CA2463568A1 - Coating precursor and method for coating a substrate with a refractory layer - Google Patents

Coating precursor and method for coating a substrate with a refractory layer Download PDF

Info

Publication number
CA2463568A1
CA2463568A1 CA002463568A CA2463568A CA2463568A1 CA 2463568 A1 CA2463568 A1 CA 2463568A1 CA 002463568 A CA002463568 A CA 002463568A CA 2463568 A CA2463568 A CA 2463568A CA 2463568 A1 CA2463568 A1 CA 2463568A1
Authority
CA
Canada
Prior art keywords
metal
refractory
coating
substrate
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002463568A
Other languages
French (fr)
Inventor
Airy-Pierre Lamaze
Christian Barthelemy
Thomas Spadone
Robert Rey-Flandrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Constellium Issoire SAS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0113267A external-priority patent/FR2830857B1/en
Priority claimed from PCT/FR2002/003485 external-priority patent/WO2003033767A2/en
Application filed by Individual filed Critical Individual
Publication of CA2463568A1 publication Critical patent/CA2463568A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5037Clay, Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention concerns a coating precursor comprising a silicone resin and a mineral filler, capable of chemically reacting so as to produce a solid layer on a substrate and into a cohesive refractory after a calcining process. The precursor can optionally further comprise an additive for reducing its viscosity. The invention also concerns a method for coating a specific surface of a substrate with at least a coating precursor of the invention, so as to form a raw layer and in carrying out a heat treatment so as to calcine said raw layer and form a cohesive refractory silicone-containing layer. The invention enables to obtain a protective coating resistant to oxidizing surroundings, liquid metal or solid or molten salt.

Description

PRECURSEUR DE REVETEMENT ET PROCEDE POUR REVETIR UN
SUBSTRAT D'UNE COUCHE REFRACTAIRE
Domaine de l'invention La présente invention concerne la protection d'objets et de matériaux destinés à
l'industrie métallurgique, notamment à l'industrie de l'aluminium. Elle concerne en particulier les revêtements de protection desdits objets et matériaux.
Etat de la technique Les objets et matériaux qui sont utilisés dans l'industrie de l'aluminium sont souvent exposés à des environnements corrosifs et soumis à de hautes températures et' des contraintes thermiques importantes. Les contenants (tels que les poches ou les fours), les conduits (tels que les goulottes, les injecteurs et les busettes de coulée) et les outils et dispositifs qui sont destinés à manipuler et à traiter l'aluminium liquide (tels que les filtres et les rotors) doivent présenter une grande résistance mécanique et chimique. En particulier, les surfaces de ces objets qui sont exposées à
l'aluminium liquide ne doivent ni se dissoudre dans l'aluminium liquide, ni le contaminer.
Bien que la résistance des matériaux couramment utilisés dans l'industrie de l'aluminium soit généralement suffisante, il existe certaines applications ou conditions pour lesquelles on cherche une résistance encore plus grande. C'est le cas notamment lorsque l'on cherche à réduire à une valeur pratiquement nulle le nombre d'inclusions contenues dans chaque tonne d'aluminium coulée.
La demanderesse a donc recherché des moyens qui permettent de manipuler, d'élaborer, de traiter et de couler de l'aluminium et des alliages d'aluminium liquides de manière satisfaisante dans les conditions et applications les plus exigeantes.
COATING PRECURSOR AND METHOD FOR COATING A
SUBSTRATE OF A REFRACTORY LAYER
Field of the invention The present invention relates to the protection of objects and materials intended at the metallurgical industry, especially the aluminum industry. She concerns in particularly the protective coatings of said objects and materials.
State of the art The objects and materials that are used in the aluminum industry are often exposed to corrosive environments and subjected to high temperatures and ' of the significant thermal constraints. Containers (such as bags or ovens), the conduits (such as the chutes, the injectors and the nozzles of casting) and tools and devices that are used to handle and process aluminum liquid (such filters and rotors) must be very resistant mechanical and chemical. In particular, the surfaces of these objects that are exposed to aluminum liquid must neither dissolve nor contaminate the liquid aluminum.
Although the resistance of materials commonly used in the industry aluminum is generally sufficient, there are certain applications or conditions for which an even greater resistance is sought. It is the case in particular when one seeks to reduce to a practically zero value the number of inclusions contained in each ton of aluminum cast.
The applicant has therefore sought means which make it possible to manipulate, develop, process and cast aluminum and aluminum alloys liquids satisfactorily under the most demanding conditions and applications demanding.

