CN1012000B - 清洁发电的方法 - Google Patents

清洁发电的方法

Info

Publication number
CN1012000B
CN1012000B CN87106025A CN87106025A CN1012000B CN 1012000 B CN1012000 B CN 1012000B CN 87106025 A CN87106025 A CN 87106025A CN 87106025 A CN87106025 A CN 87106025A CN 1012000 B CN1012000 B CN 1012000B
Authority
CN
China
Prior art keywords
flow
gas
air
carbon monoxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN87106025A
Other languages
English (en)
Other versions
CN87106025A (zh
Inventor
特里弗·威里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enserch International Investments Ltd
Humphreys and Glasgow Ltd
Original Assignee
Enserch International Investments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB868620919A external-priority patent/GB8620919D0/en
Priority claimed from GB868628429A external-priority patent/GB8628429D0/en
Application filed by Enserch International Investments Ltd filed Critical Enserch International Investments Ltd
Publication of CN87106025A publication Critical patent/CN87106025A/zh
Publication of CN1012000B publication Critical patent/CN1012000B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Vending Machines For Individual Products (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明揭示了一种从含碳燃料产生动力,特别是电力的方法,它包括在超大气压下用氧气或一种含氧气体对燃料进行部分氧化以产生含有一氧化碳的气流,使上述气流膨胀而产生动力,并且用另加的氧气或一种含氧气体至少使膨胀气流的大部分基本上完全燃烧而产生附加的动力,其特征在于,上述气流在膨胀之前先进行一氧化碳转移反应,从而其中至少一部分一氧化碳转化成二氧化碳和氢。
通过使用该方法,能使放出的氧化氮大大降低,这有助于减少酸雨。

