CN101098898A - 具有催化剂涂层的多孔陶瓷滤器 - Google Patents

具有催化剂涂层的多孔陶瓷滤器 Download PDF

Info

Publication number
CN101098898A
CN101098898A CNA2005800061790A CN200580006179A CN101098898A CN 101098898 A CN101098898 A CN 101098898A CN A2005800061790 A CNA2005800061790 A CN A2005800061790A CN 200580006179 A CN200580006179 A CN 200580006179A CN 101098898 A CN101098898 A CN 101098898A
Authority
CN
China
Prior art keywords
ceramic
catalyst
filter
polymer
undercoat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800061790A
Other languages
English (en)
Inventor
T·陶
J·王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN101098898A publication Critical patent/CN101098898A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0093Other features
    • C04B38/0096Pores with coated inner walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

用交联聚合物屏障层预先涂覆通过氧化物底涂方法提供有催化剂涂层的多孔陶瓷催化剂载体或滤器,以防止底涂层纳米颗粒侵入陶瓷的微裂纹和/或微孔表面,屏障涂层由在适当底涂层稳定化或催化剂活化温度下可蒸发的烃聚合物进行热交联形成,并能优选地封闭制品的微孔/微通道孔容积。

Description

具有催化剂涂层的多孔陶瓷滤器
发明背景
本发明涉及将催化剂或催化剂载体涂层施加到陶瓷载体上的方法。更具体地说,本发明涉及用催化剂涂层涂布陶瓷基材的方法,其中,利用预涂覆或钝化步骤,通过减少催化剂和/或载体涂层扩散进入基材的细孔、微通道(各管状互连孔)和微裂纹结构,以改善催化基材的性质。
为了应对美国和欧洲盛行的日益严格的关于柴油发动机排放物的规定,近来研究集中在基本改进壁流蜂窝式陶瓷滤器的设计和性能,来处理柴油机废气。在所有改进中,正在实行采用催化剂涂层来控制烃和/或氧化氮排放物的设计改变。其目的是开发一种与高级排放物控制催化技术相适应的改进的耐高温、耐高热冲击、低成本蜂窝式烟灰滤器,代替现有的高成本和/或非催化的颗粒滤器。
在为上述应用而开发的滤器设计中有耐火陶瓷氧化物滤器,它对于滤器脱碳再生循环期间遇到的高排气温度,以及启动和再生过程中滤器快速加热和冷却期间发生的热冲击条件的耐受性都有了提高。为上述应用而开发的高级堇青石和钛酸铝组合物和蜂窝式滤器设计的例子,如美国专利6,541,407及2002年7月31日提交60/400,248、2002年7月31日提交的10/209,684和2002年3月14日提交的10/098,711待批、共同转让的美国专利申请所述。所有材料中,与催化剂相容的耐火陶瓷颗粒滤器的候选材料是耐火碱金属磷酸锆以及低膨胀的碱金属铝硅酸盐如β-锂霞石和铯榴石。上述组合物中的多种以及其它微裂纹陶瓷材料如铝酸钙被认为可用作流通式催化剂载体,用于控制汽车和柴油发动机氧化氮(NOx)的排放。
这些陶瓷材料符合甚至超出了柴油机排气滤器应用所需的高熔点、高热容、低热膨胀的大多数要求。然而,对于用作颗粒滤器的多孔陶瓷,一个难点是当将催化剂和催化剂载体底涂层(washcoat)施涂于滤器壁上时,具有气体渗透性降低和热膨胀增加的趋势。为了很好地耐受热冲击,平均在25-1000℃范围内,施涂底涂层和催化剂导致的CTE的增加不应超过10×10-7/℃,在该温度范围内,经底涂的滤器的CTE值不应超过20×10-7/℃。而且,滤器再生除去俘获的颗粒之后,废气空间速度高达150,000hr-1时,通过催化滤器的气体渗透性应足以将压降维持在8kPa以下。
现在的理解是,在底涂或催化过程中,滤器的壁孔隙率和大多数陶瓷材料中存在的结构微裂纹(裂纹宽度为0.1-3微米)常常填充有底涂层材料。在高度微裂纹陶瓷如钛酸铝中问题最为严重,尤其是当底涂层制剂含有非常细微粒度(例如,颗粒直径为0.02-0.1μm)的材料时。
微裂纹是造成大多数这些材料低CTE的主要原因,加热时裂纹会闭合,因而显著减小可能发生的尺寸增加。这样,某些情况下,在底涂结构中,用底涂层成分填充这些微裂纹会引起例如在40-50×10-7/℃的范围内高得多的膨胀系数。有了这种CTE水平,排气滤器正常应用条件下的滤器结构损伤危险是不可接受的。
对于在汽油机排放物控制的常规流通式催化剂基材的催化期间所采用的底涂微裂纹填充问题,一个解决方法是使用所谓的钝化涂层。它们是在施涂可妨碍底涂层材料侵入陶瓷微裂纹结构的底涂层之前、施涂在陶瓷基材壁上的预涂层。美国专利4,532,228提供了一些涂层材料的例子,它们可碳化或固化形成对于底涂层的屏障。
近来微裂纹壁流陶瓷滤器和流通式催化剂载体的材料和预先底涂钝化方法方面的进展包括2003年8月14日提交的Ogunwumi等人的待批、共同转让的美国专利申请序列号10/641,638中描述的内容,其全部内容被纳入本文作为参考。该申请描述了用聚合物屏障物或钝化层对陶瓷进行预涂,以防止底涂层纳米颗粒侵入陶瓷的微裂纹和/或微孔表面。所采用的屏障涂层由烃聚合物形成,所述烃聚合物能溶解或分散在极性介质中,能够在多孔陶瓷载体上形成中性或亲水表面,在适当的底涂层稳定化后或在催化活性温度下能完全蒸发。
上述申请中公开的聚合物屏障涂层可缓解CTE的增加并限制由于将底涂层施涂于微孔陶瓷滤器而必然引起的废气渗透性的降低,虽然在某些情况下可观察到疏水聚合物涂层和亲水底涂层之间的表面相互作用。因此,虽然难以完全避免由于底涂层施涂和孔封闭引起的背压力增大,所述涂层能够改善热膨胀性和气体渗透性特征,使得许多陶瓷滤器材料符合现有的商业需要。
但是,虽然催化剂滤器的发展是相当大的,但热膨胀和压降和/或孔隙率仍然不仅是催化剂滤器而且是常规流通式陶瓷催化剂载体的效能特征的关键。因此,即使在高催化剂底涂层负荷下,同时保持高级陶瓷载体或滤器材料低热膨胀系数和高气体渗透性的改进的材料和方法,仍然是目前开发项目的重要目标。
发明概述
本发明提供改进的钝化方法,对于要具有底涂层和催化剂涂层的高孔隙率微裂纹陶瓷蜂窝式滤器的钝化尤其有益。本发明改进的材料和方法,在底涂过程中能选择性地保护或预填充微裂纹、微孔和微通道,从而有效保护滤器高孔隙率陶瓷壁的气体渗透性。
本发明的有效性在很大程度上来源于采用热交联聚合物制剂来预处理以后将具有催化剂涂层的多孔陶瓷载体或滤器结构。因此,在一个实施方式中,本发明包括用来保护多孔陶瓷制品微孔结构的方法,该方法首先是向待涂覆催化剂的制品施涂包含合适的介质如水、交联增强剂及可热交联可热解的烃聚合物的聚合物溶液或分散体。该聚合物溶液是足够稀释的和/或可流动的,以确保液体粘度适合于有效透过陶瓷的多孔结构。
施涂了聚合物水溶液或分散体之后,将陶瓷制品加热至足以基本上除去水和其它介质并实现烃聚合物的热交联。理想的是,在接近介质的蒸发温度下聚合物开始交联,使得在单次加热循环期间,类似温度下,能有效实现聚合物的完全干燥和广泛交联。然而,也可采用独立的干燥和交联阶段或循环。干燥/交联过程的一个重要方面是产生聚合物溶液局部浓度,能选择性更强地将聚合物涂层材料沉积在陶瓷的细孔、微通道和微裂纹内。
本发明的第二方面提供用来将催化剂或催化剂底涂层施涂在陶瓷催化剂载体如催化气体滤器的改进的方法。根据该方法,首先用保护性热交联聚合物涂层保护催化剂载体,形成聚合物涂覆的催化剂载体。然后,将催化剂或催化剂底涂层悬浮液(具有和不具有所含的催化剂)施涂于此聚合物涂覆的载体上,干燥催化剂悬浮液或底涂层,形成催化剂涂覆的或底涂的载体。
最后,将底涂的或催化剂涂覆的载体加热到至少足以通过热解或氧化除去交联的聚合物涂层。所得催化的或底涂的催化剂载体尤其适合用作滤器,从流体如燃烧废气中除去颗粒物质,因为施涂了催化剂涂层或底涂层后,它显示的压降比根据现有技术类似涂覆的载体要低。
虽然尚未充分证明本发明有效的原因,现在的理解是,结合热交联的加热有助于将聚合物溶液富集在陶瓷制品的细孔或细连接微通道内。微毛细管作用倾向于增加结构微通道和微孔中溶液的沸点,使得在溶液干燥过程的末期,随着聚合物开始通过热活化交联,选择性地占据或封闭了陶瓷内互连微通道的细孔和细开口。所得微孔/微通道的封闭可将催化剂和/或底涂层溶液引导进入陶瓷较粗的孔结构中。
后续热加工除去交联的聚合物可清除聚合物封闭的陶瓷细孔和通道结构,以恢复气体流动,基本上重新建立原始多孔滤器壁的气体渗透性。而且,由于大多数壁孔容积在陶瓷粗孔结构中,可实现高的催化剂负荷和低的底涂压降。
上述本发明方法的一个重要优点在于,聚合物涂层的选择性可降低微裂纹保护或细孔封闭所需的聚合物的量。这就降低了加工成本,并显著减少了来自催化过程的次级排放物,上述这两点是催化剂涂层制造过程中的重要考虑因素。
本发明的又一方面包括具有孔结构的多孔陶瓷制品,其特征是存在粗孔容积和微孔/微通道孔容积,其中,所述孔结构含有优选封闭制品的微孔/微通道孔容积的交联聚合物屏障涂层。优选封闭微孔/微通道孔容积是指,通过屏障涂层的存在,相对于制品的粗孔容积,降低了制品的微孔/微通道孔容积。在根据本发明具有聚合物屏障涂层的优选多孔陶瓷中,有主要由钛酸铝或堇青石陶瓷材料构成的多孔陶瓷过滤体。
附图简要说明
下面参考附图,进一步描述本发明,其中:
图1是方法示意图,通过该方法,可交联的聚合物溶液能支持催化剂底涂层的选择性施涂;
图2显示了底涂的与未底涂的多孔滤器的压降比,两者都有或都没有进行交联聚合物预处理;
图3显示了根据本发明,具有交联聚合物屏障涂层的多孔陶瓷的较粗孔和微孔/微通道孔容积;和
图4是聚合物涂覆的滤器横截面的显微探针扫描图,显示该结构中存在的聚合物局部浓度。
发明详述
本发明中使用的优选的可交联聚合物是水溶性离子聚合物(ionenes),包括胺官能性的水溶性离聚物。适当交联后,这些聚合物形成防止微粒侵入陶瓷微孔和微通道的特别耐久和适当靶向的屏障,在一般水性底涂层或催化制剂的存在下,表面仍然保持中性或亲水特征,因而不会干扰所述溶液中催化剂或底涂层的沉积效率。而且,通过中等温度下的热解作用,可从互连的陶瓷材料微通道结构中完全除去由这些聚合物形成的交联屏障涂层,没有残留且不会破坏下面的底涂层。
离聚物型热交联烃聚合物的一个代表性例子是GE Betz,GE WaterTechnologies,Trevose,PA,U.S.A.销售的、水处理聚合物制剂如PC-1195TM溶液中存在的聚合物。该聚合物的分子量约为170,000,由规则季铵类骨架构成,分子侧链上带有2摩尔%的胺基。在交联剂环氧氯丙烷的存在下,聚合物热交联的典型反应途径如下所示:
Figure A20058000617900091
对于上述具体聚合物,x值一般为1960,y值一般约为40。在所示类型的交联过程中,官能侧链(A)上的氨基首先与交联剂的乙氧基反应,形成加成产物(B)。加成产物上的氯位点再通过Menschutkin反应与未反应聚合物侧链上的官能氨基反应,形成交联产物。
Menschutkin反应是低聚合物浓度下的缓慢反应,因此,通过这些反应进行至胶凝点的交联通常只在升高的温度下和相对浓缩的聚合物溶液中才会发生。这样,该反应途径提供了用来控制交联聚合物涂层在多种不同范围的多孔陶瓷材料上分布的有效控制机制。
虽然不希望被理论所束缚,目前所理解的选择性底涂或催化多孔陶瓷制品的机制如图1的示意图概况所示。首先参考图1(a),选定用于底涂的多孔陶瓷制品的一个截面10的特征为孔隙结构,包括粗孔12和与粗孔结合和/或互连粗孔的细微通道14和微孔16。这种孔结构的连续互连性使陶瓷具有很高的气体渗透性。
再参考图1(b),在这种陶瓷制品孔结构内提供交联聚合物涂层的过程中,首先用聚合物溶液18完全填充制品的孔结构,最有可能包括微孔12和微通道14。然后加热陶瓷,以便使聚合物18干燥和交联,形成如图1(c)所示的交联聚合物18a。注意,虽然以较薄涂层形式存在于陶瓷粗孔壁上,交联聚合物18a的分布似乎也包括尺寸足以基本上填充和/或封闭那些较小开口的陶瓷微孔和微通道中的聚合物浓度。
非限制性地,由汞孔隙率测定数据得到如图1(c)所示的热交联屏障涂层分布的证据,表明屏障层涂覆的多孔陶瓷样品中微孔/微通道容积优选比粗孔容积小。微孔和微通道是指截面尺寸不超过约5微米的多孔陶瓷材料内的孔和通道,材料的微孔和微通道容积是指由这些孔和通道组成的材料总孔容积的那部分容积。
将催化剂或催化剂底涂层涂覆并固定在陶瓷孔结构内,除去如图1(c)所示的交联聚合物屏障涂层,得到图1(d)所示的涂层分布。这种分布由在粗孔的表面上有效厚度的底涂层或催化剂涂层所表征,而不是基本上不含底涂层材料的陶瓷微通道或微孔。这种催化剂和/或催化剂底涂层的选择性分布形成具有良好气体渗透性和良好催化有效性的催化陶瓷制品。
对于多孔陶瓷材料,交联聚合物涂层比较其它聚合物或有机涂层的优点是三方面的。第一,交联步骤使聚合物在水中的溶解性和分散性降低,尽可能减小或消除了由后续施涂水性底涂层悬浮液引起的聚合物涂层的转移和除去。第二,交联可显著降低聚合物涂层的厚度,因而增加了用于沉积催化剂和/或底涂层的陶瓷材料粗孔容积的比例。第三,显著降低了用于有效封闭微裂纹、微孔和微通道的聚合物的使用量。
原则上可采用各种不同的可交联聚合物来沉积所述屏障涂层,只要符合一些功能要求。一个要求是,聚合物形成低粘度的稳定溶液或悬浮液,当首次接触多孔陶瓷的活性孔表面时,粘度通过交联或其它方式不会快速增加。第二,选定的聚合物须形成交联聚合物涂层,该涂层可与水性底涂层和/或催化涂层溶液润湿和/或与之相容。最后,由聚合物形成的交联涂层必须可完全热解,即在底涂层适度稳定化后或催化剂活化温度下能够蒸发而没有明显残留。
满足了这些要求,水溶性胺官能性离聚物构成目前优选的屏障涂层聚合物。然而,也可采用其它聚合物***,包括聚乙烯醇、聚丙烯酸和聚丙烯酰胺,它们能稳定地分散或溶解在可蒸发液体中形成低粘度溶液,并且与处于或接近溶液干燥温度下能够引发聚合物交联的交联剂相容。
优选用来制备低CTE、高气体渗透性陶瓷制品的聚合物溶液通常是聚合物较稀的水溶液,一般包含约1-20重量%的水溶性聚合物。所用交联剂的量取决于所选聚合物和交联剂的组成,但通过常规实验容易测定。环氧氯丙烷是一种更有效的胺官能性离聚物交联剂,通常在溶液pH值约为8-9、浓度约为1-20%(以溶液中存在的聚合物重量计)时使用。但是,任选地或此外,也可使用其它交联剂,包括已知的二氯化物和二胺聚合物交联剂。通过将陶瓷加热至温度100℃(在该温度下残留聚合物的交联也可有效进行),在将溶液施涂于多孔陶瓷基材时,可方便地除去溶液中的水份,
结合下面的实施例进一步描述本发明,这些实施例是示例性而非限制性的。
实施例1
根据下述两种方法中的一种制备可交联的聚合物溶液。第一种方法中,将4.0克70%(重量)的环己二胺溶液和7.5克99%(重量)的环氧氯丙烷混入三种离聚物溶液的2500毫升样品中。该聚合物溶液是1.5%(重量)、3%(重量)和6%(重量)聚合物浓度的溶液,每种情况下都是用水适当稀释市售离聚物制剂来制备的。市售制剂是PC-1195TM聚合物溶液,由GE Betz,GE Water Technologies,Trevose,PA,U.S.A销售,包含约40-50重量%分子量约为170,000的溶解的胺官能性离聚物固体。使用前,制备的三种交联聚合物调适5天。
在第二种方法中,室温下,将3450毫升12%(重量)PC-1195TM离聚物溶液样品与30.0克70%(重量)环己二胺溶液和63.4克99%(重量)环氧氯丙烷混合。所得溶液也调适5天,然后以原来浓度使用或用水稀释后的浓度使用,以提供用于多孔陶瓷预处理的适当浓的聚合物溶液。
为试验这些聚合物溶液在陶瓷催化剂载体中维持低热膨胀性和高气体渗透性的有效性,选择一系列蜂窝式陶瓷样品用于聚合物涂覆。所选样品是圆柱状陶瓷蜂窝式滤器样品,直径约5厘米,长约12厘米,由多孔铯长石(SrO·Al2O3·2SiO2)钛酸铝陶瓷组成,特征是蜂窝密度为200平方通道/平方英寸蜂窝截面积的沿圆柱体纵轴排列的交替堵塞通道。形成上述滤器的钛酸铝陶瓷材料具有充分烧结密度约3.5g/cm3,线性热膨胀系数(25-1000℃)为15-16×10-7/℃。蜂窝孔壁的厚度约为0.4毫米,孔隙率约为47-48体积%。
对于每种试验溶液,在真空下将上述蜂窝滤器样品完全浸渍入溶液中,除去溶液,在烘箱中加热至温度约100℃持续3小时进行干燥和交联。
根据上述方法,在这些蜂窝式滤器上施涂屏障涂层之后,采用市售基于氧化铝的底涂层溶液,将经涂覆的样品进行常规底涂。所用底涂层溶液是NyacolAL20胶体氧化铝溶胶,购自Nyacol Nano Technologies,Inc.,Ashland,MA,U.S.A.。底涂方法包括将具有屏障涂层的滤器浸渍入底涂层溶液中2分钟,得到均匀涂层,然后用压缩空气从样品除去多余的涂层。
然后,室温下,将上述底涂的滤器样品空气干燥15分钟,再在程序烘箱中100℃干燥3小时。在烘箱中又将经干燥的底涂滤器加热至最后的保持温度550℃,保持该温度3小时,以热解交联的聚合物屏障材料并固定氧化铝底涂层。最后,从烘箱中取出经此热处理的样品,称重测定沉积在每个样品上的底涂层量,评价热膨胀变化和压降性能。
由这些用交联聚合物屏障溶液预处理的底涂滤器样品试验所得到的一般结果如表1所示。表1中包括每种受试样品的原始样品重量;所用聚合物屏障涂层溶液的浓度;经干燥并交联聚合物涂层重量占涂覆样品重量的百分比;以克/升样品体积表示的底涂样品的底涂层重量;底涂样品的线性热膨胀(CTE)系数值,以25-1000℃范围内每℃的平均膨胀率表示;以及在流动合成(空气)废气流中测定的底涂样品的流体压降数据。
表1中的压降数据以压降比表示,对于每种受试样品,代表标准试验条件下底涂滤器压降与原始(未经任何涂覆)滤器压降的比例。标准试验条件为滤器负荷约5克/升截获的合成碳颗粒之后,通过滤器的气体流量约0.75m3/min下,测定滤器压降。
表1.  屏障层涂覆的钛酸铝滤器
漂白编号  未经涂覆样品重量(g) 可交联的聚合物溶液浓度 交联聚合物涂层重量(%) 底涂层重量(g/L) CTE(×10-7/℃) 压降比
  -06  179.94  1.5重量%  0.43  53.8   42.4  1.44
  -08  181.11  3.0重量%  0.89  54.5   36.2  1.34
  -12  182.84  6.0重量%  1.74  53.3   28.1  1.55
如表1的数据所示,交联聚合物涂层重量随预处理溶液的浓度线性增加,样品CTE随涂层重量的增加而快速降低。对于此具体试验系列,基本上所有三种样品中存在相同的底涂层负荷(53-55g/L),并且,在所有三种样品中,底涂滤器压降的增加(由底涂滤器压降与未经涂覆滤器压降之比表示)为55%或小于55%。一般不具有聚合物屏障涂层的该组成的底涂滤器观察到的压降比为1.6-2.0,直接取决于所施涂的底涂层材料的重量。
实施例2
根据上述实施例的方法,与该实施例所述滤器样品在组成上相似的另几种钛酸铝陶瓷样品(这些陶瓷样品的在25-1000℃温度范围内具有较低的平均线性热膨胀(CTE)系数约4.7×10-7/℃),进行聚合物涂覆和底涂。然后测定样品CTE的增加的幅度,结果如表2所示。
表2-屏障层涂覆的铝蜂窝式钛酸样品
样品编号 未经涂覆样品重量(g) 可交联的聚合物溶液浓度 交联聚合物涂层重量(%) 底涂层重量(g/L)  CTE(×10-7/℃)
6-1 33.932 6.0重量%    1.03  38.9  8.8
6-2 24.506 9.0重量%    1.61  41.3  7.9
6-3 36.089 12.0重量%    2.12  40.2  4.8
如表2数据所示,涂覆了浓度增加的交联离子聚合物溶液的蜂窝式陶瓷样品显示由于底涂过程导致的热膨胀变化程度降低。事实上,用能提供足够高交联聚合物屏障涂层重量的足够浓的屏障聚合物涂层溶液,可获得蜂窝式钛酸铝陶瓷产品,其CTE值非常接近未经涂覆的滤器的CTE值。
交联聚合物屏障涂层的有益效果并不限于任何具体陶瓷类型,而是对于许多不同的其它可渗透气体的陶瓷催化剂载体都可实现。因此,如下所示,当将交联聚合物屏障涂层施涂于堇青石(铝硅酸镁)陶瓷滤器时,底涂滤器渗透性和CTE结果得到类似地改善。
实施例3
由蜂窝式堇青石陶瓷坯料制备了若干用来进行涂覆的陶瓷样品,这些样品的相对端交替栓塞,形成小的蜂窝式滤器样品。堇青石蜂窝体的蜂窝密度约为31通道/cm2,通道壁厚度约为300微米,平均线性热膨胀系数(25-1000℃)约为8×10-7/℃。
对每个滤器样品用来自上述离子聚合物溶液施涂选定的交联离子聚合物涂层,加热除去水份并使聚合物交联,如实施例1所述。然后,用实施例1所述的氧化铝悬浮液底涂样品,除了在使用前先用水将市售NyacolAL20氧化铝底涂悬浮液稀释至pH 3.5。最后,加热经悬浮液涂覆的样品,固定底涂层和热解聚合物涂层。
表3表示由上述制备的堇青石以及两种底涂前不具有交联聚合物屏障涂层的样品试验得到的数据。表3包括了每种受试样品的原始样品重量;用来涂覆样品的聚合物屏障涂层溶液的浓度(如果用的话);所得交联聚合物涂层重量占样品重量的百分比;每种底涂样品所施涂的底涂层重量,以克/升样品体积表示;底涂样品的线性热膨胀系数(CTE)值,以25-1000℃内每℃的平均膨胀率表示;以及底涂样品的压降数据。压降数据也可表示为相对于本文所述的压降试验条件下,如实施例1所述的经底涂与未经涂覆滤器压降之比。
表3-屏障层涂覆的堇青石滤器
  样品编号  未经涂覆样品重量(g) 可交联的聚合物溶液浓度 交联聚合物涂层重量(%) 底涂层重量(g/L)  CTE(×10-7/℃)   压降比
    1A  131.90   未处理     0   43.1     8.6     1.85
    1C  125.58   未处理     0   28.4     7.4     1.49
    22A  152.18   1.5重量%     0.44   41.9     7.4     1.41
    22D  153.02   1.5重量%     0.50   28.1     6.4     1.20
    25A  155.42   3.0重量%     1.09   36.5     5.3     1.31
    25D  151.88   3.0重量%     1.25   25.7     5.9     1.18
如表3数据所示,与底涂前不施涂聚合物涂层的滤器相比,聚合物预处理的堇青石滤器显示了热膨胀系数的显著降低。一般而言,CTE值从未保护的滤器的CTE降低10-30%。甚至更重要的是,当底涂层负荷类似时,聚合物预处理滤器的压降比降低超过未经预处理而施涂聚合物屏障涂层的底涂滤器多达40-65%。
而且,认为烘箱干燥和交联过程期间聚合物封闭细孔和通道在控制堇青石陶瓷材料中底涂层最终分布中起重要作用。对于孔隙率约为40-65%的堇青石滤器,通常发现使用交联聚合物屏障涂层,底涂滤器的压降从基线或未经涂覆滤器压降水平的增加减少了大约50%。
图2显示了两个系列的堇青石滤器的上文所定义的压降比与克/升滤器体积表示的氧化铝底涂层负荷的图。图2曲线A数据代表的第一系列是没有事先施涂交联聚合物屏障涂层制备的底涂滤器。图2曲线B代表的第二系列是底涂前经过预处理以形成交联聚合物屏障涂层的类似底涂滤器。如这些数据所示,屏障层涂覆滤器(B)的压降比随底涂层负荷的增加而增加的幅度比相同比例的未用聚合物屏障涂层保护的滤器要小得多。这样,有利的是可显著增加屏障层涂覆的滤器中滤器底涂层和/或催化剂的负荷,而不超过常规底涂滤器提供的压降,或提供可在显著较低的滤器压降下运行的常规底涂层/催化剂负荷。
图3显示了具有上述两种不同的交联聚合物屏障涂层的多孔陶瓷材料中,相对孔隙浓度与一定孔径范围内孔径的关系。所评价的涂覆陶瓷样品包括微孔(本发明目的所限定,直径约为5微米及以下)、粗孔(本发明目的所限定,直径约为5-40微米)。
曲线A表示由于将用3重量%的离子聚合物溶液将交联聚合物孔隙涂层施涂在第一陶瓷样品上所引起的孔隙浓度从代表孔径分布无变化的零基线的相对变化,而曲线B表示由于使用6重量%离聚物溶液引起的第二陶瓷样品的相应变化。两条曲线表明,通过施涂屏障涂层可优选地封闭陶瓷的微孔/微通道孔容积,因为微孔和/微通道中的孔隙浓度与粗孔中的孔隙浓度相比小得多。越浓的离子聚合物溶液产生越优选的封闭效果。
图4是电子显微探针分析聚合物涂覆的蜂窝式陶瓷滤器样品的小截面而得到的显微照片。图4的分析探测陶瓷孔结构内与交联聚合物浓度相关的氯,陶瓷孔结构用暗灰色表示,大多互连着位于整个显微照片暗色区域的网络部分“X”。显微照片中亮的区域表示孔结构的微孔和微通道区域“Y”内聚合物的浓度,因而聚合物涂层使陶瓷留下的较粗孔容积敞开,用于沉积底涂层和催化剂,而阻断聚合物浓度封闭的结构内的底涂层沉积。
当然,上述实施例和说明是示例性的,而不是限制本发明,可在所附权利要求书的范围内实施本发明。

Claims (11)

1.一种在多孔陶瓷制品上提供屏障涂层的方法,所述方法包括以下步骤:
对多孔陶瓷制品施涂包含液体介质、交联增强剂和可热交联可热解的烃聚合物的聚合物溶液或分散体;和
将陶瓷制品加热至足以从所施涂的溶液或分散体中基本上除去介质并实现烃聚合物交联的温度。
2.如权利要求1所述的方法,其特征在于,所述可交联烃聚合物是选自下组的水溶性聚合物:胺官能性离聚物、聚乙烯醇、聚丙烯酸和聚丙烯酰胺。
3.如权利要求1所述的方法,其特征在于,所述可交联的烃聚合物是分子量为5000-200,000的胺官能性离子聚合物。
4.如权利要求3所述的方法,其特征在于,所述交联增强剂选自环氧氯丙烷和二胺。
5.如权利要求3所述的方法,其特征在于,将所述陶瓷制品加热至温度80-120℃,以实现烃聚合物的交联。
6.一种将催化剂或催化剂底涂层施涂于陶瓷催化剂载体的方法,所述方法包括以下步骤:
对催化剂载体施涂包含液体介质、交联增强剂和可热交联可热解的烃聚合物的聚合物溶液或分散体;
将陶瓷制品加热至温度足以从所施涂的溶液或分散体中基本上除去介质并实现烃聚合物的交联,从而形成聚合物涂覆的载体;
对聚合物涂覆的载体施涂水性底涂层或催化剂涂层,干燥涂层或底涂层,形成催化剂涂覆或底涂覆的载体;和
将催化剂涂覆或底涂覆的载体加热至至少足以除去交联的聚合物涂层的温度。
7.如权利要求6所述的方法,其特征在于,所述多孔陶瓷基材是具有选自钛酸铝和堇青石的主要结晶相的陶瓷蜂窝。
8.如权利要求6所述的方法,其特征在于,所述水性底涂层或催化剂涂层包含氧化铝、氧化铝前体,或含氧化铝的混合物的分散体。
9.一种具有孔结构的多孔陶瓷制品,其特征在于,存在粗孔容积和微孔/微通道孔容积,所述孔结构支持优选位于制品的微孔/微通道孔容积内的交联的聚合物屏障涂层。
10.如权利要求9所述的多孔陶瓷制品,其特征在于,所述制品具有选自钛酸铝和堇青石陶瓷的陶瓷组成。
11.如权利要求10所述的多孔陶瓷制品,其特征在于,所述孔结构的粗孔容积是开放的,可用来沉积底涂层。
CNA2005800061790A 2004-02-27 2005-02-15 具有催化剂涂层的多孔陶瓷滤器 Pending CN101098898A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/788,946 2004-02-27
US10/788,946 US7122612B2 (en) 2004-02-27 2004-02-27 Porous ceramic filters with catalyst coatings

Publications (1)

Publication Number Publication Date
CN101098898A true CN101098898A (zh) 2008-01-02

Family

ID=34887138

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800061790A Pending CN101098898A (zh) 2004-02-27 2005-02-15 具有催化剂涂层的多孔陶瓷滤器

Country Status (8)

Country Link
US (2) US7122612B2 (zh)
EP (1) EP1735146B1 (zh)
JP (2) JP2007526117A (zh)
KR (1) KR101152009B1 (zh)
CN (1) CN101098898A (zh)
AT (1) ATE463520T1 (zh)
DE (1) DE602005020436D1 (zh)
WO (1) WO2005091821A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448576A (zh) * 2009-05-29 2012-05-09 康宁股份有限公司 具有低烟炱加载涂层的微粒过滤器
CN109745907A (zh) * 2017-11-08 2019-05-14 中国科学院金属研究所 一种基于中空泡沫材料的流体分布器及其应用
CN113158491A (zh) * 2021-05-14 2021-07-23 南京工程学院 陶瓷异形微孔破坏强度极限判定方法、装置、计算机设备及存储介质
CN113195112A (zh) * 2018-12-12 2021-07-30 尼蓝宝股份有限公司 陶瓷表面改性材料及其使用方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054845A1 (de) * 2004-11-12 2006-06-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Beschichtete Partikelfalle mit Stickstoffdioxid-Neubildung
US7225613B2 (en) * 2005-01-26 2007-06-05 Ford Global Technologies, Llc Diesel engine after treatment device for conversion of nitrogen oxide and particulate matter
US7166555B2 (en) * 2005-02-14 2007-01-23 Corning Incorporated Coated ceramic catalyst supports and method
US7700163B2 (en) * 2005-10-27 2010-04-20 Corning Incorporated Microwave process for porous ceramic filters with passivation and catalyst coatings
US7575618B2 (en) * 2006-03-30 2009-08-18 Corning Incorporated Reactive binders for porous wall-flow filters
US7964262B2 (en) 2006-08-29 2011-06-21 Corning Incorporated Layered silicate modified cordierite and method
US8454886B2 (en) * 2006-11-29 2013-06-04 Corning Incorporated Durable honeycomb structures
EP2106835B1 (en) * 2006-11-30 2019-06-19 Hitachi Metals, Ltd. System comprising a ceramic honeycomb filter and method for manufacturing the same
KR100861012B1 (ko) * 2007-01-12 2008-10-01 안재식 다공성 이온화 필터 및 그 제조방법
DE102007023897A1 (de) 2007-05-23 2008-11-27 Robert Bosch Gmbh Verfahren zur Herstellung keramischer Funktionselemente
DE102007028495A1 (de) 2007-06-21 2008-12-24 Robert Bosch Gmbh Verfahren zur Herstellung eines porösen Substrates
US8709577B2 (en) 2007-06-28 2014-04-29 Corning Incorporated High porosity ceramic honeycomb article containing rare earth oxide and method of manufacturing same
DE102007044585A1 (de) * 2007-09-19 2009-04-02 Süd-Chemie AG Verfahren zur partiellen Beschichtung von katalytisch aktiven Komponenten auf komplexen Bauteilen
US8163349B2 (en) * 2007-11-29 2012-04-24 Corning Incorporated Methods for applying a washcoat and heat treating a ceramic honeycomb, and treated articles
US20090142488A1 (en) * 2007-11-29 2009-06-04 Willard Ashton Cutler Passivation of porous ceramic articles
US7867936B2 (en) * 2007-11-29 2011-01-11 Corning Incorporated Process for passivating porous ceramic articles and an article made therefrom
US8114354B2 (en) * 2007-12-18 2012-02-14 Basf Corporation Catalyzed soot filter manufacture and systems
US8038954B2 (en) * 2008-02-14 2011-10-18 Basf Corporation CSF with low platinum/palladium ratios
WO2011059699A1 (en) 2009-11-11 2011-05-19 Dow Global Technologies Llc Improved cement to make thermal shock resistant ceramic honeycomb structures and method to make them
MX2012007751A (es) * 2009-12-31 2012-08-01 Dow Global Technologies Llc Metodo para elaborar un recubrimiento de barrera polimerica para atenuar la migracion de aglutinante en un filtro de particulados de diesel para reucir la caida de presion y los gradientes de temperatura en el filtro.
US9856177B2 (en) 2010-05-28 2018-01-02 Corning Incorporated Cordierite porous ceramic honeycomb articles
US9334191B2 (en) 2010-05-28 2016-05-10 Corning Incorporated Methods for forming ceramic honeycomb articles
US8999224B2 (en) * 2010-11-30 2015-04-07 Corning Incorporated Cordierite porous ceramic honeycomb articles with delayed microcrack evolution
US9211531B2 (en) 2011-03-30 2015-12-15 Corning Incorporated Methods for coating ceramic catalyst supports with base coatings and ceramic catalyst supports having base coatings
CN103443053A (zh) * 2011-03-31 2013-12-11 住友化学株式会社 蜂窝结构体
US8784541B2 (en) 2011-11-10 2014-07-22 Corning Incorporated Cordierite-based composite membrane coated on cordierite monolith
JP5863950B2 (ja) * 2012-03-30 2016-02-17 イビデン株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
US9376347B2 (en) 2013-05-20 2016-06-28 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9908260B2 (en) 2013-05-20 2018-03-06 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9623360B2 (en) * 2013-05-20 2017-04-18 Corning Incorporated Porous ceramic article and method of manufacturing the same
WO2017201171A1 (en) * 2016-05-17 2017-11-23 Corning Incorporated Porous ceramic filters and methods for filtering
US11229902B2 (en) 2016-05-31 2022-01-25 Corning Incorporated Porous article and method of manufacturing the same
JP2021502948A (ja) 2017-10-31 2021-02-04 コーニング インコーポレイテッド 予備反応させた無機粒子を含むバッチ組成物およびそれからのグリーン体の製造方法
WO2021059883A1 (ja) * 2019-09-26 2021-04-01 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784649A (en) * 1971-03-30 1974-01-08 Buckman Labor Inc High molecular weight ionene polymeric compositions
IE45250B1 (en) * 1976-08-03 1982-07-14 U C O And Soc Generale Pour L A method of forming a coating on a glass or ceramic surface
JPS5814950A (ja) 1981-07-18 1983-01-28 Nippon Soken Inc 活性アルミナコ−テイングハニカム構造触媒担体
JPS58109140A (ja) * 1981-12-22 1983-06-29 Nippon Shokubai Kagaku Kogyo Co Ltd ハニカム触媒の製造方法
US4483940A (en) 1981-11-24 1984-11-20 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for manufacture of honeycomb catalyst
US4532228A (en) * 1984-01-19 1985-07-30 Corning Glass Works Treatment of monolithic catalyst supports
US4765867A (en) * 1986-07-02 1988-08-23 Betz Laboratories, Inc. Pitch control process utilizing quaternized polyamine ionene polymer
JPH02284636A (ja) * 1989-04-27 1990-11-22 Sekiyu Sangyo Katsuseika Center 選択性気体透過膜及びその製造方法
JPH0372928A (ja) * 1989-08-10 1991-03-28 Sekiyu Sangyo Katsuseika Center 気体分離膜
JPH03174247A (ja) * 1989-12-01 1991-07-29 Kao Corp 成形触媒の製造法
US5460854A (en) * 1992-01-16 1995-10-24 Certech Incorporated Impregnated ceramic core and method of making same
US5346722A (en) 1993-05-18 1994-09-13 Corning Incorporated Method for improving the thermal shock resistance of a washcoated body
US5866016A (en) 1997-07-01 1999-02-02 Buckman Laboratories International, Inc. Methods and compositions for controlling biofouling using combinations of an ionene polymer and a salt of dodecylamine
DE19635893A1 (de) * 1996-09-04 1998-03-05 Basf Ag Katalysatorzusammensetzung und Verfahren zu selektiven Reduktion von NO¶x¶ bei gleichzeitiger weitgehender Vermeidung der Oxidation von SO¶x¶ in sauerstoffhaltigen Verbrennungsabgasen
EP0922478A3 (en) * 1997-11-18 1999-08-04 Ngk Insulators, Ltd. Porous ceramic filter and method for producing same
JP5468717B2 (ja) 2000-06-01 2014-04-09 コーニング インコーポレイテッド コージェライト体
US6620751B1 (en) 2002-03-14 2003-09-16 Corning Incorporated Strontium feldspar aluminum titanate for high temperature applications
US6849181B2 (en) 2002-07-31 2005-02-01 Corning Incorporated Mullite-aluminum titanate diesel exhaust filter
JP4750415B2 (ja) 2002-07-31 2011-08-17 コーニング インコーポレイテッド チタン酸アルミニウムベースのセラミック製品
FR2850649B1 (fr) * 2003-01-30 2005-04-29 Snecma Propulsion Solide Procede pour le traitement de surface d'une piece en materiau composite thermostructural et application au brasage de pieces en materiau composite thermostructural
US7132150B2 (en) 2003-08-14 2006-11-07 Corning Incorporated Porous ceramic filters with catalyst coatings

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448576A (zh) * 2009-05-29 2012-05-09 康宁股份有限公司 具有低烟炱加载涂层的微粒过滤器
US8926913B2 (en) 2009-05-29 2015-01-06 Corning Incorporated Particulate filter with low soot loaded coating
CN102448576B (zh) * 2009-05-29 2016-08-03 康宁股份有限公司 具有低烟炱加载涂层的微粒过滤器
CN109745907A (zh) * 2017-11-08 2019-05-14 中国科学院金属研究所 一种基于中空泡沫材料的流体分布器及其应用
CN109745907B (zh) * 2017-11-08 2021-05-28 中国科学院金属研究所 一种基于中空泡沫材料的流体分布器及其应用
CN113195112A (zh) * 2018-12-12 2021-07-30 尼蓝宝股份有限公司 陶瓷表面改性材料及其使用方法
CN113158491A (zh) * 2021-05-14 2021-07-23 南京工程学院 陶瓷异形微孔破坏强度极限判定方法、装置、计算机设备及存储介质
CN113158491B (zh) * 2021-05-14 2023-09-12 南京工程学院 陶瓷异形微孔破坏强度极限判定方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
KR101152009B1 (ko) 2012-07-06
KR20070004777A (ko) 2007-01-09
US20060270816A1 (en) 2006-11-30
JP2013027868A (ja) 2013-02-07
ATE463520T1 (de) 2010-04-15
US7122612B2 (en) 2006-10-17
WO2005091821A2 (en) 2005-10-06
JP5584739B2 (ja) 2014-09-03
EP1735146B1 (en) 2010-04-07
WO2005091821A3 (en) 2007-03-01
DE602005020436D1 (de) 2010-05-20
JP2007526117A (ja) 2007-09-13
EP1735146A2 (en) 2006-12-27
EP1735146A4 (en) 2008-02-13
US20050191480A1 (en) 2005-09-01
US7674498B2 (en) 2010-03-09

Similar Documents

Publication Publication Date Title
CN101098898A (zh) 具有催化剂涂层的多孔陶瓷滤器
EP1663515B1 (en) Porous ceramic filters with catalyst coatings
CN101300086A (zh) 用于含钝化和催化涂层的多孔陶瓷过滤器的微波法
CN101115557B (zh) 涂覆的陶瓷催化剂载体及其制备方法
US9278347B2 (en) Catalytically coated ceramic honeycomb bodies
EP1340541A1 (en) Structured catalysts incorporating thick washcoats and method of preparation thereof
KR20090122476A (ko) 세라믹 유동-관통 허니컴 바디 내로 촉매 코팅을 도입하기 위한 방법
JPH05184937A (ja) 多孔質触媒装置及び多孔質担体薄め塗膜方法
RU2748697C2 (ru) Катализатор и способ получения катализатора
US7811969B2 (en) Method for coating a catalyst carrier containing two different partial structures with a catalytically active coating, and catalyst obtained thereby
JP2011240316A (ja) チタン酸アルミニウム質触媒担体の被覆方法および触媒被覆チタン酸アルミニウム構造体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080102