CN101274751A - 单分散银、硫化银及硒化银纳米晶的制备方法 - Google Patents

单分散银、硫化银及硒化银纳米晶的制备方法 Download PDF

Info

Publication number
CN101274751A
CN101274751A CNA2007100737662A CN200710073766A CN101274751A CN 101274751 A CN101274751 A CN 101274751A CN A2007100737662 A CNA2007100737662 A CN A2007100737662A CN 200710073766 A CN200710073766 A CN 200710073766A CN 101274751 A CN101274751 A CN 101274751A
Authority
CN
China
Prior art keywords
silver
preparation
reaction
disperses
gram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100737662A
Other languages
English (en)
Other versions
CN101274751B (zh
Inventor
李亚栋
王定胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2007100737662A priority Critical patent/CN101274751B/zh
Priority to US12/002,139 priority patent/US20100278718A1/en
Publication of CN101274751A publication Critical patent/CN101274751A/zh
Application granted granted Critical
Publication of CN101274751B publication Critical patent/CN101274751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种单分散银纳米晶的制备方法,其包括以下步骤:(1)将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中反应1至10分钟;(2)将反应沉淀物以乙醇洗涤后烘干,即得到单分散银纳米晶。该制备方法中的步骤(1)可通过进一步将硫粉放入上述反应体系后继续反应8至12分钟,获得单分散硫化银纳米晶或通过进一步将硒粉放入上述反应体系后继续反应8至12分钟,获得单分散硒化银纳米晶。本发明所提供的单分散银、硫化银及硒化银纳米晶的制备方法适于大规模工业生产,具有极为广阔的市场前景。

Description

单分散银、硫化银及硒化银纳米晶的制备方法
技术领域
本发明涉及一种银、硫化银及硒化银的制备方法,尤其涉及单分散银、硫化银及硒化银纳米晶的制备方法。
背景技术
纳米尺寸的金属银颗粒由于具有独特的光学、电学及催化性质而广泛地应用于传感器、催化、纳米器件、光学开关等方面。例如,纳米银颗粒具有极强的增强表面拉曼光谱(SERS)的能力而被广泛地应用于拉曼光谱技术原位检测催化反应方面。
硫化银和硒化银是化学稳定性较高的半导体材料,具有较好的光电及热电性能,现已被广泛地应用于光电池、光电导元件、红外检测器及快离子导体等制造业。当硫化银和硒化银的颗粒尺寸降为纳米量级时,由于较大的比表面积和显著的量子尺寸效应,与体相材料相比,其会具有特殊的光吸收、传感及催化性能。例如,近年来人们发现纳米硫化银具有很强的杀菌能力,使其在生物、医学及环境治理等方面有着重要的潜在应用。
因此,银、硫化银及硒化银纳米材料的合成和性质的研究已成为广泛研究的热点。近年来,化学法在单分散纳米晶控制合成方面已经取得了很大的进展,例如,以金属有机物为反应前驱物,通过控制合成条件,能获得具有规则多面体外形的银纳米晶;采用液相-固相-溶液(LSS)反应机制成功合成单分散银及硫化银纳米晶,并能有效地控制其粒径大小。然而这些方法工艺复杂、耗时、反应毒性大、难于批量生产,且其产品的质量稳定性也较差,因而难于实现工业应用。
有鉴于此,提供一种工艺简便、耗时少、反应毒性小、易于批量生产,且产品质量稳定的银、硫化银及硒化银单分散纳米晶的制备方法是必要的。
发明内容
一种单分散银纳米晶的制备方法,其包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中,在160℃至300℃温度下反应1至10分钟;将反应沉淀物以乙醇洗涤后,于40℃至80℃温度下烘干,即得到粒径为6至12纳米的单分散银纳米晶。
一种单分散硫化银纳米晶的制备方法,其包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中,在160℃至300℃温度下反应1至10分钟;将硫粉放入上述反应体系后继续反应8至12分钟;将反应沉淀物以乙醇洗涤后,于40℃至80℃温度下烘干,即得到粒径为6至12纳米的单分散硫化银纳米晶。其中,硫粉与硝酸银的摩尔比为1∶2。
一种单分散硒化银纳米晶的制备方法,其包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中,在160℃至300℃温度下反应1至10分钟;将硒粉放入上述反应体系后继续反应8至12分钟;将反应沉淀物以乙醇洗涤后,于40℃至80℃温度下烘干,即得到粒径为6至12纳米的单分散硒化银纳米晶。其中,硒粉与硝酸银的摩尔比为1∶2。
与现有技术相比,本发明所提供的制备方法具有如下优点:采用无机物为原料,该制备方法的反应毒性小,原料更为经济;采用十八胺为溶剂,具有毒性小、价格便宜的特点,且十八胺通过简单的过滤、分离即可重复利用;所得的产物颗粒小、粒径尺寸分布均匀;反应时间短,为该制备方法应用于工业化生产奠定了基础。因此,本发明所提供的单分散银、硫化银及硒化银纳米晶的制备方法适于大规模工业生产,具有极为广阔的市场前景。
附图说明
图1是本发明实施例制备的单分散银纳米晶的透射电子显微镜(TEM)照片。
图2是本发明实施例制备的单分散硫化银纳米晶的TEM照片。
图3是本发明实施例制备的单分散硒化银纳米晶的TEM照片。
图4是本发明实施例制备的单分散银、硫化银及硒化银纳米晶的粉末X射线衍射(XRD)图。
具体实施方式
下面将结合附图对本发明实施例作进一步的详细说明。
一种单分散银纳米晶的制备方法,其具体包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中,在160℃至300℃温度下反应1至10分钟;将反应沉淀物以乙醇洗涤后,于40℃至80℃温度下烘干,即得到粒径为6至12纳米的单分散银纳米晶。
上述反应的化学方程式如下:
Figure A20071007376600051
请参阅图1为本发明实施例制备的单分散银纳米晶的透射电子显微镜(TEM)照片。
一种单分散硫化银纳米晶的制备方法,其包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中,在160℃至300℃温度下反应1至10分钟;将硫粉放入上述反应体系后继续反应8至12分钟;将反应沉淀物以乙醇洗涤后,于40℃至80℃温度下烘干,即得到粒径为6至12纳米的单分散硫化银纳米晶。其中,硫粉与硝酸银的摩尔比为1∶2。
上述反应的化学方程式如下:
Figure A20071007376600052
Figure A20071007376600053
请参阅图2为本发明实施例制备的单分散硫化银纳米晶的TEM照片。
一种单分散硒化银纳米晶的制备方法,其包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中,在160℃至300℃温度下反应1至10分钟;将硒粉放入上述反应体系后继续反应8至12分钟;将反应沉淀物以乙醇洗涤后,于40℃至80℃温度下烘干,即得到粒径为6至12纳米的单分散硒化银纳米晶。其中,硒粉与硝酸银的摩尔比为1∶2。
上述反应的化学方程式如下:
Figure A20071007376600055
请参阅图3为本发明实施例制备的单分散硒化银纳米晶的TEM照片。
请参阅图4为本发明实施例制备的单分散银、硫化银及硒化银纳米晶的粉末X射线衍射(XRD)图。
下面例举实施例对本发明予以进一步说明:
实施例一:
取10毫升(ml)十八胺加热到200℃,将1克(g)硝酸银固体加入其中,保持在200℃温度下反应10分钟后,将反应所得的沉淀物以乙醇洗涤,在40℃至80℃温度下干燥,即得到粒径为4.7纳米的单分散银纳米晶。
实施例二:
取10ml十八胺加热到200℃,将0.85g硝酸银固体加入其中,保持在200℃温度下反应10分钟后,再加入0.08g硫粉反应10分钟。将反应所得的沉淀物以乙醇洗涤,在40℃至80℃温度下干燥,即得到粒径为7.3纳米的单分散硫化银纳米晶。
实施例三:
取10ml十八胺加热到200℃,将0.85g硝酸银固体加入其中,保持在200℃温度下反应10分钟后,再加入0.198g硒粉反应10分钟。将反应所得的沉淀物以乙醇洗涤,在40℃至80℃温度下干燥,即得到粒径为8.5纳米的单分散硒化银纳米晶。
与现有技术相比,本发明所提供的制备方法具有如下优点:采用无机物为原料,该制备方法的反应毒性小,原料更为经济;采用十八胺为溶剂,具有毒性小、价格便宜的特点,且十八胺通过简单的过滤、分离即可重复利用;所得的产物颗粒小、粒径尺寸分布均匀;反应时间短,为该制备方法应用于工业化生产奠定了基础。因此,本发明所提供的单分散银、硫化银及硒化银纳米晶的制备方法适于大规模工业生产,具有极为广阔的市场前景。
另外,本领域技术人员还可在本发明精神内做其它变化。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (11)

1. 一种单分散银纳米晶的制备方法,其包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中反应1至10分钟;将反应沉淀物以乙醇洗涤后烘干,即得到单分散银纳米晶。
2. 如权利要求1所述的单分散银纳米晶的制备方法,其特征在于,单分散银纳米晶的粒径为6至12纳米。
3. 如权利要求1所述的单分散银纳米晶的制备方法,其特征在于,反应温度为160℃至300℃,烘干温度为40℃至80℃。
4. 一种单分散硫化银纳米晶的制备方法,其包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中反应1至10分钟;将硫粉放入上述反应体系后继续反应8至12分钟;将反应沉淀物以乙醇洗涤后烘干,即得到单分散硫化银纳米晶。
5. 如权利要求4所述的单分散硫化银纳米晶的制备方法,其特征在于,硫粉与硝酸银的摩尔比为1∶2。
6. 如权利要求4所述的单分散硫化银纳米晶的制备方法,其特征在于,单分散硫化银纳米晶的粒径为6至12纳米。
7. 如权利要求4所述的单分散银纳米晶的制备方法,其特征在于,反应温度为160℃至300℃,烘干温度为40℃至80℃。
8. 一种单分散硒化银纳米晶的制备方法,其包括以下步骤:将0.1克至1克的硝酸银放入10毫升的十八胺溶剂中反应1至10分钟;将硒粉放入上述反应体系后继续反应8至12分钟;将反应沉淀物以乙醇洗涤后烘干,即得到单分散硒化银纳米晶。
9. 如权利要求8所述的单分散硒化银纳米晶的制备方法,其特征在于,硒粉与硝酸银的摩尔比为1∶2。
10. 如权利要求8所述的单分散硒化银纳米晶的制备方法,其特征在于,单分散硒化银纳米晶的粒径为6至12纳米。
11. 如权利要求8所述的单分散银纳米晶的制备方法,其特征在于,反应温度为160℃至300℃,烘干温度为40℃至80℃。
CN2007100737662A 2007-03-30 2007-03-30 单分散银、硫化银及硒化银纳米晶的制备方法 Active CN101274751B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007100737662A CN101274751B (zh) 2007-03-30 2007-03-30 单分散银、硫化银及硒化银纳米晶的制备方法
US12/002,139 US20100278718A1 (en) 2007-03-30 2007-12-14 Method for making monodisperse silver and silver compound nanocrystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100737662A CN101274751B (zh) 2007-03-30 2007-03-30 单分散银、硫化银及硒化银纳米晶的制备方法

Publications (2)

Publication Number Publication Date
CN101274751A true CN101274751A (zh) 2008-10-01
CN101274751B CN101274751B (zh) 2010-04-14

Family

ID=39994669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100737662A Active CN101274751B (zh) 2007-03-30 2007-03-30 单分散银、硫化银及硒化银纳米晶的制备方法

Country Status (2)

Country Link
US (1) US20100278718A1 (zh)
CN (1) CN101274751B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009172A (zh) * 2010-09-27 2011-04-13 山东大学 一种Ag/Ag2S核/壳纳米结构电阻开关材料及其制备方法
CN102672167A (zh) * 2011-03-16 2012-09-19 首都师范大学 一种新型三角形银-硫化银纳米复合颗粒的制备及其应用
CN103484121A (zh) * 2013-09-07 2014-01-01 桂林理工大学 常温水相法制备近红外荧光Ag2Se胶体半导体纳米晶的方法
CN105036092A (zh) * 2015-08-07 2015-11-11 中南大学 一种球形硒化银粒子的制备方法
CN111774037A (zh) * 2020-07-14 2020-10-16 湖北大学 一种zif-67-硒化银纳米复合材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538388B (zh) * 2022-04-15 2023-06-16 合肥工业大学 一种组成可控的硒化锌纳米线的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE491230T1 (de) * 2000-10-04 2010-12-15 Univ Arkansas Synthese von kolloidalen metall chalcogenide nanokristallen
CN1232377C (zh) * 2003-06-05 2005-12-21 中国科学院理化技术研究所 立方体银纳米晶颗粒的制备方法
US20050199094A1 (en) * 2003-09-09 2005-09-15 Noble Fiber Technologies, Inc. Method of producing metal-containing particles
KR100621309B1 (ko) * 2004-04-20 2006-09-14 삼성전자주식회사 황 전구체로서 싸이올 화합물을 이용한 황화 금속나노결정의 제조방법
US7288134B2 (en) * 2004-09-10 2007-10-30 International Business Machines Corporation Dumbbell-like nanoparticles and a process of forming the same
KR100690360B1 (ko) * 2005-05-23 2007-03-09 삼성전기주식회사 도전성 잉크, 그 제조방법 및 도전성 기판
KR100711967B1 (ko) * 2005-08-08 2007-05-02 삼성전기주식회사 금속 나노 입자의 제조방법 및 도전성 잉크

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009172A (zh) * 2010-09-27 2011-04-13 山东大学 一种Ag/Ag2S核/壳纳米结构电阻开关材料及其制备方法
CN102009172B (zh) * 2010-09-27 2012-09-05 山东大学 一种Ag/Ag2S核/壳纳米结构电阻开关材料及其制备方法和应用
CN102672167A (zh) * 2011-03-16 2012-09-19 首都师范大学 一种新型三角形银-硫化银纳米复合颗粒的制备及其应用
CN102672167B (zh) * 2011-03-16 2014-04-02 首都师范大学 一种新型三角形银-硫化银纳米复合颗粒的制备及其应用
CN103484121A (zh) * 2013-09-07 2014-01-01 桂林理工大学 常温水相法制备近红外荧光Ag2Se胶体半导体纳米晶的方法
CN103484121B (zh) * 2013-09-07 2015-01-07 桂林理工大学 常温水相法制备近红外荧光Ag2Se胶体半导体纳米晶的方法
CN105036092A (zh) * 2015-08-07 2015-11-11 中南大学 一种球形硒化银粒子的制备方法
CN111774037A (zh) * 2020-07-14 2020-10-16 湖北大学 一种zif-67-硒化银纳米复合材料的制备方法

Also Published As

Publication number Publication date
CN101274751B (zh) 2010-04-14
US20100278718A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
Singh et al. One-step green synthesis of gold nanoparticles using black cardamom and effect of pH on its synthesis
Kazeminezhad et al. Influence of pH on the photocatalytic activity of ZnO nanoparticles
Zhan et al. Synthesis of gold nanoparticles by Cacumen Platycladi leaf extract and its simulated solution: toward the plant-mediated biosynthetic mechanism
Topnani et al. Wet synthesis of copper oxide nanopowder
Mason et al. Switchgrass (Panicum virgatum) extract mediated green synthesis of silver nanoparticles
CN101274751B (zh) 单分散银、硫化银及硒化银纳米晶的制备方法
Prasad et al. Green synthesis of MnO2 nanorods using Phyllanthus amarus plant extract and their fluorescence studies
Li et al. Solvothermal elemental direct reaction to CdE (E= S, Se, Te) semiconductor nanorod
Jiang et al. Large-scaled, uniform, monodispersed ZnO colloidal microspheres
Goudarzi et al. Zinc oxide nanoparticles: solvent-free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase
CN107601443B (zh) 一种超薄硒化钨纳米片的制备方法
Mousavi et al. Controllable synthesis of ZnO nanoflowers by the modified sol–gel method
Kasani et al. Tunable visible-light surface plasmon resonance of molybdenum oxide thin films fabricated by E-beam evaporation
Rao et al. Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures
Gao et al. Effects of oxygen vacancy and sintering temperature on the photoluminescence properties and photocatalytic activity of CeO2 nanoparticles with high uniformity
Arumugam et al. Solvent effects on the properties of Bi 2 S 3 nanoparticles: Photocatalytic application
Yu et al. Facile hydrothermal synthesis of SnO2 quantum dots with enhanced photocatalytic degradation activity: Role of surface modification with chloroacetic acid
Srujana et al. Chemical-based synthesis of ZnO nanoparticles and their applications in agriculture
Anu et al. CuO–ZnO nanocomposite films with efficient interfacial charge transfer characteristics for optoelectronic applications
Farooq et al. Environmentally sustainable fabrication of palladium nanoparticles from the ethanolic crude extract of Oxystelma esculentum towards effective degradation of organic dye
Wang et al. Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties
Zhao et al. Polymorphous ZnO Nanostructures: Zn Polar Surface‐Guided Size and Shape Evolution Mechanism and Enhanced Photocatalytic Activity
CN110899720A (zh) 一种二维柔性贵金属纳米粒子超晶格薄膜及其构建方法和应用
Nkele et al. Diverse synthesis and characterization techniques of nanoparticles
Sarkar et al. Synthesis, characterization and high natural sunlight photocatalytic performance of cobalt doped TiO2 nanofibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant