CN101192492B - 透明导电膜的制备方法 - Google Patents

透明导电膜的制备方法 Download PDF

Info

Publication number
CN101192492B
CN101192492B CN2006101570008A CN200610157000A CN101192492B CN 101192492 B CN101192492 B CN 101192492B CN 2006101570008 A CN2006101570008 A CN 2006101570008A CN 200610157000 A CN200610157000 A CN 200610157000A CN 101192492 B CN101192492 B CN 101192492B
Authority
CN
China
Prior art keywords
tube
carbon nano
preparation
glass
nesa coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006101570008A
Other languages
English (en)
Other versions
CN101192492A (zh
Inventor
魏洋
肖林
朱峰
刘亮
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2006101570008A priority Critical patent/CN101192492B/zh
Priority to US11/875,104 priority patent/US20080118634A1/en
Priority to JP2007275369A priority patent/JP4955506B2/ja
Publication of CN101192492A publication Critical patent/CN101192492A/zh
Application granted granted Critical
Publication of CN101192492B publication Critical patent/CN101192492B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/004Coating the inside
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种透明导电膜的制备方法,是在玻璃元件的表面形成所需的透明导电膜,该透明导电膜的制备方法主要包括:制备碳纳米管浆料;将制备的碳纳米管浆料在玻璃元件的表面形成一个碳纳米管浆料层;将碳纳米管浆料层烘干;以及将形成有碳纳米管浆料层的玻璃元件在氮气或惰性气体的保护下加热至300~500℃并保温一定的时间,再降至室温,从而在玻璃元件的表面形成碳纳米管透明导电膜。

Description

透明导电膜的制备方法
技术领域
本发明涉及一种透明导电膜的制备方法,特别涉及一种可以应用在场发射器件内的透明导电膜的制备方法。
背景技术
透明导电膜在场发射技术中有着广泛的应用,其设置在场发射器件的阳极基板上与阴极的电子发射体共同作用形成外加电场,同时,荧光层发出的光透过透明导电膜向外发散,因而,透明导电膜应具有导电性及透光性。目前工业上使用的多为氧化铟锡薄膜,是采用磁控溅射的方法蒸镀而形成。该种制备氧化铟锡薄膜的方法虽然可以实现大批量生产,但是所需的生产材料和制备过程的成本均较高。
因此,有必要提供一种制备过程简单、效率高、低成本的透明导电膜的制备方法,该制备方法得到的透明导电膜具有较好的导电性及透光性。
发明内容
下面将以实施例说明一种透明导电膜的制备方法,该制备方法制备过程简单、易于操作、成本较低且具有较高的效率,同时,该制备方法得到的透明导电膜具有较好的导电性及透光性。
一种透明导电膜的制备方法,是在玻璃元件的表面形成所需的透明导电膜,该透明导电膜的制备方法主要包括以下步骤:
制备碳纳米管浆料;
将制备的碳纳米管浆料在玻璃元件的表面形成一个碳纳米管浆料层;
将碳纳米管浆料层烘干;以及
将形成有碳纳米管浆料层的玻璃元件在氮气或惰性气体的保护下加热至300~500℃并保温一定的时间,再降至室温,从而在玻璃元件的表面形成碳纳米管透明导电膜。
本实施例透明导电膜的制备方法中利用碳纳米管浆料与玻璃表面间的吸附作用在玻璃元件上形成碳纳米管浆料层并将其加热从而在玻璃元件上形成所需的透明导电膜,制备过程简单、易于操作、成本较低且具有较高的效率;同时,因碳纳米管具有良好的导电特性,由本实施例制得的透明导电膜在具有透光性的同时也具有较好的导电性能。
附图说明
图1是本发明实施例透明导电膜的制备方法的流程示意图。
具体实施方式
以下将结合附图详细说明本实施例透明导电膜的制备方法。
请参阅图1,本实施例制备透明导电膜的方法是在玻璃元件的表面形成所需的透明导电膜,主要包括以下步骤:
步骤(一),制备碳纳米管浆料;
碳纳米管浆料中主要包含有机载体和分散在有机载体内的碳纳米管,该碳纳米管浆料的制备方法包括以下步骤:
首先,制备有机载体;
该有机载体为混合剂,包括作为溶剂的松油醇、作为增塑剂的少量邻苯二甲酸二丁酯和作为稳定剂的少量乙基纤维素。有机载体的制备过程为:首先在油浴加热及搅拌的条件下将乙基纤维素溶解到松油醇中,然后加入邻苯二甲酸二丁酯在同样油浴加热的条件下持续搅拌一定时间即可得到有机载体。其中,优选地,松油醇、乙基纤维素和邻苯二甲酸二丁酯在混合剂中的质量百分比分别约为90%、5%和5%;加热温度为80~110℃,最优为100℃;持续搅拌时间为10~25小时,最优为24小时。
将粉末状碳纳米管在二氯乙烷中用破碎机分散后再进行超声分散形成碳纳米管溶液;
其中,碳纳米管可以预先通过化学气相沉积法、电弧放电法或激光蒸发法等现有的技术制备,长度优选为1~100微米,最优地,长度约为10微米;直径优选为1~100纳米。碳纳米管与二氯乙烷的比例优选为:每两克碳纳米管需要约500毫升的二氯乙烷。破碎机分散的时间优选为5~30分钟,最优为20分钟;超声分散的时间优选为10~40分钟,最优为30分钟。
过滤碳纳米管溶液;
其中,碳纳米管溶液可以选用筛网过滤,最优地,选用400目的筛网过滤碳纳米管溶液从而可得到优选直径和长度的碳纳米管。
将碳纳米管溶液加入有机载体中并充分分散;
其中,可以利用超声震荡将碳纳米管溶液在有机载体中充分分散,超声震荡的时间优选为30分钟。碳纳米管溶液中的碳纳米管与有机载体的质量比优选为15∶1。
最后,在水浴条件下加热混有碳纳米管溶液的有机载体到得到具有合适浓度的碳纳米管浆料为止。其中,碳纳米管浆料中碳纳米管的浓度可影响所得到的碳纳米管透明导电膜的透光性能及导电性能。当浆料中碳纳米管的浓度较高时,得到的碳纳米管透明导电膜的透光率较低而导电性能较好;反之,当浆料中碳纳米管的浓度较低时,得到的碳纳米管透明导电膜的透光率较高而导电性能较弱。优选地,当在上述制备过程中选用2克碳纳米管、约500毫升的二氯乙烷和碳纳米管与有机载体的质量为15∶1时,在水浴加热下将混有碳纳米管溶液的有机载体蒸发得到200毫升的碳纳米管浆料。
其中,加热温度优选为90℃。
步骤(二),将制备的碳纳米管浆料在玻璃元件的表面形成一个碳纳米管浆料层。
其中,在玻璃元件表面上形成碳纳米管浆料层的方法依据玻璃元件的形状而不同,例如,当需要在平板玻璃的一侧表面形成透明导电膜时,形成碳纳米管浆料层的方法为:将制备的碳纳米管浆料放置在敞口容器内;将两块重叠的平板玻璃竖直浸入碳纳米管浆料中;再匀速提出平板玻璃,通过吸附作用即在重叠的两块玻璃的两相对表面各形成一碳纳米管浆料层。当需要在玻璃管内壁形成透明导电膜时,形成碳纳米管浆料层的方法为:将玻璃管一端封闭并将玻璃管的封闭端向下竖直放置;将碳纳米管浆料倒入玻璃管内;打开玻璃管的封闭端,碳纳米管浆料在重力的作用下自然流下,部分碳纳米管浆料通过吸附作用在玻璃管内壁上形成碳纳米管浆料层。形成碳纳米管浆料层的过程应在洁净的环境内进行,优选地,环境内的灰尘度应小于1000mg/m3
步骤(三),将碳纳米管浆料层烘干使得碳纳米管浆料层固定于玻璃元件表面。
步骤(四)将形成有碳纳米管浆料层的玻璃元件在氮气或惰性气体的保护下加热至300~500℃并保温一定的时间,再降至室温,从而在玻璃元件的表面形成碳纳米管透明导电膜。
其中,加热温度优选为320℃,保温时间优选为20分钟。
在实验中,采用上述制备方法中的较优参数制得长度约为10厘米且宽度约为8厘米的透明导电膜,经测试,该碳纳米管透明导电膜的透光率约为70%,沿长度方向上的电阻小于100千欧。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (10)

1.一种透明导电膜的制备方法,是在玻璃元件的表面形成透明导电膜,该透明导电膜的制备方法主要包括:
制备碳纳米管浆料,该碳纳米管浆料包括一有机载体;
将制备的碳纳米管浆料在玻璃元件的表面形成一个碳纳米管浆料层;以及
将碳纳米管浆料层烘干;
将形成有碳纳米管浆料层的玻璃元件在氮气或惰性气体的保护下加热至300~500℃并保温一定的时间以蒸发碳纳米管浆料层的有机载体中的溶剂,再降至室温,从而在玻璃元件的表面形成碳纳米管透明导电膜。
2.如权利要求1所述的透明导电膜的制备方法,其特征在于:当所述的玻璃元件为平板玻璃且在平板玻璃的一侧表面形成透明导电膜时,形成碳纳米管浆料层的方法为:
将制备的碳纳米管浆料放置在敞口容器内;
将两块重叠的平板玻璃竖直浸入碳纳米管浆料中;
以及,再匀速提出平板玻璃,通过吸附作用即在重叠的两块玻璃的两相对表面各形成一碳纳米管浆料层。
3.如权利要求1所述的透明导电膜的制备方法,其特征在于:当所述的玻璃元件为玻璃管且在玻璃管内壁形成透明导电膜时,形成碳纳米管浆料层的方法为:
将玻璃管一端封闭并将玻璃管的封闭端向下放置;
将碳纳米管浆料倒入玻璃管内;
以及,打开玻璃管的封闭端,碳纳米管浆料在重力的作用下自然流下,部分碳纳米管浆料通过吸附作用在玻璃管内壁上形成碳纳米管浆料层。
4.如权利要求2或3所述的透明导电膜的制备方法,其特征在于:所述的碳纳米管浆料的制备过程包括:
制备有机载体,该有机载体为由作为溶剂的松油醇、作为增塑剂的少量邻苯二甲酸二丁酯和作为稳定剂的少量乙基纤维素形成的混合剂;
将粉末状碳纳米管在二氯乙烷中用破碎机分散后再进行超声分散形成碳纳米管溶液;
过滤碳纳米管溶液;
将过滤后的碳纳米管溶液加入有机载体中同时利用超声充分分散;以及
在水浴条件下加热混有碳纳米管溶液的有机载体得到所述的碳纳米管浆料。
5.如权利要求4所述的透明导电膜的制备方法,其特征在于:所述的碳纳米管浆料中的碳纳米管的长度为1~100微米,直径为1~100纳米。
6.如权利要求5所述的透明导电膜的制备方法,其特征在于:所述的有机载体的制备过程为:首先在油浴80~110℃及搅拌的条件下将乙基纤维素溶解到松油醇中,然后加入邻苯二甲酸二丁酯在油浴80~110℃的条件下持续搅拌10~25小时即可得到有机载体。
7.如权利要求6所述的透明导电膜的制备方法,其特征在于:所述的混合剂中松油醇、乙基纤维素和邻苯二甲酸二丁酯的质量百分比分别为90%、5%和5%;所述的加热温度为100℃;所述的持续搅拌时间为24小时。
8.如权利要求7所述的透明导电膜的制备方法,其特征在于:所述的碳纳米管与所述的二氯乙烷的比例为:每两克碳纳米管需要500毫升的二氯乙烷;所述的破碎机分散的时间为20分钟;所述的碳纳米管溶液中的碳纳米管与所述的有机载体的质量比为15∶1;所述的超声分散的时间为30分钟;所述的水浴加热温度为90℃且加热后得到200毫升的碳纳米管浆料。
9.如权利要求8所述的透明导电膜的制备方法,其特征在于:所述的形成碳纳米管浆料层的过程在灰尘度小于1000mg/m3的条件下进行。
10.如权利要求9所述的透明导电膜的制备方法,其特征在于:所述的气体保护下的加热温度为320℃,保温时间为20分钟。
CN2006101570008A 2006-11-22 2006-11-22 透明导电膜的制备方法 Active CN101192492B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006101570008A CN101192492B (zh) 2006-11-22 2006-11-22 透明导电膜的制备方法
US11/875,104 US20080118634A1 (en) 2006-11-22 2007-10-19 Method for manufacturing transparent conductive film
JP2007275369A JP4955506B2 (ja) 2006-11-22 2007-10-23 透明導電性フィルムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006101570008A CN101192492B (zh) 2006-11-22 2006-11-22 透明导电膜的制备方法

Publications (2)

Publication Number Publication Date
CN101192492A CN101192492A (zh) 2008-06-04
CN101192492B true CN101192492B (zh) 2010-09-29

Family

ID=39417268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101570008A Active CN101192492B (zh) 2006-11-22 2006-11-22 透明导电膜的制备方法

Country Status (3)

Country Link
US (1) US20080118634A1 (zh)
JP (1) JP4955506B2 (zh)
CN (1) CN101192492B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192493B (zh) * 2006-11-22 2011-02-02 鸿富锦精密工业(深圳)有限公司 阳极装置及其制造方法
JP5401814B2 (ja) * 2008-03-22 2014-01-29 コニカミノルタ株式会社 透明導電性フィルムの製造方法及び透明導電性フィルム
KR100945208B1 (ko) * 2008-11-10 2010-03-03 한국전기연구원 일액형 탄소나노튜브 바인더 혼합액을 이용한 투명히터의 제조방법 그리고 그 제조방법에 의한 투명히터
US8435595B2 (en) * 2009-07-15 2013-05-07 Empire Technology Development, Llc Carbon nanotube transparent films
CN101864561B (zh) * 2010-06-04 2011-11-16 山东力诺新材料有限公司 罩玻璃管内壁减反射涂层的成形工艺
FR2961625A1 (fr) 2010-06-16 2011-12-23 Arkema France Procede de preparation de films transparents conducteurs a base de nanotubes de carbone
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
CN101950600A (zh) * 2010-09-29 2011-01-19 彩虹集团公司 一种透明介质浆料
CN102319661B (zh) * 2011-07-25 2013-08-21 云梦县德邦实业有限责任公司 导电膜的涂布方法
WO2014053250A1 (en) * 2012-10-02 2014-04-10 Siemens Aktiengesellschaft Glass body with infrared light reflective coating with a network of nanomaterials, method for manufacturing the glass body, heat receiver tube with the glass body, parabolic trough collector with the heat receiver tube and use of the parabolic trough collector
TWI608986B (zh) * 2013-07-26 2017-12-21 東海大學 半導體奈米層狀結構及其製作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908585A (en) * 1995-10-23 1999-06-01 Mitsubishi Materials Corporation Electrically conductive transparent film and coating composition for forming such film
CN1543399A (zh) * 2001-03-26 2004-11-03 含碳纳米管的涂层
CN1556548A (zh) * 2004-01-08 2004-12-22 西安交通大学 一种用于场发射显示器阴极的大面积碳纳米管薄膜制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784384A (en) * 1964-03-17 1974-01-08 Atomic Energy Commission High temperature ceramic composition for hydrogen retention
US4200484A (en) * 1977-09-06 1980-04-29 Rockwell International Corporation Method of fabricating multiple layer composite
DE3512158A1 (de) * 1985-04-03 1986-10-23 W.C. Heraeus Gmbh, 6450 Hanau Elektrisches bauelement sowie verfahren zum herstellen eines solchen bauelementes
JPH10221522A (ja) * 1997-02-07 1998-08-21 Dainippon Printing Co Ltd ブラックマトリックスの形成方法
JP2000063726A (ja) * 1998-08-19 2000-02-29 Ise Electronics Corp 導電性ペースト
JP2000208045A (ja) * 1999-01-19 2000-07-28 Matsushita Electric Ind Co Ltd 円形直管内面への成膜方法
JP3506964B2 (ja) * 1999-06-30 2004-03-15 太陽誘電株式会社 積層セラミック電子部品の製造方法
US7449081B2 (en) * 2000-06-21 2008-11-11 E. I. Du Pont De Nemours And Company Process for improving the emission of electron field emitters
WO2002080195A1 (en) * 2001-02-16 2002-10-10 E.I. Dupont De Nemours And Company High conductivity polyaniline compositions and uses therefor
ATE275530T1 (de) * 2001-02-26 2004-09-15 Nanolight Internat Ltd Verfahren zur bildung einer kohlenstoffnanoröhren enthaltenden beschichtung auf einem substrat
JP3606855B2 (ja) * 2002-06-28 2005-01-05 ドン ウン インターナショナル カンパニー リミテッド 炭素ナノ粒子の製造方法
JP3633598B2 (ja) * 2002-11-28 2005-03-30 ソニー株式会社 電子放出素子の製造方法及び表示装置の製造方法
KR100879293B1 (ko) * 2002-12-26 2009-01-19 삼성에스디아이 주식회사 다층 구조로 형성된 전자 방출원을 구비한 전계 방출표시장치
JP2005122930A (ja) * 2003-10-14 2005-05-12 Osaka Gas Co Ltd ナノスケールカーボンチューブペースト及び電子放出源
CN100543907C (zh) * 2004-04-22 2009-09-23 清华大学 一种碳纳米管场发射阴极的制备方法
US20060057290A1 (en) * 2004-05-07 2006-03-16 Glatkowski Paul J Patterning carbon nanotube coatings by selective chemical modification
US20050255613A1 (en) * 2004-05-13 2005-11-17 Dojin Kim Manufacturing of field emission display device using carbon nanotubes
US20060042661A1 (en) * 2004-08-31 2006-03-02 Meyer Douglas S Oil tank sludge removal method
US7645497B2 (en) * 2005-06-02 2010-01-12 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
US7799196B2 (en) * 2005-09-01 2010-09-21 Micron Technology, Inc. Methods and apparatus for sorting and/or depositing nanotubes
US20070275230A1 (en) * 2006-05-26 2007-11-29 Robert Murphy Methods and systems for creating a material with nanomaterials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908585A (en) * 1995-10-23 1999-06-01 Mitsubishi Materials Corporation Electrically conductive transparent film and coating composition for forming such film
CN1543399A (zh) * 2001-03-26 2004-11-03 含碳纳米管的涂层
CN1556548A (zh) * 2004-01-08 2004-12-22 西安交通大学 一种用于场发射显示器阴极的大面积碳纳米管薄膜制备方法

Also Published As

Publication number Publication date
CN101192492A (zh) 2008-06-04
JP4955506B2 (ja) 2012-06-20
JP2008130551A (ja) 2008-06-05
US20080118634A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
CN101192492B (zh) 透明导电膜的制备方法
JP5290926B2 (ja) 導電性構造体を利用した導電性フィルム製造方法
JP2009001481A (ja) 金属前駆体を含むカーボンナノチューブ組成物、カーボンナノチューブ薄膜およびその製造方法
CN101211746B (zh) 场发射灯管及其制造方法
TW201924949A (zh) 能量儲存裝置、能量儲存裝置之膜與用於印刷薄膜之墨水
CN104010990A (zh) 包含碳纳米角的致密质材料及其利用
JP2007070188A (ja) 酸化亜鉛微粒子及びその集合体と分散溶液の製造方法
JP2014028935A (ja) カルボキシメチルセルロースの製造方法、カルボキシメチルセルロースおよびカーボンナノチューブ含有組成物の分散剤
CN101188179B (zh) 场发射电子源的制造方法
WO2016114389A1 (ja) 導電積層体および導電積層体の製造方法
CN101192493B (zh) 阳极装置及其制造方法
CN100573809C (zh) 场发射平面显示光源及其制造方法
CN101523541B (zh) 使用纳米线阵列制造场发射电极的方法
US20180171161A1 (en) Conductive coating composition, conductive material, method for manufacturing conductive coating composition, and method for manufacturing conductive material
CN1962960A (zh) 碳纳米管场致发射薄膜的电泳阳极沉积制备方法
JP2006294525A (ja) 電子放出素子、その製造方法及びそれを用いた画像表示装置
TW201435127A (zh) 類鑽石薄膜及其製備方法
KR20170041739A (ko) 분산도가 높고 점도 조절이 가능한 탄소나노튜브 투명 전극 잉크
CN114566663A (zh) 一种燃料电池阴极用多层碳纳米管催化剂及其制备方法
JP6235828B2 (ja) 銀ミニワイヤ膜を製造する方法
KR200365309Y1 (ko) 은 나노입자가 코팅된 은 분말 및 그 제조방법
CN109568580B (zh) 一种RGO@Pt复合纳米材料的合成方法
TWI327735B (en) Anode device and method for making the same
CN101794696A (zh) 一种改善场发射特性的碳纳米管场发射阴极的制备方法
KR20050113971A (ko) 은 나노입자가 코팅된 은 분말 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant