CN100351004C - 排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法 - Google Patents

排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法 Download PDF

Info

Publication number
CN100351004C
CN100351004C CNB2005100755996A CN200510075599A CN100351004C CN 100351004 C CN100351004 C CN 100351004C CN B2005100755996 A CNB2005100755996 A CN B2005100755996A CN 200510075599 A CN200510075599 A CN 200510075599A CN 100351004 C CN100351004 C CN 100351004C
Authority
CN
China
Prior art keywords
water
catalyst
sulfuric acid
waste gas
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100755996A
Other languages
English (en)
Other versions
CN1714919A (zh
Inventor
小林敬古
安武昭典
栗崎隆
龙原洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of CN1714919A publication Critical patent/CN1714919A/zh
Application granted granted Critical
Publication of CN100351004C publication Critical patent/CN100351004C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种排烟脱硫装置,通过将平板状的平板活性炭纤维薄板和波板状的波板活性炭纤维薄板交替层叠,形成通路在上下方向延伸的状态,而构成催化剂层(6)的活性炭纤维层(20),并通过将生成硫酸用的水利用毛细渗透供给催化剂层(6)的活性炭纤维层(20),可用最少限度的水量把水分均匀地添加到活性炭纤维层(20)除去硫氧化物(SOX),可减少除去硫氧化物(SOX)用水。

Description

排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法
本申请是分案申请,其母案申请的申请号:02807664.8,申请日:2002.10.16,发明名称:排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法。
技术领域
本发明涉及用于除去从燃烧煤和重油等燃料的锅炉、燃气透平、发动机和焚烧炉等排出的废气中的硫氧化物(SOX)的排烟脱硫装置、排烟脱硫***以及排烟脱硫装置运转方法。
而且,本发明涉及用于除去废气中的硫氧化物(SOX)的脱硫方法。
背景技术
在从具有使用煤和重油等燃料的锅炉的火力发电设备、化工产品制造工厂、金属处理工厂、烧结工厂、制纸工厂等、以及燃气透平、发动机、焚烧炉等排出的废气中含有二硫氧化物等硫氧化物(SOX)。作为除去废气中SOX的装置,使用的是排烟脱硫装置。在排烟脱硫装置中,使用活性碳纤维等多孔碳材料吸附废气中的SOX,利用多孔性碳材料的催化作用,通过废气中含有的氧,把硫成分氧化,并将该硫氧化物用水吸收成为硫酸,再从多孔性碳材料中除去。
在以往的排烟脱硫装置中,例如,具有平板状的活性碳纤维和波板状的活性碳纤维交替层叠的催化剂槽,向催化剂槽的活性碳纤维滴下水的同时,使废气通过板间的通路,从而硫成分成为硫酸而被除去。因此,若要提高废气的净化性能(脱硫效率),必须均匀地添加水分。还有,若要避免用于供水的附加设备的大型化,有必要用最少限度的水量均匀添加。
作为使用排烟脱硫装置的硫氧化物的除去方法,有用石灰石或者消石灰浆作为吸收剂,把废气中的硫成分作为石膏回收的石灰—石膏法。另外还有众所周知的干式活性炭吸附法。
在上述的以往的石灰—石膏法中,通过把石灰石或者消石灰浆在废气中喷雾,同时进行废气的增湿冷却以及SOX的吸收。因此,必须循环大量的浆液,为循环浆液就必须消耗动力以及大量的水。还有,生成的石膏,因为是浆液状态,所以,必须有分离水分以作为石膏回收的装置。因此,石灰—石膏法不可避免脱硫设备的大型化和复杂化。
另一方面,干式法的情况下,为了把在活性炭上所吸附的硫成分通过加热使之脱离,所以需要大量的热。并且,这种方法的场合,生成的稀硫酸的废弃和吸附材料的损耗等都成为问题。所以,希望出现不需要硫氧化物的吸收剂和大型的脱硫设备,且在脱硫时能得到硫酸的脱硫装置。
因此,提出了这样一种方法,作为除去废气中SOX的装置,在活性碳纤维等多孔性碳材料中吸附废气中的SOX,利用多孔性碳材料的催化作用,通过废气中含有的氧把硫成分氧化,再用水吸收制成硫酸,从多孔性碳材料中除去(参照特开平11-347350号公报)。
在用这种活性碳纤维的以往的排烟处理装置中,将用于吸附废气中的SOX的活性碳纤维槽配置在吸收塔内,废气从下方进入,在活性碳纤维表面,二硫氧化物SO2氧化成三硫氧化物SO3,生成的SO3和供给的水反应,生成硫酸(H2SO4)。
所以,从燃烧煤和重油等燃料的锅炉中排出的废气量增加,为了大量地处理该增加的废气,需要谋求脱硫效率的连续提高。因此,需要把吸收塔大型化,但也希望把活性碳纤维的脱硫反应的效率提高,并且把脱硫***装置的结构紧凑化。
为了有效地进行催化作用,要实现反应最优化的同时,也需要用水有效地除去将废气中的SO2氧化而得的SO3,同时,若要避免供给该水的附带设备的大型化,需要以必要最少限度的水量均匀地添加。
该供给水使用工业用水等时,***整体的费用高,所以需要高效的***构成。
因此,考虑到利用***的排液等,可是催化活性降低又成为一个问题。
另一方面,因为在催化作用中水的存在是不可缺少的,所以保持适度的水分是必要的。可是若催化剂不是十分湿润的状态,则存在催化作用不能很好地进行的问题。特别在脱硫装置启动时,这个问题更重要。
在上述工厂停产时,锅炉停止后也有热空气流入,所以,进行增湿冷却水以及添加水的注入。可是因为含硫氧化物的废气不再流入,所以,生成的硫酸的浓度逐渐降低,若硫酸的浓度在一定浓度以下,即使生成石膏,也有分离回收石膏困难的问题。所以,在以往存在没有石膏制造能力的低浓度的硫酸有必要作为产业废弃物进行处理。
还有,即使不制造石膏,制造稀硫酸的场合,如果是太低浓度,就有浓缩设备大型化、硫酸制造设备的费用增加的问题。
发明内容
本发明是鉴于上述情况提出的,其目的在于提供具有可均匀地添加水分到活性碳纤维层的催化剂槽的排烟脱硫装置。
本发明是鉴于上述情况提出的,其目的在于提供可在活性碳纤维层均匀地添加水分,而除去硫氧化物(SOX)的脱硫方法。
本发明是鉴于上述情况提出的,其目的在于提供可在活性碳纤维层以最少限度水量均匀地添加水分,而除去硫氧化物(SOX)的脱硫方法。
本发明是鉴于上述情况提出的,其目的在于提供没有产业废弃物排出、且高效的排烟脱硫装置。
本发明是鉴于上述情况提出的,其目的在于提供不需要硫氧化物吸收剂和大型的脱硫设备,并且脱硫时能得到高浓度硫酸的排烟脱硫装置,即提供能减少水分以及可进行均匀供给的排烟脱硫装置。
本发明是鉴于上述情况提出的,其目的在于提供活性碳纤维脱硫反应效果好且脱硫***是简单高效的紧凑的排烟脱硫装置。
本发明是鉴于上述情况提出的,其目的在于提供脱硫***整体为高效,同时能长期维持脱硫性能的排烟脱硫装置。
本发明的排烟脱硫装置是由设置在含硫氧化物的废气通过的装置塔内、由活性碳纤维层形成的催化剂槽和设置在装置塔内的催化剂槽的上部、并向催化剂槽提供硫酸生成用水的供水机构构成的排烟脱硫装置,其特征在于通过将平板状的平板活性碳纤维薄板(sheet)和波板状的波板活性碳纤维薄板交替层叠、形成通路在上下方向延伸的状态,构成催化剂槽的活性碳纤维层,且供水机构包含经毛细渗透部件将水供给活性碳纤维层上部的渗透机构。
因此,经渗透机构,水向平板活性碳纤维薄板和波板活性碳纤维薄板流入,向活性碳纤维层的整体均匀地供水,可得到水分均匀添加的活性碳纤维层的催化剂槽。
并且,渗透机构的毛细渗透部件,其特征在于是布。
因此,能够降低成本。
还有,渗透机构的毛细渗透部件,其特征在于是绳材料。
因此,能够降低成本。
另外,本发明的排烟脱硫装置,由设置在含有硫氧化物的废气通过的装置塔内、且由活性碳纤维层构成的催化剂槽和设置在装置塔内的催化剂槽的上部、且向催化剂槽提供硫酸生成用水的供水机构构成,其特征在于通过将平板状的平板活性碳纤维薄板和波板状的波板活性碳纤维薄板交替层叠、形成通路在上下方向延伸的状态,而构成催化剂槽的活性碳纤维层。供水机构,是向活性碳纤维层的上部壁面将水直接喷雾成雾状的喷雾机构。
因此,通过喷雾机构直接向平板活性碳纤维薄板和波板活性碳纤维薄板供水,使活性碳纤维层的整体得到均匀的供水,从而可得到水分均匀添加的活性碳纤维层催化剂槽。
并且,其特征在于在上下配置多个活性碳纤维层以构成催化剂槽,并且在活性碳纤维层之间夹着毛细渗透部件。
因此,即使为了小型化等而设置有2层活性碳纤维层,但也不受废气流速等的影响,通过毛细渗透部件向上下的活性碳纤维层的平板活性碳纤维薄板和波板活性碳纤维薄板供给水,使水能均匀地流向上下的活性碳纤维层的整体,能得到水分均匀添加的活性碳纤维层催化剂槽。
本发明的脱硫方法,是把含有硫氧化物的废气通入由活性碳纤维层形成的催化剂槽,同时供给硫酸生成用水进行脱硫的脱硫方法,其特征在于利用毛细渗透向催化剂槽供水。
因此,是可将水分均匀地供给活性碳纤维层而除去硫氧化物的脱硫方法。
本发明的排烟脱硫装置,由设置在含有硫氧化物的废气通过的装置塔内、且由活性碳纤维层构成的催化剂槽和设置在上述装置塔内部、并向上述催化剂槽供给硫酸生成用的供水机构所构成,其特征在于在上述装置塔外部或者内部具有,将废气冷却同时增湿的增湿冷却机构和把回收在上述装置塔内的规定硫酸浓度以下的低浓度稀硫酸送给上述增湿冷却机构的送液管道。
并且,其特征在于上述规定硫酸浓度以下的低浓度稀硫酸的浓度是0.5%以下。
还有,其特征在于上述规定硫酸浓度以下的低浓度稀硫酸,是在脱硫停止后回收的硫酸。
并且,其特征在于在上述装置塔的下部设有含硫氧化物的废气的导入口,在上部设有该废气的排出口,同时,设置在该塔内的催化剂槽的上方有供给硫酸生成用水的供水器。
本发明的排烟脱硫***,其特征在于具备:上述排烟脱硫装置中的任意一个、使来自该排烟脱硫装置的稀硫酸和石灰浆进行反应而得到石膏浆的石膏反应槽、和从由该石膏反应槽得到的石膏中分离水分而得到石膏的脱水器。
本发明的排烟脱硫***,其特征在于具备:上述排烟脱硫装置中的任何一个和把由上述脱硫装置得到的稀硫酸进行浓缩的浓缩槽。
并且,其特征在于上述废气是从锅炉、燃气透平、发动机以及各种焚烧炉排出的气体,且具有除去废气中的煤尘的煤尘除去机构。
本发明的排烟脱硫装置的运行方法,是由设置在含有硫氧化物的废气所通过的装置塔内部且由活性碳纤维层构成的催化剂槽和设置在上述装置塔内部并把硫酸生成用水供给上述催化剂槽中的供水机构所构成的排烟脱硫装置的启动、停止以及再开车的方法,其特征在于,上述废气温度到70℃为止进行增湿冷却以及加水冷却,回收低浓度的稀硫酸,接着,在装置启动再开车时把上述低浓度的稀硫酸用作增湿冷却机构的增湿冷却水或者添加水的喷水。
还有,其特征在于在装置启动再开车时,把上述低浓度的稀硫酸用作作为增湿冷却机构的增湿冷却水或者添加水的喷水,而硫酸浓度达到规定浓度以上时作为稀硫酸回收,得到硫酸。
还有,其特征在于在装置启动再开车时,把上述低浓度的稀硫酸用作作为增湿冷却机构的增湿冷却水或者添加水的喷水,而硫酸浓度达到规定浓度以上时作为稀硫酸回收,然后把该稀硫酸和石灰浆反应得到石膏。
由此,通过将因在工厂停车时的脱硫装置中硫酸浓度的低浓度化而要作为产业废弃物来处理的溶液用作增湿冷却装置的冷却水,而不需要作为废弃物进行处理。还有,把增湿冷却水喷雾供给废气,在脱硫塔内再度进行脱硫,使硫酸浓度上升,其结果,和石灰浆反应可得到良好的石膏。
本发明的排烟脱硫装置,由设置在含有硫氧化物的废气所通过的装置塔内且以活性碳纤维层形成的催化剂槽和设置在上述装置塔内部并把硫酸生成用水供给上述催化剂槽的供水机构构成,其特征在于在装置塔内设置了内装上述催化剂层,并把催化剂变成湿润状态的湿润槽。
并且,其特征在于上述催化剂层是通过支撑装置多层层叠而成。
还有,其特征在于在上述装置塔的下部设有含硫氧化物的废气导入口,在上部设有该废气的排除口,同时,在设置于该塔内的催化剂槽的上方具有硫酸生成用水的供水器。
本发明的排烟脱硫***,其特征在于具备:上述的排烟脱硫装置中的任意一个、使来自于该排烟脱硫装置中的稀硫酸和石灰浆反应而得到石膏浆的石膏反应槽、从由该石膏反应槽得到的石膏中分离水分,得到石膏的脱水器。
还有本发明的排烟脱硫***,其特征在于具备:上述排烟脱硫装置中的任意一个和将由上述脱硫装置中得到的稀硫酸进行浓缩的浓缩槽。
此外,其特征在于上述废气是从锅炉、燃气透平、发动机以及各种焚烧炉排出的气体,并且具有除去废气中煤尘的煤尘除去机构。
本发明的排烟脱硫装置的启动(starting)方法,是由设置在含有硫氧化物的废气所通过的装置塔内且以活性碳纤维层形成的催化剂槽和设置在上述装置塔内部并把硫酸生成用水供给上述催化剂槽的供水机构构成的排烟脱硫装置的启动方法,其特征在于把上述催化剂层以预先含水的状态设置在装置塔内后再启动装置。
还有,本发明的排烟脱硫装置的启动方法,是由设置在含有硫氧化物的废气所通过的装置塔内且以活性碳纤维层形成的催化剂槽和设置在上述装置塔内部并把硫酸生成用水供给上述催化剂槽的供水机构构成的排烟脱硫装置的启动方法,其特征在于把述催化剂层预先冻结,以该冻结状态设置在装置塔内后再启动装置。
还有,本发明的排烟脱硫装置的启动方法,是启动上述排烟脱硫装置的方法,其特征在于,向在内部装有上述催化剂层的湿润槽内供给蒸汽或者湿润水,呈湿润状态后再启动装置。
此外,其特征在于上述湿润状态保持催化剂层自身重量2倍以上的水分。
通过这些,能有效地达到启动时的脱硫装置的湿润状态,其结果使催化剂层的活性碳纤维成为充分的湿润状态,由此,初期的催化活性非常好,并能抑制之后运行时催化剂的劣化。
本发明的排烟脱硫装置,其特征在于由在含硫氧化物的废气所通过的装置塔内以多层被设置并由活性碳纤维层形成的催化剂、和设置在装置塔内最上部的催化剂的上部并向催化剂提供硫酸生成用水的供水机构构成。
因此,由于滴下的水滴在多层催化剂之间分散,所以能将添加的水以近似均匀的状态添加。其结果,能得到可向活性碳纤维层的催化剂均匀地添加水分的排烟脱硫装置。
还有,本发明的排烟脱硫装置,其特征在于由在含硫氧化物的废气所流动的装置塔内以多层被设置并由活性碳纤维层形成的催化剂与分别设置在装置塔内各层催化剂的上部并向催化剂分别提供硫酸生成用水的供水机构构成。
因此,在必要的场合提供必要的水量,能把添加水均匀地添加。其结果,能得到可把必需的最少限度的水量均匀添加到活性碳纤维层催化剂上的排烟脱硫装置。
此外,其特征在于具有:导出在装置塔内流动的废气的氧浓度的氧浓度导出机构、检测在装置塔内部的各层催化剂出口处以及最上游侧的催化剂入口处的硫氧化物浓度的硫氧化物浓度检测机构,以及基于氧浓度检测机构和硫氧化物浓度检测机构提供的信息,控制各个供水机构的水供给状态的控制机构。
因此,根据硫氧化物浓度和氧浓度的情况,能够向各催化剂供给最优的水量。其结果,可向必要的催化剂供给必要量的水,能以必要的最少限度水量保持良好的硫氧化物的除去效率。
还有,其特征在于控制机构具有这样的功能:随着由氧浓度检测机构检测出的氧浓度的变高,减少从各个供水机构来的水的供给量,同时随着由过硫氧化物浓度检测机构检测出的硫氧化物浓度的变高,增加从各个供水机构来的水的供给量。
因此,能供给用于保持良好的硫氧化物除去效率的最适量的水。
还有,其特征在于控制机构具有这样的功能:各催化剂出口处的硫氧化物浓度的规定值分别被存储,并把硫氧化物浓度检测机构检测出的检测信息和规定值比较而控制来自各供水机构的水的供给状态,从而维持各催化剂的出口处的硫氧化物浓度在规定值。
因此,维持硫氧化物浓度在规定的状态并能够以必要的最少限度水量向必要的催化剂提供必要量的水,能保证以必要的最少限度水量保持良好的硫氧化物的除去效率。
本发明的排烟脱硫装置,由设置在含有硫氧化物的废气所通过的装置塔内并由活性碳纤维层形成的催化剂槽和设置在上述装置塔内部并把硫酸生成用水供给上述催化剂槽的供水机构构成,其特征在于在上述装置塔内设置了将废气增湿同时冷却的增湿冷却装置,且供给该增湿冷却装置的增湿冷却水是石膏浆的上层澄清水。
还有,其特征在于上述上层澄清水是石膏沉降槽的上层澄清水。
还有,其特征在于分离上述石膏沉降槽的上层澄清水的机构是静置槽或者液体旋风分离器或者过滤器中的任意一个或者是它们的组合。
还有,其特征在于设置了冷却上述石膏沉降槽上层澄清水的冷却槽。
还有,其特征在于设置了把上述石膏沉降槽的上层澄清水中的盐分进行盐析的盐析槽。
还有,其特征在于上述增湿冷却的冷却温度是40~60℃。
还有,其特征在于上述被增湿冷却的废气中的雾的粒径是50~150μm。
还有,其特征在于在上述装置塔的下部设有含硫氧化物的废气的导入口,并在上部设有该废气的排除口,同时,设置在该塔内的催化剂槽的上方设有:供给硫酸生成用水的供水器,以及将向上述装置塔内供给的废气增湿同时冷却的增湿冷却装置。
还有,其特征在于上述增湿冷却装置被设置在装置塔的前段侧。
还有,其特征在于上述增湿冷却装置被设置在装置塔内的催化剂槽的前段侧。
本发明的排烟脱硫***,具备:上述排烟脱硫装置、向从排烟脱硫装置排出的稀硫酸供给石灰浆以析出石膏的石膏反应槽、沉降石膏的静置槽、以及从石膏浆中除去水分以得到石膏的脱水器。
由此,在由设置在含有硫氧化物的废气所通过的装置塔内并由活性碳纤维层形成的催化剂槽和设置在上述装置塔内部并把硫酸生成用水供给上述催化剂槽的供水机构构成的排烟脱硫装置的发明中,因为在上述装置塔内设置了使供给的废气增湿同时冷却的增湿冷却装置,所以,能减少用于增湿冷却的外部水的使用量。
还有,因为供给该增湿冷却装置的增湿冷却水是使用了将石膏浆的上层澄清水静置等之后的再上层澄清水,所以防止了在构成催化剂槽的活性碳纤维层上石膏等吸附的现象。其结果,脱硫效率不会降低,能长期保持稳定的脱硫性能。
附图说明
图1是具备本发明实施例1的排烟脱硫装置的废气处理***的整体构成图。图2是关于其他实施例的废气处理***的整体构成图。图3是构成催化剂槽的活性碳纤维层的主要部分的主视图。图4是活性碳纤维层上部的部分立体图。图5是活性碳纤维层的剖视图。图6是其他实施例的活性碳纤维层的剖视图。图7是活性碳纤维薄板的剖视图。图8是具备其他实施例的毛细渗透部件的活性碳纤维层的主要部分的主视图。图9是具备其他实施例的毛细渗透部件的活性碳纤维层的主要部分的主视图。图10是具备实施例2排烟处理装置的废气处理***(制造硫酸)的示意图。图11是关于其他实施例的废气处理***(制造石膏)的示意图。图12是实施例2的排烟脱硫装置的构成图。图13是活性碳纤维层的立体图。图14是废气处理停止的流程图。图15是实施例3的排烟脱硫装置的构成图。图16是实施例4的排烟脱硫装置的构成图。图17是催化剂层的立体图。图18是催化剂层的主视图及俯视图。图19是实施例5的排烟脱硫装置的构成图。图20是实施例6的排烟脱硫装置的构成图。图21是其它实施例的活性碳纤维层的立体图。图22是具备本发明实施例7的排烟脱硫装置的废气处理***的整体构成图。图23是脱硫塔的简略构成图。图24是控制机构的方块构成图。图25是催化剂位置和硫氧化物浓度以及水量的关系图。图26是表示水量和二氧化硫浓度关系的曲线。图27是表示水量和氧浓度关系的曲线。图28是表示硫氧化物浓度随时间变化的曲线。图29是表示水量调节阀的开度随时间变化的曲线。图30是具有本发明实施例8的排烟处理装置的废气处理***(制造石膏)示意图。图31是排烟处理装置的示意图。
具体实施方式
为了更详细地说明本发明,依据附图来进行说明。
根据图1说明具有实施例1的排烟脱硫装置的废气处理***。
如图1所示,例如,为了驱动未图示的火力发电设备的蒸汽透平,在产生蒸汽的锅炉1中,燃烧煤和重油等燃料f。锅炉1的废气中含有硫氧化物(SOX),废气经过未图示的脱氮装置脱氮,并在废气加热器冷却后,在集尘器2中进行除尘。
被除尘的废气通过鼓风机3被送入增湿冷却装置16,在增湿冷却装置16中混入水分(含稀硫酸),成为饱和蒸汽状态的废气。这时,在废气中有时含有烟雾。从增湿冷却装置16出来的饱和蒸汽状态的废气,从下部的导入口进入作为装置塔的脱硫塔4中。在脱硫塔4的内部设有由活性碳纤维层形成的催化剂槽6,由上部的毛细渗透部件7向催化剂槽6供给硫酸生成用水。水槽8的水通过泵9供给毛细渗透部件7,由毛细渗透部件7、水槽8、以及泵9构成了供水机构。
通过从下部向从上部喷洒水的催化剂槽6的内部通入废气,反应除去废气中的SOX。通过催化剂槽6的废气从排出口12排出,并且在烟雾净化器19中废气中的烟雾被除去,以白烟被控制的状态通过烟囱13排放到大气。另外也有不设置烟雾净化器19的情况。
在催化剂槽6的活性碳纤维层的表面,例如,通过以下反应进行脱硫反应,即:
(1)催化剂槽6的活性碳纤维层吸附二氧化硫SO2
(2)吸附的二氧化硫SO2和废气中的氧O2(也可从其它途径供给)反应,氧化成三氧化硫SO3
(3)氧化的三氧化硫SO3溶解于水H2O生成硫酸H2SO4
(4)生成的硫酸H2SO4从活性碳纤维层脱离。
这时的反应式是下面的通式。
SO2+1/2O2+H2O→H2SO4
被反应除去的硫酸H2SO4成为稀硫酸,通过排出泵10排到硫酸罐11。象这样,利用催化剂槽6吸附废气中的SO2,进行氧化,然后和水H2O反应,生成硫酸H2SO4后脱离除去,以此进行废气的脱硫。
根据图2说明废气处理***的其它的实施例。另外,对于与图1所示的废气处理***相同的构成部分给予相同的符号,省略了重复说明。
图2所示的废气处理***,是通过在脱硫装置中的脱硫而将废气中的硫氧化物变成硫酸后,在硫酸中加入石灰浆制成石膏。
如图所示,设有从脱硫塔4经过排出泵10储存稀硫酸并同时加入石灰浆51使石膏析出的石膏反应槽52,且设有沉降石膏反应槽52析出的石膏的沉降槽(增稠器)53。从沉降槽(增稠器)53出来的石膏浆54被送入脱水器56中,在脱水器56除去水分后制得石膏55。
在图1的废气处理***中,将脱硫得到的硫酸直接作为硫酸来使用。而图2的废气处理***中,在硫酸中加入石灰浆51得到石膏浆54后脱水,作为石膏55而使用。
根据图3至图7说明催化剂槽6中的活性碳纤维层的构成。
活性碳纤维层20,是平板状的平板活性碳纤维薄板21和具有连续的V字状波纹的波板状波板活性碳纤维薄板22交替层叠,在薄板间形成直线状的空间成为通路15,且通路15成为上下延伸的状态。平板活性碳纤维薄板21和波板活性碳纤维薄板22是用粘合剂将沥青类、苯酚类等棉状的活性碳纤维做成板状,且波板活性碳纤维薄板22是利用波纹板加工机加工成波型的。之后在氮气等非氧化气氛下,例如,加热至600至1200℃而得到脱硫反应用的活性碳纤维。即通过热处理,增大疏水性表面,使得容易吸附二硫氧化物SO2,同时又能使生成的硫酸H2SO4迅速地脱离。
作为本发明用的活性碳纤维,例如可以举出沥青类活性碳纤维、聚丙烯腈类活性碳纤维、酚类活性碳纤维、纤维素类活性碳纤维。但本发明不限定于这些,如果是起到催化作用的活性碳纤维就没有任何限定。
具体的制造例子如下。
使用酚类活性碳纤维(kuractive-20,kuraray Chemical(株)制),将其放在氮气氛中,在900~1200℃的温度范围,烧成1小时。
使用聚丙烯腈类活性碳纤维(FX—600,东邦人造纤维(株)制),将其放在氮气氛中,在900~1200℃的温度范围,烧成1小时。
将进行过热处理的平板活性碳纤维薄板21和波板活性碳纤维薄板22交替层叠,并把波板活性碳纤维薄板22的波峰部和平板活性碳纤维薄板21用粘合剂熔融接合,作成规定大小的组件(pack)。因为波板活性碳纤维薄板22和平板活性碳纤维薄板21由粘合剂接合,所以没有使用有机物等的粘合剂。为此粘合剂不会影响脱硫反应,并且,接合的可靠性提高,可消除对压力损失的影响。
例如,活性碳纤维层20的组件以通路15作为上下方向排列有4个,进而,将4个活性碳纤维层20的组件层叠2层,固定收纳在箱子中。即在上下方向上配置多个活性碳纤维层20而构成催化剂槽6。因此,能够把一个活性碳纤维层20小型化,提高装配性。
如图4所示,例如将平板活性碳纤维薄板21之间的间距(pitch)P设定为4mm左右,将波板活性碳纤维薄板22的波峰部的高度h设定为10mm左右。此外,从上面喷雾以供给粒径为200μm左右的水,同时从下面送入废气,流过活性碳纤维层20的水的粒径变成数mm左右落到脱硫塔4的下部。因为废气是流过平板活性碳纤维薄板21和波板活性碳纤维薄板22交替层叠形成的比较小的通路15,所以能抑制压力损失的增大。
在活性碳纤维表面由SO2氧化成的SO3,由于水的作用而成为硫酸排出时,如果水分不足就不能作为硫酸排出,接下来的SO2的氧化就不充分。另一方面,如果水分过剩,则硫酸就变稀。还有,若水分过剩,例如在活性碳纤维的表面形成水膜或水壁而覆盖了活性碳纤维的活性点,则起不到SO2氧化的催化作用,不能脱硫,使脱硫效率下降。
因此,废气与催化剂槽6的活性碳纤维层20相接触时的水分量被设定为以下状态,即,从上面喷雾供给粒径200μm左右的水,同时,流过活性碳纤维层20的水的粒径变成数mm左右而落到脱硫塔4的下部。这样,虽然随废气的状况而不同,但断续的水滴成为球状滚落,因此,向活性碳纤维表面的水分供给不是过分不足,同时硫酸的脱离有效地进行。其结果,废气的脱硫能有效地进行。
还有,如图6(A)所示,也可以形成波纹呈U字状连续的波板活性碳纤维薄板31,并在同一方向上排列波板活性碳纤维薄板31,使波板活性碳纤维薄板31和平板活性碳纤维薄板21交替层叠。也可以如图6(B)所示那样,把波板活性碳纤维薄板31的方向交替地排列,使波板活性碳纤维薄板31和平板活性碳纤维薄板21交替层叠。也可以如图6(C)所示那样,在波板活性碳纤维薄板31的表面上形成细微的凹凸形状32。
另外,平板活性碳纤维薄板21以及波板活性碳纤维薄板22、31的结构,如图7所示,是在芯材34的两面上紧贴fired carbon sheet 35而作成的层叠的板状。另外,也可能是没有芯材34的结构。
根据图3、图4说明向活性碳纤维层20供给水的毛细渗透部件7的构成。
如图所示,在活性碳纤维层20的附近设有贮存从水槽8及泵9送来的水的贮水槽25,在贮水槽25的内部和平板活性碳纤维薄板21以及波板活性碳纤维薄板22的上部设有作为水渗透的毛细渗透部件的构成要素的绳材26。被贮存在贮水槽25中的水渗透绳材26,被直接供给平板活性碳纤维薄板21以及波板活性碳纤维薄板22,并且水向对应所有通路15的活性碳纤维薄板均匀地渗透。
另外,也可以把绳材26沿着活性碳纤维层20上端面的周围(通路15的端部周围)配置。
因此,可在不受废气流速等的影响的前体下,通过绳材26把水供给平板活性碳纤维薄板21以及波板活性碳纤维薄板22,由此可得到向活性碳纤维层20全体均匀地供水从而水被均匀地添加的活性碳纤维层20的催化剂槽6。并且通过使用绳材26,可降低成本。
另外,在实际的催化剂槽6配置贮水槽25以及绳材26时,可将它们配置在废气通过时不会有压力损失的位置上。
作为毛细渗透部件的构成,也可以用洒水器或管状喷淋装置(喷雾机构)直接把水供给平板活性碳纤维薄板21以及波板活性碳纤维薄板22的上部,而把平板活性碳纤维薄板21以及波板活性碳纤维薄板22的上部本身作为毛细渗透部件。还有,将活性碳纤维层20放在框体内时,也可把框体作为管状喷淋装置而使用。用撒水器或喷淋装置向平板活性碳纤维薄板21以及波板活性碳纤维薄板22的上部供给水时,如果设置用于防止由从下面来的废气导致水飞散的挡板,则使水的供给顺利进行。
根据图8说明毛细渗透部件的其它实施例。在图8中表示出了具备其它实施例的毛细渗透部件的活性碳纤维层的主要部分的正面。另外,对于与图3所示的构成部件相同的部件给予相同的符号,省略了重复说明。
如图所示,在活性碳纤维层20的附近设有喷出从水槽8及泵9送来的水的喷嘴28,在喷嘴28的下部配置有作为毛细渗透部件的构成要素的例如带状的布材29。布材29的端部连接在平板活性碳纤维薄板21以及波板活性碳纤维薄板22的上部。水从喷嘴28向布材29喷出,并渗透布材29直接供给平板活性碳纤维薄板21以及波板活性碳纤维薄板22,从而水向对整个通路15的活性碳纤维薄板均匀地渗透。
另外,也可以把布材29沿着活性碳纤维层20的上端面的周围(通路15的端部周围)配置。
因此,可在不受废气流速等的影响的前体下,通过布材29把水供给平板活性碳纤维薄板21以及波板活性碳纤维薄板22,由此可得到向活性碳纤维层20全体均匀地供水从而水被均匀地添加的活性碳纤维层20的催化剂槽6。并且通过使用布材29,可降低成本。
根据图9说明毛细渗透部件的其它实施例。在图9中表示出了具有其它实施例的毛细渗透部件的活性碳纤维层的主要部分的正面。另外,对于与图3所示的构成部件相同的部件给予相同的符号,省略了重复说明。
图示的实施例说明活性碳纤维层20的组件被层叠为2层的情况。活性碳纤维层20被配置成为上下2层而构成催化剂槽6,并且在活性碳纤维层20之间设有作为渗透水的毛细渗透部件的构成要素的绳材26。贮存在贮水槽25中的水,渗透绳材26,直接供给上部的活性碳纤维层20,并且由上部活性碳纤维层20滴下的水渗透绳材26,直接供给下部活性碳纤维层20的平板活性碳纤维薄板21以及波板活性碳纤维薄板22,从而即使在下部活性碳纤维层20,水均匀地向对应整个通路15的活性碳纤维薄板渗透。
因此,即使配置2层活性碳纤维层20,也会在不受废气流速等的影响的前体下通过绳材26,向上下层活性碳纤维层20的平板活性碳纤维薄板21以及波板活性碳纤维薄板2供水,由此能得到可向上下活性碳纤维层20的全体均匀地供水以使水分均匀添加的活性碳纤维层20的催化剂槽6。
另外,也可以用图8所示的布材29连接上下的活性碳纤维层20。向上部活性碳纤维层20的水的供给,当然可以通过图8所示的布材29进行,但也可以用撒水器或管状喷淋装置直接向平板活性碳纤维薄板21以及波板活性碳纤维薄板22的上部供给水。
所以,上述的排烟脱硫装置可以成为具有把水分均匀添加到活性碳纤维层20的催化剂槽6的排烟脱硫装置。并且,上述的脱硫方法可以成为将水分均匀地添加到活性碳纤维层20,除去硫氧化物的脱硫方法。
根据图10说明具备实施例2的排烟脱硫装置的废气处理***。并且,对于与图1所示的部件相同的部件给予相同的符号。图10的废气处理***构成为,代替图1的废气处理***的毛细渗透部件7而设置洒水喷嘴60。
即,图10的废气处理***是把废气中的硫氧化物在脱硫装置中进行脱硫,然后制成硫酸的***。如图10所示,该***具备:发生用于驱动蒸汽透平的蒸汽的锅炉1;除去从锅炉1出来的废气100中的煤尘的除尘器2;把已除尘的废气供给脱硫塔4的鼓风机3;在供给脱硫塔4的前侧(或者在塔内)将废气100冷却的同时增湿的增湿冷却装置16;在内部设置有催化剂槽6,并从塔下部侧壁的导入口5供给废气100,同时从催化剂槽6的上方用洒水喷嘴60供给水,从而使废气中的SOx进行脱硫反应至稀硫酸(H2SO4)为止的脱硫塔4;将从塔顶部的排出口12排出的经过脱硫的净化气排到外部的烟囱13;储存从上述脱硫塔4通过排出泵10来的稀硫酸的硫酸罐11。还有,在排出从脱硫塔4排出的净化气的管线中,可以根据需要安装烟雾净化器19,以分离废气中的水分。
这里,上述锅炉1,例如为了产生用于驱动火力发电设备的未图示的蒸汽透平的蒸汽,在炉中燃烧煤或重油等燃料f。锅炉1的废气中含有硫氧化物(SOX),废气经过未图示的脱氮装置脱氮、并在空气预热器中冷却后,由集尘器2被除尘。
上述已除尘的废气100,通过鼓风机3,从下部侧壁的导入口5进入脱硫塔4内。在脱硫塔4的内设有由活性碳纤维层形成的催化剂槽6,并且从洒水喷嘴60向该催化剂槽6供给硫酸生成用水。通过使废气从下部进入从上部供给水的催化剂槽的内部,反应除去废气100中的SOX。通过催化剂槽6的废气从排出口12排出,通过烟囱13排放到大气。
上述催化剂槽6具有由多个活性碳纤维层构成的催化剂,在各活性碳纤维层的表面上发生脱硫反应(参照图1说明栏所示的反应结构)。
被反应除去的硫酸H2SO4成为稀硫酸,并通过排出泵10排到硫酸罐11。象这样,通过在催化剂槽6的活性碳纤维层中吸附废气100中的二氧化硫SO2进行氧化,然后再和水反应,生成硫酸,最后将硫酸脱离除去,从而进行废气的脱硫。
接下来,根据图11说明废气处理***的其它实施例。此外,对与图2所示的部件相同的部件给予了相同的符号。图11的废气处理***构成为,代替图2的废气处理***的毛细渗透部件7,而设置洒水喷嘴60。图11的废气处理***,是将废气中的硫氧化物在脱硫装置中脱硫而制成硫酸,然后再向该硫酸加入石灰浆而制造石膏的***。
如图11所示,该***具有:发生用于驱动蒸汽透平的蒸汽的锅炉1;除去从锅炉1出来的废气100中的煤尘的除尘器2;把已除尘的废气供给脱硫塔4内的鼓风机3;在脱硫塔内或供给塔之前将废气100冷却的同时增湿的增湿冷却装置16;设置在催化剂槽6的内部,并从塔下部侧壁的导入口5供给废气100,同时从催化剂槽6的上方用洒水喷嘴60供给水,从而使废气中的SOx进行脱硫反应至稀硫酸(H2SO4)为止的脱硫塔4;将从塔顶部的排出口12排出的经过脱硫的净化气排到外部的烟囱13;储存从上述脱硫塔4通过排出泵10来的稀硫酸,同时加入石灰浆51,析出石膏的石膏反应槽52;沉降石膏的沉降槽(增稠器)53;从石膏浆54中把水分作为排水(滤液)57除去,得到石膏的脱水器56。
在图10的***中,将脱硫得到的硫酸直接作为硫酸使用。而在图11的***中,在硫酸中加入石灰浆得到石膏浆后,通过脱水作为石膏使用。
图10以及图11共同使用实施例2的排烟脱硫装置,下面根据图12说明排烟脱硫装置的构成。
如图12所示,对于排烟脱硫装置而言,在上述装置塔的侧壁(或者下部)具有含硫氧化物的废气100的导入口5,并且在上部具有该废气100的排出口12,同时于设在该脱硫塔4内的由活性碳纤维层构成的催化剂槽6的上方,设有作为硫酸生成用水的供水器的洒水喷嘴60。
在上述脱硫塔4的塔内下方侧设有硫酸储存部40,以使在塔内储存从催化剂槽6回收的稀硫酸41。
图13中表示了催化剂槽6的构成。图13是催化剂槽的立体图,对应于前面所述的图4。
如图13所示,形成催化剂槽6的一个单元的活性碳纤维层20成为以下状态,即,平板状的平板活性碳纤维薄板21和波板状的波板活性碳纤维薄板22交替层叠,在薄板间形成的直线状的空间成为通路15且通路15在上下方向延伸。平板活性碳纤维薄板21和波板活性碳纤维薄板22形成板状,并且波板活性碳纤维薄板22是利用波纹板加工机加工成波型的,此外,也可以成形为蜂巢形状等废气相对于活性碳纤维薄板平行通过的形状。
从洒水喷嘴60喷雾供给水,同时废气从下部送入,流过活性碳纤维层20的水,粒径变成数mm,落到下部。废气100流过由平板活性碳纤维薄板21和波板活性碳纤维薄板22交替层叠形成的通路15,所以抑制了压力损失的增大。
上述被反应除去的硫酸H2SO4成为稀硫酸41,通过排出泵10排到硫酸罐11。象这样,通过在催化剂槽6的活性碳纤维层吸附废气100中的二硫氧化物SO2,进行氧化,然后和水H2O反应,生成硫酸H2SO4后脱离除去,以此进行废气的脱硫。
还有,在上述硫酸储存部40内设有硫酸浓度计42,以测量内部的硫酸浓度。
上述装置,在工厂停产时因为有热空气流入,所以注入增湿冷却水16a以及添加水8a,可是,因为含硫氧化物的废气100不流入,所以生成的硫酸浓度逐渐降低。
在此,当通过硫酸浓度计42的测量,成为规定浓度(0.5%以下硫酸)以下的低浓度稀硫酸时,即使要生成石膏也无法制造石膏,所以停止向外的排出,把低浓度的硫酸储存在硫酸储存部40内。
接着,在工厂开车时,把上述储存的低浓度的硫酸通过安装在送液管线44上的送液泵45,送到增湿冷却装置16,作为增湿冷却用的喷雾水来使用。
在此,由于把低浓度的硫酸作为增湿冷却水而使用,所以虽然该硫酸作为SOX增加,但在再开车时的废气中存在的SOX浓度也低,所以加在脱硫塔4上的负荷不会增加。
由此,工厂停产时生成的低浓度的硫酸返回增湿冷却装置16,进行再度脱硫,所以硫酸储存部40内的硫酸浓度逐渐升高,当变成有石膏制造能力的规定浓度以上时,把稀硫酸的排出从增湿冷却装置16侧切换到硫酸罐11。
参照图14说明这一连的顺序。
如图14所示,随着工厂的停产,废气100的通入停止(S-11)。
这时,继续由洒水喷嘴60的洒水(S-12)。
通过继续洒水,保持催化剂槽6内的活性碳纤维的湿润状态(S-13)。
利用来自于洒水喷嘴60的洒水洗涤了催化剂的液体,作为浓度低的硫酸,被储存在硫酸储存部40内(S-14)。
接着,在工厂开车时,将低浓度的稀硫酸作为增湿冷却废气的增湿冷却装置16用的增湿冷却水16a送入(S-15)。
如以上,通过有效地利用脱硫装置停止和启动时的低浓度的硫酸,从而提高了脱硫效率。而且,通过洗涤催化剂槽的活性碳纤维表面上的硫酸,由硫酸而引起的催化剂中毒不会存在,可防止催化剂活性的降低。
在本实施例,关于将低浓度的硫酸用作增湿冷却水的情况进行了说明,但本发明不限于此,也可以作为从催化剂槽6上部利用洒水喷嘴60进行添加的添加水8a而利用。
图15是实施例3的排烟脱硫装置的示意图。
如图15所示,本实施例的排烟脱硫装置,在图12所示的排烟脱硫装置中,具备:根据安装在硫酸排出管线46上的硫酸浓度计42和该硫酸浓度计42的硫酸浓度,切换管线的切换阀47;通过该切换阀47的切换,把送入的硫酸暂时保存的增湿冷却水用的低浓度硫酸罐48;以及硫酸罐11。
根据上述装置,在脱硫装置脱硫时,当硫氧化物少,判定硫酸浓度低(1%以下,或者0.5%以下)而没有石膏制造能力时,停止往硫酸罐10送液,并把管线切换到增湿冷却用的低浓度硫酸罐48,以此防止硫酸罐11内的硫酸浓度降低。
如上所述,通过把脱硫装置停止时产生的低浓度硫酸,作为再启动时的增湿冷却水使用,而不必作为产业废弃物进行处理。
根据图16说明实施例4的排烟脱硫装置。具备实施例4的排烟脱硫装置的废气处理***和图10、图11相同。图16的排烟脱硫装置可适用图10、图11的废气处理***的催化剂槽6。因此,对与图12所示的排烟脱硫装置相同的部件给予了相同的符号。另外,对于催化剂槽6中的活性碳纤维层则引用图13进行说明。
如图16所示,排烟脱硫装置,在上述装置塔的侧壁(或者下部)具有含硫氧化物的废气100的导入口5,并且在上部具有该废气100的排出口12,同时于设在该脱硫塔4内的由活性碳纤维层构成的催化剂槽6的上方,设有作为硫酸生成用水的供水器的洒水喷嘴60。
如图13所示,形成催化剂槽6的一个单元的活性碳纤维层20成为以下状态,即,平板状的平板活性碳纤维薄板21和波板状的波板活性碳纤维薄板22交替层叠,在薄板间形成的直线状的空间成为通路15且通路15在上下方向延伸。平板活性碳纤维薄板21和波板活性碳纤维薄板22形成板状,并且波板活性碳纤维薄板22是利用波纹板加工机加工成波型的。
此外,也可以成形为蜂巢形状等废气相对于活性碳纤维薄板平行通过的形状。
另外,从洒水喷嘴60喷雾供给水,同时废气从下部送入,流过活性碳纤维层20的水,粒径变成数mm,落到下部。由于废气100流过由平板活性碳纤维薄板21和波板活性碳纤维薄板22交替层叠形成的较窄通路15,所以抑制了压力损失的增大。
根据图17、图18说明在上述脱硫塔设置催化剂槽6的顺序。
首先,如图17所示,把层叠的活性碳纤维层20填充到框体71内,作成催化剂层(例如,高度是0.5m~4m)72。
接着,把催化剂层72浸渍在外部另设置的湿润槽(没有图示)中,呈湿润状态。这时的湿润状态最好是自身重量(催化剂本身)的2倍以上。例如,填充了多层活性碳纤维层20后自身重量为40~50Kg时,最好浸渍80~100Kg以上的水。
成为该润湿状态之后,将催化剂层72例如利用吊车等提升机构等设置在脱硫塔内。
作为一个例子,在处理大量的废气时,若假设1000m3(高度是10m,面积100m2时)的脱硫装置,则需要2000个1m×1m×0.4m的催化剂层,所以为了使催化剂成为湿润状态,就需要大量的水。因此,若以经常洒水的方式供给该水,则需要大量的水,不经济,所以象本实施例这样,通过把个别催化剂变成湿润状态后,设置在脱硫塔内,从而可直接启动,是有效的。
图18是将由该催化剂层72作成的4个组件在箱体73中分2层层叠而成的图,图18(A)表示主视图,图18(B)表示俯视图。
这时,可以把各催化剂层72A~72D作为各湿润状态,用吊车依次把催化剂层72A~72D设置在预先配置在装置塔内的箱子73中。
还有,可以是3层~5层的多层层叠。
另外,若要把其它的催化剂层以湿润状态设置在脱硫塔内,也可以是把催化剂层全体变成湿润状态之后使之冻结,以冻结状态用吊车设置在塔内。
以这种冻结状态设置的方法,在不能把湿润槽设置在脱硫塔4附近情况是有效的。即,从湿润槽到脱硫塔4有移动距离时,在运送途中,水分会从湿润状态的催化剂层72跑掉,所以,若要启动排烟脱硫装置,则需要把催化剂层72设置在脱硫塔4内后再次洒水进行湿润。相对于此,直接以冻结状态运送时,即使由于移动而产生振动,水分也不会跑掉,并且,设置在脱硫塔4内后,能够直接启动,高效。
在此,本发明的排烟脱硫装置的脱硫塔4内的上述废气和催化剂层接触时的水分量(水分/增湿废气)是饱和水蒸气量+0.5~10。优选饱和水蒸气量+1.0~1.5容量%。上述饱和水蒸气量,例如在50℃时,是12.2容量%(50℃)。
还有,40℃的饱和水蒸气量是7.3容量%,60℃的饱和水蒸气量是19.7容量%。这是因为,若在饱和量以下,则如上述方式进行脱硫作用得到的硫酸,不能顺利的脱离。
所以,通过在装置启动前将催化剂层变成湿润状态,可补助在上述过饱和水蒸气量以上运转。即,若在启动前不成为湿润状态而开始脱硫,则在活性碳纤维层中将存在有水分的地方和没水分的地方,从而不能进行有效的脱硫作用。
还有,增湿冷却的冷却温度可以根据废气温度和水分量的关系而适宜决定,但在脱硫时,最好是40~60℃。这是因为,若超过60℃,则水分的蒸发量增大,水供给量变大,处理费用提高。另一方面,若小于40℃,对一般的废气进行增湿冷却时,把它变成40℃以下是不现实的。
即,通过增湿冷却装置16的增湿冷却,废气100以水分饱和状态的状态进入脱硫塔4内,和催化剂槽6的催化剂层接触时,废气的水分量为饱和水蒸气量+0.5~10(优选饱和水蒸气量是+1.0~1.5容量%),所以,由在催化剂表面的SO2的氧化所生成的SO3的脱离能快速进行,并且在活性碳纤维的表面不会残存硫酸,所以,活性点能得到有效的使用,脱硫效率上升。
如以上所述,在排烟脱硫装置启动时,使催化剂层充分湿润是重要的,为此,通过利用各种方法把催化剂层变成湿润状态后启动,能有效地进行脱硫反应。
下面关于把湿润槽设置在脱硫塔内部,把催化剂变成湿润状态的情况进行说明。
图19是实施例5的排烟脱硫装置的示意图。
如图19所示,本实施例的排烟脱硫装置,在上述装置塔的侧壁(或者下部)具有含硫氧化物的废气100的导入口5,并且在上部具有该废气100的排出口12,同时于设在该脱硫塔4内的由活性碳纤维层构成的催化剂槽6的上方,设有作为硫酸生成用水的供水器的洒水喷嘴60,同时上述催化剂槽6被装在催化剂湿润槽61内,且在该催化剂湿润槽61上设有:供给湿润水62的湿润水供给管线63和把湿润水62作为循环水循环的循环管线64。
另外,在催化剂湿润槽61的下面和上面,自由开闭地形成有(未图示)各个废气的流入口和排出口,在脱硫时上述流入口和排出口开放。
根据上述装置,在启动排烟脱硫装置前,把催化剂槽6设置在催化剂湿润槽61内后,从湿润水供给管线63供给湿润水62,使催化剂成为湿润状态。并且,湿润状态的好坏,能够通过未图示的传感器等检测机构进行判断。
另外,可以在湿润水62的循环管线64上安装过滤层65,避免循环时异物的混入。
如上所述,在排烟脱硫装置启动时,可在催化剂湿润槽61内设置催化剂槽6,使催化剂层的活性碳纤维成为充分湿润的状态。由此,可有效地提高初期的催化剂活性,也能抑制其后运转时的催化剂的劣化。
下面,说明在脱硫塔内部设置多个湿润槽作成一体型,并使催化剂在脱硫装置内成为湿润状态的情况。
图20是实施例6的排烟脱硫装置的示意图。
如图20所示,本实施例的排烟脱硫装置,在设有多个催化剂槽6的情况下高效地进行湿润。
如图20所示,在本实施例中,设置多个催化剂湿润槽61(本实施例是4室),并在各催化剂湿润室61A~61D中装有各催化剂槽6A~6D。此外,使湿润水62依次在该催化剂湿润室61A~催化剂湿润室61D中进行移动。
即,把催化剂槽6设置在各催化剂湿润室61A~61D中,从外部供给湿润水62,并首先使催化剂湿润室61A成为水满状态,经过规定的时间,催化剂层变成浸渍状态后,把湿润水62移动到催化剂湿润室61B,使该催化剂湿润室61B变成水满状态。依次进行这一操作。
由此,即使在设置多个催化剂槽6的情况下,湿润水的量也只是湿润室的一室的使用量,从而可减少水的使用量,同时,可减少脱硫塔4的供水负荷。
接着,关于使构成催化剂槽6的活性碳纤维层的平板活性碳纤维薄板具有保水功能的实施例进行说明。
上述实施例是从外部向催化剂槽6供水,并通过渗透成为湿润状态。而本实施例是使活性碳纤维层自身具有湿润功能。
如图21所示,本实施例的活性碳纤维层200由平板活性碳纤维薄板201和波板活性碳纤维薄板22构成,并且,在上述平板活性碳纤维薄板201上以成为一体地形成有保水层202。该保水层202由吸水性良好的纤维构成,以使将向催化剂层供给的水有效地向波板活性碳纤维薄板22供给。由此,可从内部成为湿润状态。
该活性碳纤维层200也可用于上述实施例中的任意一个,特别是,通过与图19以及图20所示的催化剂湿润槽61并用,能增大其湿润效果。
根据图22说明设有本发明实施例7的排烟处理装置的废气处理***。图22所示的废气处理***构成为,代替图1所示的废气处理***的催化剂槽6而配置有催化装75,并且代替图1所示的废气处理***的毛细渗透部件7而配置有供水机构76。因此,对与图1所示的部件相同的部分给予相同的符号。
如图22所示,例如,在产生用于驱动火力发电设备的未图示蒸汽透平的蒸汽的锅炉1中,燃烧煤和重油等燃料f。锅炉1的废气中含有硫氧化物(SOX),废气经过未图示的脱氮装置脱氮后经废气加热器冷却,接着在集尘器2中被除尘。
被除尘的废气通过鼓风机3,从下部的导入口5进入作为装置塔的脱硫塔4中。在脱硫塔4的内部设有由活性碳纤维层形成的催化剂多层配置的催化装置75。硫酸生成用水由供水机构76供给催化装置75。通过由下部向水从上部供给的催化装置75的内部通入废气,反应除去废气中的SOX。通过催化装置75的废气从排出口12排出,并通过烟囱13排放到大气。
催化装置75具有由活性碳纤维层构成的催化剂,在活性碳纤维层的表面上发生脱硫反应(参照图1说明栏所示的反应结构)。
被反应除去的硫酸H2SO4成为稀硫酸,并通过排出泵10排到硫酸罐11。象这样,通过在催化剂槽6的活性碳纤维层中吸附废气100中的二氧化硫SO2进行氧化,然后再和水反应,生成硫酸并将其脱离除去,从而进行废气的脱硫。
另外,在图22的废气处理***中也可以设置图1所示的烟雾净化器19。
根据图23说明设置在脱硫塔4中的催化装置75的构成。
催化装置75是,在脱硫塔4的内部设置3层由活性碳纤维层20(参照图3~图5)形成的催化剂119(例如,高度是2m~4m)而构成的。还有,也可以设置2层或者4层以上的多层催化剂119构成催化装置75。在各催化剂119的上部分别设置有供水机构76的洒水喷嘴107,以使硫酸生成用水从洒水喷嘴107喷洒到各催化剂119上。来自水槽8的水通过泵9,经各个供给管线118供给洒水喷嘴107。
在把水供给最下层(最上游侧)催化剂119的洒水喷嘴107的供给管线118上设有第1阀135,在把水供给中层催化剂119的洒水喷嘴107的供给管线118上设有第2阀136,进而,在把水供给最上层催化剂119的洒水喷嘴107的供给管线118上设有第3阀137。第1阀135、第2阀136以及第3阀137根据控制机构125的指令开闭,控制向各层催化剂119的水的供给状态。另外,第1阀135、第2阀136以及第3阀137也能通过手动调节。
还有,在脱硫塔4的导入口5的附近设有作为用于检测(导出)氧(O2)浓度的氧浓度导出机构的O2分析机构126。O2分析机构126的检测信息被输入到控制机构125。并且,因为氧浓度是百分数的水平,所以设置O2分析机构126的场所,可以是在排出口12的附近和其它部位,不管设在哪,都能作为催化装置75的O2浓度信息而采用。另外,脱硫塔4内部的O2浓度也能从锅炉1的燃烧状态(燃空比的关系等)推算(导出)出来。
另外,在脱硫塔4设有作为检测各催化剂119的出口侧以及最上游侧的催化剂119入口侧的硫氧化物(SO2)浓度的硫氧化物浓度检测机构的SO2分析机构127。在SO2分析机构127中,将检测出的最下层催化剂119的出口侧的SO2浓度作为第1浓度,并将检测出的中层催化剂119的出口侧的SO2浓度作为第2浓度,进而,将检测出的最上层催化剂119的出口侧的SO2浓度作为第3浓度。SO2分析机构127的检测信息被输入到控制机构125。并且,可以在检测SO2浓度的各个场所分别设置SO2分析机构127。
根据图24说明控制机构125的方块构成。
在控制机构125中设有:向第1阀135输出开闭指令的第1指令功能128、向第2阀136输出开闭指令的第2指令功能129、以及向第3阀137输出开闭指令的第3指令功能130。来自SO2传感器127的第1浓度信息和来自O2传感器126的信息被输入到第1指令功能128;来自SO2传感器127的第2浓度信息和来自O2传感器126的信息被输入到第2指令功能129;来自SO2传感器127的第3浓度信息和来自O2传感器126的信息被输入到第3指令功能130。
另一方面,分别把各催化剂119出口处的SO2浓度的规定值作为第1规定值、第2规定值、以及第3规定值存储到第1指令功能128、第2指令功能129、第3指令功能130。在第1指令功能128、第2指令功能129、第3指令功能130中比较第1浓度和第1规定值、第2浓度和第2规定值、第3浓度和第3规定值。并且采纳来自O2分析机构126的O2浓度信息,开闭第1阀135、第2阀136以及第3阀137,控制加入的水量,使第1浓度、第2浓度以及第3浓度成为第1规定值、第2规定值以及第3规定值。
下面说明向各层催化剂119的供水状况。
如图26所示,O2浓度一定时,把SO2浓度(ppm)对水量(l/min)的关系图形化存储到控制机构125,以使随着SO2浓度增加,增加水量。还有,如图27所示,SO2浓度一定时,把O2浓度(%)对水量(l/min)的关系图形化存储到控制机构125,以使随着O2浓度增加,减少水量。在控制机构125中,把涉及SO2浓度的函数以及涉及O2浓度的函数相乘,向第1阀135、第2阀136以及第3阀137输出开度指令。
当从导入口5进入的废气中的SO2浓度为Appm(例如,400ppm),脱硫塔4内的O2浓度为B%(例如,2~3%)时,规定为第1规定值是Cppm(例如,150ppm)、第2规定值是Dppm(例如,30ppm)、以及第3规定值是Eppm(例如,4ppm)。并且,如图25所示,设定水量使各催化剂119出口侧的SO2浓度成为Cppm、Dppm、Eppm。即,设定水量使向最下层催化剂119的水量为F l/min(例如150l/min)、向中层催化剂119的水量为G l/min(例如50l/min)、向最上层催化剂119的水量为H l/min(例如10l/min)。
如图28所示,在各层催化剂119的出口侧检测出的SO2浓度随着时间均逐渐上升。在第1指令功能128、第2指令功能129、以及第3指令功能130中,将检测出的SO2浓度和第1规定值、第2规定值、第3规定值分别进行比较,并向第1阀135、第2阀136、第3阀137输出开闭指令以使检测出的SO2浓度成为第1规定值、第2规定值、第3规定值。因此,如图29所示,随着SO2浓度的上升,第1阀135、第2阀136、第3阀137的开度变大,水量增加。
在设有上述催化装置75的排烟处理装置中,由于将催化剂119分为3层,并通过来自控制机构125的指令从洒水喷嘴107向各层催化剂119喷洒适量的水,所以可均匀地添加水,可稳定保持SO2的除去效率。还有,由于根据SO2浓度情况,以最合适的水量向各催化剂119喷水,所以可向必要的催化剂119供给必要量的水,并可用必要的最少限度水量有效地确保SO2的除去效率。还有,因为确保了必要的水量,所以能防止由于在催化剂119生成的硫酸的干燥而引起的催化剂119的劣化。另外,在不向最上层的催化剂119供给水时,得到除去SO2的效果的同时,可使催化剂119起到烟雾接受器的功能。
上述实施例中,将催化剂119分3层,从洒水喷嘴107向各层催化剂119喷水,但通过至少从最上层的催化剂119喷洒水,使在催化剂119之间滴下的水滴分散,所以能以近似均匀的状态添加水。这时,可在催化剂119之间夹着作为水分散机构的用于分散水的部件。这种情况下,有必要不致产生压力损失。
另外,在上述实施例的排烟处理装置,是以把稀硫酸排到硫酸罐11的情况为例进行说明的,但也可以把稀硫酸排到石膏析出槽(参照图2)。
根据图30说明设有本发明实施例8的排烟脱硫装置的废气处理***。图30所示的废气处理***与图2所示的废气处理***的构成相比,添加了接收沉降槽53的上层澄清水的静置槽。因此,对与图2所示的部件相同的部件给予相同的符号。
图30的废气处理***与图2的废气处理***相同,通过脱硫装置,将废气中的硫氧化物脱去得到稀硫酸后,向该稀硫酸中加入石灰浆,得到石膏浆,然后脱水制成石膏,作为石膏利用。
如图30所示,在本实施例的废气处理***中设有:发生用于驱动蒸汽透平的蒸汽的锅炉1;除去从锅炉1来的废气100中的煤尘的除尘器2;把已被除尘的废气供给脱硫塔4内的鼓风机3;在脱硫塔内或者入塔之前,将废气100冷却同时增湿的增湿冷却装置16;将催化剂槽6设置在内部,并从塔下部侧壁的导入口5供给废气100,同时从催化剂槽6的上方用洒水喷嘴供给水,而使废气中的SOx进行脱硫反应至稀硫酸(H2SO4)为止的脱硫塔4;从塔顶部的排出口12向外部排出经脱硫后的净化气的烟囱13;储存从脱硫塔4经过排出泵10而来的稀硫酸(H2SO4),同时加入石灰浆51,析出石膏的石膏反应槽52;沉降石膏的沉降槽(增稠器)53;从石膏浆中将水分作为排水(滤液)57除去,得到石膏的脱水器56;把从上述沉降槽53来的上层澄清水160静置,使沉降物161沉降的静置槽162;把在该静置槽162得到的再上层澄清水163作为增湿冷却水164送给上述增湿冷却装置16的送液泵165。
上述石膏反应槽52中的石膏浆的量是7~8重量%,沉降槽53中的石膏浆的量是20重量%左右。
还有,在排出从脱硫塔4排出的净化气的排出管线中,可以根据需要安装烟雾净化器19,以分离废气中的水分。
根据上述废气处理***,通过利用石膏反应槽52的上层澄清水160,其中该上层澄清水160是向来自作为脱硫装置的脱硫塔4的稀硫酸中加入石灰浆51后得到的,而没必要把工业用水等作为该增湿冷却的供水来利用,从而可减少排水量,形成高效的***构成。
还有,通过设置静置槽162,可把在上层澄清水160中残存的石膏浆和盐分(Ca、Na、K等)作为沉降物161而除去,由此可解决石膏或盐分等附在催化剂上的问题。其结果,不会存在由于压力损失而导致的脱硫效率下降,同时,用于促进脱硫的催化剂活性也不会下降,从而能高效地脱硫。
本实施例中用静置槽162除去沉降物161。但是,本发明不限于此,例如,作为从石膏沉降槽的上层澄清水160中分离作为残存物的石膏粒子的机构,例如可以举出液体旋风分离器或者过滤器。而且,上述分离机构可以单独使用,也可以使用它们的组合。
进一步地,可以设置冷却上述石膏沉降槽的上层澄清水160的冷却槽。通过设置该冷却槽,可使被溶解的盐分析出来,进而层澄清水中的杂质的含量下降。
还有,也可以设置盐析上层澄清水160中盐分的盐析槽。在该盐析槽中,是通过化学方法主动除去上层澄清水中的盐分,所以和上述的通过物理方法分离杂质的方法不同。而且,上述盐析槽既可以单独使用上述的物理分离方法和化学分离方法,也可以使用他们的组合。
另外,从上述脱水器56排出的排水57也可以送到静置槽162,得到再上层澄清水163后,作为增湿冷却装置16的供给水。
在此,在上述锅炉1中,例如产生用于驱动未图示的火力发电设备的蒸汽透平的蒸汽,在炉中燃烧煤和重油等燃料f。锅炉1的废气中含有硫氧化物(SOX),废气经过未图示的脱氮装置脱氮、并在空气预热器冷却后,在集尘器2中进行除尘。
上述被除尘的废气100通过鼓风机3从下部侧壁的导入口5进入脱硫塔4内。在脱硫塔4的内部设有由活性碳纤维层形成的催化剂槽6,硫酸生成用水从散水喷嘴60供给该催化剂槽6。通过使废气从下部进入从上部供给水的催化剂槽6的内部,反应除去废气100中的SOX。通过催化剂槽6的废气从排出口12排出,并通过烟囱13排放到大气。
上述催化剂槽6具有由活性碳纤维层构成的催化剂,并且在活性碳纤维层的表面上发生脱硫反应(参照图1说明栏所示的反应结构)。
被反应除去的硫酸H2SO4成为稀硫酸,并通过排出泵10排到石膏反应槽52。象这样,通过在催化剂槽6的活性碳纤维层中吸附废气100中的二氧化硫SO2进行氧化,然后再和水反应,生成硫酸,最后将硫酸脱离除去,从而进行废气的脱硫。
根据图31说明排烟脱硫装置的构成。图31是排烟脱硫装置的典型示意图。
如图31所示,排烟脱硫装置在上述装置塔的侧壁具有含硫氧化物的废气100的导入口5,并且在上部具有该废气100的排出口12,同时于设在该脱硫塔4内的由活性碳纤维层构成的催化剂槽6的上方,设有作为硫酸生成用水的供水器的洒水喷嘴60,同时,在塔的下方侧配置有整流板242,并且在整流板242上配置有将供给废气100整流化的分散穴241。
形成催化剂槽6的一个单元的活性碳纤维层20成为以下状态,即,平板状的平板活性碳纤维薄板21和波板状的波板活性碳纤维薄板22交替层叠,在薄板间形成的直线状的空间成为通路15且通路15在上下方向延伸。平板活性碳纤维薄板21和波板活性碳纤维薄板22形成板状,并且波板活性碳纤维薄板22是例如利用波纹板加工机加工成波型的。
此外,也可以成形为蜂巢形状等废气相对于活性碳纤维薄板平行通过的形状。
另外,从洒水喷嘴60喷雾供给水,同时废气从下部送入,流过活性碳纤维层20的水,粒径变成数mm左右,落到下部。由于废气100流过由平板活性碳纤维薄板21和波板活性碳纤维薄板22交替层叠形成的较窄通路15,所以抑制了压力损失的增大。
为了把催化剂槽设置在上述脱硫塔内,首先,把层叠的活性碳纤维层20填充到框体(未图示)内,作成催化剂槽(例如,高度是0.5m~4m),然后把该催化剂槽利用例如吊车等提升机构等设置在脱硫塔4内。
在此,本发明的排烟脱硫装置的脱硫塔4内的上述废气和催化剂层接触时的水分量(水分/增湿废气)是饱和水蒸气量+0.5~10。优选饱和水蒸气量+1.0~1.5容量%。上述饱和水蒸气量,例如在50℃时,是12.2容量%(50℃)。
还有,40℃的饱和水蒸气量是7.3容量%,60℃的饱和水蒸气量是19.7容量%。这是因为,若在饱和量以下,则按上述方式进行脱硫作用得到的硫酸,不能顺利的脱离。
还有,增湿冷却的冷却温度可以根据废气温度和水分量的关系而适宜决定,但最好是40~60℃。这是因为,若超过60℃,则水分的蒸发量增大,水供给量变大,处理费用提高。另一方面,若小于40℃,则对一般的废气进行增湿冷却时,使废气变成40℃以下是不现实的。
即,通过增湿冷却装置16的增湿冷却,废气100以水分饱和状态的状态进入脱硫塔4内,和催化剂槽6的催化剂层接触时,废气的水分量为饱和水蒸气量+0.5~10(优选饱和水蒸气量是+1.0~1.5容量%),所以,由在催化剂表面的SO2的氧化所生成的SO3的脱离能快速进行,并且在活性碳纤维的表面不会残存硫酸,所以,活性点能得到有效的使用,脱硫效率上升。
在此,在图31中,废气100从塔的下方侧进入。但在这种情况下,作为水分的雾有时会停留在塔的下部,所以为使废气中的水分量成为饱和水蒸气量+0.5~10(优选饱和水蒸气量是+1.0~1.5容量%),有必要使从洒水喷嘴60喷下来的水分量多一些。
另一方面,与图31的构成不同,废气100是从塔的上方下降时,雾也将会进入到催化剂槽6中,所以有时可以比图31所示的构成情况减少洒水量。
无论在哪一种情况下,重要的是废气成为过饱和蒸汽以上。特别是,当成为饱和水蒸气量+1.0~1.5容量%时,能极其有效地把水分补给作为催化剂的活性碳纤维表面。即,只是上述饱和水蒸气量时,SO2氧化生成的SO3溶于水成为硫酸后作为硫酸的脱离不充分。若饱和水蒸气量超过1.5容量%,则水分量过剩,使稀硫酸更稀,同时,水分使用量增大,不优选。还有,水分量一多,覆盖了活性碳纤维表面的活性点,其结果,起不到作为催化剂的作用,其结果使脱硫效率降低。
饱和蒸汽和蒸汽雾的关系是不确定的,但在活性碳纤维表面,SO2氧化生成的SO3溶于水成为硫酸排出时,如果水分不足,则不能作为硫酸排出,接下来的SO2氧化不充分。另一方面2如果水分过剩,则硫酸变稀。还有,若水分过剩而例如在活性碳纤维的表面上形成水膜和水壁,覆盖活性碳纤维的活性点,起不到SO2氧化的催化作用,不能进行脱硫,使脱硫效率下降。
因此,象本发明这样,当废气和催化剂槽接触时的水分量(水分/增湿废气)是饱和水蒸气量+1.0~1.5容量%时,断续的水滴将成为球状滚落,由此,向活性碳纤维表面的水分供给不会过分不足,同时硫酸的脱离效率高。其结果,废气的脱硫能有效地进行。
从作为上述供水机构的洒水喷嘴60供给的冷却水的粒径最好是300~1000μm,这是因为,超出上述范围时,不能供给活性碳纤维表面以有效的水分,从而硫酸的脱离不能很好地进行,不理想。特别地,当从下方供给废气时,从洒水喷嘴喷出来的雾状水飞扬,而不能很好地供给水分。另一方面,若水分粒径太大,就变成了水壁状态,这时,虽说硫酸可能脱离,但不能将活性点表面化,脱硫反应不能进行,所以不理想。
因此,从上述供水机构供给的添加水的供给量,当废气100在装置塔内的流速是0.5~5m/s时,最好是5~50ml/m3废气。
还有,在增湿冷却装置16中,被增湿冷却的废气中的雾粒径最好是50~150μm。这是因为,不到50μm时,在进入脱硫塔之前,废气中的水分快速进行蒸发,不理想。另一方面,当超过150μm时,由于水分附着在配管内,所以也不理想。
在此,也可以设置补给上述雾的雾捕集器(未图示)。通过设置该雾捕集器,能抑制把水分带入脱硫塔,在催化剂槽由于脱硫而生成的硫酸就不会变稀。
上述被增湿冷却的废气100流向装置塔内的流速是0.5~5m/s。最好是1~3m/s。这是因为,若流速快而超过5m/s,则压力损失就增大,另一方面,若不到0.5m/s,设则置面积就变大,所以不理想。
在本实施例中,如图30所示,供给上述增湿冷却装置16的增湿冷却水是利用在生成石膏浆时的沉降槽53得到的上层澄清水160,所以实现了水的有效利用。
因此,使用将利用上述沉降槽53使石膏浆54沉降的上层澄清水160再度沉降的静置槽162,分离作为沉降物的石膏浆54后,把再上层澄清水163作为增湿冷却水164来利用。
由此,将在从石膏浆54分离石膏后的上层澄清水中所残存的残存物沉降后,通过送液泵165作为增湿冷却水,在增湿冷却装置16中被利用,所以防止了石膏等附在构成催化剂槽6的活性碳纤维上。其结果,脱硫效率不会降低,能长期稳定地保持脱硫性能。
产业上利用的可能性
如上所述,可成为一种用最少限度的水量把水分均匀地添加到活性碳纤维层,并且可减少硫氧化物(SOX)除去用水的排烟脱硫装置。
由此,成为没有产业废弃物的排出且高效的,同时不需要硫氧化物的吸收剂和大型的脱硫设备,而且,在脱硫时能得到高浓度硫酸的排烟脱硫装置,即成为可使水分减少以及可均匀供给的排烟脱硫装置。
还有,成为活性碳纤维的脱硫反应高效且脱硫***简单、高效的紧凑的排烟脱硫装置,成为作为脱硫***整体,效率高,同时能长期维持脱硫性能的排烟脱硫装置。

Claims (5)

1、一种排烟脱硫装置,其特征在于由设置在含硫氧化物的废气所通过的装置塔内并以多层活性碳纤维层所形成的催化剂与设置在装置塔内的最上部催化剂的上部,并向催化剂供给硫酸生成用水的供水机构构成,并且在所述各催化剂之间设有水分散机构。
2、一种排烟处理装置,由在含硫氧化物的废气所通过的装置塔内设置多层活性炭纤维层而形成的催化剂与分别设置在装置塔内的各层催化剂上部,并向催化剂分别供给硫酸生成用水的供水机构构成,并且在所述各催化剂之间设有水分散机构。
3、根据权利要求2所述的排烟处理装置,其特征在于设有:导出流过装置塔内部的废气中的氧浓度的氧浓度导出机构;检测装置塔内部的各层催化剂出口侧以及最上游侧的催化剂入口侧的硫氧化物浓度的硫氧化物浓度检测机构;以及根据氧浓度检测机构和硫氧化物浓度检测机构提供的检测信息,控制从各供水机构出来的水的供给状态的控制机构。
4、根据权利要求3所述的排烟处理装置,其特征在于控制机构具有这样的功能:若通过氧浓度检测机构检测出的氧浓度升高,则使从各供水机构来的水的供给量减少,同时,若通过硫氧化物浓度检测机构检测出的硫氧化物浓度升高,则使从各个供水机构来的水的供给量增加。
5、根据权利要求4所述的排烟处理装置,其特征在于控制机构具有这样的功能:各催化剂出口侧的硫氧化物浓度的规定值分别被存储,并且把硫氧化物浓度检测机构的检测信息和被存储的规定值进行比较,控制由各供水机构来的供水状态,将各催化剂出口侧的硫氧化物浓度维持在规定值。
CNB2005100755996A 2001-10-17 2002-10-16 排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法 Expired - Fee Related CN100351004C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001318813A JP2003117349A (ja) 2001-10-17 2001-10-17 排煙処理装置
JP2001318813 2001-10-17
JP2001330280 2001-10-29
JP2001349809 2001-11-15
JP2001349810 2001-11-15
JP2001368194 2001-12-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB028076648A Division CN1256172C (zh) 2001-10-17 2002-10-16 排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法

Publications (2)

Publication Number Publication Date
CN1714919A CN1714919A (zh) 2006-01-04
CN100351004C true CN100351004C (zh) 2007-11-28

Family

ID=19136448

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2005100755996A Expired - Fee Related CN100351004C (zh) 2001-10-17 2002-10-16 排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法
CNB2005100755981A Expired - Fee Related CN100558448C (zh) 2001-10-17 2002-10-16 排烟脱硫装置和排烟脱硫设备以及排烟脱硫装置的运行方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB2005100755981A Expired - Fee Related CN100558448C (zh) 2001-10-17 2002-10-16 排烟脱硫装置和排烟脱硫设备以及排烟脱硫装置的运行方法

Country Status (2)

Country Link
JP (1) JP2003117349A (zh)
CN (2) CN100351004C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717293A (zh) * 2011-08-12 2014-04-09 阿尔斯通技术有限公司 用于监测过程气体的清洁的方法
CN105143619A (zh) * 2013-04-26 2015-12-09 臼井国际产业株式会社 使用高浓度地含有硫成分的重油等低质燃料的船舶用柴油发动机的排出气体净化装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116482A1 (ja) * 2009-04-06 2010-10-14 三菱重工業株式会社 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
MY170614A (en) * 2009-05-11 2019-08-21 Mitsubishi Heavy Ind Ltd Seawater flue-gas desulfurization apparatus and method of treating desulfurization seawater
CN104096454A (zh) * 2013-04-03 2014-10-15 杰明科技有限公司 气体污染物处理装置及其纤维布模块
CN103955751B (zh) * 2014-04-11 2017-02-08 国家电网公司 一种多元非线性石灰石‑石膏湿法脱硫效率预测方法
CN103955202B (zh) * 2014-04-11 2016-06-08 国家电网公司 一种基于燃煤电厂脱硫***数据自动诊断甄别方法
CN104006398A (zh) * 2014-05-29 2014-08-27 中国五冶集团有限公司 基于燃煤电站的烟气热回收***及其实现方法
CN104258683B (zh) * 2014-09-30 2016-11-02 国电科学技术研究院 一种基于含相变凝聚均流技术的湿式电除尘***及工艺
CN104492225A (zh) * 2014-11-10 2015-04-08 来宾华锡冶炼有限公司 一种制酸的二氧化硫烟气的处理方法及处理***
CN105223036B (zh) * 2015-09-28 2018-01-30 广东电网有限责任公司电力科学研究院 MgO烟气脱硫性能现场验证方法与***
CN106039755B (zh) * 2016-07-22 2018-03-02 京能(锡林郭勒)发电有限公司 一种烟气冷凝提水***
CN106362569A (zh) * 2016-08-26 2017-02-01 江苏中圣高科技产业有限公司 一种高温烟气余热梯级回收利用的氨法脱硫装置及方法
CN106621683A (zh) * 2016-11-30 2017-05-10 中国华电科工集团有限公司 一种燃煤电厂脱除Hg的方法及***
CN110787752A (zh) * 2019-11-11 2020-02-14 中冶南方都市环保工程技术股份有限公司 一种利用太阳能处置危险废盐的***
CN111111362B (zh) * 2019-12-28 2021-05-25 江苏新中金环保科技股份有限公司 基于高效催化技术的烟气脱硫脱硝成套设备
CN115875131B (zh) * 2023-02-09 2023-09-29 国家能源集团科学技术研究院有限公司 低碳燃气轮机运行***
CN116639661B (zh) * 2023-06-20 2024-05-28 襄阳先天下环保设备有限公司 一种超级活性炭脱硫制硫酸装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073613A (zh) * 1992-09-30 1993-06-30 杨德俊 烟气脱硫新方法及其装置
CN1112851A (zh) * 1994-03-09 1995-12-06 关西电力株式会社 从燃烧废气中除去二氧化碳和氧化硫的方法
CN1131579A (zh) * 1994-10-12 1996-09-25 三菱重工业株式会社 湿式烟道气除硫***
JPH11347351A (ja) * 1998-06-05 1999-12-21 Mitsubishi Heavy Ind Ltd 排煙脱硫装置
JP2000093742A (ja) * 1998-09-22 2000-04-04 Mitsubishi Heavy Ind Ltd 反応除去装置の液体均一分散装置、該装置を組み込んだ脱硫塔及び脱硝塔
CN1253848A (zh) * 1998-11-13 2000-05-24 中国石油化工集团公司 一种含硫氧化物工业废气的处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073613A (zh) * 1992-09-30 1993-06-30 杨德俊 烟气脱硫新方法及其装置
CN1112851A (zh) * 1994-03-09 1995-12-06 关西电力株式会社 从燃烧废气中除去二氧化碳和氧化硫的方法
CN1131579A (zh) * 1994-10-12 1996-09-25 三菱重工业株式会社 湿式烟道气除硫***
JPH11347351A (ja) * 1998-06-05 1999-12-21 Mitsubishi Heavy Ind Ltd 排煙脱硫装置
JP2000093742A (ja) * 1998-09-22 2000-04-04 Mitsubishi Heavy Ind Ltd 反応除去装置の液体均一分散装置、該装置を組み込んだ脱硫塔及び脱硝塔
CN1253848A (zh) * 1998-11-13 2000-05-24 中国石油化工集团公司 一种含硫氧化物工业废气的处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717293A (zh) * 2011-08-12 2014-04-09 阿尔斯通技术有限公司 用于监测过程气体的清洁的方法
CN105143619A (zh) * 2013-04-26 2015-12-09 臼井国际产业株式会社 使用高浓度地含有硫成分的重油等低质燃料的船舶用柴油发动机的排出气体净化装置
CN105143619B (zh) * 2013-04-26 2018-11-30 臼井国际产业株式会社 船舶用柴油发动机的排出气体净化装置

Also Published As

Publication number Publication date
CN100558448C (zh) 2009-11-11
CN1714918A (zh) 2006-01-04
CN1714919A (zh) 2006-01-04
JP2003117349A (ja) 2003-04-22

Similar Documents

Publication Publication Date Title
CN1256172C (zh) 排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法
CN100351004C (zh) 排烟脱硫装置和排烟脱硫***以及排烟脱硫装置的运行方法
CN1276787C (zh) 酸性气体洗涤装置及其方法
CN1227766A (zh) 烟气处理工艺及***
CN1222348C (zh) 排气处理方法及装置
CN1116913C (zh) 湿气处理方法和采用此方法的装置
CN1075743C (zh) 采用固体脱硫剂的湿式烟道气脱硫设备和方法
CN1143953C (zh) 排气再循环式燃气轮机设备的运行方法
CN1038312C (zh) 干式处理燃烧废气的方法
CN100351188C (zh) 污泥干化与焚烧工艺及其***装置
CN1101721C (zh) 烟道气处理***和工艺
CN1946632A (zh) 将硫化氢转化为氢和硫的方法和装置
CN100336259C (zh) 燃料电池发电***及其操作方法
CN1020236C (zh) 制造氨的方法
CN1275426A (zh) 二氧化碳气体吸收剂
CN1360556A (zh) 通过可燃物气化制造氢的方法和装置及燃料电池发电方法和燃料电池发电***
CN1805779A (zh) 氮氧化物除去装置以及氮氧化物除去方法
CN1550251A (zh) 容易聚合化合物用蒸馏装置
CN1155852A (zh) 废气处理***
CN1781606A (zh) 废水的处理方法以及催化剂洗涤再生方法
CN1016960B (zh) 从燃烧气体排除氮和硫的氧化物之方法和装置
CN1061915A (zh) 炉内同时脱硫脱硝方法
CN1860078A (zh) 氢生成装置及其运转方法和燃料电池***及其运转方法
CN1008601B (zh) 净化高温还原气的方法
CN1265604A (zh) 用于气态废物脱硫的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee