CN101091009A - 制备定向凝固硅锭的方法 - Google Patents

制备定向凝固硅锭的方法 Download PDF

Info

Publication number
CN101091009A
CN101091009A CNA2005800450892A CN200580045089A CN101091009A CN 101091009 A CN101091009 A CN 101091009A CN A2005800450892 A CNA2005800450892 A CN A2005800450892A CN 200580045089 A CN200580045089 A CN 200580045089A CN 101091009 A CN101091009 A CN 101091009A
Authority
CN
China
Prior art keywords
silicon
boron
content
ingot
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800450892A
Other languages
English (en)
Other versions
CN100567591C (zh
Inventor
C·德思洛夫
K·弗里斯塔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norway Solar Energy Co
Original Assignee
Elkem Solar AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Solar AS filed Critical Elkem Solar AS
Publication of CN101091009A publication Critical patent/CN101091009A/zh
Application granted granted Critical
Publication of CN100567591C publication Critical patent/CN100567591C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
    • C30B13/10Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及用于制备定向凝固切克劳斯基、浮区或多晶硅锭或者薄片或者条的方法,它们用于从初始含有0.2ppma至10ppma硼和0.1ppma至10ppma磷的硅原料生产用于太阳能电池的晶片。如果硅原料中的硼含量高于磷含量,那么通过在定向凝固工艺期间向熔融硅添加硼保持熔融硅中的硼含量高于磷含量,以便延伸作为p型材料凝固的定向凝固锭或者薄片或者条的部分。如果在硅原料中磷含量高于硼含量,那么通过在定向凝固工艺期间向熔融硅添加磷保持熔融硅中的磷含量高于硼含量,以便延伸作为n型材料凝固的锭或者薄片或者条的部分。

Description

制备定向凝固硅锭的方法
技术领域
本发明涉及一种用于制备用于生产光电(PV)太阳能电池的定向凝固切克劳斯基、浮区或多晶硅锭,薄硅片或条的方法。
背景技术
近年来,由电子芯片行业中合适的刮屑、切屑、次品所生产的超纯新鲜(virgin)电子级多晶硅(EG-Si)已经用于光电太阳能电池的制备。近来电子行业的低迷导致闲置的多晶硅产能被用来生产适用于生产PV太阳能电池的较低成本等级。这就暂时缓解了太阳能级多晶硅(SoG-Si)供料品质的紧张市场需求。随着电子设备的需求量回到正常水平,预计多晶硅产能中的主要份额将回到电子行业的供应中,而令PV行业供应不足。专供低成本来源的SoG-Si的短缺以及因此而不断扩大的供应缺口现已成为PV行业未来发展最严重的障碍之一。
近年来,已经进行了开发用于SoG-Si的新来源的多次尝试,其独立于电子行业价值链。这些努力不仅包括有效降低现有多晶硅工艺路线成本的新技术,还包括发展冶金学精炼工艺,从而将来源丰富的冶金级硅(MG-Si)纯化到所需的纯度。至今仍然没有人能够在从常规硅进料品质出发生产出符合PV太阳能电池性能要求的预计硅进料纯度的同时成功地显著降低生产成本。
生产PV太阳能电池时,准备SoG-Si供料进料,熔融并定向凝固到专用的铸造用炉内的方形锭中。在熔融之前,含SoG-Si的进料要用硼或磷掺杂,以分别制备p型或n型锭。除了少数例外情况之外,现在的商用太阳能电池通常是基于p型硅锭材料制备的。控制单一掺杂剂(如:硼或磷)的添加,可以使材料获得优选的电阻率,例如在0.5-1.5ohm cm范围。需要p型锭时,相应要添加0.02-0.2ppma硼,并使用特有品质的(掺杂剂含量可以忽略的实际纯净的硅)SoG-Si供料。掺杂工艺假定其他掺杂剂(在该实施例情况下磷)含量可以忽略(P<1/10B)。
挪威专利申请号20035830填写于2003年12月29号。该申请公开了一种用于制备定向凝固切克劳斯基、浮区或多晶硅锭或薄硅片或条的方法,从而制备基于由冶金级硅通过冶金学精炼工艺所得到的硅原料的晶片。该硅原料中含有0.2ppma到10ppma的硼和0.1-10ppma的磷。由于含有硼和磷,根据挪威专利申请号20035830制备的硅锭将在锭厚度或片或条厚度的40-99%之间的位置具有从p型至n型的特征类型改变,这取决于硼和磷在硅原料中的比率。因此,所制的锭包含了p型和n型硅。
理想的是由同时含硼和磷的硅原料分别制造p型或n型材料,但在挪威专利申请号20035830的实施例中,从p型到n型的变化发生在锭高度的约3/4处。
发明内容
本发明的目的是,提供在同时含硼和磷的硅原料制备的定向凝固硅锭或薄片或条中提高p型或n型材料的数量的方法。
因此,本发明涉及一种用于制备定向凝固切克劳斯基、浮区或多晶硅锭或者薄片或者条的方法,它们用于从初始含有0.2ppma至10ppma硼和0.1ppma至10ppma磷的硅原料生产用于太阳能电池的晶片,所述方法的特征在于,如果硅原料中的硼含量高于磷含量,那么通过在定向凝固工艺期间向熔融硅间歇、连续或者基本连续地添加硼保持熔融硅中的硼含量高于磷含量,以便延伸作为具有预定电阻率或在预定电阻率范围内的p型材料凝固的定向凝固锭或者薄片或者条的部分;或者,如果在硅原料中磷含量高于硼含量,那么通过在定向凝固工艺期间向熔融硅间歇、连续或者基本连续地添加磷保持熔融硅中的磷含量高于硼含量,以便延伸作为具有预定电阻率或在预定电阻率范围内的n型材料凝固的锭或者薄片或者条的部分。
借助本发明的方法,已经发现定向凝固锭或薄片或者条部分在从p型材料转变为n型材料或从n型材料转变为p型材料之前可以被显著延伸。
附图说明
图1是示出根据现有技术制得的定向凝固硅锭的电阻率的图。
图2是示出根据本发明方法制得的定向凝固硅锭的电阻率的图。
发明详述
实施例1(现有技术)
从初始含有0.8ppma硼和3.6ppma磷的硅原料生产定向凝固硅锭。在硅锭中p型材料到n型材料的转变发生在凝固锭的高度的大约60%处。在图1中示出了所制备的硅锭的电阻率,从该图中可以看出从p型材料向n型材料的转变发生在锭高度的约60%处。
实施例2(本发明)
使用实施例1中相同的硅原料制备定向凝固硅锭。当大约50%的锭已经凝固时,向剩余的熔融硅中连续添加硼。如图2可见,从p型材料向n型材料的转变发生在凝固锭高度的大于90%处。加入硅熔体中的硼的量也在图2中示出。
通过比较实施例1和实施例2的结果,可是看出,从p型材料向n型材料的转变从硅锭高度的约60%处移动到硅晶高度的大于90%处。
因此,通过本发明,可以显著增加定向凝固锭的部分(凝固成p型材料或者n型材料)。

Claims (1)

1.一种用于制备定向凝固切克劳斯基、浮区或多晶硅锭或者薄片或者条的方法,它们用于从初始含有0.2ppma至10ppma硼和0.1ppma至10ppma磷的硅原料生产用于太阳能电池的晶片,所述方法的特征在于,如果硅原料中的硼含量高于磷含量,那么通过在定向凝固工艺期间向熔融硅间歇、连续或者基本连续地添加硼保持熔融硅中的硼含量高于磷含量,以便延伸作为p型材料凝固的定向凝固锭或者薄片或者条的部分;或者,如果在硅原料中磷含量高于硼含量,那么通过在定向凝固工艺期间向熔融硅间歇、连续或者基本连续地添加磷保持熔融硅中的磷含量高于硼含量,以便延伸作为n型材料凝固的锭或者薄片或者条的部分。
CNB2005800450892A 2004-12-27 2005-11-17 制备定向凝固硅锭的方法 Active CN100567591C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20045665A NO322246B1 (no) 2004-12-27 2004-12-27 Fremgangsmate for fremstilling av rettet storknede silisiumingots
NO20045665 2004-12-27

Publications (2)

Publication Number Publication Date
CN101091009A true CN101091009A (zh) 2007-12-19
CN100567591C CN100567591C (zh) 2009-12-09

Family

ID=35209718

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800450892A Active CN100567591C (zh) 2004-12-27 2005-11-17 制备定向凝固硅锭的方法

Country Status (10)

Country Link
US (1) US20080029019A1 (zh)
EP (1) EP1848843A4 (zh)
JP (1) JP2008525297A (zh)
CN (1) CN100567591C (zh)
AU (1) AU2005333767B2 (zh)
BR (1) BRPI0519503B1 (zh)
ES (1) ES2357497T1 (zh)
NO (1) NO322246B1 (zh)
UA (1) UA86295C2 (zh)
WO (1) WO2007001184A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005505A (zh) * 2010-10-18 2011-04-06 浙江大学 一种抑制光衰减的掺锡晶体硅太阳电池及其制备方法
CN102560645A (zh) * 2011-09-02 2012-07-11 江苏协鑫硅材料科技发展有限公司 一种在晶体硅形成过程中控制电阻率的方法及其装置
CN103975097A (zh) * 2011-10-06 2014-08-06 埃尔凯姆太阳能公司 用于生产硅单晶和多晶硅锭的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651566B2 (en) 2007-06-27 2010-01-26 Fritz Kirscht Method and system for controlling resistivity in ingots made of compensated feedstock silicon
US8968467B2 (en) 2007-06-27 2015-03-03 Silicor Materials Inc. Method and system for controlling resistivity in ingots made of compensated feedstock silicon
FR2929960B1 (fr) * 2008-04-11 2011-05-13 Apollon Solar Procede de fabrication de silicium cristallin de qualite photovoltaique par ajout d'impuretes dopantes
US8758507B2 (en) * 2008-06-16 2014-06-24 Silicor Materials Inc. Germanium enriched silicon material for making solar cells
US7887633B2 (en) * 2008-06-16 2011-02-15 Calisolar, Inc. Germanium-enriched silicon material for making solar cells
FR2940806B1 (fr) 2009-01-05 2011-04-08 Commissariat Energie Atomique Procede de solidification de semi-conducteur avec ajout de charges de semi-conducteur dope au cours de la cristallisation
DE102009034317A1 (de) 2009-07-23 2011-02-03 Q-Cells Se Verfahren zur Herstellung durchbruchsicherer p-Typ Solarzellen aus umg-Silizium
US20120125254A1 (en) * 2010-11-23 2012-05-24 Evergreen Solar, Inc. Method for Reducing the Range in Resistivities of Semiconductor Crystalline Sheets Grown in a Multi-Lane Furnace
WO2012114375A1 (ja) * 2011-02-23 2012-08-30 信越半導体株式会社 N型シリコン単結晶の製造方法及びリンドープn型シリコン単結晶
CN102191542B (zh) * 2011-04-29 2012-08-15 张森 制备高纯定向结晶多晶硅的设备及其制备方法
CN102560641B (zh) * 2012-03-20 2015-03-25 浙江大学 一种掺杂电阻率均匀的n型铸造硅多晶及其制备方法
JP7080017B2 (ja) * 2017-04-25 2022-06-03 株式会社Sumco n型シリコン単結晶のインゴット、シリコンウェーハ、およびエピタキシャルシリコンウェーハ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2623413C2 (de) * 1976-05-25 1985-01-10 Siemens AG, 1000 Berlin und 8000 München Verfahren zum Herstellen von für Halbleiterbauelemente verwendbarem Silicium
US4134785A (en) * 1977-04-13 1979-01-16 Western Electric Company, Inc. Real-time analysis and control of melt-chemistry in crystal growing operations
US4247528A (en) * 1979-04-11 1981-01-27 Dow Corning Corporation Method for producing solar-cell-grade silicon
DE2925679A1 (de) * 1979-06-26 1981-01-22 Heliotronic Gmbh Verfahren zur herstellung von siliciumstaeben
DE3150539A1 (de) * 1981-12-21 1983-06-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von fuer halbleiterbauelemente, insbesondere fuer solarzellen, verwendbarem silizium
US4789596A (en) * 1987-11-27 1988-12-06 Ethyl Corporation Dopant coated bead-like silicon particles
DE3804069A1 (de) * 1988-02-10 1989-08-24 Siemens Ag Verfahren zum herstellen von solarsilizium
JPH085740B2 (ja) 1988-02-25 1996-01-24 株式会社東芝 半導体の結晶引上げ方法
US4927489A (en) * 1988-06-02 1990-05-22 Westinghouse Electric Corp. Method for doping a melt
US5106763A (en) * 1988-11-15 1992-04-21 Mobil Solar Energy Corporation Method of fabricating solar cells
US5156978A (en) * 1988-11-15 1992-10-20 Mobil Solar Energy Corporation Method of fabricating solar cells
JP3388664B2 (ja) * 1995-12-28 2003-03-24 シャープ株式会社 多結晶半導体の製造方法および製造装置
JP3437034B2 (ja) * 1996-07-17 2003-08-18 シャープ株式会社 シリコンリボンの製造装置及びその製造方法
JPH10251010A (ja) * 1997-03-14 1998-09-22 Kawasaki Steel Corp 太陽電池用シリコン
CA2232777C (en) * 1997-03-24 2001-05-15 Hiroyuki Baba Method for producing silicon for use in solar cells
US6171389B1 (en) * 1998-09-30 2001-01-09 Seh America, Inc. Methods of producing doped semiconductors
US6179914B1 (en) * 1999-02-02 2001-01-30 Seh America, Inc. Dopant delivery system and method
DE19927604A1 (de) * 1999-06-17 2000-12-21 Bayer Ag Silicium mit strukturierter Sauerstoffdotierung, dessen Herstellung und Verwendung
JP2004140087A (ja) * 2002-10-16 2004-05-13 Canon Inc 太陽電池用多結晶シリコン基板とその製造法、及びこの基板を用いた太陽電池の製造法
JP2004140120A (ja) * 2002-10-16 2004-05-13 Canon Inc 多結晶シリコン基板
NO333319B1 (no) * 2003-12-29 2013-05-06 Elkem As Silisiummateriale for fremstilling av solceller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005505A (zh) * 2010-10-18 2011-04-06 浙江大学 一种抑制光衰减的掺锡晶体硅太阳电池及其制备方法
CN102560645A (zh) * 2011-09-02 2012-07-11 江苏协鑫硅材料科技发展有限公司 一种在晶体硅形成过程中控制电阻率的方法及其装置
CN102560645B (zh) * 2011-09-02 2016-05-18 江苏协鑫硅材料科技发展有限公司 一种在晶体硅形成过程中控制电阻率的方法及其装置
CN103975097A (zh) * 2011-10-06 2014-08-06 埃尔凯姆太阳能公司 用于生产硅单晶和多晶硅锭的方法

Also Published As

Publication number Publication date
EP1848843A4 (en) 2011-09-28
BRPI0519503B1 (pt) 2016-06-21
NO20045665D0 (no) 2004-12-27
UA86295C2 (uk) 2009-04-10
EP1848843A1 (en) 2007-10-31
CN100567591C (zh) 2009-12-09
NO322246B1 (no) 2006-09-04
AU2005333767B2 (en) 2010-05-20
US20080029019A1 (en) 2008-02-07
WO2007001184A1 (en) 2007-01-04
ES2357497T1 (es) 2011-04-27
BRPI0519503A2 (pt) 2009-02-03
AU2005333767A1 (en) 2007-01-04
JP2008525297A (ja) 2008-07-17

Similar Documents

Publication Publication Date Title
CN100567591C (zh) 制备定向凝固硅锭的方法
CA2548936C (en) Silicon feedstock for solar cells
CN101999013A (zh) 通过添加掺杂杂质制造光伏级晶体硅的方法及光伏电池
EP2173660B1 (en) Method for controlling resistivity in ingots made of compensated feedstock silicon
CN105568365B (zh) 一种籽晶铺设方法、晶体硅及其制备方法
CN102119444B (zh) 用于制造太阳能电池的锗富集的硅材料
Arnberg et al. State-of-the-art growth of silicon for PV applications
CN101370970A (zh) 制造单晶铸硅的方法和装置以及用于光电领域的单晶铸硅实体
JP4723071B2 (ja) シリコン結晶及びシリコン結晶ウエーハ並びにその製造方法
KR20130059272A (ko) 결정질 실리콘 잉곳 및 이의 제조방법
Aulich et al. Crystalline silicon feedstock for solar cells
CN104846437A (zh) 电阻率分布均匀的掺镓晶体硅及其制备方法
CN101591807A (zh) 掺氮的定向凝固铸造单晶硅及其制备方法
CN102797036B (zh) 多晶硅锭及其制造方法、太阳能电池
CN101864593B (zh) 掺氮晶体硅及其制备方法
WO2013051940A1 (en) Method for producing silicon mono-crystals and multi-crystalline silicon ingots
JP2006273668A (ja) 半導体インゴットの製造方法
Arnberg et al. Solidification of silicon for electronic and solar applications
CN117364223A (zh) 一种抑制位错运动增殖的铸造单晶硅锭制备方法
JP2006273669A (ja) 半導体インゴットの製造方法
Degoulange et al. Dopant specifications for p-type UMG silicon: mono-c vs multi-c
BRONSVELD et al. Impact of iron, nickel and chromium in feedstock on multicrystalline silicon solar cell properties
WO2015034367A1 (en) Method for improving efficiency of solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Kristiansand

Patentee after: Norway solar energy company

Address before: Oslo

Patentee before: Elkem Solar AS