CN100415607C - 表面温度控制*** - Google Patents

表面温度控制*** Download PDF

Info

Publication number
CN100415607C
CN100415607C CNB2004800224473A CN200480022447A CN100415607C CN 100415607 C CN100415607 C CN 100415607C CN B2004800224473 A CNB2004800224473 A CN B2004800224473A CN 200480022447 A CN200480022447 A CN 200480022447A CN 100415607 C CN100415607 C CN 100415607C
Authority
CN
China
Prior art keywords
cooling
porous layer
layer
hole
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004800224473A
Other languages
English (en)
Other versions
CN1832883A (zh
Inventor
威廉·W·贝伦斯
安德鲁·R·塔克
詹姆斯·E·弗伦奇
盖尔·J·米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of CN1832883A publication Critical patent/CN1832883A/zh
Application granted granted Critical
Publication of CN100415607C publication Critical patent/CN100415607C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/38Constructions adapted to reduce effects of aerodynamic or other external heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • B64G1/58Thermal protection, e.g. heat shields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • F28D2021/0078Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements in the form of cooling walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Critical Care (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Control Of Temperature (AREA)

Abstract

一种用于表面温度控制的装置(10)和方法。通过使冷却介质流入和然后流出附于结构压力通风***上的低强度多孔层(18)来实现表面温度控制。可以将附加层(24)附于多孔层(18)的外表面上,以防止多孔层(18)的腐蚀和促进表面气膜冷却。

Description

表面温度控制***
技术领域
本发明总的涉及在高热通量的环境中且在表面上同时具有高速流的情况下提供表面温度控制的方法和装置,和更具体地,涉及传统上在上述环境中涉及气膜冷却或发散冷却的表面温度控制方法和装置。
背景技术
许多工程应用,包括航空器、导弹和航天器的各种部件,需要在边界上具有高速流且同时遭受高附带热通量的表面上进行温度控制。在这些情况下的传统表面温度控制方法是气膜冷却(film cooling)和发散冷却。
典型的气膜冷却***包括承载结构压力通风***(load bearingstructural plenum),其具有大量钻入其外结构壁中的小孔,冷却空气通过这些孔脱离压力通风***,从而形成使外结构壁的温度降低的冷却气膜。然而,这种冷却***具有缺点:必须在待冷却表面中钻出大量的孔,增加了压力通风***的成本和复杂性,同时降低了其结构强度。此外,必须小心地设计这些孔以在各种各样的外部环境中产生有效的冷却气膜,以非常高的速度脱离的冷却空气将吹透和吹出表面边界层进入自由流体流,导致压力通风***外壁的热传递减小和表面温度控制相应地变坏。
典型的发散冷却***包括以外壁为界的压力通风***,外壁由烧结金属或陶瓷形成的结构多孔材料构成,这些多孔材料具有大的每单位体积表面积,且能提供材料的高效冷却和相应良好的表面温度控制。然而,选择用作压力通风***外壁的多孔材料类型是很难的设计问题。结构陶瓷倾向于较脆并且具有比金属更低的结构强度。烧结金属倾向于更强但还是比结构陶瓷更重,并因此可能施加不可接受的重量负担。
发明内容
为了解决前述问题,本发明提供一种装置,包括:内结构件和外结构壁,在它们之间确定了压力通风***;附于所述外结构壁上的多孔层,且所述多孔层包括陶瓷泡沫绝热层;设置在所述多孔层的外表面上的硬化穿孔层,所述硬化穿孔层由半透过性材料构成;所述外结构壁包括位于其中的孔口。
根据本发明的一个方面,提供了一种表面温度控制装置,其包括以内壁和外壁为界的结构冷却空气压力通风***,多孔层附于外壁上,多孔层可以包括低强度陶瓷泡沫,可以通过使冷却空气流入和然后流出多孔层来实现表面温度控制,提供了少量的可以钻透外压力通风***壁进入多孔层的冷却介质进入孔。
可以将半透过层附于多孔层的外表面上以防止多孔层的腐蚀和确保大部分冷却介质流通过小孔脱离多孔层,所述小孔可以钻透或冲压透半透过层。通过表面脱离孔脱离的冷却介质流与发散透过半透过层的冷却介质结合,在表面处形成冷却气膜。
附图说明
通过结合附图阅读下列说明,本发明的目的、特征和优点将变得很明显,在所述附图中:
图1是本发明冷却装置的剖视图;
图2是图1的冷却装置的俯视图;以及
图3是作为下游距离的函数的冷却效率的图线,该图线提供了可以用本发明实现的冷却效率的实例。
具体实施方式
首先参考图1,整体由10表示的冷却装置包括与外结构壁14结合的内结构件12,在这两者之间形成压力通风***16。可以由金属材料如钛形成内结构件12和外结构壁14,多孔层18可以粘合到或以其它方式附于外结构壁14上,进入孔20可以形成于外结构壁14中,并且可以穿透多孔层18,以提供由粗体箭头22所示的冷却空气流的从压力通风***16到多孔层18中的流动。进入孔20例如可以具有大约2.29mm(千分之90英寸)的直径,达到多孔层18的一半厚度的深度,以及可以间隔大约6.9mm(0.27英寸)。
多孔层18还可以具有小于50微米的孔隙尺寸,并且可以由陶瓷泡沫绝热材料形成。陶瓷泡沫的低导热性有助于将表面温度控制***要求的冷却减到最小。陶瓷泡沫与传统多孔材料相比的低结构强度并不重要,因为下面的结构压力通风***充当主要承载结构。所述陶瓷泡沫类型的实例是商业上可购买的Rescor 360刚性绝热材料。该绝热材料由CotronicsCorporation制造并且可以具有大约256.3kg/m3(16lbs./ft.3)的密度和大约2.54cm(1.0英寸)的厚度。由于陶瓷泡沫的绝热性质,所以可以用商业上可购买的室温硬化(RTV)硅树脂,如GE RTV-630、GE RTV-560或Dow CorningDC3145,将其结合到压力通风***上。粘合剂的粘合层厚度可以薄至0.2mm(0.008英寸)。
可以将半透过层24设置在多孔层18的外表面上,半透过层24保护下面的低强度多孔层不会由于高速流而受到腐蚀,半透过层24可以由覆盖有陶瓷基复合材料(CMC)的致密层组成,致密产品的一个实例是商业上可购买的Rescor901A液态绝热硬化剂(hardener)和由Cotronics Corporation制造的硬化剂(rigidizer),与烧结陶瓷基结合的Nextel312织物是CMC的一个实例。在辐射是热传递的主要模式的环境中,半透过层24可以改为是高反射半透过表皮层,当结合到多孔层18的外表面时,高反射半透过表皮层既能限制发散又能将被吸收的能量减到最小。
半透过阻挡层可以包括多个充当冷却空气脱离孔26的穿孔,这些脱离孔26不必与进入孔20对齐且能以错开的排的形式布置,形成如图2中所示的均匀网格。脱离孔26与进入孔20的比可以是每个进入孔大约10.7个脱离孔,脱离孔26可以具有大约1mm(千分之40英寸)的直径、大约2.5mm(0.1英寸)的深度和可以间隔3.05mm(0.12英寸).可以用钻孔操作或在不需要昂贵的钻孔操作的情况下用简单且廉价的冲孔操作形成脱离孔26,冲孔操作穿过半透过层24的一部分。
由箭头30表示的热源设置在冷却装置10上面,由箭头32表示的被引入压力通风***16中的冷却空气通过进入孔20进入多孔层18,如箭头22所示。然后,冷却空气在穿过多孔层18的厚度的同时在多孔层18的平面中散布,如多孔层18中所示的多个箭头34所示。由于半透过层24有效地阻碍冷却空气流出多孔层18,所以大部分冷却空气流过脱离孔26,如箭头36所示。少量没有流过脱离孔26的冷却空气在脱离孔26之间的区域中发散透过半透过层24,如箭头28所示。
本发明结合了气膜冷却和发散冷却的最好的特质,同时克服了各个方法中的局限性。与在传统的气膜冷却***中所需的相比,该***具有少得多的钻透压力通风***外壁的孔,这导致更容易制造的和结构更坚固的压力通风***。因为冷却空气容易在平面内扩散和扩散过多孔层的厚度,所以外压力通风***壁中少量的进入孔保持均匀的表面温度控制,并且少量的进入孔保持了一个效果,由于严格限制了发生在半透过层的发散而使得该效果得到增强。
与传统的气膜冷却***相比,可以把冷却介质脱离孔看作从外压力通风***壁移出到多孔陶瓷泡沫的表面,通过使用简单的穿透半透过阻挡层的冲压机,就能在多孔泡沫中容易地制造脱离孔,而不必采用昂贵的钻孔操作。
陶瓷泡沫层另外用来大幅度地减小冷却空气的脱离速度。较低的冷却速度能减小边界层的穿透,从而避免传统气膜冷却***的共同缺陷,并改为提供与传统发散冷却***同等的冷却性能。多孔陶瓷泡沫绝热材料的低导热性将来自高热通量环境的热传递减到最小,因此允许压力通风***由较低温度、较低成本的材料构造。通过将泡沫直接结合到压力通风***外结构壁来减轻重量轻的陶瓷泡沫绝热材料的低强度问题,这种安排比利用传统发散冷却陶瓷的***更坚固,且比多孔烧结金属发散冷却***更轻。
这些优点在提供了优于传统气膜冷却***的表面温度控制和与传统发散冷却***同等的表面温度控制的***中得以实现。本发明的热效率很高,因为在本***中实施的气膜冷却和发散冷却的结合在外表面产生了一冷却气膜,气膜中有最小的边界层穿透。当与传统的气膜冷却***相比时,这又意味着需要较低的冷却介质流量来获得规定的表面温度。
本发明的热效率已经在实验室实验中得到证明。进行了一个试验,其中用高温硅树脂将附有硬化CMC半透过层的2.54cm(1英寸)厚的多孔陶瓷绝热材料片粘合到钛基体。以均匀网格形式布置的脱离孔穿透样品的半透过层,所述均匀网格由错开的多排孔构成。这些孔具有大约1mm(千分之40英寸)的直径、大约3.05mm(0.12英寸)的间隔和刺入大约2.54mm(0.1英寸)的深度。具有大约2.29mm(千分之90英寸)直径的进入孔以每个进入孔10.7个脱离孔的孔密度钻透钛基体。在使冷却空气以几种流量吹过样品的同时,将高速、高温空气被沿切线方向引到样品的表面上。
该试验的结果在图3中示出。该图标出了作为样品上下游距离的函数的冷却效率η。冷却效率是冷却空气将样品表面温度降低到未冷却表面温度之下的效率的量度标准,如图上的注释所示的等式中所表明的。0.0的冷却效率与等于未冷却壁温的冷却壁温对应,而1.0的冷却效率与等于压力通风***的冷却介质供给温度的冷却壁温对应,图上的垂线38和40分别表示样品表面上的脱离孔网格的上游和下游界限。
在效率曲线的形状中可以看到在样品表面的两种不同冷却模式的效率。有一个初始上游区域,在初始上游区域上面,冷却气膜厚度的建立以迅速上升的效率为特征,初始上游区域后面是完全发展的冷却气膜区域,其特征是近似不变的效率。
在适度的0.034kg/min/cm2(0.491bm/min/in2)的冷却空气流量下,本发明在完全发展区域中实现了高水平的大约71%的冷却效率。将冷却介质流量削减40%使其为0.020kg/min/cm2(0.29lbm/min/in2)仅仅将完全发展的效率减小到大约65%,流量进一步减小到0.013kg/min/cm2(0.18lbm/min/in2)产生大约59%的完全发展的效率,对于冷却介质流量的几乎三分之二的减少,仅仅损失了12个百分点的效率,该事实突出了本发明的高热效率。
效率曲线还示出了在样品表面的完全发展区域上面,特别是在较高的流量下,获得的高度的冷却均匀性。这表示本发明产生相对地高度的表面温度均匀性。
与传统的气膜冷却***相比,根据本发明的冷却***较便宜,结构更坚固,且热效率更高。本发明还提供了一种结构更坚固、重量更轻的冷却***,其热效率至少与传统的发散冷却***一样。此外,本发明能容易地适应出现在航空器、导弹、超音速运载工具和航天器上的各种设计情况。
虽然已经为了说明性的目的披露了本发明的优选实施方式,但本领域技术人员可以理解的是,在不背离这里和所附权利要求中披露的发明的范围和精神的情况下,各种改变、增加和替换都是可能的。例如,虽然已经披露了空气作为冷却介质,但当然可以使用其它流体。

Claims (3)

1. 一种装置,包括:
内结构件(12)和外结构壁(14),在它们之间确定了压力通风***(16);
附于所述外结构壁(14)上的多孔层(18),且所述多孔层(18)包括陶瓷泡沫绝热层;
设置在所述多孔层的外表面上的硬化穿孔层(24),所述硬化穿孔层(24)由半透过性材料构成;
所述外结构壁(14)包括位于其中的孔口(20)。
2. 如权利要求1所述的装置,其特征在于所述半透过性材料是硬化的陶瓷基复合材料。
3. 如权利要求1所述的装置,其特征在于所述外结构壁(14)由金属材料形成。
CNB2004800224473A 2003-06-05 2004-06-01 表面温度控制*** Expired - Lifetime CN100415607C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/455,204 2003-06-05
US10/455,204 US7055781B2 (en) 2003-06-05 2003-06-05 Cooled insulation surface temperature control system

Publications (2)

Publication Number Publication Date
CN1832883A CN1832883A (zh) 2006-09-13
CN100415607C true CN100415607C (zh) 2008-09-03

Family

ID=33489904

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800224473A Expired - Lifetime CN100415607C (zh) 2003-06-05 2004-06-01 表面温度控制***

Country Status (9)

Country Link
US (2) US7055781B2 (zh)
EP (2) EP1651518B1 (zh)
JP (1) JP4638420B2 (zh)
CN (1) CN100415607C (zh)
AT (1) ATE440029T1 (zh)
CA (1) CA2527105C (zh)
DE (1) DE602004022678D1 (zh)
ES (2) ES2330112T3 (zh)
WO (1) WO2004108531A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7055781B2 (en) * 2003-06-05 2006-06-06 The Boeing Company Cooled insulation surface temperature control system
US7275720B2 (en) * 2003-06-09 2007-10-02 The Boeing Company Actively cooled ceramic thermal protection system
US20060145020A1 (en) * 2004-12-10 2006-07-06 Buehler David B Atmospheric entry thermal protection system
US7913928B2 (en) 2005-11-04 2011-03-29 Alliant Techsystems Inc. Adaptive structures, systems incorporating same and related methods
US8505616B2 (en) * 2006-04-20 2013-08-13 The Boeing Company Hybrid ceramic core cold plate
US7742297B2 (en) * 2006-04-20 2010-06-22 The Boeing Company Ceramic foam electronic component cooling
US7905275B2 (en) 2006-04-20 2011-03-15 The Boeing Company Ceramic foam cold plate
US8240361B2 (en) 2006-11-02 2012-08-14 The Boeing Company Combined thermal protection and surface temperature control system
US8191616B2 (en) * 2006-11-02 2012-06-05 The Boeing Company Combined thermal protection and surface temperature control system
DE102008057428B4 (de) 2008-11-07 2019-01-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Schutzstruktur und deren Verwendung
DE102009015856B4 (de) * 2009-04-01 2012-01-26 Airbus Operations Gmbh Rumpfsegment und Verfahren zur Herstellung des Rumpfsegments
US8800641B2 (en) * 2009-06-01 2014-08-12 The Boeing Company Methods and apparatus for a micro-truss based structural insulation layer
US8720828B2 (en) * 2009-12-03 2014-05-13 The Boeing Company Extended plug cold plate
US10112257B1 (en) * 2010-07-09 2018-10-30 General Lasertronics Corporation Coating ablating apparatus with coating removal detection
RU2452669C1 (ru) * 2010-11-09 2012-06-10 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет (ТГУ) Способ тепловой защиты головной части летательного аппарата
US9633751B2 (en) 2011-04-01 2017-04-25 The Boeing Company Liquid lithium first walls for electromagnetic control of plasmas in fusion power reactor environments
US9589678B2 (en) 2011-04-01 2017-03-07 The Boeing Company Complex shape structure for liquid lithium first walls of fusion power reactor environments
US9074829B2 (en) 2011-12-01 2015-07-07 The Boeing Company Lightweight high temperature heat exchanger
US9182175B2 (en) 2011-12-01 2015-11-10 The Boeing Company Anti-icing heat exchanger
US10161691B2 (en) * 2012-01-16 2018-12-25 The Boeing Company Multi-channel cooling plenum
US9895771B2 (en) 2012-02-28 2018-02-20 General Lasertronics Corporation Laser ablation for the environmentally beneficial removal of surface coatings
RU2509040C2 (ru) * 2012-03-22 2014-03-10 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Термостойкая система теплозащиты поверхности гиперзвуковых летательных и возвращаемых космических аппаратов
US9403600B2 (en) 2012-05-01 2016-08-02 Lockheed Martin Corporation Integrated thermal protection and leakage reduction in a supersonic air intake system
FR2998262B1 (fr) * 2012-11-21 2016-01-15 Airbus Operations Sas Dispositif passif pour generer un film d'air froid en contact avec une surface exterieure d'un aeronef
US9493228B2 (en) * 2012-11-28 2016-11-15 The Boeing Company High heat transfer rate reusable thermal protection system
CN103192978B (zh) * 2013-04-02 2015-04-15 中国人民解放军国防科学技术大学 一种层板式发汗和逆喷组合冷却鼻锥
FR3016413B1 (fr) * 2014-01-15 2018-06-15 Arianegroup Sas Systeme de protection thermique pour un reservoir cryogenique d'engin spatial
CN103935532B (zh) * 2014-04-29 2016-02-17 北京空间飞行器总体设计部 一种适用于大角度展开机构的多层帐篷
US10225953B2 (en) 2014-10-31 2019-03-05 Thermal Corp. Vehicle thermal management system
CN104608942B (zh) * 2015-02-13 2017-05-17 中国科学院宁波材料技术与工程研究所 一种超高速飞行器的热防护与减阻***
DE102015111788A1 (de) 2015-07-21 2017-01-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gleitlagervorrichtung
CN106428643A (zh) * 2016-09-08 2017-02-22 上海卫星工程研究所 削弱外热流装置及其使用方法和空间飞行器
US20180298611A1 (en) * 2017-04-17 2018-10-18 David R. Hall Configurable Hydronic Structural Panel
CN107298163A (zh) * 2017-07-05 2017-10-27 哈尔滨工业大学 一种降低高超声速气动热的热防护结构
CN107719630B (zh) * 2017-09-25 2019-08-16 中国人民解放军国防科技大学 一种层板式燃气发汗鼻锥
CN107891970A (zh) * 2017-11-10 2018-04-10 北京卫星环境工程研究所 高超声速飞行器气膜冷却用的主动式热防护***
CN109823508B (zh) * 2019-02-22 2021-07-06 西安电子科技大学 超限热防护与生存状态感知的高速飞行器柔性蒙皮
US11352120B2 (en) 2019-11-15 2022-06-07 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11260976B2 (en) 2019-11-15 2022-03-01 General Electric Company System for reducing thermal stresses in a leading edge of a high speed vehicle
US11427330B2 (en) 2019-11-15 2022-08-30 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11260953B2 (en) 2019-11-15 2022-03-01 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11267551B2 (en) 2019-11-15 2022-03-08 General Electric Company System and method for cooling a leading edge of a high speed vehicle
CN112179218B (zh) * 2020-09-09 2021-10-01 西安交通大学 基于热解反应的热防护装置
US11745847B2 (en) 2020-12-08 2023-09-05 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11407488B2 (en) 2020-12-14 2022-08-09 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11577817B2 (en) 2021-02-11 2023-02-14 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US20220340252A1 (en) * 2021-04-27 2022-10-27 The Boeing Company Active cooling of windward surface of craft
US20240003296A1 (en) * 2022-06-29 2024-01-04 The Boeing Company Transpirational cooling panel
CN116750214B (zh) * 2023-08-18 2024-04-16 北京临近空间飞行器***工程研究所 一种超高温环境用柔性防热蒙皮

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941759A (en) * 1957-01-14 1960-06-21 Gen Dynamics Corp Heat exchanger construction
US3307616A (en) * 1963-11-28 1967-03-07 Bbc Brown Boveri & Cie Method of protecting a heat-resistant element from hot media
US5330124A (en) * 1992-03-03 1994-07-19 Aerospatiale Societe Nationale Industrielle Thermal protection device using the vaporization and superheating of a rechargeable liquid

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908455A (en) * 1957-04-11 1959-10-13 United Aircraft Corp Surface cooling means for aircraft
US3138009A (en) * 1957-04-17 1964-06-23 Gen Electric Transpiration cooling system
US3267857A (en) * 1962-04-05 1966-08-23 Jr John E Lindberg Nose-cone cooling of space vehicles
US3261576A (en) * 1962-06-14 1966-07-19 Olin Mathieson Aircraft structure
US3452553A (en) * 1967-03-17 1969-07-01 Gen Dynamics Corp Transpiration cooled window
US3614038A (en) * 1970-01-08 1971-10-19 Ace Filtercraft Inc Porous metal panel to distribute deicing fluid onto the leading edge of a surface
US4151800A (en) * 1977-04-15 1979-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermal insulation protection means
US4434201A (en) * 1981-11-13 1984-02-28 T.K.S. (Aircraft De-Icing) Limited Porous panel
US4849276A (en) 1984-02-17 1989-07-18 The Boeing Company Thermal insulation structure
US5000998A (en) 1984-02-17 1991-03-19 The Boeing Company Method for making thermal insulation
US5587228A (en) 1985-02-05 1996-12-24 The Boeing Company Microparticle enhanced fibrous ceramics
US5041321A (en) 1984-11-02 1991-08-20 The Boeing Company Fiberformed ceramic insulation and method
US5310592A (en) 1984-11-02 1994-05-10 The Boeing Company Fibrous ceramic aerobrake
US4671348A (en) * 1985-05-21 1987-06-09 Mcdonnell Douglas Corporation Transverse flow edge heat pipe
US5322725A (en) 1988-08-31 1994-06-21 The Boeing Company Thermal protection system
US4991797A (en) * 1989-01-17 1991-02-12 Northrop Corporation Infrared signature reduction of aerodynamic surfaces
US4990391A (en) * 1989-02-03 1991-02-05 Rohr Industries, Inc. Reticulated core to perforate sheet bonding and galvanic barrier
DE3914010C2 (de) * 1989-04-26 1995-09-14 Osaka Fuji Corp Verfahren zur Herstellung von Metall-Keramik-Verbundwerkstoffen sowie Verwendung des Verfahrens zur Steuerung der Materialeigenschaften von Verbundwerkstoffen
US5374476A (en) 1990-10-22 1994-12-20 Ball Corporation Thermal insulating system and method
US5236151A (en) * 1991-12-23 1993-08-17 General Electric Company Thermal barrier structure
JPH06173772A (ja) 1992-08-10 1994-06-21 Boeing Co:The 逆推進装置内壁およびそのサンドイッチ構造
US5624613A (en) 1993-04-01 1997-04-29 The Boeing Company Rigidized refractory fibrous ceramic insulation
US5402965A (en) * 1993-09-20 1995-04-04 Rockwell International Corporation Reusable flyback satellite
US6074699A (en) 1994-04-29 2000-06-13 Mcdonnell Douglas Corporation Surface hardness of articles by reactive phosphate treatment
GB2294709B (en) * 1994-11-04 1998-03-04 Rolls Royce Plc A method of manufacturing a porous material
FR2752289B1 (fr) 1996-08-06 1998-10-30 Thomson Csf Dispositif de refroidissement, notamment de modules electroniques
US5980980A (en) 1996-10-29 1999-11-09 Mcdonnell Douglas Corporation Method of repairing porous ceramic bodies and ceramic composition for same
US5958583A (en) 1996-12-20 1999-09-28 The Boeing Company Alumina-based protective coating for ceramic materials
US6007026A (en) 1997-06-30 1999-12-28 The Boeing Company Quick installation-removal thermal insulation blanket for space craft
US6733907B2 (en) * 1998-03-27 2004-05-11 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
US6086664A (en) 1998-05-12 2000-07-11 The Boeing Company Efficient, environmentally acceptable method for waterproofing insulation material
DE19910779C2 (de) 1999-03-11 2002-01-24 Airbus Gmbh In einer Flugzeugkabine angeordnetes Staufach für Handgepäck
US6521555B1 (en) * 1999-06-16 2003-02-18 First Quality Nonwovens, Inc. Method of making media of controlled porosity and product thereof
US6419189B1 (en) 2000-11-01 2002-07-16 The Boeing Company Hot ruddervator apparatus and method for an aerospacecraft
US6613255B2 (en) 2001-04-13 2003-09-02 The Boeing Company Method of making a permeable ceramic tile insulation
KR100398058B1 (ko) * 2001-05-18 2003-09-19 주식회사 경동도시가스 수식된 θ-알루미나에 담지되어 이루어진 니켈계 개질촉매및 이를 이용한 천연가스로부터 합성가스의 제조방법
US20020195525A1 (en) 2001-06-21 2002-12-26 Anton Claire E. Spray on-foam insulation system for an aircraft
US6919103B2 (en) 2001-08-10 2005-07-19 The Boeing Company Surface protection of porous ceramic bodies
US6607851B2 (en) 2001-10-26 2003-08-19 The Boeing Company Multi-layer ceramic fiber insulation tile
US6712318B2 (en) * 2001-11-26 2004-03-30 The Boeing Company Impact resistant surface insulation tile for a space vehicle and associated protection method
US7055781B2 (en) * 2003-06-05 2006-06-06 The Boeing Company Cooled insulation surface temperature control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941759A (en) * 1957-01-14 1960-06-21 Gen Dynamics Corp Heat exchanger construction
US3307616A (en) * 1963-11-28 1967-03-07 Bbc Brown Boveri & Cie Method of protecting a heat-resistant element from hot media
US5330124A (en) * 1992-03-03 1994-07-19 Aerospatiale Societe Nationale Industrielle Thermal protection device using the vaporization and superheating of a rechargeable liquid

Also Published As

Publication number Publication date
CA2527105A1 (en) 2004-12-16
WO2004108531A1 (en) 2004-12-16
JP2006526540A (ja) 2006-11-24
EP2108587A3 (en) 2017-12-13
US7055781B2 (en) 2006-06-06
EP2108587A2 (en) 2009-10-14
ES2330112T3 (es) 2009-12-04
US20060060702A1 (en) 2006-03-23
US20040245389A1 (en) 2004-12-09
EP2108587B1 (en) 2020-10-28
US7232093B2 (en) 2007-06-19
ES2845349T3 (es) 2021-07-26
CA2527105C (en) 2008-12-02
DE602004022678D1 (de) 2009-10-01
JP4638420B2 (ja) 2011-02-23
EP1651518A1 (en) 2006-05-03
EP1651518B1 (en) 2009-08-19
CN1832883A (zh) 2006-09-13
ATE440029T1 (de) 2009-09-15

Similar Documents

Publication Publication Date Title
CN100415607C (zh) 表面温度控制***
US6122892A (en) Ventilated honeycomb cell sandwich panel and ventilation process for such a panel
EP2077962B1 (en) Combined thermal protection and surface temperature control system
US7275720B2 (en) Actively cooled ceramic thermal protection system
US7742297B2 (en) Ceramic foam electronic component cooling
US7128532B2 (en) Transpiration cooling system
JP3234349B2 (ja) 蒸散によって冷却される高温ガスを包含する囲繞体並びにその製造方法
US20100038051A1 (en) Combined thermal protection and surface temperature control system
US5145001A (en) High heat flux compact heat exchanger having a permeable heat transfer element
US4896719A (en) Isothermal panel and plenum
GB2437383A (en) Hybrid ceramic core cold plate
EP0234686A1 (en) Temperature-responsive laminated porous metal panel
EP2333475B1 (en) Cold plate comprising ceramic foam member
Wassell et al. The development and application of improved combustor wall cooling techniques
US4213311A (en) Superleak
US20240107714A1 (en) Impingement cooling providing enhanced localized cooling of a heatsink
CN110425572A (zh) 用于超声速飞行器冲压发动机的多孔单柱状燃料供给结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080903