CH418519A - High frequency surgical apparatus - Google Patents

High frequency surgical apparatus

Info

Publication number
CH418519A
CH418519A CH164962A CH164962A CH418519A CH 418519 A CH418519 A CH 418519A CH 164962 A CH164962 A CH 164962A CH 164962 A CH164962 A CH 164962A CH 418519 A CH418519 A CH 418519A
Authority
CH
Switzerland
Prior art keywords
frequency
inductance
dependent
coils
generator
Prior art date
Application number
CH164962A
Other languages
German (de)
Inventor
Walter Dipl Ing Krause
Original Assignee
Siemens Reiniger Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Reiniger Werke Ag filed Critical Siemens Reiniger Werke Ag
Publication of CH418519A publication Critical patent/CH418519A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/0066Sensing and controlling the application of energy without feedback, i.e. open loop control

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Description

  

  
 



     Hochfrequenz-Chirurgieapparat   
Die Erfindung bezieht sich auf einen Hochfrequenz-Chirurgieapparat, der mit Anschlüssen für mindestens eine Operationselektrode und eine neutrale Elektrode versehen ist.



   Bei Operationen mit solchen Apparaten treten mitunter Verbrennungen verschiedenen, nicht im Operationsfeld liegenden sowie von der neutralen Elektrode freien Körperstellen des Patienten auf, ohne dass es bislang möglich gewesen ist, die Ursache dieser Schädigungen zu klären.



   Der Erfindung liegen umfangreiche Überlegungen und Messreihen zugrunde, die zur Erkenntnis der Ursache für die genannten Verbrennungen geführt haben. Die Erfindung stellt sich die Aufgabe, anhand dieser Erkenntnis einen Hochfrequenz-Chirurgieapparat anzugeben, der mit Mitteln versehen ist, die derartige Verbrennungen vermeiden.



   Anhand der Figuren soll zunächst die Ursache für die Verbrennungen und danach die Erfindung anhand von Ausführungsbeispielen erläutert werden.



  Hierbei veranschaulichen:
Fig. 1 das Ersatzschaltbild eines üblichen Hochfrequenz-Chirurgieapparates, in Verbindung mit dem Operationstisch und dem Patienten,
Fig. 2 das Ersatzschaltbild eines Hochfrequenz Chirurgieapparates mit Mitteln zur Verhütung der vorgenannten Verbrennungen,
Fig. 3 die Ansicht eines Hochfrequenz-Chirurgieapparates in schematisierter Darstellung, der mit den Mitteln nach Fig. 2 zur Verbrennungsverhütung ausgerüstet ist,
Fig. 4 das Ersatzschaltbild eines Hochfrequenz Chirurgieapparates mit einer anderen Anordnung der Mittel zur Verbrennungsverhütung.



   Die in den Figuren miteinander übereinstimmenden Teile sind dabei mit dem gleichen Bezugszeichen versehen.



   Gemäss Fig. 1 bestehen zwischen dem Chirurgieapparat 1 mit dem Hochfrequenzgenerator 2 und dem schematisch angedeuteten Patienten 3 drei verschiedene elektrische Verbindungswege. Der erste Verbindungsweg setzt sich aus der an den aktiven Pol 4 des Generators angeschlossenen Zuleitung 5 mit der Zuleitungsinduktivität 6 und der aktiven Chirurgieelektrode 7 zusammen. Der zweite Verbindungsweg wird aus der an den inaktiven Pol 8 des Hochfrequenzgenerators bzw. die Masse des Gerätes angeschlossenen Verbindungsleitung 9 mit der Zuleitungsinduktivität 10 sowie der neutralen Elektrode 11 gebildet. Der dritte Verbindungsweg schliesslich besteht aus der Kapazität 12, die sich aus allen Einzelkapazitäten zwischen dem Patienten, dem Operationstisch und dem übrigen Operationsraum zusammensetzt, der Erde 13 und der Induktivität 14.



  Letztere ist in der Praxis durch die Selbstinduktionen der einzelnen Leitungen im Netzanschlusskabel gegeben. Diese Selbstinduktionen sind netzseitig über die Installationskapazitäten mit der Erde und an ihren geräteseitigen Enden über die inneren Kapazitäten der Netzanschlussbauteile, beispielsweise über die   Wicklungskap azitäten    des Netztransformators, hochfrequenzmässig einander parallel geschaltet, so dass sie als gemeinsame Induktivität 14 wirksam sind.



  Die in Fig. 1 noch eingezeichnete Kapazität 15 bezeichnet die Kapazität des Apparategehäuses 1 gegen Erde und kann zunächst ausser Betracht bleiben.



  Die Kapazitäten 12, 15, 55 und 56 stellen sogenannte Streukapazitäten dar.



   Die Ursache für die unerwünschten Verbrennungen liegt im letztgenannten Verbindungsweg, und zwar besteht folgender Zusammenhang: Die Teile 9, 10 und 11 des zweiten Verbindungsweges sowie der Patient 3 bilden zusammen mit den Teilen 12, 13 und 14 des dritten Verbindungsweges einen ge  schlossenen Schwingkreis, der nach Massgabe der elektrischen Werte der einzelnen genannten Teile eine bestimmte Eigenfrequenz besitzt. Bei bestimmten räumlichen Anordnungen der einzelnen Teile dieses Kreises zueinander und gegenüber der Netzerde tritt der Fall ein, dass die Eigenfrequenz dieses Schwingkreises im Bereich der Arbeitsfrequenz des Generators liegt.

   In einem solchen Fall wird während des Operationsvorganges durch die dem genannten Schwingkreis und dem eigentlichen Arbeitskreis 5, 6 7 gemeinsame Induktivität 10 der Zuleitung 9 zur neutralen Elektrode 11, in den Schwingkreis 9, 10, 11, 12, 13 und 14 mit dem Patienten 3 Hochfre  quenzenergie    eingekoppelt. Dabei entstehen in diesem Schwingkreis Spannungen und Blindströme, die beträchtliche Werte annehmen können und mitunter wesentlich höher sind als die Spannungen und Ströme, die vom Generator 2 geliefert werden. Damit ist aber die Gefahr von unbeabsichtigten Verbrennungen an praktisch beliebigen Körperstellen des Patienten, zumeist aber an vorstehenden Körperteilen wie etwa Hüftknochen, Steissbein und dergleichen, gegeben.



   Diese Verbrennungen werden nun erfindungsgemäss durch Verwendung von aus Induktivitäten bestehenden Mitteln vermieden, durch deren Wirkung in etwaigen hochfrequenten kapazitiven Nebenschlusswegen (12, 13, 14) über den Patienten 3 nur geringe hochfrequente Ströme fliessen. Zu diesem Zweck können die Induktivitäten entweder in jeden Versorgungsleiter des Generators und in den Schutzleiter eingeschaltet sein, oder es kann mindestens die zur inaktiven Elektrode führende Ausgangsklemme des Hochfrequenzgenerators mit dem Metallgehäuse des Apparates bzw. einem Erdungsanschluss des Apparates über eine Induktionsspule verbunden sein.

   Die Grösse der Induktivität der Parallelschaltung aller Spulen, die in jeden Stromversorgungsleiter und in den Schutzleiter eingeschaltet sind, liegt in einem   Bereich, in    dem bei der Arbeitsfrequenz des Apparates eine Kapazität von 50-500 pF zu einem Resonanzkreis ergänzt wird. Die Grösse der Induktivität der Spule, die zwischen eine der beiden Ausgangsklemmen des Hochfrequenzgenerators und dem Metallgehäuse des Apparates bzw. einem Erdungsanschluss des Apparates eingeschaltet ist, liegt in einem Bereich, in dem bei der Arbeitsfrequenz des Apparates eine Kapazität von 5-50 pF zu einem Resonanzkreis ergänzt wird. Bei Einschaltung der Spule in die Versorgungsleiter und den Stromversorgungsleiter oder den etwaigen Schutzleiter sind die Spulen zweckmässigerweise an der Einführungsstelle des Netzanschlusskabels angeordnet.



   In dem Ausführungsbeispiel nach Fig. 2 sind die Leitungen des Netzanschlusskabels einzeln eingezeichnet und mit 16, 17 und 18 bezeichnet. Die gemeinsame Kabelumhüllung ist mit 19 bezeichnet. Hierbei stellen die Leitungen 16 und 17 die stromführenden Leitungen und die Leitung 18 die sogenannte Schutzleitung für die Schutzerdung des Gerätegehäuses dar. Die Leitungen 16 und 17 sind mit den Steckern 20 und 21, die Schutzleitung mit dem Erdstecker 23 versehen, welcher mit dem Schutzkontakt 25 in Steckverbindung steht, während die Stecker 20 und 21 an den aus Vereinfachungsgründen nicht mitgezeichneten Anschlussbuchsen des Stromversorgungsnetzes oder auch einer Batterieanlage (z. B. bei Fahrzeuganlagen) in Steckverbindung stehen. Die in Fig. 1 mit 14 bezeichnete gemeinsame Induktivität ist in Fig. 2 in die Teilinduktivitäten 14a, 14b und 14c aufgeteilt.

   In Serie zu diesen sind zusätzlich die Induktionsspulen 26, 27 und 28 eingeschaltet, deren Induktivität wesentlich grösser ist als der Wert der Induktivitäten 14a bis 14c. Durch den Hochfrequenzwiderstand dieser Induktivitäten lässt sich der Widerstand des Verbindungsweges 12 bis 14 so weit erhöhen, dass unbeabsichtigte Hochfrequenzverbrennungen unwahrscheinlich sind. Ein grösserer Effekt wird jedoch erzielt, wenn die Induktionsspulen 26 bis 28 in ihrem Selbstinduktionswert so bemessen sind, dass ihre Parallelschaltung mit der Kapazität 15 des Gerätegehäuses 1 gegen Erde einen Parallelschwingkreis bildet, dessen Resonanzfrequenz etwa mit der Arbeitsfrequenz des Apparates übereinstimmt.



  Hierdurch wird ein Sperrkreis gebildet, der den Gesamtwiderstand des Verbindungsweges 12 bis 14 gegenüber dem Wert bei Weglassung der Spulen 26 bis 28 wesentlich (mehrere Zehnerpotenzen) erhöht.



  Es ist offensichtlich, dass unter derarigen Bedingungen kein für eine Verbrennung hinreichender Stromfluss über die Kapazität 12 bzw. keine zu   Überschlägen    Anlass gebende Spannung über der Kapazität 12 entstehen kann. Um unerwünschte Eigenresonanzen der Spulen 26, 27 und 28 zu verhindern, sind ihre Anfänge oder ihre Enden oder auch beides durch die Kapazitäten 29, 30 und/oder 31, 32 hochfrequenzmässig miteinander verbunden.



   Besonders   zwecksnässige    Verhältnisse werden geschaffen, wenn man die Spulen 26 bis 28 so gross wählt, dass ihre Parallelschaltung zusammen mit dem grössten in der Praxis vorkommenden Wert der Kapazität 15 eine Eigenfrequenz ergibt, die unterhalb der Arbeitsfrequenz des Generators liegt. Hierdurch wird erreicht, dass auf jeden Fall der Widerstand der Parallelschaltung Netzzuleitung und Kapazität 15 kapazitiv bleibt, so dass unter keiner der in der Praxis vorkommenden Bedingungen ein frequenzmässig in die Nähe der Arbeitsfrequenz kommender Schwingungskreis über die Erde 13 entstehen kann.



   Die Spulen 26 bis 28 sind an sich in bekannter Weise aufgebaut. Wegen des Stromflusses in den Leitungen 16 und 17 sind die Spulen 26 und 27 als Luftspulen ausgeführt, die in der Schutzleitung 18 liegende Spule ist dagegen mit einem Hochfrequenzeisenkern versehen. Es ist daher zweckmässig, den Spulen 26 bis 28 jeweils nicht die gleiche Induktivität zu geben, sondern die Spule 28 so zu bemessen, dass ihre Selbstinduktivität wesentlich grösser ist als diejenige der Spulen 26 bzw. 27. Auf diese Weise lassen sich die stromführenden Spulen 26 und 27 wesentlich kleiner und daher mit geringerem Ohm  schen Widerstand aufbauen als bei gleicher Bemessung aller Spulen.

   In einem praktisch ausgeführten Beispiel wurde eine maximale Kapazität 15 des Gerätes 1 gegen Erde von 250 pF gemessen und dementsprechend die Spulen 26 und 27 zu je 80   uH    und die Spule 28 zu 900   aH    gewählt. Bei gleicher Dimension aller drei Spulen müsste jede Spule zu 120   uH    gewählt werden.



   Für eine sichere Funktionsweise sind die Spulen 26 bis 28 in unmittelbarer Nähe der Einführungsstelle des Netzkabels im Apparat anzubringen. Die Anbringung kann hierbei im Inneren des Gerätes oder auch ausserhalb, beispielsweise auch nachträglich, in einem kleinen Anbaukasten oder dergleichen erfolgen. Ferner soll das Netzanschlusskabel so in das Gerätegehäuse eingeführt sein, dass keine nennenswerten Kapazitäten zwischen seinen Leitungen und dem Gerätegehäuse bestehen.



   Im Ausführungsbeispiel gemäss Fig. 3 wurde die Anordnung der Spulen 26 bis 28 innerhalb des Gerätegehäuses 33 mit den Laufrollen 34, 35, 36, dem Handgriff 37, dem Leistungsregler 38, dem Stromartwahlschalter 39, dem Anzeigeinstrument 40 und der Signallampe 41 gewählt. Die Netzzuleitung 19 ist durch ein in einer Aussparung der Geräterückwand 42 eingesetztes Isolierstoffbrettchen 43 kapazitätsarm in das Innere des Gerätes geführt. Die Spulen 26 bis 28, an welche die Leitungen 16, 17 und 18 des Netzkabels in nicht gezeichneter Weise angeschlossen sind, sind nahe bei der Einführungsstelle dieses Kabels mittels Isolierstoffbrettchen 44 und 45 sowie Winkelmetallstücken 46 und 47 an einer senkrechten Trennwand 48 befestigt.

   Die anderen Enden der Spulen 26 bis 28 sind an Lötösen 49, 50 und 51 geführt, die in dem Isolierstoffbrettchen 45 sitzen und an denen die zu den Netzanschlussbauteilen des Gerätes führenden Leitungen 52, 53 und 54 angeschlossen sind. Es ist selbstverständlich nicht erforderlich, dass die Spulen 26 bis 28, wie gezeichnet, als   unterteilte Zylinderspulen    aufgebaut sind; sie können vielmehr in jeder bekannten Art ausgeführt sein, beispielsweise als Scheiben- oder als Kreuzwickelspulen.



   Die Fig. 4 zeigt eine Ausführung, bei der die Netzanschlussleitungen ohne zusätzliche Beschaltung in das Geräteinnere und an die Netzanschlussbauteile geführt sind; die Selbstinduktivitäten der Netzleitungen sind daher, analog zu Fig. 1, wieder als resultierende Induktivität 14 dargestellt. Im Unterschied zum Ausführungsbeispiel in Fig. 2 ist hier der Hochfrequenzgenerator 2 mit seinem für die neutrale Elektrode bestimmten Anschluss nicht unmittelbar an das Gerätegehäuse angeschlossen. Vielmehr erfolgt dies unter Zwischenschaltung einer Selbstinduktionsspule 54. Diese kann mit der Kapazität 55 des der Buchse 8 zugeordneten Ausgangs des Hochfrequenzgenerators gegen das Gerätegehäuse einen Schwingkreis bilden und ist im übrigen nach denselben Gesichtspunkten zu bemessen wie die resultierende Induktivität der Spulen 26 bis 28 bei der Ausführung nach Fig. 2.

   Bei der Ausführung nach Fig. 4 ist ferner die Leitung 9, wie gezeichnet, isoliert in das Geräteinnere zu führen.



   In der Ausführung nach Fig. 4 kann es mitunter zweckmässig sein, auch die Kapazität 56 des der Anschlussbuchse 4 zugeordneten Ausganges zu kompensieren. Dies erfolgt auf analoge Weise wie bei dem der Buchse 8 zugeordneten Ausgang mit der Induktionsspule 57.



   Der Vorteil der Ausführung nach Fig. 4 liegt im geringeren Aufwand, da einerseits weniger Induktionsspulen erforderlich sind und anderseits die Spulen in ihren Abmessungen kleiner gewählt werden können, da keine Netzleistung durch sie fliesst. Ferner kann diese Anordnung auch bei Chirurgiegeräten eingesetzt werden, bei denen die Stromversorgungseinrichtung im Gerät eingebaut ist (z. B. in Form einer Akkumulatorenbatterie) und bei denen der hochfrequente Verbindungsweg des Generators über die Kapazität 15 zur Erde besonders hochohmig gemacht werden soll.   



  
 



     High frequency surgical apparatus
The invention relates to a high-frequency surgical apparatus which is provided with connections for at least one surgical electrode and a neutral electrode.



   During operations with such devices, burns occur on various parts of the patient's body that are not located in the operating field or that are free from the neutral electrode, without it being possible to clarify the cause of this damage so far.



   The invention is based on extensive considerations and series of measurements which have led to the knowledge of the cause of the burns mentioned. The object of the invention is to use this knowledge to provide a high-frequency surgical apparatus that is provided with means that avoid such burns.



   With the aid of the figures, the cause of the burns will first be explained and then the invention will be explained with the aid of exemplary embodiments.



  Hereby illustrate:
1 shows the equivalent circuit diagram of a conventional high-frequency surgical apparatus in connection with the operating table and the patient,
2 shows the equivalent circuit diagram of a high-frequency surgical apparatus with means for preventing the aforementioned burns,
3 shows a schematic view of a high-frequency surgical apparatus which is equipped with the means according to FIG. 2 for preventing burns,
4 shows the equivalent circuit diagram of a high-frequency surgical apparatus with a different arrangement of the means for preventing burns.



   The parts that correspond to one another in the figures are provided with the same reference numerals.



   According to FIG. 1, there are three different electrical connection paths between the surgical apparatus 1 with the high-frequency generator 2 and the schematically indicated patient 3. The first connection path is made up of the supply line 5 connected to the active pole 4 of the generator with the supply line inductance 6 and the active surgical electrode 7. The second connection path is formed from the connection line 9, connected to the inactive pole 8 of the high-frequency generator or the ground of the device, with the feed line inductance 10 and the neutral electrode 11. Finally, the third connection path consists of the capacitance 12, which is composed of all the individual capacitances between the patient, the operating table and the rest of the operating room, the earth 13 and the inductance 14.



  The latter is given in practice by the self-induction of the individual lines in the power cord. These self-inductances are connected to earth on the network side via the installation capacitances and at their device-side ends via the internal capacitances of the network connection components, for example via the winding capacities of the mains transformer, in parallel with one another in terms of high frequencies so that they act as a common inductance 14.



  The capacitance 15 still drawn in in FIG. 1 denotes the capacitance of the apparatus housing 1 to earth and can initially be disregarded.



  The capacities 12, 15, 55 and 56 represent so-called stray capacities.



   The cause of the unwanted burns lies in the latter connection path, and there is the following relationship: The parts 9, 10 and 11 of the second connection path and the patient 3 together with the parts 12, 13 and 14 of the third connection path form a ge closed resonant circuit, the has a certain natural frequency according to the electrical values of the individual parts mentioned. With certain spatial arrangements of the individual parts of this circle to one another and to the network earth, the case occurs that the natural frequency of this oscillating circuit is in the range of the operating frequency of the generator.

   In such a case, during the operation, the inductance 10 of the supply line 9 to the neutral electrode 11, in the resonant circuit 9, 10, 11, 12, 13 and 14 with the patient 3, is common to the mentioned resonant circuit and the actual working circuit 5, 6 7 High frequency energy coupled. In this case, voltages and reactive currents arise in this resonant circuit, which can assume considerable values and are sometimes significantly higher than the voltages and currents supplied by generator 2. However, this creates the risk of unintentional burns on practically any part of the patient's body, but mostly on protruding body parts such as hip bones, coccyx and the like.



   These burns are now avoided according to the invention by using means consisting of inductors, through the effect of which only low high-frequency currents flow in any high-frequency capacitive shunt paths (12, 13, 14) through the patient 3. For this purpose, the inductances can either be switched into each supply conductor of the generator and into the protective conductor, or at least the output terminal of the high-frequency generator leading to the inactive electrode can be connected to the metal housing of the device or an earth connection of the device via an induction coil.

   The size of the inductance of the parallel connection of all coils, which are connected in each power supply conductor and in the protective conductor, is in a range in which a capacitance of 50-500 pF is added to a resonant circuit at the operating frequency of the apparatus. The size of the inductance of the coil, which is connected between one of the two output terminals of the high-frequency generator and the metal housing of the apparatus or an earth connection of the apparatus, is in a range in which a capacitance of 5-50 pF to one at the operating frequency of the apparatus Resonance circuit is supplemented. When the coil is switched on in the supply conductor and the power supply conductor or any protective conductor, the coils are expediently arranged at the point of introduction of the mains connection cable.



   In the exemplary embodiment according to FIG. 2, the lines of the mains connection cable are drawn in individually and labeled 16, 17 and 18. The common cable sheathing is denoted by 19. The lines 16 and 17 represent the current-carrying lines and the line 18 the so-called protective line for the protective grounding of the device housing. The lines 16 and 17 are provided with the plugs 20 and 21, the protective line with the earth plug 23, which is connected to the protective contact 25 is in plug connection, while the plugs 20 and 21 are plugged into the connection sockets of the power supply network (not shown for reasons of simplicity) or of a battery system (e.g. in vehicle systems). The common inductance denoted by 14 in FIG. 1 is divided into the partial inductances 14a, 14b and 14c in FIG.

   In series with these, the induction coils 26, 27 and 28 are also switched on, the inductance of which is significantly greater than the value of the inductances 14a to 14c. The resistance of the connecting path 12 to 14 can be increased by the high-frequency resistance of these inductances to such an extent that unintentional high-frequency burns are unlikely. A greater effect is achieved, however, if the induction coils 26 to 28 are dimensioned in their self-induction value so that their parallel connection with the capacitance 15 of the device housing 1 to earth forms a parallel resonant circuit whose resonance frequency roughly coincides with the operating frequency of the apparatus.



  This forms a blocking circuit which increases the total resistance of the connecting path 12 to 14 compared to the value when the coils 26 to 28 are omitted (several powers of ten).



  It is obvious that under such conditions no current flow through the capacitance 12 that is sufficient for combustion or no voltage giving rise to flashovers can arise over the capacitance 12. In order to prevent undesired natural resonance of the coils 26, 27 and 28, their beginnings or their ends or both are connected to one another in terms of high frequencies by the capacitors 29, 30 and / or 31, 32.



   Particularly useful conditions are created if the coils 26 to 28 are chosen so large that their parallel connection together with the largest value of the capacitance 15 that occurs in practice results in a natural frequency which is below the operating frequency of the generator. This ensures that the resistance of the parallel connection of the power supply line and the capacitance 15 remains capacitive, so that under none of the conditions that occur in practice can an oscillating circuit with a frequency approaching the operating frequency arise via earth 13.



   The coils 26 to 28 are constructed in a known manner. Because of the current flow in lines 16 and 17, coils 26 and 27 are designed as air-core coils, whereas the coil in protective line 18 is provided with a high-frequency iron core. It is therefore advisable not to give the coils 26 to 28 the same inductance, but rather to dimension the coil 28 so that its self-inductance is significantly greater than that of the coils 26 or 27. In this way, the current-carrying coils 26 and 27 are much smaller and therefore have a lower ohmic resistance than with the same dimensioning of all coils.

   In a practically executed example, a maximum capacitance 15 of the device 1 to earth of 250 pF was measured and accordingly the coils 26 and 27 were chosen to be 80 uH each and the coil 28 to be 900 aH. If all three coils have the same dimensions, each coil would have to be selected to be 120 uH.



   For a safe operation, the coils 26 to 28 are to be attached in the immediate vicinity of the insertion point of the power cable in the apparatus. It can be attached inside the device or outside, for example also afterwards, in a small add-on box or the like. Furthermore, the mains connection cable should be inserted into the device housing in such a way that there are no significant capacitances between its lines and the device housing.



   In the embodiment according to FIG. 3, the arrangement of the coils 26 to 28 within the device housing 33 with the rollers 34, 35, 36, the handle 37, the power regulator 38, the current type selection switch 39, the display instrument 40 and the signal lamp 41 was selected. The power supply line 19 is guided into the interior of the device through an insulating board 43 inserted into a recess in the rear wall 42 of the device. The coils 26 to 28, to which the lines 16, 17 and 18 of the power cable are connected in a manner not shown, are attached to a vertical partition 48 near the point of entry of this cable by means of insulating boards 44 and 45 and angle metal pieces 46 and 47.

   The other ends of the coils 26 to 28 are guided to soldering lugs 49, 50 and 51, which sit in the insulating board 45 and to which the lines 52, 53 and 54 leading to the mains connection components of the device are connected. It is of course not necessary for the coils 26 to 28, as shown, to be constructed as subdivided cylinder coils; rather, they can be designed in any known way, for example as disc or cross-wound bobbins.



   4 shows an embodiment in which the mains connection lines are routed into the interior of the device and to the mains connection components without additional circuitry; the self-inductances of the power lines are therefore again shown as the resulting inductance 14, analogously to FIG. In contrast to the exemplary embodiment in FIG. 2, here the high-frequency generator 2 with its connection intended for the neutral electrode is not directly connected to the device housing. Rather, this takes place with the interposition of a self-induction coil 54. This can form an oscillating circuit with the capacitance 55 of the output of the high-frequency generator assigned to the socket 8 against the device housing and is otherwise to be measured according to the same criteria as the resulting inductance of the coils 26 to 28 in the execution according to Fig. 2.

   In the embodiment according to FIG. 4, the line 9, as shown, is also to be guided into the interior of the device in an isolated manner.



   In the embodiment according to FIG. 4, it can sometimes be expedient to also compensate for the capacitance 56 of the output assigned to the connection socket 4. This takes place in an analogous manner to the output associated with the socket 8 with the induction coil 57.



   The advantage of the embodiment according to FIG. 4 is that it is less complex because, on the one hand, fewer induction coils are required and, on the other hand, the dimensions of the coils can be selected to be smaller, since no network power flows through them. Furthermore, this arrangement can also be used in surgical devices in which the power supply device is built into the device (e.g. in the form of an accumulator battery) and in which the high-frequency connection path of the generator via the capacitor 15 to earth is to be made particularly high-resistance.

 

Claims (1)

PATENTANSPRUCH Hochfrequenz-Chirurgieapparat mit Anschlüssen für mindestens eine Operationselektrode und eine neutrale Elektrode, gekennzeichnet durch aus Induktivitäten bestehende Mittel, durch deren Wirkung in etwaigen hochfrequenten kapazitiven Nebenschlusswegen über den Patienten nur geringe hochfrequente Ströme fliessen. PATENT CLAIM High-frequency surgical apparatus with connections for at least one surgical electrode and a neutral electrode, characterized by means consisting of inductances, through the effect of which only low high-frequency currents flow through the patient in any high-frequency capacitive shunt paths. UNTERANSPRÜCHE 1. Apparat nach Patentanspruch mit einem aus dem Netz gespeisten Hochfrequenzgenerator, dadurch gekennzeichnet, dass in jeden Versorgungsleiter des Generators und in den Schutzleiter eine Induktionsspule eingeschaltet ist. SUBCLAIMS 1. Apparatus according to claim with a high-frequency generator fed from the network, characterized in that an induction coil is switched on in each supply conductor of the generator and in the protective conductor. 2. Apparat nach Patentanspruch mit einem Hochfrequenzgenerator, der aus einer im Hochfrequenz Chirurgiegerät eingebauten Stromversorgungseinrichtung gespeist wird, dadurch gekennzeichnet, dass in die Versorgungsleiter des Generators eine Induktionsspule eingeschaltet ist. 2. Apparatus according to claim with a high-frequency generator which is fed from a power supply device built into the high-frequency surgical device, characterized in that an induction coil is switched into the supply conductor of the generator. 3. Apparat nach Patentanspruch, dadurch gekennzeichnet, dass mindestens die zur inaktiven Elektrode führende Ausgangsklemme des Hochfrequenzgenerators mit dem Metallgehäuse des Apparates bzw. einem Erdungsanschluss des Apparates über eine Induktionsspule verbunden ist. 3. Apparatus according to claim, characterized in that at least the output terminal of the high-frequency generator leading to the inactive electrode is connected to the metal housing of the apparatus or to an earth connection of the apparatus via an induction coil. 4. Apparat nach Unteranspruch 1, dadurch gekennzeichnet, dass die Grösse der Induktivität der Parallelschaltung aller Spulen, die in jeden Versorgungsleiter und den Schutzleiter eingeschaltet sind, in einem Bereich liegt, in dem bei der Arbeitsfrequenz des Apparates eine Kapazität von 50-500 pF zu einem Resonanzkreis ergänzt wird. 4. Apparatus according to dependent claim 1, characterized in that the size of the inductance of the parallel connection of all coils which are switched on in each supply conductor and the protective conductor is in a range in which a capacitance of 50-500 pF at the operating frequency of the apparatus a resonance circuit is added. 5. Apparat nach Unteranspruch 1, dadurch gekennzeichnet, dass die Induktionsspulen an der Einführungsstelle des Netzanschlusskabels angeordnet sind. 5. Apparatus according to dependent claim 1, characterized in that the induction coils are arranged at the point of insertion of the power cord. 6. Apparat nach Unteranspruch 1, dadurch gekennzeichnet, dass die in die Schutzleitung des Netzanschlusskabels eingeschaltete Induktionsspule eine wesentlich grössere Induktivität besitzt als die Induktionsspulen in den stromführenden Leitungen des Netzanschlusskabels. 6. Apparatus according to dependent claim 1, characterized in that the induction coil switched into the protective line of the mains connection cable has a significantly greater inductance than the induction coils in the current-carrying lines of the mains connection cable. 7. Apparat nach Unteranspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens die einen Enden der Induktionsspulen iiber Kondensatoren miteinander verbunden sind. 7. Apparatus according to dependent claim 1 or 2, characterized in that at least the one ends of the induction coils are connected to one another via capacitors. 8. Apparat nach Unteranspruch 1 oder 3, dadurch gekennzeichnet, dass die Grösse der Spuleninduktivität auf die bei aem Hochfrequenz-Chirurgieapparat vorliegenden Streukapazitäten derart abgestimmt ist, dass die Resonanzfrequenz des aus den Streukapazitäten und der eingeschalteten Induktivität gebildeten Resonanzkreises etwas unterhalb der Arbeitsfrequenz des Apparates liegt. 8. Apparatus according to dependent claim 1 or 3, characterized in that the size of the coil inductance is matched to the stray capacitances present in aem high-frequency surgical apparatus so that the resonance frequency of the resonance circuit formed from the stray capacitances and the switched-on inductance is slightly below the operating frequency of the apparatus . 9. Apparat nach Unteranspruch 3, dadurch gekennzeichnet, dass die Grösse der Induktivität der Spule, die zwischen eine der beiden Ausgangsklemmen des Hochfrequenzgenerators und dem Metallgehäuse des Apparates bzw. einem Erdungsanschluss des Apparates eingeschaltet ist, in einem Bereich liegt, in dem bei der Arbeitsfrequenz des Apparates eine Kapazität von 5-50 pF zu einem Resonanzkreis ergänzt wird. 9. Apparatus according to dependent claim 3, characterized in that the size of the inductance of the coil, which is connected between one of the two output terminals of the high-frequency generator and the metal housing of the apparatus or a ground connection of the apparatus, is in a range in which at the operating frequency of the apparatus a capacity of 5-50 pF is added to a resonance circuit.
CH164962A 1961-02-25 1962-02-10 High frequency surgical apparatus CH418519A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1961S0072719 DE1149832C2 (en) 1961-02-25 1961-02-25 HIGH FREQUENCY SURGICAL EQUIPMENT

Publications (1)

Publication Number Publication Date
CH418519A true CH418519A (en) 1966-08-15

Family

ID=7503415

Family Applications (1)

Application Number Title Priority Date Filing Date
CH164962A CH418519A (en) 1961-02-25 1962-02-10 High frequency surgical apparatus

Country Status (2)

Country Link
CH (1) CH418519A (en)
DE (1) DE1149832C2 (en)

Families Citing this family (335)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200104A (en) * 1977-11-17 1980-04-29 Valleylab, Inc. Contact area measurement apparatus for use in electrosurgery
US4188927A (en) * 1978-01-12 1980-02-19 Valleylab, Inc. Multiple source electrosurgical generator
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
ES2289307T3 (en) 2002-05-06 2008-02-01 Covidien Ag BLOOD DETECTOR TO CONTROL AN ELECTROCHIRURGICAL UNIT.
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
WO2004098385A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Method and system for programing and controlling an electrosurgical generator system
WO2005050151A1 (en) 2003-10-23 2005-06-02 Sherwood Services Ag Thermocouple measurement circuit
WO2005048809A1 (en) 2003-10-23 2005-06-02 Sherwood Services Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7776035B2 (en) 2004-10-08 2010-08-17 Covidien Ag Cool-tip combined electrode introducer
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
AU2007200299B2 (en) 2006-01-24 2012-11-15 Covidien Ag System and method for tissue sealing
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US9375246B2 (en) 2007-01-19 2016-06-28 Covidien Lp System and method of using thermal and electrical conductivity of tissue
US8211099B2 (en) 2007-01-31 2012-07-03 Tyco Healthcare Group Lp Thermal feedback systems and methods of using the same
US7998139B2 (en) 2007-04-25 2011-08-16 Vivant Medical, Inc. Cooled helical antenna for microwave ablation
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US7777130B2 (en) 2007-06-18 2010-08-17 Vivant Medical, Inc. Microwave cable cooling
AU2008271014B2 (en) 2007-06-29 2014-03-20 Covidien Lp Method and system for monitoring tissue during an electrosurgical procedure
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8152800B2 (en) 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
US8181995B2 (en) 2007-09-07 2012-05-22 Tyco Healthcare Group Lp Cool tip junction
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US9622813B2 (en) 2007-11-01 2017-04-18 Covidien Lp Method for volume determination and geometric reconstruction
US8280525B2 (en) 2007-11-16 2012-10-02 Vivant Medical, Inc. Dynamically matched microwave antenna for tissue ablation
US8131339B2 (en) 2007-11-27 2012-03-06 Vivant Medical, Inc. System and method for field ablation prediction
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US7713076B2 (en) 2007-11-27 2010-05-11 Vivant Medical, Inc. Floating connector for microwave surgical device
US9057468B2 (en) 2007-11-27 2015-06-16 Covidien Lp Wedge coupling
US7642451B2 (en) 2008-01-23 2010-01-05 Vivant Medical, Inc. Thermally tuned coaxial cable for microwave antennas
US8945111B2 (en) 2008-01-23 2015-02-03 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8435237B2 (en) 2008-01-29 2013-05-07 Covidien Lp Polyp encapsulation system and method
US8353902B2 (en) 2008-01-31 2013-01-15 Vivant Medical, Inc. Articulating ablation device and method
US8262703B2 (en) 2008-01-31 2012-09-11 Vivant Medical, Inc. Medical device including member that deploys in a spiral-like configuration and method
US8298231B2 (en) 2008-01-31 2012-10-30 Tyco Healthcare Group Lp Bipolar scissors for adenoid and tonsil removal
US8221418B2 (en) 2008-02-07 2012-07-17 Tyco Healthcare Group Lp Endoscopic instrument for tissue identification
US8409186B2 (en) 2008-03-13 2013-04-02 Covidien Lp Crest factor enhancement in electrosurgical generators
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
US8257349B2 (en) 2008-03-28 2012-09-04 Tyco Healthcare Group Lp Electrosurgical apparatus with predictive RF source control
US9198723B2 (en) 2008-03-31 2015-12-01 Covidien Lp Re-hydration antenna for ablation
US8246614B2 (en) 2008-04-17 2012-08-21 Vivant Medical, Inc. High-strength microwave antenna coupling
US8059059B2 (en) 2008-05-29 2011-11-15 Vivant Medical, Inc. Slidable choke microwave antenna
US8192427B2 (en) 2008-06-09 2012-06-05 Tyco Healthcare Group Lp Surface ablation process with electrode cooling methods
US9271796B2 (en) 2008-06-09 2016-03-01 Covidien Lp Ablation needle guide
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8343149B2 (en) 2008-06-26 2013-01-01 Vivant Medical, Inc. Deployable microwave antenna for treating tissue
US8834409B2 (en) 2008-07-29 2014-09-16 Covidien Lp Method for ablation volume determination and geometric reconstruction
US9700366B2 (en) 2008-08-01 2017-07-11 Covidien Lp Polyphase electrosurgical system and method
US8172836B2 (en) 2008-08-11 2012-05-08 Tyco Healthcare Group Lp Electrosurgical system having a sensor for monitoring smoke or aerosols
US9173706B2 (en) 2008-08-25 2015-11-03 Covidien Lp Dual-band dipole microwave ablation antenna
US8211098B2 (en) 2008-08-25 2012-07-03 Vivant Medical, Inc. Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8251987B2 (en) 2008-08-28 2012-08-28 Vivant Medical, Inc. Microwave antenna
US8403924B2 (en) 2008-09-03 2013-03-26 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
US8394086B2 (en) 2008-09-03 2013-03-12 Vivant Medical, Inc. Microwave shielding apparatus
US8287529B2 (en) 2008-09-05 2012-10-16 Tyco Healthcare Group Lp Electrosurgical apparatus with high speed energy recovery
US8377053B2 (en) 2008-09-05 2013-02-19 Covidien Lp Electrosurgical apparatus with high speed energy recovery
US8242782B2 (en) 2008-09-30 2012-08-14 Vivant Medical, Inc. Microwave ablation generator control system
US8346370B2 (en) 2008-09-30 2013-01-01 Vivant Medical, Inc. Delivered energy generator for microwave ablation
US8287527B2 (en) 2008-09-30 2012-10-16 Vivant Medical, Inc. Microwave system calibration apparatus and method of use
US8174267B2 (en) 2008-09-30 2012-05-08 Vivant Medical, Inc. Intermittent microwave energy delivery system
US8248075B2 (en) 2008-09-30 2012-08-21 Vivant Medical, Inc. System, apparatus and method for dissipating standing wave in a microwave delivery system
US8180433B2 (en) 2008-09-30 2012-05-15 Vivant Medical, Inc. Microwave system calibration apparatus, system and method of use
US8852179B2 (en) 2008-10-10 2014-10-07 Covidien Lp Apparatus, system and method for monitoring tissue during an electrosurgical procedure
US8734444B2 (en) 2008-10-10 2014-05-27 Covidien Lp System and method for delivering high current to electrosurgical device
US8512328B2 (en) 2008-10-13 2013-08-20 Covidien Lp Antenna assemblies for medical applications
US9375272B2 (en) 2008-10-13 2016-06-28 Covidien Lp Antenna assemblies for medical applications
US9113624B2 (en) 2008-10-15 2015-08-25 Covidien Lp System and method for perfusing biological organs
US9113924B2 (en) 2008-10-17 2015-08-25 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8152802B2 (en) 2009-01-12 2012-04-10 Tyco Healthcare Group Lp Energy delivery algorithm filter pre-loading
US8167875B2 (en) 2009-01-12 2012-05-01 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices
US8162932B2 (en) 2009-01-12 2012-04-24 Tyco Healthcare Group Lp Energy delivery algorithm impedance trend adaptation
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8211100B2 (en) 2009-01-12 2012-07-03 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve
US8333759B2 (en) 2009-01-12 2012-12-18 Covidien Lp Energy delivery algorithm for medical devices
US8235917B2 (en) 2009-01-13 2012-08-07 Tyco Healthcare Group Lp Wireless electrosurgical controller
US8231553B2 (en) 2009-01-13 2012-07-31 Tyco Healthcare Group Lp Method for wireless control of electrosurgery
US8202270B2 (en) 2009-02-20 2012-06-19 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8197473B2 (en) 2009-02-20 2012-06-12 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8118808B2 (en) 2009-03-10 2012-02-21 Vivant Medical, Inc. Cooled dielectrically buffered microwave dipole antenna
US9522039B2 (en) 2009-03-11 2016-12-20 Covidien Lp Crest factor enhancement in electrosurgical generators
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US10045819B2 (en) 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US8216227B2 (en) 2009-05-06 2012-07-10 Vivant Medical, Inc. Power-stage antenna integrated system with junction member
US8463396B2 (en) 2009-05-06 2013-06-11 Covidien LLP Power-stage antenna integrated system with high-strength shaft
US8353903B2 (en) 2009-05-06 2013-01-15 Vivant Medical, Inc. Power-stage antenna integrated system
US8246615B2 (en) 2009-05-19 2012-08-21 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency
US8292881B2 (en) 2009-05-27 2012-10-23 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
US8834460B2 (en) 2009-05-29 2014-09-16 Covidien Lp Microwave ablation safety pad, microwave safety pad system and method of use
US8235981B2 (en) 2009-06-02 2012-08-07 Vivant Medical, Inc. Electrosurgical devices with directional radiation pattern
US8552915B2 (en) 2009-06-19 2013-10-08 Covidien Lp Microwave ablation antenna radiation detector
US8323275B2 (en) 2009-06-19 2012-12-04 Vivant Medical, Inc. Laparoscopic port with microwave rectifier
US8334812B2 (en) 2009-06-19 2012-12-18 Vivant Medical, Inc. Microwave ablation antenna radiation detector
US7863984B1 (en) 2009-07-17 2011-01-04 Vivant Medical, Inc. High efficiency microwave amplifier
US8932282B2 (en) 2009-08-03 2015-01-13 Covidien Lp Power level transitioning in a surgical instrument
USD634010S1 (en) 2009-08-05 2011-03-08 Vivant Medical, Inc. Medical device indicator guide
US8328799B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US8328800B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Directive window ablation antenna with dielectric loading
US9031668B2 (en) 2009-08-06 2015-05-12 Covidien Lp Vented positioner and spacer and method of use
USD613412S1 (en) 2009-08-06 2010-04-06 Vivant Medical, Inc. Vented microwave spacer
US7956620B2 (en) 2009-08-12 2011-06-07 Tyco Healthcare Group Lp System and method for augmented impedance sensing
US8328801B2 (en) 2009-08-17 2012-12-11 Vivant Medical, Inc. Surface ablation antenna with dielectric loading
US10828100B2 (en) 2009-08-25 2020-11-10 Covidien Lp Microwave ablation with tissue temperature monitoring
US8790335B2 (en) 2009-08-28 2014-07-29 Covidien Lp Electrosurgical generator
US8409187B2 (en) 2009-09-08 2013-04-02 Covidien Lp Microwave antenna probe with high-strength ceramic coupler
US8069553B2 (en) 2009-09-09 2011-12-06 Vivant Medical, Inc. Method for constructing a dipole antenna
US9113925B2 (en) 2009-09-09 2015-08-25 Covidien Lp System and method for performing an ablation procedure
US8382751B2 (en) 2009-09-10 2013-02-26 Covidien Lp System and method for power supply noise reduction
US8355803B2 (en) 2009-09-16 2013-01-15 Vivant Medical, Inc. Perfused core dielectrically loaded dipole microwave antenna probe
US9095359B2 (en) 2009-09-18 2015-08-04 Covidien Lp Tissue ablation system with energy distribution
US9375273B2 (en) 2009-09-18 2016-06-28 Covidien Lp System and method for checking high power microwave ablation system status on startup
US8377054B2 (en) 2009-09-24 2013-02-19 Covidien Lp Automatic control circuit for use in an electrosurgical generator
US8685015B2 (en) 2009-09-24 2014-04-01 Covidien Lp System and method for multi-pole phase-shifted radio frequency application
US8394087B2 (en) 2009-09-24 2013-03-12 Vivant Medical, Inc. Optical detection of interrupted fluid flow to ablation probe
US8282632B2 (en) 2009-09-28 2012-10-09 Vivant Medical, Inc. Feedpoint optimization for microwave ablation dipole antenna with integrated tip
US8906007B2 (en) 2009-09-28 2014-12-09 Covidien Lp Electrosurgical devices, directional reflector assemblies coupleable thereto, and electrosurgical systems including same
US8343145B2 (en) 2009-09-28 2013-01-01 Vivant Medical, Inc. Microwave surface ablation using conical probe
US8652125B2 (en) 2009-09-28 2014-02-18 Covidien Lp Electrosurgical generator user interface
US9113926B2 (en) 2009-09-29 2015-08-25 Covidien Lp Management of voltage standing wave ratio at skin surface during microwave ablation
US8876814B2 (en) 2009-09-29 2014-11-04 Covidien Lp Fluid cooled choke dielectric and coaxial cable dielectric
US8568398B2 (en) 2009-09-29 2013-10-29 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US8545493B2 (en) 2009-09-29 2013-10-01 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
US8568401B2 (en) 2009-10-27 2013-10-29 Covidien Lp System for monitoring ablation size
US8430871B2 (en) 2009-10-28 2013-04-30 Covidien Lp System and method for monitoring ablation size
US8382750B2 (en) 2009-10-28 2013-02-26 Vivant Medical, Inc. System and method for monitoring ablation size
US8610501B2 (en) 2009-11-16 2013-12-17 Covidien Lp Class resonant-H electrosurgical generators
US8469953B2 (en) 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US8394092B2 (en) 2009-11-17 2013-03-12 Vivant Medical, Inc. Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
US10039588B2 (en) 2009-12-16 2018-08-07 Covidien Lp System and method for tissue sealing
US8882759B2 (en) 2009-12-18 2014-11-11 Covidien Lp Microwave ablation system with dielectric temperature probe
US8764744B2 (en) 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US9113927B2 (en) 2010-01-29 2015-08-25 Covidien Lp Apparatus and methods of use for treating blood vessels
US8313486B2 (en) 2010-01-29 2012-11-20 Vivant Medical, Inc. System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
US8491579B2 (en) 2010-02-05 2013-07-23 Covidien Lp Electrosurgical devices with choke shorted to biological tissue
US8568404B2 (en) 2010-02-19 2013-10-29 Covidien Lp Bipolar electrode probe for ablation monitoring
US8968288B2 (en) 2010-02-19 2015-03-03 Covidien Lp Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same
US8617153B2 (en) 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
US20110213353A1 (en) 2010-02-26 2011-09-01 Lee Anthony C Tissue Ablation System With Internal And External Radiation Sources
US8777939B2 (en) 2010-02-26 2014-07-15 Covidien Lp Self-tuning microwave ablation probe
US8454590B2 (en) 2010-02-26 2013-06-04 Covidien Lp Enhanced lossless current sense circuit
US8728067B2 (en) 2010-03-08 2014-05-20 Covidien Lp Microwave antenna probe having a deployable ground plane
US8672923B2 (en) 2010-03-11 2014-03-18 Covidien Lp Automated probe placement device
US9028474B2 (en) 2010-03-25 2015-05-12 Covidien Lp Microwave surface coagulator with retractable blade
US10039601B2 (en) 2010-03-26 2018-08-07 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US8409188B2 (en) 2010-03-26 2013-04-02 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US9867664B2 (en) 2010-05-03 2018-01-16 Covidien Lp System and method of deploying an antenna assembly
US9561076B2 (en) 2010-05-11 2017-02-07 Covidien Lp Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same
US9192436B2 (en) 2010-05-25 2015-11-24 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US8652127B2 (en) 2010-05-26 2014-02-18 Covidien Lp System and method for chemically cooling an ablation antenna
US8188435B2 (en) 2010-06-03 2012-05-29 Tyco Healthcare Group Lp Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis
US8668690B2 (en) 2010-06-03 2014-03-11 Covidien Lp Apparatus and method for optimal tissue separation
US9241762B2 (en) 2010-06-03 2016-01-26 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US9377367B2 (en) 2010-06-03 2016-06-28 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis
US9468492B2 (en) 2010-06-03 2016-10-18 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US8617154B2 (en) 2010-06-25 2013-12-31 Covidien Lp Current-fed push-pull converter with passive voltage clamp
US8623007B2 (en) 2010-06-30 2014-01-07 Covidien Lp Electrosurgical generator to ablation device adaptor
US8672933B2 (en) 2010-06-30 2014-03-18 Covidien Lp Microwave antenna having a reactively-loaded loop configuration
US8740893B2 (en) 2010-06-30 2014-06-03 Covidien Lp Adjustable tuning of a dielectrically loaded loop antenna
US8636730B2 (en) 2010-07-12 2014-01-28 Covidien Lp Polarity control of electrosurgical generator
US8974449B2 (en) 2010-07-16 2015-03-10 Covidien Lp Dual antenna assembly with user-controlled phase shifting
US10588684B2 (en) 2010-07-19 2020-03-17 Covidien Lp Hydraulic conductivity monitoring to initiate tissue division
US8641712B2 (en) 2010-07-28 2014-02-04 Covidien Lp Local optimization of electrode current densities
USD673685S1 (en) 2010-09-08 2013-01-01 Vivant Medical, Inc. Microwave device spacer and positioner with arcuate slot
US8945144B2 (en) 2010-09-08 2015-02-03 Covidien Lp Microwave spacers and method of use
US8968289B2 (en) 2010-10-22 2015-03-03 Covidien Lp Microwave spacers and methods of use
US9119647B2 (en) 2010-11-12 2015-09-01 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9028484B2 (en) 2010-11-16 2015-05-12 Covidien Lp Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same
US9055957B2 (en) 2010-12-23 2015-06-16 Covidien Lp Microwave field-detecting needle assemblies, methods of manufacturing same, methods of adjusting an ablation field radiating into tissue using same, and systems including same
US8932281B2 (en) 2011-01-05 2015-01-13 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9017319B2 (en) 2011-01-05 2015-04-28 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9011421B2 (en) 2011-01-05 2015-04-21 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9770294B2 (en) 2011-01-05 2017-09-26 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9028481B2 (en) 2011-01-05 2015-05-12 Covidien Lp System and method for measuring current of an electrosurgical generator
US9028476B2 (en) 2011-02-03 2015-05-12 Covidien Lp Dual antenna microwave resection and ablation device, system and method of use
US8974450B2 (en) 2011-02-03 2015-03-10 Covidien Lp System and method for ablation procedure monitoring using electrodes
US9492190B2 (en) 2011-02-09 2016-11-15 Covidien Lp Tissue dissectors
US8317703B2 (en) 2011-02-17 2012-11-27 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array, and methods of adjusting an ablation field radiating into tissue using same
US8376948B2 (en) 2011-02-17 2013-02-19 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array
US9265560B2 (en) 2011-02-25 2016-02-23 Covidien Lp System and method for detecting and suppressing arc formation during an electrosurgical procedure
US10335230B2 (en) 2011-03-09 2019-07-02 Covidien Lp Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
US9375247B2 (en) 2011-03-16 2016-06-28 Covidien Lp System and method for electrosurgical generator power measurement
US9381059B2 (en) 2011-04-05 2016-07-05 Covidien Lp Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge
US9198724B2 (en) 2011-04-08 2015-12-01 Covidien Lp Microwave tissue dissection and coagulation
US9579150B2 (en) 2011-04-08 2017-02-28 Covidien Lp Microwave ablation instrument with interchangeable antenna probe
CA2832593A1 (en) 2011-04-08 2012-07-18 Joseph D. Brannan Flexible microwave catheters for natural or artificial lumens
US8968293B2 (en) 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US9539050B2 (en) 2011-04-12 2017-01-10 Covidien Lp System and method for process monitoring and intelligent shut-off
US8992413B2 (en) 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
US9050089B2 (en) 2011-05-31 2015-06-09 Covidien Lp Electrosurgical apparatus with tissue site sensing and feedback control
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9028479B2 (en) 2011-08-01 2015-05-12 Covidien Lp Electrosurgical apparatus with real-time RF tissue energy control
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US9033973B2 (en) 2011-08-30 2015-05-19 Covidien Lp System and method for DC tissue impedance sensing
US9099863B2 (en) 2011-09-09 2015-08-04 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
US9039693B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9039692B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
US9023025B2 (en) 2011-09-20 2015-05-05 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9033970B2 (en) 2011-09-20 2015-05-19 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US10376301B2 (en) 2011-09-28 2019-08-13 Covidien Lp Logarithmic amplifier, electrosurgical generator including same, and method of controlling electrosurgical generator using same
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9480523B2 (en) 2012-01-27 2016-11-01 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US9037447B2 (en) 2012-01-27 2015-05-19 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US8664934B2 (en) 2012-01-27 2014-03-04 Covidien Lp System and method for verifying the operating frequency of digital control circuitry
US8968290B2 (en) 2012-03-14 2015-03-03 Covidien Lp Microwave ablation generator control system
US8653994B2 (en) 2012-03-21 2014-02-18 Covidien Lp System and method for detection of ADC errors
US9198711B2 (en) 2012-03-22 2015-12-01 Covidien Lp Electrosurgical system for communicating information embedded in an audio tone
US9192308B2 (en) 2012-03-27 2015-11-24 Covidien Lp Microwave-shielded tissue sensor probe
US8945113B2 (en) 2012-04-05 2015-02-03 Covidien Lp Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US9375250B2 (en) 2012-04-09 2016-06-28 Covidien Lp Method for employing single fault safe redundant signals
US8932291B2 (en) 2012-04-13 2015-01-13 Covidien Lp Electrosurgical systems
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US10130416B2 (en) 2012-04-30 2018-11-20 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US8920410B2 (en) 2012-05-04 2014-12-30 Covidien Lp Peripheral switching device for microwave energy platforms
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US9168178B2 (en) 2012-05-22 2015-10-27 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US20130324910A1 (en) 2012-05-31 2013-12-05 Covidien Lp Ablation device with drug delivery component and biopsy tissue-sampling component
US9192424B2 (en) 2012-05-31 2015-11-24 Covidien Lp AC active load
US9127989B2 (en) 2012-06-22 2015-09-08 Covidien Lp Microwave thermometry for microwave ablation systems
US9332959B2 (en) 2012-06-26 2016-05-10 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9192425B2 (en) 2012-06-26 2015-11-24 Covidien Lp System and method for testing electrosurgical generators
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9192426B2 (en) 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9192439B2 (en) 2012-06-29 2015-11-24 Covidien Lp Method of manufacturing a surgical instrument
US9439712B2 (en) 2012-07-12 2016-09-13 Covidien Lp Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US9375252B2 (en) 2012-08-02 2016-06-28 Covidien Lp Adjustable length and/or exposure electrodes
US9993295B2 (en) 2012-08-07 2018-06-12 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9522033B2 (en) 2012-10-02 2016-12-20 Covidien Lp Devices and methods for optical detection of tissue contact
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9370392B2 (en) 2012-10-02 2016-06-21 Covidien Lp Heat-sensitive optical probes
US9993283B2 (en) 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US9861425B2 (en) 2012-10-02 2018-01-09 Covidien Lp System and method for using resonance phasing for measuring impedance
US9921243B2 (en) 2012-12-17 2018-03-20 Covidien Lp System and method for voltage and current sensing
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
US9456862B2 (en) 2013-02-19 2016-10-04 Covidien Lp Electrosurgical generator and system
US9519021B2 (en) 2013-03-11 2016-12-13 Covidien Lp Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9895186B2 (en) 2013-03-11 2018-02-20 Covidien Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9270202B2 (en) 2013-03-11 2016-02-23 Covidien Lp Constant power inverter with crest factor control
US9498276B2 (en) 2013-03-15 2016-11-22 Covidien Lp Systems and methods for narrowband real impedance control in electrosurgery
US10842563B2 (en) 2013-03-15 2020-11-24 Covidien Lp System and method for power control of electrosurgical resonant inverters
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
CN105073052B (en) 2013-03-29 2017-09-01 柯惠有限合伙公司 The coaxial microwave ablation applicator of descending manner and its manufacture method
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US9559594B2 (en) 2013-06-24 2017-01-31 Covidien Lp Dead-time optimization of resonant inverters
US10729484B2 (en) 2013-07-16 2020-08-04 Covidien Lp Electrosurgical generator with continuously and arbitrarily variable crest factor
US10610285B2 (en) 2013-07-19 2020-04-07 Covidien Lp Electrosurgical generators
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10285750B2 (en) 2013-07-29 2019-05-14 Covidien Lp Systems and methods for operating an electrosurgical generator
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
US9867665B2 (en) 2013-09-06 2018-01-16 Covidien Lp Microwave ablation catheter, handle, and system
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
US9839469B2 (en) 2013-09-24 2017-12-12 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9770283B2 (en) 2013-09-24 2017-09-26 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US10130412B2 (en) 2013-09-26 2018-11-20 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10058374B2 (en) 2013-09-26 2018-08-28 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US9867651B2 (en) 2013-09-26 2018-01-16 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US10188446B2 (en) 2013-10-16 2019-01-29 Covidien Lp Resonant inverter
US10105172B2 (en) 2013-10-16 2018-10-23 Covidien Lp Radiofrequency amplifier impedance optimization
US9913679B2 (en) 2013-10-16 2018-03-13 Covidien Lp Electrosurgical systems and methods for monitoring power dosage
US9642670B2 (en) 2013-10-29 2017-05-09 Covidien Lp Resonant inverter with a common mode choke
US9901386B2 (en) 2014-01-13 2018-02-27 Covidien Lp Systems and methods for multifrequency cable compensation
US9974595B2 (en) 2014-04-04 2018-05-22 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9949783B2 (en) 2014-04-04 2018-04-24 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9987068B2 (en) 2014-04-04 2018-06-05 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US10492850B2 (en) 2014-04-04 2019-12-03 Covidien Lp Systems and methods for calculating tissue impedance in electrosurgery
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US10188448B2 (en) 2014-11-21 2019-01-29 Covidien Lp Electrosurgical system for multi-frequency interrogation of parasitic parameters of an electrosurgical instrument
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US9782212B2 (en) 2014-12-02 2017-10-10 Covidien Lp High level algorithms
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10080600B2 (en) 2015-01-21 2018-09-25 Covidien Lp Monopolar electrode with suction ability for CABG surgery
US11090106B2 (en) 2015-04-23 2021-08-17 Covidien Lp Control systems for electrosurgical generator
US10617463B2 (en) 2015-04-23 2020-04-14 Covidien Lp Systems and methods for controlling power in an electrosurgical generator
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US10772673B2 (en) 2016-05-02 2020-09-15 Covidien Lp Surgical energy system with universal connection features
US10869712B2 (en) 2016-05-02 2020-12-22 Covidien Lp System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators
US10610287B2 (en) 2016-05-05 2020-04-07 Covidien Lp Advanced simultaneous activation algorithm
US11000332B2 (en) 2016-08-02 2021-05-11 Covidien Lp Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11006997B2 (en) 2016-08-09 2021-05-18 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
US10814128B2 (en) 2016-11-21 2020-10-27 Covidien Lp Electroporation catheter
US10716619B2 (en) 2017-06-19 2020-07-21 Covidien Lp Microwave and radiofrequency energy-transmitting tissue ablation systems
US11744631B2 (en) 2017-09-22 2023-09-05 Covidien Lp Systems and methods for controlled electrosurgical coagulation
US11272975B2 (en) 2017-09-22 2022-03-15 Covidien Lp Systems and methods for controlled electrosurgical dissection
US11534226B2 (en) 2017-09-22 2022-12-27 Covidien Lp Systems and methods for minimizing arcing of bipolar forceps
US11147621B2 (en) 2017-11-02 2021-10-19 Covidien Lp Systems and methods for ablating tissue
US11123094B2 (en) 2017-12-13 2021-09-21 Covidien Lp Ultrasonic surgical instruments and methods for sealing and/or cutting tissue
US11160600B2 (en) 2018-03-01 2021-11-02 Covidien Lp Monopolar return electrode grasper with return electrode monitoring

Also Published As

Publication number Publication date
DE1149832B (en) 1963-06-06
DE1149832C2 (en) 1977-10-13

Similar Documents

Publication Publication Date Title
CH418519A (en) High frequency surgical apparatus
DE755778C (en) Shortwave arrangement for the transition of an asymmetrical high-frequency line into a symmetrical arrangement
DE3416786A1 (en) Noise filter
DE3929402A1 (en) X-RAY DEVICE
DE3731394C2 (en) High-frequency interference filter for a circuit to be connected to a line, in particular for two-wire sensors
DE2802507A1 (en) DEVICE INCLUDING A CAVITY RESONATOR MAGNETRON
DE864286C (en) Arrangement for deriving high-frequency interference waves from an electrical line
DE4421986A1 (en) Radio interference filter for electronically-controlled device
EP0275499B1 (en) Current-compensated choke coil for spark interference suppression
DE605202C (en) Arrangement for earthing the housings of electrical apparatus
AT232185B (en) High frequency surgical apparatus
EP3005383B1 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
DE3923384C1 (en) Pulsed current supply appts. - has double screening for connecting leads supplying load in two current directions
EP0043065B1 (en) Transmission-line signal coupler
DE3302192C2 (en)
DE549033C (en) Vibration generator with oscillating circuit elements arranged in the electron tube
DE686969C (en) Shortwave circuit
DE505857C (en) Electrical transmission of signals or the like by means of alternating current of speech frequency Iaengs power transmission lines with neutral conductor
AT102736B (en) Device for connecting an electron tube as an amplifier to a direct current network.
DE3210592A1 (en) POWER SUPPLY FOR A HIGH ELECTRICAL POTENTIAL ELECTRONIC DEVICE
DE686399C (en) Inductive tuning arrangement for shortwave transmitters
DE637987C (en) Circuit arrangement for interference suppression of electrical apparatus and machines
DE914627C (en) Receiving device for radio receivers or the like with shielded antenna feed
DE1254763B (en) Arrangement for testing a switch with the load that occurs in the event of a distance short circuit
DE662823C (en) Electrical coupling system consisting of two circles