103058265B (en) | Preparation method of mesoporous nano flaky zinc oxide powder with high specific surface area | |
CN107126944A (en) | A kind of many doping titanium dioxide nano particles of many defects with high visible light catalytic activity and preparation method | |
CN104628031B (en) | A kind of preparation method and obtained product of one-dimensional self-doped titanium dioxide nanometer material | |
CN103263906A (en) | Nanocrystal tin oxide photocatalyst and preparation method thereof | |
CN101822977A (en) | Preparation method of ZnSn(OH)6 porous photocatalytic material | |
CN101585552B (en) | Method for preparing TiO2 porous film from TiO2 nanocrystalline hydrosol | |
CN100402467C (en) | A kind of method for preparing tin dioxide/titanium dioxide nanocomposite material | |
CN102976401A (en) | Ultrasonic chemical preparation method for nitrogen-doped nano-titanium dioxide crystal | |
CN111151233B (en) | A kind of preparation method of oxygen-deficient TiO2 normal temperature and normal pressure water phase | |
CN112973686A (en) | Method for enhancing photocatalytic performance of heterostructure composite material through pyroelectric effect and application | |
CN103771511B (en) | Preparation method of anatase titanium dioxide nanocrystalline sol | |
CN108654663B (en) | Boron-nitrogen co-doped single crystal mesoporous TiO prepared by mixed nitrate molten salt method2Method for catalyzing materials | |
CN103433036B (en) | A kind of catalysis material Ag/AgMO 2and preparation method thereof | |
CN106732493A (en) | A kind of preparation method of nano-sheet monocline crystal titanium dioxide B photochemical catalysts | |
CN108067277B (en) | Preparation method of high nitrogen-doped single crystal TiO2 mesoporous material | |
CN106944035B (en) | A kind of oxygen self-doping layered niobium oxide powder and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081112 |