Description

本发明涉及一种利用含碳燃料的部分氧化从该燃料中产生动力,特别是电力的方法。
本发明提供一种用于从含碳燃料产生动力的方法,它包括在超大气压下用氧气或一种含氧气体使燃料部分氧化以产生含有一氧化碳的气流,使上述气流膨胀而产生动力,并且通过增加氧气或一种含氧气体至少使膨胀气流的大部分基本上完全燃烧而产生额外的动力,其特征在于,上述气流在膨胀之前先进行一氧化碳转移反应,从而至少使其中部分一氧化碳经转移反应转化成二氧化碳和氢。
一种可选择的方案是:来自部分氧化反应器的气流在转移反应步骤之前先用水骤冷,至少一部分为转移反应步骤所需的蒸汽是由水骤冷的蒸发中得到的;在膨胀之前先将转移反应后的气流的温度升高;在利用至少一部分气流作为燃料而产生电力以前,对反应和膨胀后的气流进行处理以除去硫化物。在该转移反应中有部分热量可用于预热膨胀之前的气流。
几种基于含碳燃料部分氧化产生动力的方法是已知的,其中提到一氧化碳和蒸汽反应而产生二氧化碳和氢。该反应通常称为水煤气反应、转移反应、变换或转换反应,这在合成气体的生产中是周知的,在此,氢的量(对应于一氧化碳的)的增加是所希望的,即使在有不希望的二氧化碳伴随增加的时候也是如此。
EP-A-9524揭示了这样一种方法,但在此情况下,二氧化碳是一种必需除去的杂质。
在美国专利4074981中(第2列第29行及以下)描述了通过他们 的发明所产生的气体的种种用途。对于合成气体,将氢和一氧化碳增加到最大量,意味着将二氧化碳减至最小量。对于用作还原气,述及将二氧化碳减至最小量。对于用作具有高热值的可燃气体,将氢、一氧化碳和甲烷增加到最大量,在这,里再次意味着将二氧化碳减至最小量。
美国专利4202167揭示了一种方法,其中应用了转移反应所生成的二氧化碳,但并未认识到,通过使原料气体在转移反应后最后燃烧前膨胀有可能再生动力。
瑞士专利250478揭示了在气体发生器和燃气轮机燃烧室之间的膨胀室的应用。
美国专利3720625揭示了产生氢和/或氨的方法,并给出了转移反应的常规应用。
本发明的目的是提供一种排出清洁的烟道气的有效的发电方法。下面描述为达到本发明的目的所采用的技术方案。
在本发明中,含碳燃料可用为那些精通该技术的人所熟知的许多方法,在加压情况下通过部分氧化而气化(例如美国专利2992,906)。这些方法通常是用一种含氧气体例如空气,最好是用一种基本上是纯氧的气流来气化含碳燃料。温度大约在1000℃至1600℃左右。部分氧化的压力则在15-250巴范围内,但一般在40-150巴范围内,适宜的含碳燃料的例子是原油、煤、天然气、矿物油以及重燃油。也可用褐煤。
任何包含在来自部分氧化反应器里的热气流里的颗粒物质最好在使一氧化碳起反应之前就除去,以免弄污通常用来促进转移反应的催化剂,虽然采用保护床也是可以的。颗粒物质可通过使用任一常规方法,例如静电沉积、水洗、旋风除尘器、过滤器来除去,但最好是通过用水骤冷法把它洗掉的方式除去。在部分氧化反应器后使用骤冷法, 可以在部分氧化反应器的工作压力方面,更重要的是在所使用的含碳燃料特别是煤的类型方面获得较大的灵活性。
来自部分氧化反应器的气体可在锅炉里冷却和/或在膨胀之前骤冷。
由于许多燃料含有硫,因此,一般总需要有一个除硫的步骤,该步骤在最终燃烧之前进行。
在转移反应器和/或膨胀器之前除去硫化物是可能的。然而,当今的除硫***是在比较低的温度下工作的。这样的温度意味着在热气骤冷以后出现的大部分蒸汽将被冷凝掉。为了其后一氧化碳与蒸汽起反应,必需加入蒸汽。
在除去硫化物的过程中,一些二氧化碳也会被除去。但本发明的意图是要保持最初出现的二氧化碳,因为那样做是比较经济的。
这是本发明的一个重要部分。当气体作为燃料燃烧时,包含在气体里的二氧化碳使生成的NO还原。并且,当气体在转移反应后膨胀时和当气体最终燃烧时,二氢化碳的膨胀都能产生动力。
转移反应所必需的水或蒸汽可通过将水或蒸汽加到部分氧化反应器,和/或通过在部分氧化步骤里的反应,和/或在部分氧化步骤之后的骤冷步骤里,和/或通过直接加入水或蒸汽而得到。
在最佳实施例里,与一氧化碳反应及在反应结束时要保持使所要求的转移反应平衡所需要的水或蒸汽是通过将骤冷水加入离开部分氧化反应器的炽热气体中进行蒸发而得到的,这样安排有可以冷却来自部分氧化反应器的炽热气体以便使它们更易控制的附加优点。至于冷却,有可能发生骤冷水的部分或完全蒸发。然而,由于上面给出的理由,最好是部分蒸发。
通常,转移反应催化剂需要水来保持其活性。一般说来,进到催化剂的水对于气体的克分子比在0.3至1.7范围内。比率最好是0.5 至1.2。然后让气体起绝热反应。藉助新型的催化剂,流出的气体将非常接近转移反应平衡态。
一种转移反应催化剂由混有氧化铬的、并由重量比为1%至15%的另一种金属例如钾、钍、铀、钡或锑的氧化物促进的氧化铁组成。反应在260℃至565℃发生(500°F至1050°F)。
在转移反应后发生膨胀。气体最好在该反应后立即膨胀,因为在反应期间释放的热量使气流的温度上升,因而使膨胀更为有效。然而,可以在转移和膨胀步骤之间对气流进行补充加热,例如通过使气体进一步部分氧化或在下游燃气轮机的排出气体对流加热区域由附加热来实现。也可以间接地使用转移反应的热量在膨胀之前加热气体。
膨胀后的气体可用来预热输入转移反应器的气体。
即使气体在转移反应和膨胀之间冷却,也可获得某种益处(在最佳实施例中,气体是不会完全冷却的)。因此,当转移反应的气体在膨胀前被冷却到204℃(400°F)以上(最好是不低于330℃的温度)时,本发明还是可应用的。
在发电的过程中结合使用转移反应和膨胀具有许多优点:
(a)存在的某些氧硫化碳(COS)同时反应而成硫化氢,硫变成了硫化氢就可以容易除去;
(b)气体的燃烧温度大大地降低,这带来一非常重要的优点:减少了所产生的氮的氧化物(NOx)的量,这将有助于减少酸雨;
(c)上面的(b)意味着为了减少NOx的产生而必须加入到燃烧的气流中以降低其温度的水或蒸汽可以大大地减少或甚至可以不加,这又可以提高轮机叶片的寿命;并且
(d)放出热量的转移反应能有效地用于在膨胀之前预热气流。
电力能籍助使用燃气轮机和/或使用一蒸汽***来产生。本发明工艺过程中蒸汽可在一适当阶段产生,例如可在所使用的任何燃气轮 机的排气过程中产生。
当气体最终燃烧时,为了进一步减少产生的氮的氧化物(NOx)的量,可使燃料气体处于水的饱和状态。而且,此气体可在饱和前和/或后加热。或者可将它在不饱和状态下加热(或者加水或蒸汽)以便向燃烧器提供炽热的可燃气体。
现参照图1及表1以举例方式说明本发明的方法的具体实施例,其中:
图1为表示本发明的方法的流程图(此图分成图1A和图1B两部分,将图1A的右边与图1B的左边相连即可表示本方法的总流程);
表1表示使用图1所示的循环的典型流动过程的物料衡算。
现在作为一个例子,参照图1(为了方便起见,将它分为图1A和1B两部分)和表1来描述本发明的一个实施例。在本例中,原料是重原油和水的乳胶,它的含硫量(重量比)为2-3%左右。
在实际尺寸的设备中,实际的装置包括两条平行的气体发生线,它向三条平行的燃气轮机线送料,接着将料输送到一对流加热区域。然而,为了简单起见,下面的例子在整个过程中都是基于一条气体发生线来阐述的。
在一部分氧化单元内,原料乳胶在70巴的压力下与99.5%的纯氧起反应。所产生的混合气体用过量的水骤冷(即,不是所有的水都蒸发),降至60巴的压力和244℃的饱和条件。部分氧化单元和骤冷在图1中由标号(10)表示。因而该骤冷步骤是除了气体冷却步骤以外的气体洗涤步骤。
骤冷以后产生的气体就是表1中的气流1。气体通过直接利用它的热容量在锅炉(11)里每小时产生约45吨蒸汽而被冷却到232℃。上述锅炉(11)的锅炉供应水是在20巴这样一个相当高的压力下提供的。 从冷却气体中冷凝出来的水在转筒(12)内除去,剩下蒸汽对干气体之比为1.0的原料气体。除去的水通过泵(20)再返回到部分氧化单元(10)作为骤冷水。气体(表1的气流2)在热交换器(13)里预热以后,在330℃的温度下进入催化转移反应器(14)。在508℃和约58巴的条件下发生绝热的转移反应以产生转移的气体(表1的气流3)。转移的气体立即通过炽热气体膨胀器(15)下降到约28巴和396℃,从而产生25兆瓦的功率。
膨胀的气体接着在热交换器(13)和(16)内冷却至200℃。放出的热量用于预热供给转移反应器(14)的气体,以及用于在交换器(16)里对生成的可燃气体在其最终燃烧之前加热,经过热交换器(13)以后,温度为295℃。冷却的转移气体接着进入另一个催化反应器(17),在那里氧硫化碳(COS)降至低含量,以给出如表1中的气流4那样的气流。由于用去硫工艺除去氧硫化碳比除去由它产生的硫化氢困难得多,所以该步骤是需要的。
通过一个余热锅炉(18)从来自反应器(17)的气体进一步回收热量。在余热锅炉(18)里,每小时产生压力为5巴的蒸汽约65吨,冷凝液则在160℃下,在转筒(19)里被分离。部分在转筒(12)里分离的冷凝液加入在232℃下在上游产生的冷凝液(在转筒(19)中分离的)并通过泵(20)返回部分氧化单元(10)用于原料气体的骤冷。由于在离开转筒(19)后的气体内还存在相当的有效热量,部分热量在交换器(21)里被用来驱动一吸收致冷单元(28),使温度自160℃降低至145℃,而部分热量则在除硫单元(27)的再沸器(22)中加以利用。在分离筒(23)里进一步冷凝分离以后,使用热交换器(24)将气流剩余的有效热量用来使水加热(产生热水)。最后,使用热交换器(25),用冷却水将气流冷却到40℃,冷凝液在转筒(26)里除去。
现在冷却气体(表1的气流5)是26巴,并含有约32%(体积比) 的二氧化碳,但它混杂了约1%的硫化物,主要是硫化氢。除硫单元(27)应能除去气流里所有的硫,使它降至低于约百万分之五十,却保留大部分二氧化碳,目前有几种方法可供选择,例如Sulphurox,Selexol,Purisol或者Alkazid法等。在某些情况下,它们需要再沸的热量,用以从溶剂中除去硫化氢。同时还需要致冷作用使得使用物理溶剂的方法里所固有的大溶液环流速率减至最小。在图1B中,画出了一个使用物理溶剂的除硫单元(27)。致冷作用是通过氨吸收单元(28)提供的。致冷所需要的热量是从交换器(21)里出来的气流中取得的。用于除硫单元里溶剂解吸的再沸的热量同样是由交换器(22)提供的。
脱硫气(表1的气流6)在40℃和25巴的气压下离开除硫单元(27),它基本上不含硫。在分离出一些气体(表1的气流11)供燃气轮机排出气作后燃使用以后,余下的气体(表1的气流7)通向填料饱和塔(30),在那里,它在150℃下与水的环流蒸汽接触,水的热量是从燃气轮机(31,32,33)排出气对流加热区域(34A)里的加热螺旋管(40)得到的。可燃气体离开饱和塔(30)时具有130℃的饱和蒸汽,并通过从交换器(16)里的原始转移气体回收的热量进一步加热到280℃。
用于燃气轮机的加热的可燃气体被输送到燃烧室(31),并藉助从燃气轮机(33)驱动的空气压缩机(32)来的空气进行燃烧。净功率输出驱动一交流发电机(52)产生电力。本例中,在280℃和24巴的条件下输送到燃气轮机的可燃气体(表1的气流10)包含约27%(体积比)的二氧化碳(折干计算),11%(体积比)的蒸汽。由于具有燃烧室压力的占体积38%的惰性气体,主要是二氧化碳的存在,这组成了一种高效的燃气轮机燃料。这减小了空气压缩机的负荷,从而增加了可利用来发电的净功率量。对于所描述的本发明的实施例,燃气轮机产生225 兆瓦的净功率。
排出的气体(表1的气流12)在约470℃的温度下离开燃气轮机。为了使存在于这些气体中的大量热量得到最佳的利用,在后燃室(34)里先将温度上升到575℃。该后燃室利用部分在前一阶段产生的脱硫气(表1的气流(11))作为其燃料。流出的气体接着通向对流加热区域(34A),在那里,通过用于种种产生蒸汽和过热工作状态的一连串热回收螺旋管。余热锅炉螺旋管(36)及其关联的水加热器加热螺旋管(38)具有每小时产生气压为100巴的蒸汽约370吨的能力。该蒸汽在螺旋管(35)里过热到500℃,接着通向相连的汽轮机(41-44)。这些都工作在100巴和冷凝条件0.03巴之间,中间有一次重新加热(5巴),四个汽轮机总共产生约157兆瓦功率。
此外,在骤冷以后,即在锅炉(11)里,立即产生的20巴的每小时45吨的蒸汽在对流加热区域(34)的螺旋管(37)里过热到290℃,并通向汽轮机(42)。在余热锅炉(18)里产生的另外5巴蒸汽加到5巴蒸汽内,它们在螺旋管(39)里一起从约160℃一直预热到275℃。在经过最后一个汽轮机(44)以后,湿蒸汽(干燥度为90%)在水冷却热交换器(45)里冷凝,冷凝液被水泵(46)泵到螺旋管(47,48)里预热至120℃,并经由除气机(49)和再循环泵(50)返回到蒸汽回路。蒸汽回路的补给水被输入除气机(49)。
如上所述,对流加热区域的热回收还包括为饱和塔(30)提供热水的水加热器(40)。来自对流加热区域(34A)的烟道气(表1的气流13)从对流加热区域(34A)经由烟囱(51)通向大气。
现在回到除硫单元(27),流出的包含已被分离的硫化物的气流(表1的气流8)含有约25%(克分子)的硫化物,并很适合于处理和用克劳斯窑(29)回收硫。来自克劳斯窑(29)的尾气通过例如“斯科特”过程(Scot    Process)进一步处理,为此目的,在除硫单元前取出 一还原气(表1中的气流9)。仅含有微量硫的最终的尾气带着其他剩余的排放物输送到后燃室(34)。然而,产生的烟道气的含硫量仍不高于百万分之十五。
Figure 87106025_IMG2
Figure 87106025_IMG3
Figure 87106025_IMG4

Claims (5)

1、一种用于从含碳燃料产生动力的方法,其特征在于,它包括下列步骤:在超大气压下用氧气或一种含氧气体使燃料部分氧化以产生含有一氧化碳的气流,在氧化步骤之后立即将上述气流用水骤冷,使骤冷的气流流经一锅炉,从冷却的气流中分离出水,确保气流处于足以开始一个放出热量的转移反应的温度,接着使气流经受一氧化碳转移反应,从而使至少一些一氧化碳转化成二氧化碳,随之放出热量,用由转移反应放出的热量加热气流,使被加热的气流膨胀而产生动力,然后使至少一大部分膨胀的气流燃烧而产生附加的动力。
2、按照权利要求1所述的方法,其特征在于,用于上述转移反应的水或蒸汽至少一部分是从骤冷的水得到的。
3、按照权利要求1或2所述的方法,其特征在于,转移后的气流的温度在膨胀之前先升高。
4、按照权利要求1或2所述的方法,其特征在于,包括去除硫的步骤。
5、按照权利要求1至2所述的方法,其特征在于,基本上膨胀气流中所有的一氧化碳和氢都被用来产生动力。
CN87106025A 1986-08-29 1987-08-28 清洁发电的方法 Expired CN1012000B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB20919/86 1986-08-29
GB868620919A GB8620919D0 (en) 1986-08-29 1986-08-29 Power from carbonaceous fuel
GB28429/86 1986-11-27
GB868628429A GB8628429D0 (en) 1986-11-27 1986-11-27 Electric power generation process

Publications (2)

Publication Number Publication Date
CN87106025A CN87106025A (zh) 1988-03-09
CN1012000B true CN1012000B (zh) 1991-03-13

Family

ID=26291226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN87106025A Expired CN1012000B (zh) 1986-08-29 1987-08-28 清洁发电的方法

Country Status (10)

Country Link
US (2) US4881366A (zh)
EP (1) EP0259114B1 (zh)
JP (1) JPH0681903B2 (zh)
CN (1) CN1012000B (zh)
CA (1) CA1330875C (zh)
DE (1) DE3760916D1 (zh)
DK (1) DK165994C (zh)
ES (1) ES2012083B3 (zh)
FI (1) FI94664C (zh)
GB (1) GB2196016B (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196016B (en) * 1986-08-29 1991-05-15 Humphreys & Glasgow Ltd Clean electric power generation process
US4999995A (en) * 1986-08-29 1991-03-19 Enserch International Investments Ltd. Clean electric power generation apparatus
US4999993A (en) * 1987-11-25 1991-03-19 Fluor Corporation Reactor expander topping cycle
DE3926964A1 (de) * 1989-08-16 1991-02-21 Siemens Ag Verfahren zur minderung des kohlendioxidgehalts des abgases eines gas- und dampfturbinenkraftwerks und danach arbeitendes kraftwerk
GB9105095D0 (en) * 1991-03-11 1991-04-24 H & G Process Contracting Improved clean power generation
US5220782A (en) * 1991-10-23 1993-06-22 Bechtel Group, Inc. Efficient low temperature solvent removal of acid gases
SE9300500D0 (sv) * 1993-02-16 1993-02-16 Nycomb Synergetics Ab New power process
GB9308898D0 (en) * 1993-04-29 1993-06-16 H & G Process Contracting Peaked capacity power station
GB2296255A (en) * 1994-12-21 1996-06-26 Jacobs Eng Ltd Production of electricity and hydrogen
US6032456A (en) * 1995-04-07 2000-03-07 Lsr Technologies, Inc Power generating gasification cycle employing first and second heat exchangers
DE19535288A1 (de) * 1995-09-22 1997-03-27 Siemens Ag Verfahren und Anlage zum Verstromen eines Brenngases
GB2307008A (en) * 1995-11-13 1997-05-14 Fred Moseley Gas turbine engine with two stage combustion
GB2331128B (en) * 1997-11-04 2002-05-08 Magnox Electric Plc Power generation apparatus
US6196000B1 (en) 2000-01-14 2001-03-06 Thermo Energy Power Systems, Llc Power system with enhanced thermodynamic efficiency and pollution control
US6333015B1 (en) 2000-08-08 2001-12-25 Arlin C. Lewis Synthesis gas production and power generation with zero emissions
GB0025552D0 (en) * 2000-10-18 2000-11-29 Air Prod & Chem Process and apparatus for the generation of power
US7024796B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US7694523B2 (en) 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7503947B2 (en) 2005-12-19 2009-03-17 Eastman Chemical Company Process for humidifying synthesis gas
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
AU2007310971A1 (en) * 2006-10-18 2008-04-24 Lean Flame, Inc. Premixer for gas and fuel for use in combination with energy release/conversion device
EP1944268A1 (en) * 2006-12-18 2008-07-16 BP Alternative Energy Holdings Limited Process
DE102007022168A1 (de) 2007-05-11 2008-11-13 Siemens Ag Verfahren zur Erzeugung motorischer Energie aus fossilen Brennstoffen mit Abführung von reinem Kohlendioxid
US20100018216A1 (en) * 2008-03-17 2010-01-28 Fassbender Alexander G Carbon capture compliant polygeneration
BRPI1008485B1 (pt) 2009-02-26 2020-06-02 Palmer Labs, Llc Aparelho e método para combustão de um combustível em alta pressão e alta temperatura e sistema e dispositivo associados.
US8596075B2 (en) 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
DE112009004645T5 (de) * 2009-04-10 2012-08-09 Mitsubishi Heavy Industries, Ltd. Co-shift-katalysator, co-shift-reaktor und verfahren zur aufreinigung von in gas umgewandeltes gas
JP5193160B2 (ja) * 2009-11-10 2013-05-08 株式会社日立製作所 二酸化炭素分離回収装置を備えたガス化発電システム
US8268023B2 (en) 2010-04-26 2012-09-18 General Electric Company Water gas shift reactor system for integrated gasification combined cycle power generation systems
US9296955B2 (en) 2010-09-20 2016-03-29 Exxonmobil Chemical Patents Inc. Process and apparatus for co-production of olefins and electric power
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
US8869889B2 (en) 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
WO2013067149A1 (en) 2011-11-02 2013-05-10 8 Rivers Capital, Llc Power generating system and corresponding method
WO2013120070A1 (en) 2012-02-11 2013-08-15 Palmer Labs, Llc Partial oxidation reaction with closed cycle quench
JP2013241923A (ja) * 2012-05-23 2013-12-05 Babcock Hitachi Kk 炭素系燃料のガス化発電システム
JP6250332B2 (ja) 2013-08-27 2017-12-20 8 リバーズ キャピタル,エルエルシー ガスタービン設備
US10099972B2 (en) * 2013-12-06 2018-10-16 Exxonmobil Upstream Research Company Methods and systems for producing liquid hydrocarbons
TWI657195B (zh) 2014-07-08 2019-04-21 美商八河資本有限公司 加熱再循環氣體流的方法、生成功率的方法及功率產出系統
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
CA2960195C (en) 2014-09-09 2023-04-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
MA40950A (fr) 2014-11-12 2017-09-19 8 Rivers Capital Llc Systèmes et procédés de commande appropriés pour une utilisation avec des systèmes et des procédés de production d'énergie
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
WO2016205116A1 (en) 2015-06-15 2016-12-22 8 Rivers Capital, Llc System and method for startup of a power production plant
KR102204443B1 (ko) 2016-02-18 2021-01-18 8 리버스 캐피탈, 엘엘씨 메탄화를 포함하는 동력 생산을 위한 시스템 및 방법
AU2017223264B2 (en) 2016-02-26 2019-08-29 8 Rivers Capital, Llc Systems and methods for controlling a power plant
PL3512925T3 (pl) 2016-09-13 2022-07-11 8 Rivers Capital, Llc Układ i sposób wytwarzania energii z wykorzystaniem częściowego utleniania
KR102669709B1 (ko) 2017-08-28 2024-05-27 8 리버스 캐피탈, 엘엘씨 회수식 초임계 co2 동력 사이클들의 저등급의 열 최적화
PL3759322T3 (pl) 2018-03-02 2024-03-18 8 Rivers Capital, Llc Układy i sposoby wytwarzania energii z wykorzystaniem płynu roboczego z dwutlenku węgla

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH250478A (de) * 1946-04-12 1947-08-31 Bbc Brown Boveri & Cie Gasturbinenanlage in Verbindung mit mindestens einem Druckgaserzeuger.
US2592749A (en) * 1947-01-16 1952-04-15 Rateau Soc Gas turbine engine associated with a gas producer under pressure
GB895038A (en) * 1957-02-01 1962-04-26 Gas Council Process for the production of gases rich in hydrogen
US2992906A (en) * 1958-05-29 1961-07-18 Texaco Inc Carbon recovery method
DE1958033A1 (de) * 1969-11-19 1971-06-03 Metallgesellschaft Ag Erzeugung von Wasserstoff oder Ammoniaksynthesegas bei mittlerem Durck
DE2005723C3 (de) * 1970-02-07 1973-01-04 Steag Ag, 4300 Essen Regelungseinrichtung einer Gasturbinenanlage
US3692506A (en) * 1970-02-13 1972-09-19 Total Energy Corp High btu gas content from coal
GB1470867A (en) * 1973-12-27 1977-04-21 Texaco Development Corp Gas turbine process utilizing purified fuel and recirculated fuel gas
US3868817A (en) * 1973-12-27 1975-03-04 Texaco Inc Gas turbine process utilizing purified fuel gas
DE2425939C2 (de) * 1974-05-30 1982-11-18 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum Betreiben eines Kraftwerkes
CH584352A5 (zh) * 1975-04-08 1977-01-31 Bbc Brown Boveri & Cie
GB1533163A (en) * 1976-03-15 1978-11-22 Comprimo Bv Hydrocarbon cracking plant
US4074981A (en) * 1976-12-10 1978-02-21 Texaco Inc. Partial oxidation process
DE2862202D1 (en) * 1978-10-05 1983-04-21 Texaco Development Corp Process for the production of gas mixtures containing co and h2 by the partial oxidation of hydrocarbonaceous fuel with generation of power by expansion in a turbine
US4193250A (en) * 1978-11-29 1980-03-18 Paul Revere Corporation Height control for multi-row crop harvester
US4202167A (en) * 1979-03-08 1980-05-13 Texaco Inc. Process for producing power
US4261167A (en) * 1979-04-27 1981-04-14 Texaco Inc. Process for the generation of power from solid carbonaceous fuels
US4193259A (en) * 1979-05-24 1980-03-18 Texaco Inc. Process for the generation of power from carbonaceous fuels with minimal atmospheric pollution
GB2196016B (en) * 1986-08-29 1991-05-15 Humphreys & Glasgow Ltd Clean electric power generation process

Also Published As

Publication number Publication date
DK451187A (da) 1988-03-01
GB2196016B (en) 1991-05-15
ES2012083B3 (es) 1990-03-01
JPH0681903B2 (ja) 1994-10-19
EP0259114A1 (en) 1988-03-09
DK165994C (da) 1993-07-26
CN87106025A (zh) 1988-03-09
CA1330875C (en) 1994-07-26
GB8720185D0 (en) 1987-10-07
US4881366A (en) 1989-11-21
FI94664C (fi) 1995-10-10
DK165994B (da) 1993-02-22
DE3760916D1 (en) 1989-12-07
US4999992A (en) 1991-03-19
FI873752A (fi) 1988-03-01
FI94664B (fi) 1995-06-30
DK451187D0 (da) 1987-08-28
FI873752A0 (fi) 1987-08-28
GB2196016A (en) 1988-04-20
EP0259114B1 (en) 1989-11-02
JPS63100230A (ja) 1988-05-02

Similar Documents

Publication Publication Date Title
CN1012000B (zh) 清洁发电的方法
US4999995A (en) Clean electric power generation apparatus
CN1020348C (zh) 结合式气化混合循环的发电方法
US4193259A (en) Process for the generation of power from carbonaceous fuels with minimal atmospheric pollution
US5715671A (en) Clean power generation using IGCC process
US4756722A (en) Device for gasifying coal
JP2649013B2 (ja) ガスタービンの使用によりエネルギーを生じさせる方法
US4261167A (en) Process for the generation of power from solid carbonaceous fuels
JP5830142B2 (ja) バイオマスを用いて水素ガスを生成するための装置
EP2092044B1 (en) Process and equipment for producing synthesis gas from biomass
US20110185701A1 (en) Turbine equipment and power generating plant
CN101016490A (zh) 一种处理包含氢及二氧化碳的气体混合物的方法
US3873845A (en) Method of producing electric energy including coal gasification
CN1036375A (zh) 燃料气的生产
JP4059546B2 (ja) 合成ガスおよび電気エネルギーを組み合わせて製造する方法
CN100504053C (zh) 内外燃煤一体化联合循环发电***及发电方法
EP0686231B1 (en) New power process
Romano et al. Long-term coal gasification-based power with near-zero emissions. Part B: Zecomag and oxy-fuel IGCC cycles
CN86105412A (zh) 阶式热量回收及其气体联产品的生产方法
CN215208467U (zh) 耦合化学链反应及co2分离捕集的高效低能耗氢电热冷多联产***
JP3702396B2 (ja) 石炭ガス化複合発電装置
CN112408324A (zh) 耦合化学链反应及co2分离捕集的高效低能耗氢电热冷多联产***及方法
KR970063877A (ko) 고신뢰도 고효율 석탄가스화 복합발전 시스템 및 전력 발생방법
CN216720932U (zh) 一种基于内燃机的调频电源及发电***
SU594048A1 (ru) Способ получени амиака

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Applicant after: H & G Process Contracting Ltd.

Applicant before: Humphreys & Glasgow Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: HUMPHREYS + GLASGOW LTD. TO: H+G PROCESSING CONTRACTING CO. LTD.

C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee