CN100411233C - 燃料电池***及其发电方法 - Google Patents

燃料电池***及其发电方法 Download PDF

Info

Publication number
CN100411233C
CN100411233C CNB2005800024344A CN200580002434A CN100411233C CN 100411233 C CN100411233 C CN 100411233C CN B2005800024344 A CNB2005800024344 A CN B2005800024344A CN 200580002434 A CN200580002434 A CN 200580002434A CN 100411233 C CN100411233 C CN 100411233C
Authority
CN
China
Prior art keywords
mentioned
fuel cell
cathode exhaust
oxygen
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005800024344A
Other languages
English (en)
Other versions
CN1910774A (zh
Inventor
志满津孝
青木博史
三井宏之
荻野温
青山智
盐川谕
井口哲
木村宪治
佐藤博道
伊泽康浩
伊藤直树
饭岛昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Publication of CN1910774A publication Critical patent/CN1910774A/zh
Application granted granted Critical
Publication of CN100411233C publication Critical patent/CN100411233C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

燃料电池***(1)具有改质器(2)和燃料电池(3)。改质器(2)具有生成含氢改质气体(Ga)的改质反应流道(21)和加热用的加热流道(22)。燃料电池(3)具有:被供给含氢改质气体(Ga)的阳极流道(32);被供给含氧气体(Gc)的阴极流道(33);以及被配置在二者之间的电解质体(31)。电解质体(31)是层叠氢分离金属层(311)和质子导体层(312)而成的。燃料电池***(1)具有将从阴极流道(33)排出的阴极废气(Oc)送往改质反应流道(21)的阴极废气管(46)。

Description

燃料电池***及其发电方法
技术领域
本发明涉及在改质器中从改质用燃料生成含氢改质气体,并在燃料电池中利用含氢改质气体中的氢来进行发电的燃料电池***。
背景技术
利用烃类或醇类等改质用燃料来进行发电的燃料电池***包括:从上述改质用燃料生成含氢的改质气体的改质器;用于从上述改质气体中提取高纯度氢的氢分离膜装置;以及使氢处于氢质子状态,并和氧发生反应以进行发电的燃料电池。上述改质器进行例如改质用燃料与水进行的水蒸气改质反应以及改质用燃料与氧进行的部分氧化反应等来生成上述改质气体。另外,上述氢分离膜装置具有由钯等构成的氢分离膜,该氢分离膜具有只会使氢透过的性质。另外,上述燃料电池具有:被提供了透过氢分离膜的氢的阳极流道;被提供了空气等的阴极流道;以及配置在这些流道之间的质子导体(电解质)。
在上述的燃料电池***中,使提供给阳极流道的氢处于氢质子状态,然后使之透过上述质子导体,并且在阴极流道中,在该氢质子和空气中的氧发生反应生成水的同时来进行发电。例如下述专利文献1、2中所示的即为这种燃料电池***。
从上述阴极流道排出的阴极废气中含有由上述氢质子和氧进行反应而生成的水以及在和上述氢质子的反应中没有使用的氧等。因此,在专利文献1中,在上述改质器的各个反应中利用上述阴极废气。另外,从上述阳极流道排出的阳极废气中含有没有透过上述质子导体的氢以及从上述改质器输送来的水等。因此,在专利文献2中,在上述改质器的改质反应中利用上述阳极废气。
另外,上述燃料电池的种类例如有在上述质子导体中使用了固体高分子膜的固体高分子膜型燃料电池、以及在质子导体中使用了碳化硅中浸渍有磷酸的物质的磷酸型电池等。在上述改质器中,为了抑制碳的析出,例如要在400℃以上的高温进行反应,而另一方面,由于有在上述质子导体中浸渍溶液来进行使用的性质,因此上述各个燃料电池的工作温度在固体高分子膜型燃料电池中为20~120℃左右,在磷酸型燃料电池中为120~210℃左右。
从而在上述以往的燃料电池***中,由上述改质器生成的改质气体的温度以及透过上述氢分离膜的氢的温度大大高于提供给燃料电池的氢的温度,从而需要在提供给燃料电池之前大幅度降低改质气体或者氢的温度。
于是在专利文献1中,通过热交换器来进行上述改质器中生成的改质气体和阴极废气的热交换,从而将热量从改质气体传给阴极废气并使该改质气体的温度下降,另外,通过其它热交换器降低上述透过氢分离膜的氢的温度,然后将其提供给燃料电池。
另外,在专利文献2中,通过使透过氢分离膜的氢通过冷凝器来降低温度,然后将其提供给燃料电池。
这样,在上述以往的燃料电池***中,虽然特意降低了用于提供给燃料电池的氢的温度,但不能在改质器中利用从燃料电池的阴极流道中排出的阴极废气的热量。另外,使用上述热交换器或上述冷凝器等,不仅浪费能源,而且会使上述燃料电池***的结构变得复杂。
另外,如上所述,上述固体高分子膜型燃料电池***和上述磷酸型燃料电池是在上述质子导体中浸渍溶液来进行使用的。因此,在这些燃料电池中,在上述阴极流道中由上述氢质子和上述空气中的氧发生反应而产生的水会由于因阳极流道和阴极流道之间的水量差引起的反向输注(日文原文:バツクリフユ一ジヨン,back fusion)而在上述质子导体内移动,并流入上述阳极流道。于是,通过发生依赖于饱和蒸气压力的气化而从阳极流道排出流入该阳极流道的水。
因此,不能从上述阴极流道回收由上述燃料电池的发电而生成的全部水分,不能利用所述的全部水分来调节提供给上述改质器的水量。
另外,由于不能全部回收上述水分,因此,上述以往的燃料电池***大部分不能满足上述改质器的反应所必需的水分。因此,在以往的燃料电池***中,为了向改质器提供充足的水分以进行稳定的运行,需要向改质器添加供给水分,并需要浓缩上述阴极废气中所包含的水分以供给改质器。
另外,在上述以往的燃料电池***中,上述质子导体内的成分可能会气化并溶于阴极流道内的水中。例如,在上述固体高分子膜型燃料电池中,氟成分可能会溶入水中,在上述磷酸型燃料电池中,磷酸可能会溶入水中。因此,传输给上述改质器的阴极废气中的水的纯度下降,并可能会在上述改质器内的改质催化剂中吸附上述质子导体中的气化成分而引起被毒化的问题。
专利文献1:日本专利文献特开2003-151599号公报;
专利文献2:日本专利文献特开2001-223017号公报。
发明内容
本发明鉴于所述以往问题而作出的,其提供了一种燃料电池***及其发电方法,使得可简化燃料电池***的构造,且可从阴极流道回收全部生成水,并利用阴极废气所具有的剩余氧和高温热能来进一步提高能效。
本发明的第一方式是一种燃料电池***,其包括改质器和燃料电池,其中所述改质器具有从改质用燃料生成包含氢的含氢改质气体的改质反应流道,所述燃料电池利用上述含氢改质气体来进行发电,所述燃料电池***的特征在于,
上述燃料电池包括:被从上述改质反应流道供给上述含氢改质气体的阳极流道;被供给含氧气体的阴极流道;以及被配置在该阴极流道和上述阳极流道之间的电解质体,
上述电解质体是层叠氢分离金属层和由陶瓷构成的质子导体层而成的,其中,所述氢分离金属层用于使被提供给上述阳极流道的上述含氢改质气体中的氢透过,所述质子导体层用于使透过该氢分离金属层的上述氢处于质子状态并透过该质子导体层,从而到达上述阴极流道,
在上述燃料电池的上述阴极流道上连接有阴极废气管,该阴极废气管用于将从该阴极流道排出的阴极废气送往上述改质器的上述改质反应流道(权利要求1)。
本发明的燃料电池***具有包括电解质体的燃料电池,所述电解质体是层叠上述氢分离金属层和上述质子导体层而形成的。于是,在本发明的燃料电池***中,由于上述质子导体层由陶瓷构成,并且该质子导体层可在不浸渍水分的情况下进行使用,因此,可在例如300~600℃的高温状态下使上述燃料电池工作。因此,可直接从上述改质器向上述燃料电池提供上述含氢改质气体。
另外,从上述阴极流道排出的阴极废气可在接近上述燃料电池的工作温度的高温状态下被直接送往上述改质器。因此,在上述燃料电池***中,在改质器中生成含氢改质气体的温度可与燃料电池的工作温度非常接近。
在上述燃料电池的阴极流道中,提供给该阴极流道的含氧气体中的氧和从上述阳极流道通过上述电解质体而提供给上述阴极流道的氢质子(H*、也可称为氢离子)发生反应并生成水。于是,通过进行上述反应并从形成于上述电解质体的阳极电极和阴极电极之间取出电能,上述燃料电池***可进行发电。
并且,在上述阴极流道中进行了反应之后,从该阴极流道排出的阴极废气具有:在上述反应中没有被使用的氧(剩余氧)、因上述反应而生成的水(生成水)、以及由上述燃料电池的高温工作而产生的热量。
另外,上述燃料电池的阴极流道的生成水变成例如300~600℃的高温水蒸气,该生成水几乎不浸渍到上述质子导体层,并且,上述氢分离金属层具有仅使氢透过的特性,由此,上述生成水不会从阴极流道透到阳极流道这边。因此,可以通过上述阴极废气管而从上述阴极流道回收全部上述生成水。
由此,在本发明中,能够从包含因上述燃料电池的发电而生成的生成水的阴极废气中容易确保上述改质器的改质反应流道中的反应所必需的水,并能够向上述改质反应流道提供充足量的水。另外,在本发明中,可以利用上述阴极废气中的全部生成水来调节提供给上述改质反应流道的水量。
因此,能够容易地设定燃料电池***的运行条件,并且能够容易稳定燃料电池***的运行。
另外,由于在上述燃料电池中是在干燥状态下使用上述质子导体层312,因此,不会发生质子导体层中的成分气化,并溶入阴极流道内的上述生成水中的情况。从而不会降低送往上述改质器的阴极废气中的上述生成水的纯度,并且,例如当在上述改质器的改质反应流道中设置改质催化剂时,该改质催化剂也不会发生被毒化的问题。
在本发明中,当在上述改质器中上述改质用燃料与上述阴极废气发生反应并生成上述含氢改质气体时,在改质器中,不仅能够利用阴极废气所具有的上述剩余氧和上述充足量的生成水,还能够利用阴极废气所具有的高温热能。因此,在改质器中,可使上述改质用燃料和具有上述高温热能的阴极废气发生反应而生成上述含氢改质气体,从而能够提高该改质器的能效。
另外,在本发明中,在如上所述的改质器中生成含氢改质气体的温度能够和燃料电池的工作温度非常接近。因此,在本发明中,不需要在改质器和燃料电池之间设置因其各个温度不同而必需的热交换器和冷凝器等。因此,不会产生因使用这些设备而引起的能源浪费,并能够简化燃料电池***的构造。
因此,根据本发明,能够简化燃料电池***的构造,可从阴极流道回收全部生成水,并可利用阴极废气所具有的高温热能,从而能够进一步提高燃料电池***的能效。
另外,除了本发明的燃料电池***之外,还有以900~1000℃左右的高温进行工作的固体氧化物燃料电池(SOFC)。根据该固体氧化物燃料电池,不会发生水经由电解质而通过阳极流道和阴极流道之间的反向输注(日文原文:バツクリフユ一ジヨン)的问题。
但是,固体氧化物燃料电池是使提供给阳极流道的氧变成透过氧化物离子导体的氧化物离子状态,然后移动到阴极流道与氢发生反应来进行发电的。
因此,固体氧化物燃料电池与本发明所述的具有层叠了上述氢分离金属层和上述质子导体层的电解质体的燃料电池的结构完全不同。另外,在固体氧化物燃料电池中,由于发电时所生成的水是在阳极流道中生成的,因此,无法回收上述阴极废气中的全部生成水。
本发明的第二方式是一种燃料电池***的发电方法,其中所述燃料电池***包括改质器和燃料电池,所述改质器具有从改质用燃料生成包含氢的含氢改质气体的改质反应流道,所述燃料电池利用上述含氢改质气体来进行发电,该燃料电池具有:被从上述改质反应流道供给上述含氢改质气体的阳极流道;被供给含氧气体的阴极流道;以及被配置在该阴极流道和上述阳极流道之间的电解质体,该电解质体是层叠氢分离金属层和由陶瓷构成的质子导体层而成的,所述氢分离金属层用于使被提供给上述阳极流道的上述含氢改质气体中的氢透过,所述质子导体层用于使透过该氢分离金属层的上述氢处于质子状态并透过所述质子导体层,从而到达上述阴极流道,所述燃料电池***的发电方法的特征在于,
将在上述改质反应流道中生成的上述含氢改质气体提供给上述阳极流道,并使上述含氢改质气体中的氢从上述阳极流道透过上述氢分离金属层之后,使之成为氢质子状态并透过上述质子导体层而到达上述阴极流道,在该阴极流道中,上述氢质子和上述含氧气体中的氧发生反应以进行上述发电,
并且,将从上述阴极流道排出的阴极废气送往上述改质反应流道,在该改质反应流道中,上述改质用燃料和上述阴极废气发生反应而生成上述含氢改质气体(权利要求22)。
与上述发明相同,本发明的燃料电池***的发电方法是使用具有层叠上述氢分离金属层和上述质子导体层而成的电解质体的燃料电池,使该燃料电池在例如300~600℃的高温状态下工作来进行发电的。
与上述发明相同,在上述改质器中,能够使具有上述剩余氧、上述充足量的生成水以及上述高温热能的阴极废气和上述改质用燃料发生反应以生成上述含氢改质气体。
因此,根据本发明,能够有效利用阴极废气所具有的高温热能来进行发电,从而能够进一步提高燃料电池***的能效。
附图说明
图1是表示第一实施例中的燃料电池***的结构的说明图;
图2是表示第一实施例中的燃料电池的结构的说明图;
图3是表示第一实施例中的其它燃料电池***的结构的说明图;
图4是表示第一实施例中的其它燃料电池***的结构的说明图;
图5是表示第二实施例中的、在阴极废气管中设置氧分离膜体时的燃料电池***的结构的说明图;
图6是表示第二实施例中的、在阴极废气管中设置氧分离膜体时的其它燃料电池***的结构的说明图;
图7是表示第二实施例中的、在阴极废气管中设置氧分离膜体时的其它燃料电池***的结构的说明图;
图8是表示第二实施例中的、在阴极废气管中设置氧分离膜体时的其它燃料电池***的结构的说明图;
图9是表示第三实施例中的、向阴极废气管中混入含氧致冷气体时的燃料电池***的结构的说明图;
图10是表示第三实施例中的、向阴极废气管中混入致冷废气时的燃料电池***的结构的说明图;
图11是表示第三实施例中的、向阴极废气管中混入空气时的燃料电池***的结构的说明图;
图12是表示第三实施例中的、向阴极废气管中混入改质用燃料时的燃料电池***的结构的说明图;
图13是表示第四实施例中的、向阴极废气管中混入阳极废气时的燃料电池***的结构的说明图;
图14是表示第四实施例中的、向阴极废气管中混入含氢改质气体时的燃料电池***的结构的说明图;
图15是表示第四实施例中的、向阴极废气管中混入氢时的燃料电池***的结构的说明图;
图16是表示第五实施例中的、在提供改质用燃料的混合器上连接有阴极废气管和空气管时的燃料电池***的结构的说明图;
图17是表示第五实施例中的、在提供改质用燃料的混合器上连接有阴极废气管和空气管,并连接有水蒸气管时的燃料电池***的结构的说明图;
图18是表示第五实施例中的、在提供改质用燃料的混合器上连接有阴极废气管和空气管,并将阴极废气直接提供给改质器时的燃料电池***的结构的说明图。
具体实施方式
下面说明上述本发明中的第一、第二方式的优选实施方式。
在上述本发明的第一、第二方式中,不仅能够将从上述阴极流道排出的阴极废气全部经由上述阴极废气管送往上述改质器,而且还能够仅将其中的一部分送往改质器。于是,能够将送往改质器的阴极废气的流量适当调节至改质器中的反应所需的流量。
另外,在上述改质器的改质反应流道中例如可进行从改质用燃料和水生成氢和一氧化碳等的水蒸气改质反应,以及燃烧改质用燃料的一部分和氧从而生成水和一氧化碳等的部分氧化反应。于是,通过水蒸气改质反应而生成氢,另一方面,由于该水蒸气改质反应是吸热反应,因此,进行上述部分氧化反应的放热反应可将改质器中的反应温度维持得较高。
另外,上述改质用燃料例如可以是烃燃料或者醇燃料等。作为上述烃燃料,例如有甲烷、乙烷等燃料气体、丙烷、丁烷等液化石油气、辛烷等汽油。另外,作为上述醇燃料,例如有甲醇、乙醇等。
另外,在上述本发明的第一方式中,上述阴极废气管优选在不通过仅混合上述阴极废气和上述改质用燃料的混合器,或者不通过仅混合上述阴极废气、上述改质用燃料以及水蒸气的混合器的情况下,将上述阴极废气送往上述改质反应器流道(权利要求2)。
即,在上述本发明的第一方式中,除了在阴极废气管不通过混合器的情况下将上述阴极废气送往上述改质反应器流道的方式之外,还包括通过混合器将阴极废气送往上述改质反应器流道的方式,但在本发明中,优选不通过混合器将阴极废气送往改质反应器流道的方式,且当在向改质器的供给中使用混合器时优选阴极废气管连接混合器的方式,其中所述混合器混合阴极废气和上述改质用燃料,或者混合阴极废气、改质用燃料和水蒸气,除此之外,混合例如空气、阴极废气以及改质器的EGR排放气体等。
在阴极废气管不通过混合器将上述阴极废气送往上述改质反应器流道的方式中,能够在简化布管方式等的同时,降低因通过其它装置而产生的能量损失。
另外,当阴极废气管连接混合阴极废气和上述改质用燃料,或者混合阴极废气、改质用燃料以及水蒸气,除此之外,混合例如空气、阳极废气以及改质器的EGR排气等的混合器时,即使在阴极废气中氧含量不足的情况下,也能够例如从空气管经由混合器向改质器提供空气,从而确保部分氧化反应中所需的氧,或者能够将阳极废气和EGR排放气体连同改质用燃料等一起经由混合器提供给改质器,从而提高氢、热量和改质用燃料的使用效率以及热效率。因此,能够提高改质器中的反应效率和燃料等的使用效率,从而能够进一步提高燃料电池***的能效。
另外,在上述本发明的第一方式中,上述改质器优选具有加热流道,该加热流道被形成为邻接上述改质反应流道,并进行燃烧来加热该改质反应流道。(权利要求3)
在这种情况下,能够通过在上述改质器中形成上述改质反应流道和上述加热流道来减少在上述改质器中进行的上述部分氧化反应的比重。因此,在上述改质反应流道中,能够尽可能多得在生成上述氢等的水蒸气改质反应中使用上述改质用燃料,并能够通过减少给改质器的改质用燃料的供给量来提高改质器的能效。因此,能够进一步提高燃料电池***的能效。
另外,上述燃料电池的上述阳极流道优选连接用于将从该阳极流道排出的阳极废气送往上述加热流道的阳极废气管(权利要求4)。
然而,从上述阳极流道排出的阳极废气中含有没有透过上述电解质体的氢分离金属层而排出的氢以及上述含氢改质气体中所包含的氢以外的物质(尤其是一氧化碳、甲烷等可燃性物质),并具有因燃料电池高温工作而产生的热量。
因此,当将上述阳极废气从上述阳极流道通过上述阳极废气管送往上述加热流道时,在加热流道中,不仅可在燃烧中利用阳极废气所含有的氢及上述可燃性物质等,还可利用阳极废气所具有的高温热能来进行燃烧。另外,在上述改质反应流道中,能够利用上述阴极废气所具有的高温热能来进行上述含氢改质气体的生成。因此,能够进一步提高上述改质器中的能效,从而能够进一步提高上述燃料电池***的能效。
另外,上述燃料电池优选具有提供用于冷却该燃料电池的含氧致冷气体的致冷流道(权利要求5)。
在该情况下,能够调节供应给上述燃料电池的致冷流道的上述含氧致冷气体的供给量,从而将燃料电池的温度维持在规定的温度范围内。
另外,上述燃料电池的上述致冷流道优选连接用于将从该致冷流道排出的致冷废气送往上述加热流道的致冷废气管(权利要求6)。
然而,从上述致冷流道排出的致冷废气含有上述含氧致冷气体中所含有的氧,并含有通过上述燃料电池而加热的热量。
因此,当将上述阳极废气从上述阳极流道通过上述阳极废气管送往上述加热流道,并且将上述致冷废气从上述致冷流道通过上述致冷废气管送往上述加热流道时,在加热流道中,不仅可燃烧阳极废气所含有的氢和致冷废气所含有的氧,还可利用阳极废气和致冷废气所分别具有的高温热能来进行燃烧。因此,能够进一步提高上述改质器中的能效,从而能够进一步提高上述燃料电池***的能效。
另外,不仅能够将从上述阳极流道排出的阳极废气的全部经由上述阳极废气管送往上述改质反应流道,而且还能够仅将其中的一部分送往改质反应流道。于是,能够将送往改质反应流道的阳极废气的流量适当调节至改质反应流道中的反应所需的流量。
另外,对于上述阳极废气和上述致冷废气也一样,不仅能够将其全部经由上述阳极废气管或者上述致冷废气管送往上述加热流道,还能够仅将其一部分送往上述加热流道。于是,能够将送往加热流道的阳极废气的流量或者致冷废气的流量适当调节至加热流道中的燃烧所需的流量。
另外,优选在上述阴极废气管中设有排气用三通调节阀,通过上述排气用三通调节阀,排出上述阴极废气的一部分,并将剩余部分送往上述改质反应流道(权利要求7)。
在这种情况下,能够通过上述排气用三通调节阀来调节送往上述改质反应流道的上述阴极废气的流量,即,送往改质反应流道的水量和氧量。
然而,当供给上述阳极流道的上述含氢气体的流量、供给上述阴极流道的上述含氧气体的流量等发生变化,且上述阴极流道中理论空气量相对于氢质子量的比率(阴极化学定量关系)发生变化时,在和上述氢质子的反应中没有使用的阴极废气中的剩余氧的量也会发生变化。此时,特别是当该剩余氧的量多于上述改质反应流道所必需的氧量时,能够通过上述排气用三通调节阀排出一部分阴极废气来减少送往改质反应流道的阴极废气的流量。由此能够将送往改质反应流道的阴极废气中的剩余氧的量维持在适当的量。
并且,当使用上述含氧气体中空气以外的气体时,计算上述阴极化学定量关系时的理论空气量可以是将含氧气体换算成空气的量。
另外,在上述燃料电池***中,可以使流向上述阳极流道的上述含氢气体的流量以及流向上述阴极流道的上述含氧气体的流量等发生变化,从而有意识地改变上述阴极化学定量关系。此时,可以调节上述阴极废气中由上述氢质子与氧进行反应而而得的上述生成水的量和上述剩余氧的量之间的比率。并且,即使在这个时候,也能够通过上述排气用三通调节阀来排出一部分阴极废气,由此能够将送往上述改质反应流道的阴极废气中的剩余氧的量维持在适当的量。
另外,在上述阴极废气管中设有供给用三通调节阀,上述燃料电池***可被构成为经由上述供给用三通调节阀,将上述阴极废气的一部分送往上述加热流道,并将剩余部分送往上述改质反应流道(权利要求8)。
在这种情况下,可以利用上述阴极废气的一部分以用于在上述加热流道中进行燃烧,另外,还可以利用阴极废气的剩余部分以用于在上述改质反应流道中进行反应。由此,不是将上述改质反应流道中没有被利用的阴极废气全部排出,而是在上述加热流道中加以利用,从而能够进一步提高上述燃料电池***的能效。
另外,在该情况下,也可以通过上述排气用三通调节阀来减少送往改质反应流道的阴极废气的流量。另外,即使在该情况下,也可以有意识地改变上述阴极废气,从而调节上述阴极废气中的上述生成水的量和上述剩余氧量之间的比率。
另外,在上述阴极废气管中设有再供给用三通调节阀,上述燃料电池***可被构成为经由上述再供给用三通调节阀,将上述阴极废气的一部分再次提供给上述阴极流道,并将剩余部分送往上述改质反应流道(权利要求9)。
在该情况下,通过将上述阴极废气的一部分再次提供给上述阴极流道,能够有意识地减少并调节提供给阴极流道的上述含氧气体中的氧浓度。
另外,在该情况下,也能够通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节通过上述再供给用三通调节阀再次提供给阴极流道的再次供给量,来确定送往上述改质反应流道的氧量。由此,能够适当地调节送往改质反应流道的水量和氧量以及它们的比率。
另外,在该情况下,也能够通过有意识地改变上述阴极化学定量关系来调节送往上述改质反应流道的水量和氧量之间的比率。
另外,在上述阴极废气管中设有氧分离膜体,上述燃料电池***可被构成为使上述阴极废气中的氧的一部分透过上述氧分离膜体排出(权利要求10)。
在该情况下,可通将阴极废气中的氧的一部分经由上述氧分离膜体而排出,来减少阴极废气中的剩余氧量,从而将送往改质反应流道的阴极废气中的剩余氧量维持在适当的量。
另外,在该情况下,也能够通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节上述氧分离膜体排出氧的量来确定送往上述改质反应流道的氧量。由此,可以适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,在上述阴极废气管中设有氧分离膜体,上述燃料电池***可被构成为使上述阴极废气中的氧的一部分透过上述氧分离膜体而再次提供给上述阴极流道(权利要求11)。
在该情况下,也能够减少通过上述氧分离膜体而送往改质反应流道的阴极废气中的剩余氧量,从而将该剩余氧量维持在适当的量。
另外,在该情况下,能够通过将上述阴极废气中的氧的一部分再次提供给上述阴极流道来增加提供给阴极流道的上述含氧气体中的氧量,并能够易于确保上述燃料电池中的反应所必须的氧量。因此,在将上述阴极化学定量关系维持在适当比率的情况下,也能够减少提供给阴极流道的含氧气体的流量。
另外,在该情况下,也能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节透过上述氧分离膜体的氧量来确定送往上述改质反应流道的氧量。由此,能够适当调节送往改质反应流道的水量和氧量以及它们的比率。
另外,在上述阴极废气管中设有氧分离膜体,上述燃料电池***可被构成为使上述阴极废气中的氧的一部分透过上述氧分离膜体而送往上述加热流道(权利要求12)。
在该情况下,也能够减少通过上述氧分离膜体而送往改质反应流道的阴极废气中的剩余氧量,从而将该剩余氧量维持在适当的量。
另外,在该情况下,能够在上述加热流道中利用通过上述氧分离膜体而获得的阴极废气中的氧以进行燃烧。由此,能够在上述加热流道中有效利用在上述改质反应流道中没有利用的阴极废气中的氧,从而能够进一步提高上述燃料电池***的能效。
另外,在该情况下,也能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节透过上述氧分离膜体的氧量来确定送往上述改质反应流道的氧量。由此,能够适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,在上述阴极废气管中设有氧分离膜体,上述燃料电池***可被构成为使上述阴极废气中的氧的一部分透过上述氧分离膜体而储存在氧缓冲器中(权利要求13)。
在该情况下,也能够减少通过上述氧分离膜体送往改质反应流道的阴极废气中的剩余氧量,从而将该剩余氧量维持在适当的量。
另外,在该情况下,在上述改质反应流道中没有利用的阴极废气中的氧可以储存在上述氧缓冲器中。于是,例如当希望增加上述改质反应流道所必须的氧量时,可以从上述氧缓冲器向该改质反应流道提供氧。
另外,在该情况下,还能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节透过上述氧分离膜体的氧量来确定送往上述改质反应流道的氧量。由此,能够适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,上述燃料电池***优选被构成为在上述阴极废气管中混合上述含氧致冷气体的一部分(权利要求14)。
在该情况下,特别是当上述阴极废气中的剩余氧量少于上述改质反应流道所必需的氧量时,可以通过向该改质反应流道提供混合了上述含氧致冷气体的一部分的阴极废气来增加在改质反应流道中利用的阴极废气中的氧量。
另外,在该情况下,也可以通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节上述含氧致冷气体的混合量来确定送往上述改质反应流道的氧量。由此,能够适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,上述燃料电池***可被构成为在上述阴极废气管中混合上述致冷废气的一部分(权利要求15)。
在该情况下,能够向上述改质反应流道提供混合了一部分致冷废气的阴极废气,其中所述致冷废气处于通过上述燃料电池内部而被加热的状态。因此,可以在几乎不降低在改质反应流道中利用的阴极废气的温度的情况下增加该阴极废气中的氧量。
另外,在该情况下,也可以通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节上述致冷废气的混合量来确定送往上述改质反应流道的氧量。由此,能够适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,上述燃料电池***可被构成为在上述阴极废气管中混合空气(权利要求16)。
在该情况下,特别是当上述阴极废气中的剩余氧量少于上述改质反应流道所必须的氧量时,可以通过在上述阴极废气中混合空气来增加在改质反应流道中利用的阴极废气中的氧量。
另外,在该情况下,也可以通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节上述空气的混合量来确定送往上述改质反应流道的氧量。由此,能够适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,上述燃料电池***可被构成为在上述阴极废气管中混合氧(权利要求17)。
在该情况下,特别是当上述阴极废气中的剩余氧量少于上述改质反应流道所必需的氧量时,可以通过在上述阴极废气中混合氧来进一步有效增加在改质反应流道中利用的阴极废气中的氧量。
另外,在该情况下,也可以通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,能够调节排气用三通调节阀的排气量来确定送往上述改质反应流道的水量,并能够调节上述氧的混合量来确定送往上述改质反应流道的氧量。由此,能够适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,上述燃料电池***可被构成为在上述阴极废气管中混合改质用燃料(权利要求18)。
在该情况下,能够在上述阴极废气管中燃烧上述改质用燃料和上述阴极废气中的剩余氧。于是,通过该燃烧,可以减少阴极废气中的氧量,并增加阴极废气中的水量。因此,可以将按照上述氧量相对于上述水量减少的方式进行了调节的阴极废气送往上述改质反应流道。
另外,在该情况下,也可以通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,可以通过排气用三通调节阀的排气量的调节和上述改质用燃料的混合量的调节来适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,上述燃料电池***可被构成为在上述阴极废气管中混合上述阳极废气的一部分(权利要求19)。
在该情况下,能够在上述阴极废气管中燃烧上述阳极废气中的氧和上述阳极废气中的剩余氧。于是,通过该燃烧,可以减少阴极废气中的氧量,并增加阴极废气中的水量。另外,在该情况下,在上述阴极废气管中,能够在上述阴极废气中混合上述阳极废气中的水,从而增加阴极废气中的水量。
因此,可以将按照上述氧量相对于上述水量减少的方式进行了调节的阴极废气送往上述改质反应流道。
另外,在该情况下,也可以通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,可以通过排气用三通调节阀的排气量的调节和上述阳极废气的混合量的调节来适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,上述燃料电池***可被构成为在上述阴极废气管中混合上述含氢改质气体的一部分(权利要求20)。
在该情况下,能够在上述阴极废气管中燃烧上述含氢改质气体中的氢和上述阴极废气中的氧。于是,通过该燃烧,可以减少阴极废气中的氧量,并增加阴极废气中的水量。因此,可以将按照上述氧量相对于上述水量减少的方式进行了调节的阴极废气送往上述改质反应流道。
另外,在该情况下,也可以通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,可以通过排气用三通调节阀的排气量的调节和上述含氢改质气体的混合量的调节来适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,在该情况下,能够再次向上述改质反应流道提供上述含氢改质气体的一部分,从而增加在改质反应流道中生成的含氢改质气体中的氢浓度。
另外,上述燃料电池***可被构成为在上述阴极废气管中混合氢(权利要求21)。
在该情况下,能够在上述阴极废气管中燃烧上述氢和上述阴极废气中的氧。于是,通过该燃烧,可以减少阴极废气中的氧量,并增加阴极废气中的水量。因此,可以将按照上述氧量相对于上述水量减少的方式进行了调节的阴极废气送往上述改质反应流道。
另外,在该情况下,也可以通过使用上述排气用三通调节阀来减少送往上述改质反应流道的上述阴极废气的流量。于是,在该情况下,可以通过排气用三通调节阀的排气量的调节和上述氢的混合量的调节来适当调节送往改质反应流道的水量和氧量及它们的比率。
另外,在该情况下,不仅能够向上述改质反应流道提供阴极废气,还能提供氢,从而能够进一步增加在改质反应流道中生成的含氢改质气体中的氢浓度。
另外,在上述本发明的第二方式中,上述阴极废气管优选不通过仅混合上述阴极废气和上述改质用燃料的混合器或者仅混合上述阴极废气、上述改质用燃料以及水蒸气的混合器,将上述阴极废气送往上述改质反应器流道(权利要求22)。
即,在上述本发明的第二方式中,除了在阴极废气管不通过混合器的情况下将上述阴极废气送往上述改质反应器流道的方式之外,还包括通过混合器将阴极废气送往上述改质反应器流道的方式。但在本发明中,优选不通过混合器将阴极废气送往改质反应器流道的方式,以及当在向改质器供给当中使用混合器时,优选在混合器上连接阴极废气管的方式,其中所述混合器混合阴极废气和上述改质用燃料,或者混合阴极废气、改质用燃料和水蒸气,除此之外,混合例如空气、阴极废气以及改质器的EGR排放气体等。
在阴极废气管不通过混合器将上述阴极废气送往上述改质反应器流道的方式中,能够简化布管方式等,并降低因通过其它装置而产生的能量损失。
另外,当阴极废气管连接混合阴极废气和上述改质用燃料,或者混合阴极废气、改质用燃料以及水蒸气,除此之外,混合例如空气、阳极废气以及改质器的EGR排放气体等的混合器时,即使在阴极废气中氧含量不足的情况下,也能够例如从空气管经由混合器向改质器提供空气,从而确保部分氧化所需的氧,或者能够将阳极废气和ERG排放气体连同改质用燃料等一起经由混合器提供给改质器,从而提高氢、热量和改质用燃料的使用效率以及热效率。因此,能够提高改质器中的反应效率和燃料等的使用效率,从而能够进一步提高燃料电池***的能效(权利要求22)。
在上述本发明的第二方式中,上述改质器具有加热流道,该加热流道被形成为邻接上述改质反应流道,并进行燃烧来加热该改质反应流道,上述燃料电池具有提供用于冷却该燃料电池的含氧致冷气体的致冷流道,将从上述阴极流道排出的阴极废气送往上述改质反应流道,在该改质反应流道中,上述改质用燃料和上述阴极废气发生反应而生成上述含氢改质气体,另外,将从上述阳极流道排出的阳极废气和从上述致冷流道排出的致冷废气送往上述加热流道,在该加热流道中燃烧上述阳极废气和上述致冷废气以进行上述加热(权利要求23)。
在这种情况下,在上述加热流道中不仅能够燃烧上述阳极废气所具有的氢和上述致冷废气所具有的氧,而且还能够利用阳极废气所具有的高温热能和致冷废气所具有的热能来进行燃烧。另外,在上述改质反应流道中,可以利用上述阴极废气所具有的高温热能来进行上述含氢改质气体的生成。因此,能够有效利用阴极废气、阳极废气以及致冷废气所分别具有的能量来进行发电,从而能够进一步提高燃料电池***的能效。
下面利用附图来说明本发明的燃料电池***及其发电方法。
(第一实施例)
如图1、图2所示,本实施例的燃料电池***1具有改质器2和燃料电池3,其中,所述改质器2根据由烃燃料组成的改质用燃料F来生成含氢的含氢改质气体Ga,所述燃料电池3利用在该改质器2中生成的上述含氢改质气体Ga进行发电。
上述改质器2具有改质反应流道21和加热流道22,其中,所述改质反应流道21根据上述改质用燃料F生成上述含氢改质气体Ga,所述加热流道22被形成为邻接该改质反应流道21,并进行燃烧以加热该改质反应流道21。
另外如图2所示,上述燃料电池3具有:被从上述改质反应流道21提供上述含氢改质气体Ga的阳极流道32;被提供含氧气体Gc的阴极流道33;设置在所述阴极流道33和上述阳极流道32之间的电解质体31;以及提供用于冷却该燃料电池3的含氧致冷气体Gr的致冷流道34。
另外,上述电解质体31是层叠氢分离金属层(透氢金属层)311和由陶瓷构成的质子导体层312而成的,其中,所述氢分离金属层311用于使被提供给上述阳极流道32的上述含氢改质气体Ga中的氢透过,所述质子导体层用于使透过该氢分离金属层311的上述氢处于质子状态并透过该质子导体层,从而到达上述阴极流道33。
另外如图1所示,上述燃料电池***1具有阴极废气管46、阳极废气管45、以及致冷废气管47,所述阴极废气管46用于将从上述阴极流道33排出的阴极废气Oc送往上述改质器2中的改质反应流道21,上述阳极废气管45用于将从上述阳极流道32排出的阳极废气Oa送往上述加热流道22,上述致冷废气管47用于将从上述致冷流道34排出的致冷废气Or送往上述加热流道22。
另外,上述改质器2被如下构成,即,使上述改质用燃料F和上述阴极废气Oc在其改质反应流道21中发生反应,从而生成上述含氢改质气体Ga。另外,上述改质器2被如下构成,即,使上述阳极废气Oa和上述致冷废气Or在上述加热流道22中燃烧以进行上述加热。
下面进行详细说明。
如图1、图2所示,本实施例的氢分离金属层311由钯(Pd)和钒(V)的层叠金属构成。另外,氢分离金属层311既可以仅有钯,也可以是含有钯的合金。另外,若换算成电流密度,则氢分离金属层311在三个大气压的阳极气体供给条件下,具有超过10A/cm2的透氢性能(氢分离性能)。这样,氢分离金属层311的导电阻抗小到可忽略不记的程度。
另外,本实施例的质子导体层312由作为陶瓷的钙钛型氧化物构成。并且,质子导体层312的导电阻抗小到和固体高分子型电解质膜的导电阻抗大体相同。另外,作为钙钛型氧化物,例如有BaCeO3系列、SrCeO3系列。
另外,如图2所示,上述电解质体31具有形成在上述质子导体层312的上述阳极流道32侧的表面上的阳极电极321(阳极)和形成在上述质子导体层312的上述阴极流道33侧的表面上的阴极电极331(阴极)。另外,用于从上述燃料电池3取出电能的电池输出线36连接在阳极电极321和阴极电极331之间。
另外,本实施例的质子导体层312的阳极电极321由构成上述氢分离金属层311的钯构成。另外,本实施例的质子导体层312的阴极电极331由Pt系的电极催化剂构成。并且,阳极电极321也可以由Pt系的电极催化剂构成。
在本实施例中,如图1所示,在上述阴极废气管46中设有作为排气用三通调节阀的阴极废气用三通调节阀61,该阴极废气用三通调节阀61可将在上述阴极废气管46中流动的阴极废气Oc分路为两支。
上述燃料电池***1被如下构成,即,通过上述阴极废气用三通调节阀61,排出在阴极废气管46中流动的阴极废气Oc的一部分,并将其剩余部分送往上述改质器2的改质反应流道21。另外,阴极废气用三通调节阀61能够调节上述排出的阴极废气Oc的流量和送往上述改质反应流道21的阴极废气Oc的流量的分配比率。于是,可通过上述阴极废气用三通调节阀61来调节从上述阴极废气管46送往上述改质器2中的改质反应流道21的阴极废气Oc的流量。
由此,当阴极废气Oc中的氧量(在燃料电池3的反应中没有被使用的剩余氧量)多于改质反应流道21所需的氧量时,可通过阴极废气用三通调节阀61来排出阴极废气Oc的一部分,从而将送往改质反应流道21的阴极废气Oc中的剩余氧量维持在合适的量。
另外,在本实施例中使用的各个三通调节阀是多路阀,其具有使气体流入的入口、使气体流出的出口、以及放气口。本实施例的多路阀可调节向出口和放气口分支流入的气体的流量的分配比率。以下各实施例中所示的各个三通调节阀也是相同的。
当流向上述阳极流道32的含氢改质气体Ga的流量和流向上述阴极流道33的含氧气体Gc的流量等发生变化,从而使理论空气量相对于阴极流道33中的氢质子量的比率(阴极化学定量关系)发生变化时,在和氢质子的反应中没有被使用的阴极废气Oc的中的剩余氧量也发生变化。此时,特别是该剩余氧量多于改质反应流道21所需的氧量时,可通过上述阴极废气用三通调节阀61排出阴极废气Oc的一部分,从而减少送往改质反应流道21的阴极废气Oc的流量。由此,可将送往改质反应流道21的阴极废气Oc中的剩余氧量维持在合适的量。
另外,在上述燃料电池***1中,可以改变流向上述阳极流道32的含氢改质气体Ga的流量以及流向上述阴极流道33的含氧气体Gc的流量等,从而有意识地改变上述阴极化学定量关系。此时,能够调节阴极废气Oc中由氢质子和氧反应而生成的水的量(水量)和上述剩余氧量的比率。于是,在此时也能够通过上述阴极废气用三通调节阀61排出阴极废气Oc的一部分,从而将送往改质反应流道21的阴极废气Oc中的剩余氧量维持在合适的量。
另外如图1所示,在本实施例中,在上述阳极废气管45中设有阳极废气用三通调节阀51,该阳极废气用三通调节阀51能够将流经阳极废气管45的阳极废气分支为两路。
上述燃料电池***1被如下构成,即,通过上述阳极废气用三通调节阀51,排出在阳极废气管45中流动的阳极废气Oa的一部分,并将其剩余部分送往上述改质器2的加热流道22。另外,阳极废气用三通调节阀51能够调节上述排出的阳极废气Oa的流量和送往上述加热流道22的阳极废气Oa的流量的分配比率。于是,可通过上述阳极废气用三通调节阀51来调节从上述阳极废气管45送往上述改质器2中的加热流道22的阳极废气Oa的流量。
由此,当阳极废气Oa中的氢量(没有透过燃料电池3的电解质体31中的氢分离金属层311的剩余氢量)多于加热流道22所需的氢量时,可通过阳极废气用三通调节阀51来排出阳极废气Oa的一部分,从而将送往加热流道22的阳极废气Oa中的剩余氢量维持在合适的量。
另外如图1所示,在本实施例中,在上述致冷废气管47中设有致冷废气用三通调节阀71,该致冷废气用三通调节阀71能够将流经致冷废气管47的致冷废气分支为两路。
上述燃料电池***1被如下构成,即,通过上述致冷废气用三通调节阀71,排出在致冷废气管47中流动的致冷废气Or的一部分,并将其剩余部分送往上述改质器2的加热流道22。另外,致冷废气用三通调节阀71能够调节上述排出的致冷废气Or的流量和送往上述加热流道22的致冷废气Or的流量的分配比率。
另外,可通过上述致冷废气用三通调节阀71来调节从上述致冷废气管47送往上述改质器2中的加热流道22的致冷废气Or的流量。由此,当致冷废气Or中的氧量多于加热流道22所需的氢量时,可通过致冷废气用三通调节阀71来排出致冷废气Or的一部分,从而将送往加热流道22的致冷废气Or中的剩余氢量维持在合适的量。
如图1所示,上述燃料电池***1具有用于向上述改质器2的改质反应流道21提供上述改质用燃料F的燃料供给管41。上述阴极废气管46与上述燃料供给管41连接,在该连接部设有反应流道用混合阀881,该反应流道用混合阀881将流经阴极废气管46的阴极废气和流经燃料供给管41的改质用燃料F混合。于是,改质用燃料F和阴极废气Oc的混合气体被提供给上述改质器2的改质反应流道21。
另外,上述阴极废气管46也可以直接连接在上述改质反应流道21上,从而也可以在改质反应流道21内混合阴极废气Oc和改质用燃料F。
于是在改质反应流道21中,由改质用燃料F和阴极废气Oc中所含的水(高温水蒸气)进行水蒸气改质反应,生成氢和一氧化碳等。另外,在改质反应流道21中,由改质用燃料F和阴极废气Oc中所含的氧进行部分氧化反应,生成水、一氧化碳、二氧化碳等。这样,通过上述水蒸气改质反应以及部分氧化反应来生成含氢和水等的上述含氢改质气体Ga。
此外,上述水蒸气改质反应为吸热反应,而上述部分氧化反应是放热反应,从而可通过部分氧化反应来抑制改质反应流道21内的温度的下降。
另外,如图1所示,在本实施例的燃料电池***1中,上述阳极废气管45和上述致冷废气管47连接在与上述改质器2的加热流道22相连通的加热用气体混合管451上。在该连接部设有混合流经阳极废气管45的阳极废气Oa和流经致冷废气管47的致冷废气Or的加热流道用混合阀882。于是,阳极废气Oa和致冷废气Or的混合气体被提供给上述改质器2的加热流道22。
并且,上述阳极废气管45和致冷废气管47也可以分别直接连接在上述加热流道22上,从而也可以在加热流道22内混合阳极废气Oa和致冷废气Or。
于是在加热流道22中,由阳极废气Oa中所含的氢和致冷废气Or中所含的氧进行燃烧反应,生成水等。
这样,通过在上述加热流道22中进行燃烧反应,可从上述加热流道22向上述改质反应流道21传递热量,从而能够较高地维持改质反应流道21内的温度。在本实施例中,通过使改质反应流道21中的水蒸气改质反应以及部分氧化反应所产生的热量和上述加热流道22中的燃烧反应所产生的热量大致均衡,而将改质器2中生成的含氢改质气体Ga的温度维持在规定的温度范围内。
另外,从连接在加热流道22的出口上的排气管49,将在上述加热流道22中进行燃烧反应之后的燃烧废气排到燃料电池***1的外部。
另外,可通过在上述改质器2中形成加热流道22来减少在改质反应流道21中进行的部分氧化反应的比例。因此,在改质反应流道21中,能够尽可能多得将改质用燃料F使用在用于生成上述氢等的水蒸气改质反应中,从而可以减少提供给改质反应流道21的改质用燃料F的供给量。
另外,如图1所示,上述改质器2的改质反应流道21和上述燃料电池3中的阳极流道32通过在改质反应流道21中生成的含氢改质气体Ga所流经的改质气体供给管42来连接。
另外,在上述燃料电池3的阴极流道33上连接有用于向该阴极流道33提供上述含氧气体Gc的含氧气体供给管43。本实施例的含氧气体Gc为空气,在含氧气体供给管43中设有将作为含氧气体Gc的空气加压送出的加压器60。本实施例的含氧气体加压器60为泵60。对此,含氧气体加压器60还可以是风扇、压缩机或者喷射器等。
并且,上述含氧气体Gc除了空气以外,例如也可以使用氧。
另外,上述燃料电池3的致冷流道34上连接有用于将上述含氧致冷气体Gr提供给该致冷流道34的致冷气体供给管44。本实施例的含氧致冷气体Gr为空气,在致冷气体供给管44中设有将作为含氧致冷气体Gr的空气加压送出的致冷气体加压器70。于是,通过调节致冷气体加压器70向燃料电池3的致冷流道34供给的含氧致冷气体Gr的量,可以将燃料电池3的温度维持在规定的温度范围内。
另外,本实施例的致冷气体加压器70为泵70。对此,致冷气体加压器70还可以是风扇、压缩机或者喷射器等。
另外,上述燃料电池***1被如下构成,即,不通过热交换器或冷凝器等,将上述含氢改质气体Ga直接从上述改质器2的改质反应流道21提供给上述燃料电池3的阳极流道32。另外,燃料电池***1被如下构成,即,不通过热交换器等,将上述阴极废气Oc直接从燃料电池3的阴极流道33提供给改质器2的改质反应流道21。
并且在图1中,示出了上述改质器2的改质反应流道21和加热流道22分别各形成一个的情况。与之相对,在上述改质器2中,可分别形成多个改质反应流道21和加热流道22,并且可交替地进行配置。
另外,在图1、图2中,示出了上述燃料电池3的阳极流道32、阴极流道33、以及致冷流道34分别各形成一个的情况。与之相对,在上述燃料电池3中,可分别形成多个阳极流道32、阴极流道33、以及致冷流道34,并且可交替地进行配置。
下面说明使用上述燃料电池***1进行发电的方法以及燃料电池***1的作用效果。
在本实施例中,在上述改质器2的改质反应流道21中,从上述燃料供给管41送来的改质用燃料F和从上述阴极废气管46送来的阴极废气Oc发生反应,从而生成上述含氢改质气体Ga。另一方面,在上述改质器2的加热流道22中,因从上述阳极废气管45送来的阳极废气Oa和从上述致冷废气管47送来的致冷废气Or发生反应而发热,从而加热流道22加热改质反应流道21。这样,在改质反应流道21中生成含氢改质气体Ga,并通过由加热流道22加热该改质反应流道21,从而将从改质反应流道21送往上述燃料电池3的阳极流道32的含氢改质气体Ga的温度维持在300~600℃的高温。
在改质器2中生成的含氢改质气体Ga的温度可以是300~600℃,但优选为400~500℃。在该情况下,可以将上述燃料电池3的电解质体31中的氢分离金属层311的温度维持在发挥透氢性能的最佳温度,从而能够容易地抑制在氢分离金属层311中发生劣化等。
另外,在上述改质器2的改质反应流道21中生成的上述含氢改质气体Ga被提供给上述燃料电池3的阳极流道32。然后,被提供给阳极流道32的含氢改质气体Ga中的氢的大部分透过上述电解质体31的氢分离金属层311而到达电解质体31的质子导体层312。然后,上述氢变为氢质子状态,并透过质子导体层312。
在上述阴极流道33中,上述氢质子和从上述含氧气体供给管43提供的含氧气体Gc中的氧发生反应并生成水。在本实施例中,在300~600℃的高温状态下进行该燃料电池3的反应,从而使上述生成的水变成高温水蒸气。
另外,在进行上述反应的同时,上述燃料电池***1可通过从上述电解质体31的阳极电极321和阴极电极331之间向上述电池输出线36给出电能来进行发电。
本实施例的燃料电池***1具有配备电解质体31的燃料电池3,该电解质体31由上述氢分离金属层311和上述质子导体层312层叠而成。在本实施例的燃料电池***1中,上述质子导体层312由陶瓷构成,由于该质子导体层312可以在不浸渍水分的情况下进行使用,因此,上述燃料电池3例如能够以300~600℃的高温状态进行工作。因此,可从上述改质器2直接向上述燃料电池3提供含氢改质气体Ga。
另外,从上述阴极流道33排出的阴极废气Oc能够以接近上述燃料电池3的工作温度的高温状态直接发送给上述改质器2。因此,在上述燃料电池***1中,改质器2中生成含氢改质气体Ga的温度可以和燃料电池3的工作温度基本相同。
在上述阴极流道33中进行反应之后,从该阴极流道33排出的阴极废气Oc具有在上述反应中没有被使用的氧(剩余氧)、因上述反应而生成的水(生成水)、以及由上述燃料电池3的高温工作而产生的热量。
上述燃料电池3的阴极流道33中的生成水成为例如300~600℃的高温水蒸气,该生成水几乎不浸渍到上述质子导体层312中,并且,上述氢分离金属层311具有仅使氢透过的特性,由此,上述生成水不会从阴极流道33透到阳极流道32这边。因此,可以通过上述阴极废气管46而从上述阴极流道33回收全部上述生成水。
由此,在上述燃料电池***1中,能够很容易地从包含因上述燃料电池3的发电而生成的生成水的阴极废气Oc来确保上述改质器2的改质反应流道21中的反应所必需的水,能够向上述改质反应流道21提供充足量的水。另外,在燃料电池***1中,可以利用上述阴极废气Oc中的全部生成水来调节提供给上述改质反应流道21的水量。
因此,能够容易地设定燃料电池***1的运行条件,并且能够容易稳定燃料电池***1的运行。
另外,由于在上述燃料电池3中是在干燥状态下使用上述质子导体层312的,因此,不会发生质子导体层312中的成分气化,并溶入阴极流道33内的上述生成水中的情况。从而不会降低送往上述改质器2的阴极废气Oc中的上述生成水的纯度,并且不会发生配置在上述改质器2的改质反应流道21内的、用于进行上述水蒸气改质反应的改质催化剂被毒化的问题。
在上述燃料电池***1中,在上述改质器2的改质反应流道21中,当上述改质用燃料F和阴极废气Oc发生反应而生成含氢改质气体Ga时,在该改质反应流道21中,不仅能够利用阴极废气Oc所具有的剩余氧和充足量的生成水,还能够利用阴极废气Oc所具有的高温热能。因此,在改质反应流道21中,可使改质用燃料F和具有高温热能的阴极废气Oc发生反应而生成含氢改质气体Ga,从而能够提高该改质反应流道21的能效。
另外,从上述阳极流道32排出的阳极废气Oa中具有没有透过上述电解质体31的氢分离金属层311而排出的氢以及上述含氢改质气体Ga中所含有的氢之外的物质,并且还具有燃料电池3的高温工作所产生的热量。另外,从上述致冷流道34排出的致冷废气Or具有上述含氧致冷气体Gr中所包含的氧,并且还具有通过上述燃料电池3而被加热的热量。
因此,当将阳极废气Oa从阳极流道32通过上述阳极废气管45送往上述加热流道22,以及将致冷废气Or从致冷流道34通过上述致冷废气管47送往加热流道22时,在加热流道22中,不仅可使阳极废气Oa所具有的氢和致冷废气Or所具有的氧进行燃烧,还能够利用阳极废气和致冷废气Or所分别具有的高温热能来进行燃烧。由此,能够进一步提高加热流道22的能效。
另外,在本实施例的燃料电池***1中,在如上所述的改质器2中生成含氢改质气体Ga的温度可以和燃料电池3的工作温度大致相同。因此,在本实施例中,不需要在改质器2和燃料电池3之间设置因其各个温度不同而必需的热交换器和冷凝器等。因此,不会产生因使用这些设备而引起的能源浪费,并能够简化燃料电池***1的构造。
因此,根据本实施例的燃料电池***1,能够简化其构造,并能够在从阴极流道33回收全部生成水的同时,利用阴极废气Oc、阳极废气Oa以及致冷废气Or所分别具有的高温热能,从而能够提高燃料电池***1的能效。
另外,虽然省略了图示,但当开始运行上述燃料电池***1时,可直接向上述改质器2的改质反应流道21提供水和氧(空气等),并能够向上述改质器2的加热流道22直接提供燃料和氧(空气等)。
于是,在开始运行上述燃料电池***1之后,改质反应流道21所必需的水和氧可仅由上述阴极废气Oc来提供,加热流道22所必需的作为燃料的氢和氧可仅由上述阳极废气Oa和上述致冷废气Or来提供。
另外,在改质器2的改质反应流道21中,也可以通过上述高温阴极废气Oc来顺利进行提供给改质反应流道21的改质用燃料F的气化。
另外,当本实施例的燃料电池3在例如300~600℃的高温下工作时,上述氢分离金属层311几乎不受一氧化碳等的毒化影响。因此,当进行上述高温工作时,可直接向燃料电池3的阳极流道32提供除了氢以外还含有一氧化碳等的含氢改质气体Ga。
另外,在本实施例中,在上述改质器2的改质反应流道21中没有被利用的阴极废气Oc的一部分被排到燃料电池***1的外部。与之相对,如下所述,可以在例如燃料电池***1中改质反应流道21以外的部位使用在改质反应流道21中没有被利用的阴极废气Oc的一部分。
即,如图3所示,作为使用在上述改质反应流道1中没有被利用的阴极废气Oc的一部分的一种变形,上述燃料电池***1可被构成为通过供给用三通调节阀611,将流经阴极废气管46的阴极废气Oc的一部分送往上述改质器2的加热流道22,同时将剩余部分送往改质反应流道21。
具体来说,设在阴极废气管46中的供给用三通调节阀611的放气口和致冷废气管47通过阴极废气混合管48C连接,并在其连接部设有阴极废气/致冷废气混合阀88C。于是,可将流经阴极废气管46的阴极废气Oc的一部分混合入流经致冷废气管47的致冷废气Or中。
在该情况下,可以使用在改质反应流道21中不需要的阴极废气Oc的一部分以用于在加热流道22中进行燃烧。由此,能够进一步提高燃料电池***1的能效。
另外,在该情况下,也可以在阴极废气管46中设有上述阴极废气用三通调节阀61,通过该阴极废气用三通调节阀61,可减少送往改质反应流道21的阴极废气Oc的流量。
另外,如图4所示,作为使用在上述改质反应流道21中没有被利用的阴极废气的一部分的其它变形,上述燃料电池***1被构成地可通过再供给用三通调节阀612,将流经阴极废气管46的阴极废气Oc的一部分再次提供给上述阴极流道33,同时将剩余部分送往改质反应流道21。
具体来说,通过阴极废气混合管48D来连接配置在阴极废气管46中的再供给用三通调节阀612的放气口和含氧气体供给管43,并在该连接部设有阴极废气/含氧气体混合阀88D。于是,流经阴极废气管46的阴极废气Oc的一部分可以混合到流经含氧气体供给管43的含氧气体Gc中。
在该情况下,可通过将在改质反应流道21中不需要的阴极废气Oc的一部分再次提供给阴极流道33来有意识地减少提供给阴极流道33的含氧气体Gc中的氧浓度。
另外,在该情况下,还可以在阴极废气管46中配置上述阴极废气用三通调节阀61。于是,可调节阴极废气用三通调节阀61的排气量来确定送往上述改质反应流道21的水量,并调节上述再供给用三通调节阀612对阴极流道33的再次供给量来确定送往上述改质反应流道21的氧量。据此,可适当调节送往改质反应流道21的水量和氧量及它们的比率。
另外,在上述改质器2的改质反应流道21中,表示阴极废气Oc中的水(S)的摩尔量与改质用燃料F中的碳(C)的摩尔量之比的S/C例如可设为1~3。另外,在上述改质器2的改质反应流道21中,表示阴极废气Oc中的氧(O)的摩尔量与改质用燃料F中的碳(C)的摩尔量之比的O/C例如可设为0~1.0。
为了增加送往上述改质器2的改质反应流道21的水量,考虑增加流向上述阳极流道32的含氢改质气体Ga的流量,并增加因燃料电池3的发电而生成的生成水的量。但是若进行该操作,则会大量使用上述改质用燃料F,从而降低了能效。而若要维持高能效,则会由于进行上述水蒸气改质反应而需要相当于大量改质用燃料F的大量的水。
由此可知,为了维持上述燃料电池***1的高能效,能够从上述阴极流道33回收因上述燃料电池3的发电而生成的全部生成水是非常重要的。
另外,利用因上述燃料电池3的发电而生成的全部生成水,从而能够调节提供给上述改质器2的改质反应流道21的水量,由此,易于增大上述的S/C。因此,可增大改质器2的改质反应流道21的S/C的调节幅度,从而易于设定燃料电池***1的运行条件。
(第二实施例)
如图5~图8所示,本实施例是在上述阴极废气管46中设有氧分离膜体81,降低阴极废气Oc中的氧浓度来调节上述改质器2中的改质反应流道21的O/C(氧(O)摩尔量与碳(C)摩尔量之比)和S/C(水(S)摩尔量与碳(C)摩尔量之比)的各种变形示例。
上述氧分离膜体81设在氧分离膜装置80的内部,并被配置在阴极废气管46中。上述氧分离膜装置80具有用于使阴极废气Oc中的氧透过的氧分离膜体81和被该氧分离膜体81隔开的两个流道811、812。该两个流道811、812由传送从阴极流道33排出的阴极废气Oc的废气流道811和透过氧分离膜体81的氧所流经的氧透过流道812构成。
另外,上述氧分离膜体81可以使用例如硅膜、乙烯基芳族胺聚合体、メソ-テトラキスポルフエニナトコバル ト(meso-tetrakisporphinato-cobalt)或者聚苯醚等来构成。
另外,在本实施例中,在上述阴极废气管46中设有阴极废气用三通调节阀61。
如图5所示,上述燃料电池***1可被构成为将透过氧分离膜体81的氧排到燃料电池***1的外部。由此,可减少阴极废气Oc中的氧量(上述剩余氧量),从而将送往改质反应流道21的阴极废气Oc中的氧量维持在适当的量。
另外,在该情况下,可调节从上述阴极废气用三通调节阀61排到外部的阴极废气Oc的排气量来确定送往上述改质反应流道21的水量。另外,可调节上述氧分离膜体81的氧的排气量来确定送往改质反应流道21的氧量。由此,能够调节送往改质反应流道21的水量和氧量及它们的比率,从而适当调节改质反应流道21中的O/C以及S/C。
另外,如下所述,也可在上述燃料电池***1中改质反应流道21以外的部位使用透过配置在上述阴极废气管46中的氧分离膜体81而取出的氧。
即,如图6所示,作为在改质反应流道21以外使用阴极废气Oc中的氧的一种变形,燃料电池***1可被构成为将透过氧分离膜体81的氧再次提供给上述燃料电池3的阴极流道33。
具体来说,通过氧混合管48E来连接设在阴极废气管46中的氧分离膜装置80中的氧透过流道812和含氧气体供给管43,并在该连接部配置氧/含氧气体混合阀88E。于是,可将透过氧分离膜体81的氧混合到流经含氧气体供给管43的含氧气体Gc中。
在该情况下也可与上述同样地,调节上述阴极废气用三通调节阀61中的阴极废气Oc的排气量和上述氧分离膜体81的氧的排气量,从而适当调节送往改质反应流道21的水量和氧量及它们的比率,并适当调节改质反应流道21中的O/C和S/C。
另外,在该情况下,可通过将阴极废气Oc中的氧的一部分再次提供给阴极流道33来增加提供给阴极流道33的含氧气体Gc中的氧量。因此,可以在不改变上述阴极化学定量关系(理论空气量相对于阴极流道33中的氢质子量的比率)的情况下容易地增大氧浓度。
另外,在该情况下,能够容易确保燃料电池3中的反应所必需的氧量。因此,可减少提供给阴极流道33的含氧气体Gc的流量,从而将上述阴极化学定量关系降低到适当的比率。由此,可实现减少配置在上述含氧气体供给管43中的泵60等辅机的动力,从而有效提高燃料电池***1的效率。
另外,如图7所示,作为在改质反应流道21以外使用阴极废气Oc中的氧的其它变形,燃料电池***1可被构成为将透过氧分离膜体81的氧送往上述改质器2的加热流道22。
具体来说,通过氧/致冷废气混合管48F来连接设在阴极废气管46中的氧分离膜装置80中的氧透过流道812和致冷废气管47,并在该连接部配置氧/致冷废气混合阀88F。于是,可将透过氧分离膜体81的氧混合到流经致冷废气管47的致冷废气Or中。
在该情况下也可与上述同样地,调节上述阴极废气用三通调节阀61中的阴极废气Oc的排气量和上述氧分离膜体81的氧的排气量,从而适当调节送往改质反应流道21的水量和氧量及它们的比率,并适当调节改质反应流道21中的O/C和S/C。
另外,在该情况下,可用通过氧分离膜体81而获得的氧在加热流道22中进行燃烧。由此,可在加热流道22中有效利用在改质反应流道21中没有利用的阴极废气Oc中的氧,从而能够进一步提高燃料电池***1的能效。
另外如图8所示,作为在改质反应流道21以外使用阴极废气Oc中的氧的其它变形,燃料电池***1可被构成为将透过氧分离膜体81的氧存储在氧缓冲器82中。
在该情况下也可与上述同样地,调节上述阴极废气用三通调节阀61中的阴极废气Oc的排气量和上述氧分离膜体81的氧的排气量,从而适当调节送往改质反应流道21的水量和氧量及它们的比率,并适当调节改质反应流道21中的O/C和S/C。
另外,在该情况下,在改质反应流道21中没有利用的阴极废气Oc中的氧可存储在上述氧缓冲器82中。于是,例如当希望增加改质反应流道21所必需的氧量时,可从氧缓冲器82向该改质反应流道21提供氧。另外,上述氧缓冲器82例如可由氧泵构成。
本实施例中的其它方面和上述第一实施例相同,并能取得和上述第一实施例相同的作用效果。
(第三实施例)
如图9~图11所示,本实施例是从燃料电池***1的任意部位或者从燃料电池***1的外部向上述阴极废气管46提供含氧的特定气体,增加改质反应流道21中的氧浓度来调节上述O/C和S/C的各种变形示例。
在本实施例中,在阴极废气管46中进行上述阴极废气Oc和上述特性气体的混合,并将进行了氧浓度调节的阴极废气Oc提供给改质反应流道21。
另外,在本实施例中,在上述阴极废气管46中也设置有阴极废气用三通调节阀61。
如图9所示,作为上述变形的一种,上述燃料电池***1可被构成为将用于提供给其致冷流道34的含氧致冷气体Gr的一部分混合到流经阴极废气管46的阴极废气Oc中,并将该混合气体透送往改质反应流道21。
具体来说,在致冷气体供给管44中设有致冷气体用三通调节阀72。通过致冷气体混合管48G来连接该致冷气体用三通调节阀72的放气口和阴极废气管46,并在该连接部设有致冷气体/阴极废气混合阀88G。于是,可将流经致冷气体供给管44的含氧致冷气体Gr的一部分混合到流经阴极废气管46的阴极废气Oc中。
在该情况下,可增加阴极废气Oc中的氧量,从而将送往改质反应流道21的阴极废气Oc中的氧量维持在适当的量。
另外,在该情况下,可调节从上述阴极废气用三通调节阀61排到外部的阴极废气Oc的排气量来确定送往上述改质反应流道21的水量。另外,可调节上述含氧致冷气体Gr的混合量来确定送往改质反应流道21的氧量。由此,能够适当调节送往改质反应流道21的水量和氧量及它们的比率,从而可适当调节改质反应流道21中的O/C以及S/C。
另外,如图10所示,作为上述的另外一种变形,上述燃料电池***1可被构成为将从其致冷流道34排出的致冷废气Or的一部分混合到流经阴极废气管46的阴极废气中,并将该混合得到的混合气体送往改质反应流道21。
具体来说,通过致冷废气混合管48H来连接设在致冷废气管47中的致冷废气用三通调节阀71的放气口和阴极废气管46,并在其连接部设置致冷废气/阴极废气混合阀88H。于是,可将流经致冷废气管47的致冷废气Or的一部分混合到流经阴极废气管46的阴极废气Oc中。
在该情况下,也可和上述同样地,调节上述阴极废气用三通调节阀61的阴极废气Oc的排气量和上述致冷废气Or的混合量,适当调节送往改质反应流道21的水量和氧量及它们的比率,从而可适当调节改质反应流道21中的O/C以及S/C。
另外,在该情况下,可向改质反应流道21提供上述阴极废气Oc和通过上述燃料电池3内部而处于被加热状态的致冷废气Or的混合气体。由此,可在使改质反应流道21中利用的阴极废气Oc的温度几乎不降低的情况下增加该阴极废气Oc中的氧量。
在致冷废气管47中设有两个上述致冷废气用三通调节阀71,其中一个可用于调节流经上述致冷废气管47的致冷废气Or的流量,另一个可用于进行上述混合。
另外,如图11所示,作为上述的另外一种变形,上述燃料电池***1可被构成为通过空气泵63而使空气混合到上述阴极废气管46中。
在该情况下,连接空气泵63的喷出口和阴极废气管46,并在其连接部设置空气/阴极废气混合阀88I。于是,可将从空气泵63排出的空气混合到流经阴极废气管46的阴极废气Oc中。
另外,在该情况下也可和上述同样地,调节上述阴极废气用三通调节阀61的阴极废气Oc的排气量和上述空气的混合量,适当调节送往改质反应流道21的水量和氧量及它们的比率,从而可适当调节改质反应流道21中的O/C以及S/C。
另外,在该情况下,可以用氧缓冲器来代替上述空气泵63。此时,可更加有效地增加在改质反应流道21中利用的阴极废气Oc中的氧量。
本实施例中的其它方面和上述第一实施例相同,并能取得和上述第一实施例相同的作用效果。
(第四实施例)
如图12~图1 5所示,本实施例是如下所述的各种变形示例,即,从燃料电池***1的任意部位或者从燃料电池***1的外部向上述阴极废气管46提供含氢的特定气体或燃料,然后使该特定气体或燃料与阴极废气Oc中的氧进行燃烧,并通过调节阴极废气Oc中的氧量和水量来调节上述改质器2的改质反应流道21中的O/C和S/C。
在本实施例中,使上述阴极废气Oc和上述特定气体或燃料在阴极废气管46中燃烧,并将进行了氧浓度调节的阴极废气Oc提供给改质反应流道21。
另外,在本实施例中,在上述阴极废气管46中也设置有阴极废气用三通调节阀61。
如图12所示,作为上述变形的一种,上述燃料电池***1可被构成为使改质用燃料F混合到上述阴极废气管46中。
在该情况下,连接改质用燃料F的供给管和阴极废气管46,并在其连接部设置燃料/阴极废气混合阀88J。于是,可将改质用燃料F混合到流经阴极废气管46的阴极废气Oc中。
在该情况下,可在阴极废气管46中燃烧上述改质用燃料F和上述阴极废气Oc中的氧(剩余氧)。于是,通过该燃烧,可在减少阴极废气Oc中的氧量的同时,增加阴极废气Oc中的水量。
另外,在该情况下,通过阴极废气用三通调节阀6 1的排气量的调节和上述改质用燃料F的混合量的调节,可适当调节送往改质反应流道21的水量和氧量及它们的比率,并适当调节改质反应流道21中O/C和S/C。
另外,如图13所示,作为上述的另外一种变形,上述燃料电池***1可被构成为将流经上述阳极废气管45的阳极废气Oa的一部分混合到上述阴极废气管46中。
具体来说,通过阳极废气混合管48K来连接设在阳极废气管45中的阳极废气用三通调节阀51的放气口和阴极废气管46,并在其连接部设置阳极废气/阴极废气混合阀88K。于是,可将流经阳极废气管45的阳极废气Oa的一部分混合到流经阴极废气管46的阴极废气Oc中。
在该情况下,可在阴极废气管46中燃烧阳极废气Oa中的氢和阴极废气中的剩余氧。于是通过该燃烧,可减少阴极废气Oc中的氧量,并增加阴极废气Oc中的水量。并且在情况下,可在阴极废气管46中使阳极废气Oa中的水混合到阴极废气Oc中,从而增加阴极废气Oc中的水量。
于是在该情况下,也可通过阴极废气用三通调节阀61的排气量的调节和上述阳极废气Oa的混合量的调节来适当调节送往改质反应流道21的水量和氧量及它们的比率,并适当调节改质反应流道21中O/C和S/C。
在阳极废气管45中设有两个上述阳极废气用三通调节阀51,其中一个可用于调节流经上述阳极废气管45的阳极废气Oa的流量,另一个可用于进行上述混合。
另外,如图14所示,作为上述的另外一种变形,上述燃料电池***1可被构成为将流经上述改质气体供给管42的含氢改质气体Ga的一部分混合到上述阴极废气管46中。
具体来说,在改质气体供给管42中设置改质气体用三通调节阀53。通过改质气体混合管48A来连接改质气体用三通调节阀53的放气口和阴极废气管46,并在其连接部设置改质气体/阴极废气混合阀88A。于是,可将流经改质气体供给管42的含氢改质气体Ga的一部分混合到流经阴极废气管46的阴极废气Oc中。
在该情况下,可在阴极废气管46中燃烧含氢改质气体Ga中的氢和阴极废气中的剩余氧。于是通过该燃烧,可减少阴极废气Oc中的氧量,并增加阴极废气Oc中的水量。
于是在该情况下,也可通过阴极废气用三通调节阀61的排气量的调节和上述含氢改质气体Ga的混合量的调节来适当调节送往改质反应流道21的水量和氧量及它们的比率,并适当调节改质反应流道21中O/C和S/C。并且在该情况下,可将上述含氢改质气体Ga的一部分再次提供给该改质反应流道21,从而使在改质反应流道21中生成的含氢改质气体Ga中的氢浓度增加。
另外,如图15所示,作为上述的另外一种变形,上述燃料电池***1可被构成为将氢从氢缓冲器83混合到上述阴极废气管46中。
在情况下,对氢缓冲器83和阴极废气管46进行连接,并在其连接部设置氢/阴极废气混合阀88L。于是,可将存储在氢缓冲器83中的氢混合到流经阴极废气管46的阴极废气Oc中。
在该情况下,可在上述阴极废气管46中燃烧氢和阴极废气中的氧。通过该燃烧,可减少阴极废气Oc中的氧量,并增加阴极废气Oc中的水量。
另外,在该情况下,也可通过阴极废气用三通调节阀61的排气量的调节和上述氢的混合量的调节来适当调节送往改质反应流道21的水量和氧量及它们的比率,并适当调节改质反应流道21中O/C和S/C。
另外,在此情况下,不仅可向改质反应流道21提供阴极废气,还可提供氢,从而可进一步增加在改质反应流道21中生成的含氢改质气体Ga中的氢浓度。另外,上述氢缓冲器83例如可由氢泵、储氢合金或者碳等构成。
本实施例中的其它方面和上述第一实施例相同,并能取得和上述第一实施例相同的作用效果。
(第五实施例)
如图16~图18所示,本实施例是如下所述的各种变形示例,即,通过连接上述阴极废气管46和空气管90的混合器92而将改质用燃料F提供给改质器2。
上述混合器92与连接在燃料供给管41上的改质器2连通,在混合器92内混合改质用燃料F和其它气体,然后将其提供给改质器2。如图16~图18所示,可至少向混合器92提供阴极废气Oc、含氧气体Gc和改质用燃料F,并可将它们的混合气体提供给改质器2。
为了将含氧气体Gc提供给混合器92,将空气管90与含氢气体供给管43和混合器92连接。另外,在空气管90中设有空气流量控制阀94,用于控制对混合器92供给含氧气体Gc的量。
另外,在本实施例中,虽然使给混合器92提供含氢气体Gc,但也可构成为向混合器92提供阳极废气Oa和燃烧废气等EGR排放气体。
如图16所示,上述燃料电池***1可将从含氧气体供给管43供给来的含氧气体Gc提供给混合器92,并将在其内部混合改质用燃料F、阴极废气Oc以及含氧气体Gc而得到的混合气体提供给改质器2。
在该情况下,可将阴极废气Oc混合到改质用燃料F中进行使用,从而提高燃料电池***1的能效,并且,当阴极废气Oc中的氧量不足时,由于可将从空气管90供给来的含氧气体Gc与改质用燃料F混合后提供给改质器2,因此能够确保部分氧化所需的氧量。
另外,如图17所示,作为使用混合器92的其它变形,上述燃料电池***1可被构成为能够从上述燃料电池***1之外向混合器92提供水蒸气。
具体来说,将水蒸气管96连接到混合器92上,混合水蒸气St和混合器92中的改质用燃料F、阴极废气Oc以及含氧气体Gc,然后提供给改质器2。
在该情况下,可提高与上述相同的燃料电池***1的能效,并能够抑制改质器中水蒸气不足的发生,从而确保稳定的***工作。
另外,如图18所示,作为使用混合器92的其它变形,上述燃料电池***1可被构成为能够将从混合器92排出的混合气体提供给改质器2,并可将阴极废气Oc直接提供给改质器2。
具体来说,通过阴极废气混合阀98将从混合器92排出的混合气体与改质器2相连通,并将阴极废气管46连接到阴极废气混合阀100上,进而,通过直连管(direct line)连通阴极废气混合阀98和阴极废气混合阀100。根据该实施例,可将阴极废气Oc的一部分或者全部从阴极废气混合阀100提供给混合器92,并将阴极废气Oc的一部分或者全部直接提供给改质器2。
在该情况下,由于改质用燃料F的流量相对于阴极废气比较少,因此,相对于在混合器92中的通过时间,阴极废气的流量占支配地位。另一方面,需要任意时间以用于以液滴状态提供改质用燃料F,并进行气化/混合。因此,利用阴极废气的一部分,在抑制流速的状态下保持改质原料的气化时间,并在此之后,和从混合器供应来的、包含剩余阴极废气的混合气体相混合,由此,可提供规定的水量和氧量。
在该情况下,也可将阴极废气Oc混合到改质用燃料F中进行使用,从而提高燃料电池***1的能效,并且,当阴极废气Oc中的氧量不足时,由于可将从空气管90供给来的含氧气体Gc与改质用燃料F混合后提供给改质器2,因此可确保部分氧化所需的氧量。
本实施例中的其它方面和上述第一实施例相同,并能取得和上述第一实施例相同的作用效果。
发明效果
如上所述,可根据本发明提供一种燃料电池***及其发电方法,其可简化燃料电池***的构造,并可在从阴极流道回收全部生成水的同时,利用阴极废气所具有的剩余氧和高温热能来进一步提高能效。

Claims (24)

1. 一种燃料电池***,包括改质器和燃料电池,所述改质器具有从改质用燃料生成包含氢的含氢改质气体的改质反应流道,所述燃料电池利用上述含氢改质气体来进行发电,所述燃料电池***的特征在于,
上述燃料电池包括:被从上述改质反应流道供给上述含氢改质气体的阳极流道;被供给含氧气体的阴极流道;以及被配置在该阴极流道和上述阳极流道之间的电解质体;
上述电解质体是层叠氢分离金属层和由陶瓷构成的质子导体层而成的,所述氢分离金属层用于使被提供给上述阳极流道的上述含氢改质气体中的氢透过,所述质子导体层用于使透过该氢分离金属层的上述氢处于质子状态并透过该质子导体层,从而到达上述阴极流道,
在上述燃料电池的上述阴极流道上连接有阴极废气管,该阴极废气管用于将从该阴极流道排出的阴极废气送往上述改质器的上述改质反应流道。
2. 如权利要求1所述的燃料电池***,其特征在于,
上述阴极废气管在不通过仅混合上述阴极废气和上述改质用燃料的混合器或者仅混合上述阴极废气、上述改质用燃料以及水蒸气的混合器的情况下,将上述阴极废气送往上述改质反应流道。
3. 如权利要求1所述的燃料电池***,其特征在于,
上述改质器具有加热流道,该加热流道被形成为邻接上述改质反应流道,并进行燃烧来加热该改质反应流道。
4. 如权利要求3所述的燃料电池***,其特征在于,
上述燃料电池的上述阳极流道连接有用于将从该阳极流道排出的阳极废气送往上述加热流道的的阳极废气管。
5. 如权利要求1所述的燃料电池***,其特征在于,
上述燃料电池具有提供用于冷却该燃料电池的含氧致冷气体的致冷流道。
6. 如权利要求1所述的燃料电池***,其特征在于,
上述改质器具有加热流道,该加热流道被形成为邻接上述改质反应流道,并进行燃烧来加热该改质反应流道;
上述燃料电池具有提供用于冷却该燃料电池的含氧致冷气体的致冷流道;
上述燃料电池的上述致冷流道连接有用于将从该致冷流道排出的致冷废气送往上述加热流道的致冷废气管。
7. 如权利要求1所述的燃料电池***,其特征在于,
在上述阴极废气管中设有排气用三通调节阀,通过该排气用三通调节阀,排出上述阴极废气的一部分,并将剩余部分送往上述改质反应流道。
8. 如权利要求3所述的燃料电池***,其特征在于,
在上述阴极废气管中设有供给用三通调节阀,通过该供给用三通调节阀,将上述阴极废气的一部分送往上述加热流道,并将剩余部分送往上述改质反应流道。
9. 如权利要求1所述的燃料电池***,其特征在于,
在上述阴极废气管中设有再供给用三通调节阀,通过该再供给用三通调节阀,将上述阴极废气的一部分再次提供给上述阴极流道,并将剩余部分送往上述改质反应流道。
10. 如权利要求1所述的燃料电池***,其特征在于,
在上述阴极废气管中设有氧分离膜体,使上述阴极废气中的氧的一部分透过上述氧分离膜体而排出。
11. 如权利要求1所述的燃料电池***,其特征在于,
在上述阴极废气管中设有氧分离膜体,使上述阴极废气中的氧的一部分透过上述氧分离膜体而再次提供给上述阴极流道。
12. 如权利要求3所述的燃料电池***,其特征在于,
在上述阴极废气管中设有氧分离膜体,使上述阴极废气中的氧的一部分透过上述氧分离膜体而送往上述加热流道。
13. 如权利要求1所述的燃料电池***,其特征在于,
在上述阴极废气管中设有氧分离膜体,使上述阴极废气中的氧的一部分透过上述氧分离膜体而存储在氧缓冲器中。
14. 如权利要求5所述的燃料电池***,其特征在于,在上述阴极废气管中混合上述含氧致冷气体的一部分。
15. 如权利要求6所述的燃料电池***,其特征在于,在上述阴极废气管中混合上述致冷废气的一部分。
16. 如权利要求1所述的燃料电池***,其特征在于,在上述阴极废气管中混合空气。
17. 如权利要求1所述的燃料电池***,其特征在于,在上述阴极废气管中混合氧。
18. 如权利要求1所述的燃料电池***,其特征在于,在上述阴极废气管中混合改质用燃料。
19. 如权利要求4所述的燃料电池***,其特征在于,在上述阴极废气管中混合上述阳极废气的一部分。
20. 如权利要求1所述的燃料电池***,其特征在于,在上述阴极废气管中混合上述含氢改质气体的一部分。
21. 如权利要求1所述的燃料电池***,其特征在于,在上述阴极废气管中混合氢。
22. 一种燃料电池***的发电方法,所述燃料电池***包括改质器和燃料电池,其中所述改质器具有从改质用燃料生成包含氢的含氢改质气体的改质反应流道,所述燃料电池利用上述含氢改质气体来进行发电,该燃料电池具有:被从上述改质反应流道供给上述含氢改质气体的阳极流道;被供给含氧气体的阴极流道;以及被配置在该阴极流道和上述阳极流道之间的电解质体,该电解质体是层叠氢分离金属层和由陶瓷构成的质子导体层而成的,所述氢分离金属层用于使被提供给上述阳极流道的上述含氢改质气体中的氢透过,所述质子导体层用于使透过该氢分离金属层的上述氢处于质子状态并透过该质子导体层,从而到达上述阴极流道,所述燃料电池***的发电方法的特征在于,
将在上述改质反应流道中生成的上述含氢改质气体提供给上述阳极流道,并使上述含氢改质气体中的氢从上述阳极流道透过上述氢分离金属层之后,使之成为氢质子状态并透过上述质子导体层而到达上述阴极流道,在该阴极流道中,上述氢质子和上述含氧气体中的氧发生反应以进行上述发电,
并且,将从上述阴极流道排出的阴极废气送往上述改质反应流道,在该改质反应流道中,上述改质用燃料和上述阴极废气发生反应而生成上述含氢改质气体。
23. 如权利要求22所述的燃料电池***的发电方法,其特征在于,
在上述燃料电池的上述阴极流路上连接有阴极废气管,上述阴极废气管在不通过仅混合上还阴极废气和上述改质用燃料的混合器或者仅混合上述阴极废气、上述改质用燃料以及水蒸气的混合器的情况下,将上述阴极废气送往上述改质反应器流道。
24. 如权利要求22所述的燃料电池***的发电方法,其特征在于,
上述改质器具有加热流道,该加热流道被形成为邻接上述改质反应流道,并进行燃烧来加热该改质反应流道,上述燃料电池具有提供用于冷却该燃料电池的含氧致冷气体的致冷流道,
另外,将从上述阳极流道排出的阳极废气和从上述致冷流道排出的致冷废气送往上述加热流道,在该加热流道中,使上述阳极废气和上述致冷废气发生燃烧以进行上述加热。
CNB2005800024344A 2004-01-14 2005-01-14 燃料电池***及其发电方法 Expired - Fee Related CN100411233C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004007227 2004-01-14
JP007227/2004 2004-01-14

Publications (2)

Publication Number Publication Date
CN1910774A CN1910774A (zh) 2007-02-07
CN100411233C true CN100411233C (zh) 2008-08-13

Family

ID=34792173

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800024344A Expired - Fee Related CN100411233C (zh) 2004-01-14 2005-01-14 燃料电池***及其发电方法

Country Status (5)

Country Link
US (1) US20070065688A1 (zh)
EP (1) EP1715540B1 (zh)
JP (1) JP4491653B2 (zh)
CN (1) CN100411233C (zh)
WO (1) WO2005069416A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523297B2 (ja) * 2004-02-10 2010-08-11 株式会社豊田中央研究所 燃料電池システム及びその発電方法
JP4523298B2 (ja) * 2004-02-10 2010-08-11 株式会社豊田中央研究所 燃料電池システム及びその発電方法
DE102008008907B4 (de) * 2008-02-13 2021-11-04 Eberspächer Climate Control Systems GmbH & Co. KG Brennstoffzellensystem
JP5572967B2 (ja) * 2009-03-06 2014-08-20 日産自動車株式会社 燃料電池システムと、この燃料電池システムの運転方法
FI20105962A (fi) * 2010-09-17 2012-03-18 Waertsilae Finland Oy Menetelmä ja järjestely anodioksidoinnin välttämiseksi
WO2014203806A1 (ja) * 2013-06-17 2014-12-24 日立造船株式会社 バイオエタノール製造装置と固体酸化物型燃料電池の組合せシステムにおける省エネルギー化方法
KR102506452B1 (ko) * 2015-10-26 2023-03-07 삼성전자주식회사 공기 재순환을 통해 산소 농도를 유지하는 전기화학 전지
KR102212137B1 (ko) 2016-04-21 2021-02-03 퓨얼 셀 에너지, 인크 이산화탄소 포획을 위해 용융 탄산염 연료 전지 애노드 배기를 후가공처리하는 방법
CN116435559A (zh) 2016-04-29 2023-07-14 燃料电池能有限公司 甲烷化阳极废气以提高二氧化碳捕获
CN108172868B (zh) * 2016-12-07 2020-03-10 中国科学院大连化学物理研究所 一种燃料电池***水管理组件
JP6847900B2 (ja) * 2018-08-20 2021-03-24 東京瓦斯株式会社 二酸化炭素回収型燃料電池発電システム
CN118026095A (zh) 2020-03-11 2024-05-14 燃料电池能有限公司 用于碳捕获的蒸汽甲烷重整单元
CN112164817A (zh) * 2020-09-03 2021-01-01 浙江科技学院 一种固体氧化物燃料电池发电***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345762A (ja) * 1991-05-24 1992-12-01 Nippon Telegr & Teleph Corp <Ntt> ガス分離膜式燃料電池
JPH05299105A (ja) * 1992-04-23 1993-11-12 Mitsubishi Heavy Ind Ltd 燃料電池
JP2002289245A (ja) * 2001-03-23 2002-10-04 Toyota Motor Corp 改質部を備える燃料電池システム
JP2003151599A (ja) * 2001-11-09 2003-05-23 Toyota Motor Corp 燃料電池システム
JP2004273343A (ja) * 2003-03-11 2004-09-30 Toyota Motor Corp 燃料電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990912A (en) * 1972-07-17 1976-11-09 United Technologies Corporation Electrolyte regeneration in a fuel cell stack
US6656617B2 (en) * 2000-01-24 2003-12-02 Toyota Jidosha Kabushiki Kaisha Fuel gas production system for fuel cells
AU7139801A (en) * 2000-07-31 2002-02-13 Nuvant Systems Llc Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment
JP4096575B2 (ja) * 2002-02-15 2008-06-04 日産自動車株式会社 燃料電池システム
JP4079016B2 (ja) * 2002-08-28 2008-04-23 トヨタ自動車株式会社 中温域で作動可能な燃料電池
WO2005004257A2 (en) * 2003-06-27 2005-01-13 Ultracell Corporation Efficient micro fuel cell systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345762A (ja) * 1991-05-24 1992-12-01 Nippon Telegr & Teleph Corp <Ntt> ガス分離膜式燃料電池
JPH05299105A (ja) * 1992-04-23 1993-11-12 Mitsubishi Heavy Ind Ltd 燃料電池
JP2002289245A (ja) * 2001-03-23 2002-10-04 Toyota Motor Corp 改質部を備える燃料電池システム
JP2003151599A (ja) * 2001-11-09 2003-05-23 Toyota Motor Corp 燃料電池システム
JP2004273343A (ja) * 2003-03-11 2004-09-30 Toyota Motor Corp 燃料電池システム

Also Published As

Publication number Publication date
US20070065688A1 (en) 2007-03-22
WO2005069416A1 (ja) 2005-07-28
EP1715540B1 (en) 2013-05-22
JPWO2005069416A1 (ja) 2007-09-06
EP1715540A1 (en) 2006-10-25
JP4491653B2 (ja) 2010-06-30
CN1910774A (zh) 2007-02-07
EP1715540A4 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
CN100411233C (zh) 燃料电池***及其发电方法
CN107690722B (zh) 具有二氧化碳捕集组件的高效燃料电池***及其方法
US4080487A (en) Process for cooling molten carbonate fuel cell stacks and apparatus therefor
JPH09129255A (ja) 間接燃焼ガスタービンおよび2重化された燃料電池の複合サイクルの電力発生システム
EP3235041A1 (en) High-efficiency molten carbonate fuel cell system and method
CN101589498A (zh) 燃料电池热交换***和方法
EP1724869B1 (en) Anode tail gas recycle cooler and re-heater for a solid oxide fuel cell stack assembly
EP1241723A1 (en) Water recovery for a fuel cell system
CN101946354A (zh) 利用燃料电池产生电力的方法
EP1805842A1 (en) Flow arrangement for fuel cell stacks
US6805721B2 (en) Fuel processor thermal management system
CN110582880B (zh) 燃料电池***和用于操作燃料电池***的方法
KR102511826B1 (ko) 캐스케이드형 연료 전지를 사용하는 발전 시스템 및 그 연계된 방법
JP2002198074A (ja) 制御可能な改質温度プロフィールを維持するための多段階燃焼プロセス
JP2021150156A (ja) 燃料電池システム
US11309563B2 (en) High efficiency fuel cell system with hydrogen and syngas export
CN101946353A (zh) 用于产生电力的***和方法
CN101919098A (zh) 利用燃料电池产生电力的方法
US10840530B2 (en) High efficiency fuel cell system with intermediate CO2 recovery system
CN218632139U (zh) 燃料电池***
KR102081427B1 (ko) 연료전지 하이브리드 시스템
GB2405028A (en) Method and device for operating an immediate temperature solid oxide fuel cell
JP7370792B2 (ja) 燃料電池システム、及び燃料電池システムの運転方法
JP6993488B1 (ja) 燃料電池発電システム、及び、燃料電池発電システムの制御方法
JP2022066934A (ja) 燃料電池システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: TOYOTA JIDOSHA K. K.; APPLICANT

Free format text: FORMER OWNER: TOYOTA JIDOSHA K. K.

Effective date: 20080222

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080222

Address after: Aichi Prefecture, Japan

Applicant after: Toyota Motor Corp.

Co-applicant after: Kabushiki Kaisha TOYOTA CHUO KENKYUSHO

Address before: Aichi Prefecture, Japan

Applicant before: Toyota Motor Corp.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080813

Termination date: 20180114

CF01 Termination of patent right due to non-payment of annual fee