2 Description de l'invention L'invention a pour objet un précurseur de revêtement destiné à la formation d'une couche protectrice sur un substrat. Ledit précurseur comprend une résine silicone (ou organosiloxane) et une charge minérale apte à réagir chimiquement avec ladite résine de manière à produire une couche réfractaire cohésive après une opération de calcination de la couche.
Ledit précurseur, qui se présente typiquement sous la forme d'une poudre, est de préférence homogène.
La résine silicone est un polysiloxane comprenant de préférence une proportion de groupements OH, tel qu'un polyméthylsiloxane, un polydiméthylsiloxane, un polyméthylsilsesquioxane, ou un mélange de ceux-ci, comprenant une proportion de groupements OH substitués aux groupements mëthyles. La demanderesse a noté que la proportion de groupements OH est de préférence comprise entre environ 0,5 %
et environ 2 %. Une proportion de groupements OH trop faible ne confère pas une propension suffisante à former une couche solide à forte cohésivité après calcination.
Une proportion de groupements OH très élevée peut rendre le polysiloxane difficile à
produire à un coût acceptable. Les groupements silanols (Si-OH) sont de prëférence stables afin de permettre le stockage de la résine. Ces groupements OH peuvent être greffés à un polysiloxane par hydrolyse. Les motifs siloxaniques du polysiloxane selon l'invention sont avantageusement, en tout ou partie, tri- ou quadri-fonctionnels.
La charge minérale est typiquement choisie parmi les borures, les carbures, les nitrures et les oxydes de métaux ou parmi les borures, les carbures et les nitrures de non-métaux (tels que les nitrures de bore), ou une combinaison ou un mélange de ceux-ci. Ladite charge minérale est avantageusement choisie parmi les composés de métal tels que les oxydes de métal, les carbures de métal, les borures de métal et les nitrures de métal, ou une combinaison ou un mélange de ceux-ci. La charge minérale est de préférence apte à réagir chimiquement avec la résine silicone de manière à
produire une couche réfractaire à forte cohésivité après calcination de ladite couche
2 Description of the invention The subject of the invention is a coating precursor intended for training a protective layer on a substrate. Said precursor comprises a resin silicone (or organosiloxane) and a mineral filler capable of reacting chemically with said resin so as to produce a cohesive refractory layer after an operation of calcination of the layer.
Said precursor, which is typically in the form of a powder, is of homogeneous preference.
The silicone resin is a polysiloxane preferably comprising a proportion of OH groups, such as a polymethylsiloxane, a polydimethylsiloxane, a polymethylsilsesquioxane, or a mixture thereof, comprising a proportion of OH groups substituted for methyl groups. The Applicant noted that the proportion of OH groups is preferably between approximately 0.5%
and about 2%. Too small a proportion of OH groups does not confer a sufficient propensity to form a solid layer with high cohesiveness after calcination.
A very high proportion of OH groups can make the polysiloxane difficult to produce at an acceptable cost. The silanol groups (Si-OH) are of preference stable to allow storage of the resin. These OH groups can to be grafted to a polysiloxane by hydrolysis. The siloxane patterns of polysiloxane according to the invention are advantageously, in whole or in part, tri- or quadri-functional.
The mineral filler is typically chosen from borides, carbides, the nitrides and oxides of metals or among borides, carbides and nitrides of non-metals (such as boron nitrides), or a combination or mixture of them. Said mineral filler is advantageously chosen from the compounds of metal such as metal oxides, metal carbides, borides of metal and them metal nitrides, or a combination or mixture thereof. Load mineral is preferably able to react chemically with the silicone resin of way to produce a refractory layer with high cohesiveness after calcination of said layer

3 crue. La charge minérale peut être choisie en fonction des caractéristiques physico-chimiques attendues du revêtement (telles que sa mouillabilité ou non-mouillabilité
par un métal liquide).
Le composé de métal est avantageusement de l'alumine, du Zr02, du ZrB2, du Tilla ou du TiOa ou une combinaison ou un mélange de ceux-ci. L'alumine est de préférence une alumine alpha calcinée réactive, dite alumine technique, dont le taux d'hydratation est très faible (typiquement inférieur à 1 %, voire inférieur à
0,5 °~).
La charge minérale se prësente de préférence sous forme d'une poudre. La granulométrie de la poudre de charge minérale est typiquement telle que la taille des grains est comprise entre 1,5 ~,m et 100 gym.
Les propriëtés physiques du revêtement, telles que ses propriétés mécaniques (y compris la tenue au choc thermique), peuvent, dans certains cas, être adaptées par ajustement de la proportion de charge minérale et/ou de sa granulométrie.
La proportion de résine silicone dans le précurseur est typiquement comprise entre 10 et 20 % en poids, afin de permettre une céramisation satisfaisante du revêtement lors de la calcination.
La proportion de charge minérale dans le précurseur est typiquement comprise entre 80 et 90 % en poids.
Selon une variante avantageuse de l'invention, le précurseur comprend en outre un additif apte à diminuer la viscosité du précurseur. Ledit additif est typiquement ûn dispersant, tel que de l'acide stéarique. La proportion dudit additif dans le précurseur est typiquement inférieure à 2 % en poids, et plus typiquement comprise entre 0,1 et 1 %.
Dans ce mode de réalisation, le précurseur est typiquement obtenu par mélange de la résine, de la charge minérale et de l'additif et, si nécessaire, par broyage du mélange.
3 flood. The mineral filler can be chosen according to the characteristics physico expected chemicals from the coating (such as wettability or not wettability by a liquid metal).
The metal compound is advantageously alumina, Zr02, ZrB2, Tilla or TiOa or a combination or mixture thereof. Alumina is preferably a reactive calcined alpha alumina, called technical alumina, of which the rate hydration is very low (typically less than 1%, or even less than 0.5 ° ~).
The mineral filler is preferably in the form of a powder. The particle size of the mineral filler powder is typically such that the size of grains is between 1.5 ~, m and 100 gym.
The physical properties of the coating, such as its mechanical properties (y including resistance to thermal shock), can in some cases be adapted through adjustment of the proportion of mineral filler and / or its particle size.
The proportion of silicone resin in the precursor is typically understood Between 10 and 20% by weight, in order to allow satisfactory ceramization of the coating during calcination.
The proportion of mineral filler in the precursor is typically understood Between 80 and 90% by weight.
According to an advantageous variant of the invention, the precursor further comprises a additive capable of reducing the viscosity of the precursor. Said additive is typically ûn dispersant, such as stearic acid. The proportion of said additive in the precursor is typically less than 2% by weight, and more typically between 0.1 and 1%.
In this embodiment, the precursor is typically obtained by mixing of the resin, mineral filler and additive and, if necessary, by grinding of the mixture.

4 L'invention a également pour objet un procédé pour revétir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel - on enduit le substrat d'un précurseur de revétement selon l'invention, de façon à
former une couche crue ;
- on effectue un traitement thermique, dit de calcination, apte à entraîner l'élimination des matières volatiles, la calcination de ladite couche crue et la formation d'une couche réfractaire cohésive.
La demanderesse a observé que le procédé de l'invention permet d'obtenir une couche mince résistante et fortement adhérente au substrat qui résiste bien au métal liquide et qui possède une forte cohésivité.
L'enduction du substrat (qui comprend typiquement le dépôt et l'étalement dudit précurseur sur le substrat) peut être effectuée par tout moyen connu, et de préfërence par poudrage électrostatique. Le substrat peut éventuellement être portë à une température supérieure à l'ambiante avant l'enduction afin de favoriser la formation d'un dépôt homogène et l'adhérence du dépôt par fusion de la résine.
Le procédé selon l'invention peut également comprendre des opérations complémentaires, telles qu'une préparation des parties de la surface du substrat que l'on cherche à revêtir et/ou un séchage du revêtement brut avant le traitement thermique. La préparation de la surface du substrat comprend typiquement un nettoyage et/ou un dégraissage (par exemple à l'aide d'acétone).
Le traitement thermique dit de calcination comprend au moins une étape à une température ëlevée, qui est typiquement comprise entre 650 et 1300°C, et plus typiquement entre 800 et 1300°C, apte à transformer la couche crue en une céramique réfractaire, qui est avantageusement à l'état vitreux. La composition de la phase vitreuse comprend typiquement entre 5 et 25 % en poids de silice issue de la résine (le reste, soit typiquement 75.à 95 % en poids, est essentiellement constituë de la charge minérale). La température de calcination dépend également du substrat ;

par exemple, dans le cas d'un substrat métallique, elle est avantageusement inférieure à la température de ramollissement de celui-ci. D'autre part, il est également préférable d'utiliser une température de calcination supérieure à la température d'utilisation du substrat revêtu. Le traitement thermique peut comprendre une étape
4 The invention also relates to a method for coating a surface.
determined of a substrate of at least one refractory layer containing silicon in which - The substrate is coated with a coating precursor according to the invention, way to form a raw layer;
- a thermal treatment, called calcination, is carried out, capable of entraining elimination of volatile matter, calcination of said raw layer and the formation of a cohesive refractory layer.
The Applicant has observed that the process of the invention makes it possible to obtain a resistant and strongly adherent thin layer to the substrate which resists well to metal liquid and which has a strong cohesiveness.
The coating of the substrate (which typically includes depositing and spreading said precursor on the substrate) can be carried out by any known means, and preference by electrostatic powdering. The substrate can optionally be brought to a temperature above ambient before coating to promote training of a homogeneous deposit and the adhesion of the deposit by melting the resin.
The method according to the invention can also include operations complementary, such as a preparation of the parts of the surface of the substrate that we try to coat and / or dry the raw coating before treatment thermal. The preparation of the substrate surface typically includes a cleaning and / or degreasing (for example using acetone).
The so-called calcination heat treatment comprises at least one step at a high temperature, which is typically between 650 and 1300 ° C., and more typically between 800 and 1300 ° C, able to transform the raw layer into a refractory ceramic, which is advantageously in the vitreous state. The composition of the glassy phase typically comprises between 5 and 25% by weight of silica obtained of the resin (the rest, typically 75. 95% by weight, is essentially made of mineral filler). The calcination temperature also depends on the substrate;

for example, in the case of a metallic substrate, it is advantageously lower at the softening temperature thereof. On the other hand, it is also better to use a calcination temperature higher than the temperature of use of the coated substrate. The heat treatment may include a step

5 intermédiaire à une température comprise entre 200 et 600°C
(typiquement entre 200 et 250°C). Cette étape intermédiaire est de préférence apte à provoquer la réticulation de la résine et, éventuellement, la décomposition de celle-ci avant la «
céramisation »
(ou calcination finale) du revêtement. Dans ce cas, il est possible, selon une variante avantageuse de l'invention, de poursuivre le traitement thermique de calcination in situ, c'est-à-dire lors de l'utilisation du substrat à haute température (cette température étant de préférence supérieure à 650°C).
La durée du traitement thermique est de préférence telle qu'elle permet une cëramisation complète du précurseur. La montée en température est avantageusement suffisamment lente pour éviter la fissuration du revêtement.
Lors du traitement thermique, les composés organiques sont éliminés (par évaporation et/ou par décomposition), laissant sur une surface du subsfirat un solide réfractaire. Ce solide est par exemple formé à partir du métal provenant du composé
de métal et du silicium provenant de la résine de silicone. Dans le cas de l'alumine, les groupements silanols Si-OH du polysiloxane semblent établir des liaisons covalentes avec les groupements OH de l'alumine, lesquelles liaisons semblent se transformer en liaisons Si-O-Al, avec dégagement d'eau, lors du traitement thermique, pour former un alumino-silicate, qui est avantageusement à l'état vitreux.
Un mécanisme similaire pourrait se produire avec des composés de métal autres que l'alumine.
L'atmosphère ambiante durant traitement de calcination est avantageusement non-oxydante, afin d'éviter notamment une oxydation du substrat à l'interface substrat /
revêtement susceptible d'entraîner la décohésion entre le substrat et le revêtement, voire la destruction du substrat (par exemple lorsque celui-ci est en graphite).

WO 03/03343
5 intermediate at a temperature between 200 and 600 ° C
(typically between 200 and 250 ° C). This intermediate step is preferably capable of causing crosslinking of the resin and, possibly, the decomposition thereof before the "
ceramization »
(or final calcination) of the coating. In this case, it is possible, according to a variant advantageous of the invention, to continue the heat treatment of calcination in situ, i.e. when using the substrate at high temperature (this temperature preferably being greater than 650 ° C.).
The duration of the heat treatment is preferably such that it allows a complete ceramization of the precursor. The temperature rise is advantageously slow enough to prevent cracking of the coating.
During the heat treatment, organic compounds are removed (by evaporation and / or by decomposition), leaving on a surface of the subsfirate a solid refractory. This solid is for example formed from the metal coming from the compound of metal and silicon from the silicone resin. In the case of alumina, the Si-OH silanol groups of the polysiloxane seem to establish bonds covalent with the OH groups of alumina, which bonds seem to himself transform into Si-O-Al bonds, with release of water, during treatment thermal, to form an alumino-silicate, which is advantageously in the state glassy.
A similar mechanism could occur with other metal compounds than alumina.
The ambient atmosphere during calcination treatment is advantageously not oxidizing, in particular to avoid oxidation of the substrate at the interface substrate /
coating likely to cause decohesion between the substrate and the coating, or even the destruction of the substrate (for example when it is in graphite).

WO 03/03343

6 PCT/FR02/03517 Le revêtement définitif peut comprendre deux ou plusieurs couches successives, qui peuvent être appliquées par enductions et traitements thermiques successifs, i.e. par des séquences enduction / traitement thermique successives. En d'autres termes, on répète les opérations d'enduction et de traitement de calcination de la couche pour chaque couche élémentaire du revêtement définitif. Les couches successives peuvent posséder une composition différente, de manière à leur conférer des propriétés chimiques et mécaniques différentes. Cette dernière variante permet d'adapter chaque couche à une fonction locale, telle que l'adhérence au substrat pour la première couche, la résistance mécanique pour les couches intermédiaires et la résistance chimique pour la couche superficielle.
L'invention a ëgalement pour objet un substrat dont au moins une partie de la surface comprend au moins une couche réfractaire obtenue en utilisant ledit précurseur ou en utilisant ledit procédë de revêtement, laquelle couche réfractaire est avantageusement à l'état vitreux, avec ou sans gradient de composition dans le sens perpendiculaire à
la surface du substrat.
L'invention a également pour objet l'utilisation dudit précurseur ou dudit procédé de revêtement pour la protection d'un substrat, notamment pour la protection d'un matériau et/ou d'une pièce d'équipement destinés à être exposés à un environnement oxydant, à du métal liquide (notamment de l'aluminium, un alliage d'aluminium, du magnésium ou un alliage de magnésium, à l'état liquide) et/ou à un sel solide ou en fusion.
Le terme substrat doit être entendu au sens large : le substrat peut être en métal (tel qu'un alliage base fer-nickel-chrome (typiquement un acier ou un Inconel)), en matériau réfractaire ou en matériau carboné (tel que du graphite), ou un mélange ou une combinaison de ceux-ci ; il peut être un objet particulier (typiquement une pièce d'équipement, tel qu'un composant métallique ou réfractaire d'un métier de coulée, un busette, un distributeur de mëtal liquide dans un marais, un tamis en acier (notamment en acier inoxydable) ou en matériau réfractaire ou en céramique, un filtre mëtallique ou réfractaire, un injecteur de métal liquide ou de bulles de gaz, un rotor, une racle, un bec verseur, un capteur ultrason, un capteur de mesure (ultrason, température,...) destiné à être immergé dans un métal liquide, les pièces en matériaux carbonés, les briques en graphite, etc.), ou un matériau, notamment un matériau de revêtement (tel qu'une brique en matériau réfractaire ou en matériau carboné
(tel que du graphite)). Le substrat peut être poreux ou non-poreux.
Essais Plusieurs essais ont été réalisés sur différents substrats. Ces essais ont étë
réalisés à
l'aide des composants suivants ~ Charges minérales - des poudres d'alumine alpha calcinée (alumine de références P152SB et AC44 de la société Aluminium Pechiney) ayant respectivement un D5o de 1,5 et 50 ~,m et une surface spécifique BET de 3 et 1 mz/g ;
- une poudre de Tilla (référence ESK type S) ayant un D5o de 45 ~m ;
~ Résine silicone : un polyméthylsiloxane MK de la société Wacker, qui est une résine tri-fonctionnelle avec 1 % de groupements OH environ. Cette résine était composée d'environ 80 % d'équivalent silice et 20 % de groupements méthyl, qui se décomposent à une température de l'ordre de 450 °C ;
Des compositions de poudre ont été mises à l'essai. Elles avaient la composition suivante (% en poids) : 85,25 % de charge minérale (alumine ou Tilla), 14,49 %
de résine silicone et 0,26 % d'acide stéarique en tant qu'additif apte à abaisser la viscosité du mélange. Les proportions étaient telles que le revêtement réfractaire obtenu comprenait environ 88 % en poids d'équivalent du composé de métal (ou du mélange de composés de mëtal) et 12 % en poids d'ëquivalent silice.
Les poudres ont été préparées avec du matériel de plasturgie, incluant un malaxeur.
Dans ce malaxeur, préchauffé à 100°C afin de travailler au delà du point de fusion de la résine et en dessous de la température de réticulation de la résine, on a ajouté une ô
composition basée sur 100g de charge. A cette température, la résine fondait et se mélangeait intimement à la charge. Après refroidissement, on obtenait un bloc dur.
Ce bloc était broyé, tout d'abord avec un concasseur à mâchoires jusqu'à une granulométrie de 1 mm, puis avec un broyeur à boulets jusqu'à obtenir une granulométrie inférieure à 150 ~,m.
Les poudres obtenues ont été déposées par poudrage électrostatique sur différents substrats, tels que des busettes et des grillages en acier inoxydable 304 L.
Les substrats revétus ont été réticulés à une température de 240 °C
pendant une heure.
L'épaisseur finale du revêtement était typiquement de l'ordre de 50 ~m pour une couche. Ce revêtement était très uniforme et solide (à forte cohésivité et non-pulvérulente) et, dans le cas des grillages, ne bloquait pas les ouvertures de ceux-ci.
Des substrats ainsi revêtus ont été trempés directement dans de l'aluminium liquide à
une température d'environ 710 °C. La céramisation a été réalisée in situ.
Après plusieurs heures, voire plusieurs jours, d'immersion, aucune dégradation du revétement a été observée.
6 PCT / FR02 / 03517 The final coating may comprise two or more successive layers, who can be applied by successive coatings and heat treatments, ie by successive coating / heat treatment sequences. In others terms we repeats the operations of coating and calcination treatment of the layer for each elementary layer of the final covering. The successive layers can have a different composition, so as to give them properties different chemical and mechanical. This last variant makes it possible to adapt each layer has a local function, such as adhesion to the substrate for the first layer, the mechanical strength for the intermediate layers and the chemical resistance for the surface layer.
The invention also relates to a substrate of which at least part of the area comprises at least one refractory layer obtained using said precursor or in using said coating process, which refractory layer is advantageously in the glassy state, with or without a composition gradient in the direction perpendicular to the surface of the substrate.
The invention also relates to the use of said precursor or of said process of coating for the protection of a substrate, in particular for the protection of a material and / or piece of equipment intended to be exposed to a environment oxidizing agent, to liquid metal (in particular aluminum, an aluminum alloy, of magnesium or a magnesium alloy, in the liquid state) and / or a solid salt or in fusion.
The term substrate must be understood in the broad sense: the substrate can be metal (such than an iron-nickel-chromium base alloy (typically steel or Inconel)), refractory material or carbonaceous material (such as graphite), or a mix or a combination of these; it can be a particular object (typically a piece equipment, such as a metal or refractory component of a casting, a nozzle, a distributor of liquid metal in a swamp, a steel sieve (especially stainless steel) or refractory material or ceramic, a metal or refractory filter, a liquid metal or bubble injector gas, a rotor, doctor blade, pouring spout, ultrasonic sensor, measurement sensor (ultrasound, temperature, ...) intended to be immersed in a liquid metal, the parts materials carbonaceous, graphite bricks, etc.), or a material, in particular a material of coating (such as a brick of refractory material or carbonaceous material (such as graphite)). The substrate can be porous or non-porous.
testing Several tests have been carried out on different substrates. These tests were made at using the following components ~ Mineral fillers - powders of calcined alpha alumina (alumina of references P152SB and AC44 from the company Aluminum Pechiney) having respectively a D5o of 1.5 and 50 ~, m and a BET specific surface of 3 and 1 mz / g;
- Tilla powder (reference ESK type S) having a D5o of 45 ~ m;
~ Silicone resin: a polymethylsiloxane MK from the company Wacker, which is a tri-functional resin with approximately 1% of OH groups. This resin was composed of approximately 80% of silica equivalent and 20% of methyl groups, which himself decompose at a temperature of the order of 450 ° C;
Powder compositions were tested. They had the composition following (% by weight): 85.25% of mineral filler (alumina or Tilla), 14.49%
of silicone resin and 0.26% stearic acid as an additive capable of lowering the viscosity of the mixture. The proportions were such that the coating refractory obtained included about 88% by weight equivalent of the metal compound (or of mixture of metal compounds) and 12% by weight of silica equivalent.
The powders were prepared with plastics equipment, including a mixer.
In this mixer, preheated to 100 ° C in order to work beyond the melting point of the resin and below the crosslinking temperature of the resin, we have added a oh composition based on 100g of filler. At this temperature, the resin melted and this intimately mixed with the load. After cooling, we obtained a block hard.
This block was crushed, first with a jaw crusher to a grain size of 1 mm, then with a ball mill until a particle size less than 150 ~, m.
The powders obtained were deposited by electrostatic powdering on different substrates, such as 304 L stainless steel nozzles and screens.
The coated substrates were crosslinked at a temperature of 240 ° C.
during a hour.
The final coating thickness was typically around 50 ~ m for a layer. This coating was very uniform and solid (high cohesiveness and not pulverulent) and, in the case of fencing, did not block the openings of them.
Substrates thus coated were directly dipped in aluminum liquid to a temperature of around 710 ° C. Ceramization was carried out in if you.
After several hours or even days of immersion, no degradation of coating has been observed.

Claims (29)

REVENDICATIONS 1. Procédé pour revêtir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel:
- on prépare un précurseur de revêtement, sous forme de poudre, comprenant une résine silicone et une charge minérale apte à réagir chimiquement avec ladite résine de manière à produire une couche réfractaire cohésive après une opération de calcination, ladite résine silicone étant un polyméthylsiloxane ou un polyméthylsilsesquioxane, ou un mélange de ceux-ci, comprenant une proportion de groupements OH substitués aux groupements méthyle ;
- on enduit ladite surface du précurseur de revêtement, par poudrage électrostatique, de façon à former une couche crue ;
- on effectue un traitement thermique, dit de calcination, apte à entraîner l'élimination des matières volatiles, la calcination de ladite couche crue et la formation d'une couche réfractaire cohésive.
1. Method for coating a determined surface of a substrate with at least one refractory layer containing silicon in which:
- a coating precursor is prepared, in powder form, comprising a silicone resin and a mineral filler able to react chemically with said resin so as to produce a cohesive refractory layer after a calcining operation, said silicone resin being a polymethylsiloxane or one polymethylsilsesquioxane, or a mixture thereof, comprising a proportion of OH groups substituted for methyl groups;
- said surface is coated with the coating precursor, by powdering electrostatic, so as to form a green layer;
- a heat treatment, called calcination, capable of causing removing volatile materials, calcining said green layer and the formation of a cohesive refractory layer.
2. Procédé de revêtement selon la revendication 1, caractérisé en ce que les motifs siloxaniques de la résine silicone incluent des motifs tri- ou quadri-fonctionnels. 2. Coating method according to claim 1, characterized in that the patterns siloxane compounds of the silicone resin include tri- or quadri-units functional. 3. Procédé de revêtement selon la revendication 1 ou 2, caractérisé en ce que la proportion de groupements OH est comprise entre environ 0,5 % et environ 2 %. 3. Coating method according to claim 1 or 2, characterized in that the proportion of OH groups is between about 0.5% and about 2%. 4. Procédé de revêtement selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la charge minérale est choisie parmi les oxydes de métal, les carbures de métal et de non-métal, les borures de métal et de non-métal et les nitrures de métal et de non métal, ou une combinaison ou un mélange de ceux-ci. 4. Coating method according to any one of claims 1 to 3, characterized in that the mineral filler is chosen from oxides of metal, metal and non-metal carbides, metal and non-metal borides and them metal and non-metal nitrides, or a combination or mixture thereof this. 5. Procédé de revêtement selon la revendication 4, caractérisé en ce que la charge minérale comprend une alumine alpha calcinée. 5. Coating method according to claim 4, characterized in that the charge mineral includes a calcined alpha alumina. 6. Procédé de revêtement selon la revendication 4 ou 5, caractérisé en ce que la charge minérale est choisie dans le groupe comprenant ZrO2, ZrB2, TiB2, TiO2, nitrure de bore, et un mélange ou une combinaison de ceux-ci. 6. Coating method according to claim 4 or 5, characterized in that the mineral filler is chosen from the group comprising ZrO2, ZrB2, TiB2, TiO2, boron nitride, and a mixture or combination thereof. 7. Procédé de revêtement selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la charge minérale se présente sous forme de poudre dent la taille des grains est comprise entre 1,5 µm et 100 µm. 7. Coating method according to any one of claims 1 to 6, characterized in that the mineral filler is in the form of tooth powder the grain size is between 1.5 µm and 100 µm. 8. Procédé de revêtement selon fume quelconque des revendications 1 à 7, caractérisé en ce que la proportion de résine silicone dans le précurseur est comprise entre 10 et 20% en poids. 8. Coating method according to any of claims 1 to 7, characterized in that the proportion of silicone resin in the precursor is between 10 and 20% by weight. 9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la proportion de charge minérale dans le précurseur est comprise entre 80 et 90 %
en poids.
9. Method according to any one of claims 1 to 8, characterized in that that the proportion of mineral filler in the precursor is between 80 and 90%
in weight.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le précurseur comprend en outre un additif apte à diminuer la viscosité du précurseur. 10. Method according to any one of claims 1 to 9, characterized in that that the precursor further comprises an additive capable of reducing the viscosity of the precursor. 11. Procédé selon la revendication 10, caractérisé en ce que l'additif comprend un dispersant, tel qu'un acide stéarique. 11. Method according to claim 10, characterized in that the additive includes a dispersant, such as stearic acid. 12. Procédé selon la revendication 10 ou 11, caractérisé en ce que la proportion d'additif dans le précurseur est inférieure à 2 % en poids. 12. Method according to claim 10 or 11, characterized in that the proportion of additive in the precursor is less than 2% by weight. 13. Procédé selon la revendication 10 ou 11, caractérisé en ce que la proportion d'additif dans le précurseur est comprise entre 0,1 et 1 % en poids. 13. Method according to claim 10 or 11, characterized in that the proportion of additive in the precursor is between 0.1 and 1% by weight. 14. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel le substrat est porté à une température supérieure â l'ambiante avant l'enduction, 14. Method according to any one of claims 1 to 13, in which the substrate is brought to a temperature above ambient temperature before coating, 15. Procédé selon l'une quelconque des revendications 1 à 14, dans .lequel ledit traitement de calcination comprend au moins une étape à une température comprise entre 650 et 1300°C apte à transformer la couche crue en une céramique réfractaire. 15. Method according to any one of claims 1 to 14, in which said calcining treatment comprises at least one step at a temperature between 650 and 1300°C capable of transforming the raw layer into a refractory ceramics. 16. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel ledit traitement thermique comprend une étape intermédiaire à une température comprise entre 200 et 600°C. 16. Method according to any one of claims 1 to 15, in which said heat treatment includes an intermediate step at a temperature between 200 and 600°C. 17. Procédé selon l'une quelconque des revendications 1 à 16, dans lequel ledit traitement de calcination est effectué dans une atmosphère non-oxydante. 17. Method according to any one of claims 1 to 16, in which said Calcining treatment is carried out in a non-oxidizing atmosphere. 18. Procédé selon l'une quelconque des revendications 1 à 17, dans lequel ladite couche réfractaire est formée par plusieurs couches successives. 18. Method according to any one of claims 1 to 17, in which said refractory layer is formed by several successive layers. 19. Procédé selon l'une quelconque des revendications 1 à 18, caractérisé en ce que ledit substrat est en métal, en matériau réfractaire ou en matériau carboné, ou un mélange ou une combinaison de ceux-ci. 19. Method according to any one of claims 1 to 18, characterized in that said substrate is made of metal, refractory material or carbonaceous material, or one mixture or combination thereof. 20. Procédé selon la revendication 19, caractérisé en ce que ledit métal est ua alliage base fer-nickel-chrome. 20. Method according to claim 19, characterized in that said metal is au alloy iron-nickel-chrome base. 21. Procédé selon l'une quelconque des revendications 1 à 18, dans lequel ledit substrat est choisi dans le groupe comprenant les composants métalliques vu réfractaires d'un métier de coulée, les busettes, les distributeurs de métal liquide dans un marais, les tamis en acier, en acier inoxydable, en matériau réfractaire ou en céramique, les filtres métalliques, les filtres en matériau réfractaire, les injecteurs de métal liquide, les injecteurs de bulles de gaz, les rotors, les racles, les becs verseurs, les capteurs ultrason, les capteurs de mesure destinés à
être immergés dans un métal liquide, les briques en matériau réfractaire, les pièces en matériaux carbonés et les briques en graphite.
21. Method according to any one of claims 1 to 18, in which said substrate is chosen from the group comprising the metal components seen refractories of a casting loom, nozzles, metal dispensers liquid in a swamp, sieves made of steel, stainless steel, material refractory or ceramic, metal filters, filters made of refractory material, them liquid metal injectors, gas bubble injectors, rotors, doctor blades, pouring spouts, ultrasonic sensors, measurement sensors intended for be immersed in a liquid metal, the bricks made of refractory material, the parts in carbon materials and graphite bricks.
22. Utilisation du procédé selon l'une quelconque des revendications 1 à 18 pour la protection d'un matériau et/ou d'une pièce d'équipement destinés a être exposés à un environnement oxydant, à du métal liquide et/ou à un sel solide ou en fusion. 22. Use of the method according to any one of claims 1 to 18 for the protection of a material and/or a piece of equipment intended to be exposed to an oxidizing environment, liquid metal and/or solid salt or merger. 23. Utilisation selon la revendication 22, caractérisée en ce que ledit matériau est un métal, un réfractaire ou un matériau carboné, ou un mélange ou une combinaison de ceux-ci. 23. Use according to claim 22, characterized in that said material is a metal, refractory or carbonaceous material, or a mixture or combination of these. 24. Utilisation selon la revendication 23, caractérisée en ce que ledit métal est un alliage base fer-nickel-chrome. 24. Use according to claim 23, characterized in that said metal is a iron-nickel-chromium based alloy. 25, Utilisation selon la revendication 22, caractérisée en ce que ladite pièce est choisie dans le groupe comprenant les composants métalliques ou réfractaires d'un métier de coulée, les busettes, les distributeurs de métal liquide dans un marais, les tamis en acier, en acier inoxydable, en matériau réfractaire vu en céramique, les filtres métalliques, les filtres en matériau réfractaire, les injecteurs de métal liquide, les injecteurs de bulles de gai les rotors, les racles, les becs verseurs, les capteurs ultrason, les capteurs de mesure destinés à être immergés dans un métal liquide, les briques en matériau réfractaire, les pièces en matériaux carbonés et les briques en graphite. 25, Use according to claim 22, characterized in that said piece is selected from the group comprising metallic or refractory components of a casting loom, nozzles, distributors of liquid metal in a marshes, sieves in steel, in stainless steel, in refractory material seen in ceramics, metallic filters, filters made of refractory material, injectors of liquid metal, gas bubble injectors, rotors, doctor blades, spouts pourers, ultrasonic sensors, measurement sensors intended to be immersed in a liquid metal, the bricks in refractory material, the parts in carbon materials and graphite bricks. 26. Substrat caractérisé en ce qu'au moins une partie de la surface comprend au moins une couche réfractaire obtenue en utilisant le procédé selon l'une quelconque des revendications 1 à 18. 26. Substrate characterized in that at least part of the surface comprises to at least one refractory layer obtained by using the process according to one any of claims 1 to 18. 27. Substrat selon la revendication 26, caractérisé en ce qu'il est en métal, en matériau réfractaire ou en matériau carboné, ou un mélange ou une combinaison de ceux-ci. 27. Substrate according to claim 26, characterized in that it is made of metal, in refractory material or carbonaceous material, or a mixture or combination of these. 28. Substrat selon la revendication 27, caractérisé en ce que ledit métal est un alliage base fer-nickel-chrome. 28. Substrate according to claim 27, characterized in that said metal is an alloy iron-nickel-chrome base. 29. Substrat selon la revendication 26, caractérisé en ce qu'il est choisi dans le groupe comprenant les composants métalliques vu réfractaires d'un métier de coulée, les burettes, les distributeurs de métal liquide dans un marais, les tamis en acier, en acier inoxydable, en matériau réfractaire ou en céramique, les filtres métalliques, les filtres en matériau réfractaire, les injecteurs de métal liquide, les injecteurs de bulles de gaz, les rotors, les racles, les becs verseurs, les capteurs ultrason, les capteurs de mesure destinés à être immergés dans un métal liquide, les briques en matériau réfractaire, les pièces en matériaux carbonés et les briques en graphite. 29. Substrate according to claim 26, characterized in that it is chosen in the group comprising the metal components seen as refractories of a craft of casting, burettes, distributors of liquid metal in a swamp, sieve made of steel, stainless steel, refractory material or ceramic, the filters metal, filters made of refractory material, metal injectors liquid, the gas bubble injectors, rotors, scrapers, spouts, sensors ultrasound, measurement sensors intended to be immersed in a metal liquid, bricks made of refractory material, parts made of carbonaceous materials and graphite bricks.
CA002463568A 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer Abandoned CA2463568A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR01/13267 2001-10-15
FR0113267A FR2830857B1 (en) 2001-10-15 2001-10-15 COATING PRECURSOR AND METHOD FOR COATING A SUBSTRATE WITH A REFRACTORY LAYER
PCT/FR2002/003485 WO2003033767A2 (en) 2001-10-15 2002-10-11 Coating precursor and method for coating a substrate with a refractory layer
FRPCT/FR02/03485 2002-10-11
PCT/FR2002/003517 WO2003033436A2 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer

Publications (1)

Publication Number Publication Date
CA2463568A1 true CA2463568A1 (en) 2003-04-24

Family

ID=26213219

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002463568A Abandoned CA2463568A1 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer
CA002464340A Abandoned CA2464340A1 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA002464340A Abandoned CA2464340A1 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer

Country Status (4)

Country Link
EP (2) EP1436240A2 (en)
AU (2) AU2002358833B9 (en)
CA (2) CA2463568A1 (en)
WO (2) WO2003033435A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855774B1 (en) * 2003-06-05 2005-07-08 Pechiney Rhenalu METHOD FOR SEPARATING THE FALL LAYERS OF PLATED BANDS BY COLAMINING
DE102008044396A1 (en) * 2008-12-05 2010-06-10 Wacker Chemie Ag Highly hydrophobic coatings
FR2997616A1 (en) * 2012-11-06 2014-05-09 Seb Sa COOKING DEVICE HAVING A COOKING SURFACE HAVING NON-OXIDE OR AT LEAST PARTIALLY NON-OXIDE CERAMIC ANTI-ADHESIVE COATING, AND CULINARY ARTICLE OR HOME APPLIANCE COMPRISING SUCH A COOKING DEVICE
EP4139406A1 (en) * 2020-04-22 2023-03-01 Danieli & C. Officine Meccaniche S.p.A. Coating composition for metallic products and relative method
WO2021214802A1 (en) * 2020-04-22 2021-10-28 Danieli & C. Officine Meccaniche S.P.A. Coated metallic product

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536074B2 (en) * 1973-10-05 1980-09-18
US3928668A (en) * 1974-05-06 1975-12-23 Ferro Corp Electrostatic deposition of dry ceramic powders
US4292345A (en) * 1980-02-04 1981-09-29 Kolesnik Mikhail I Method of protecting carbon-containing component parts of metallurgical units from oxidation
GB2118201B (en) * 1982-01-12 1986-03-05 Otsuka Kagaku Yakuhin Heat-insulating refractory material
DE3439007A1 (en) * 1984-10-25 1986-04-30 Bayer Ag, 5090 Leverkusen METHOD FOR ELECTROSTATIC SPRAYING INORGANIC POWDER
DE3638937A1 (en) * 1986-11-14 1988-05-26 Sigri Gmbh Cathode for a molten-salt electrolysis cell
DE3700702C1 (en) * 1987-01-13 1988-02-11 Bayer Ag Enamel powder coated with organopolysiloxanes for electrostatic powder application and process for their production
US5215801A (en) * 1990-08-22 1993-06-01 At&T Bell Laboratories Silicone resin electronic device encapsulant
JPH04300251A (en) * 1991-03-28 1992-10-23 Shin Etsu Chem Co Ltd Production of sintered material of titanium boride
DE4122764A1 (en) * 1991-07-10 1993-01-14 Bayer Ag Thermoplastic moulding materials contg. e.g. sinterable ceramic - can be shaped using thermoplastic processing techniques and sintered to yield ceramic or metal bodies
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
JPH06212115A (en) * 1992-05-29 1994-08-02 Ube Ind Ltd Heat-resistant coating material
JP2654735B2 (en) * 1992-12-04 1997-09-17 日東電工株式会社 Label base material, ink and label
US5399441A (en) * 1994-04-12 1995-03-21 Dow Corning Corporation Method of applying opaque coatings
FR2730227B1 (en) * 1995-02-03 1997-03-14 Pechiney Recherche COMPOSITION FOR COATING CARBON PRODUCTS AND COATING
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
US5776235A (en) * 1996-10-04 1998-07-07 Dow Corning Corporation Thick opaque ceramic coatings
DE19833063A1 (en) * 1998-07-22 2000-02-03 Reinz Dichtungs Gmbh Solvent-free, applicable, thermosetting coating material
JP2000119595A (en) * 1998-10-14 2000-04-25 Shin Etsu Chem Co Ltd Organopolysiloxane composition for forming fired coat
RU2149168C1 (en) * 1998-12-15 2000-05-20 Открытое акционерное общество "Северсталь" Insulating heat-resistant composite formulation
US6294261B1 (en) * 1999-10-01 2001-09-25 General Electric Company Method for smoothing the surface of a protective coating
US6413578B1 (en) * 2000-10-12 2002-07-02 General Electric Company Method for repairing a thermal barrier coating and repaired coating formed thereby

Also Published As

Publication number Publication date
WO2003033435A2 (en) 2003-04-24
WO2003033436A2 (en) 2003-04-24
AU2002362826B2 (en) 2007-10-18
EP1438271A2 (en) 2004-07-21
AU2002358833B2 (en) 2007-10-25
WO2003033435A3 (en) 2003-09-25
WO2003033436A3 (en) 2003-09-25
AU2002358833B9 (en) 2008-05-22
CA2464340A1 (en) 2003-04-24
EP1436240A2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
US8012252B2 (en) Durable hard coating containing silicon nitride
US6919127B2 (en) Silicon carbide composites, and methods for making same
US7238390B2 (en) Coating precursor and method for coating a substrate with a refractory layer
AU777124B2 (en) Silicon carbide composites and methods for making same
CN101268027B (en) Layer or coating and a composition for the production thereof
WO1992007806A1 (en) Refractory materials bonded by a sialon matrix and method of preparation
CA2463656A1 (en) Coating precursor and method for coating a substrate with a refractory layer
EP0296981B1 (en) Insulating coating for refractories, coating process, and associated articles
WO1996015999A1 (en) Novel materials consisting of refractory grains bonded by a titanium nitride-containing aluminium nitride or sialon matrix
WO2017068283A1 (en) Fused spinel-zirconia grains and refractory product obtained from said grains
CA2463568A1 (en) Coating precursor and method for coating a substrate with a refractory layer
EP0144303A1 (en) Refractory concrete composition and metallurgical application thereof
EP3089952A1 (en) Refractory product having improved flow
EP0298860B1 (en) Refractory composition for sliding gate plate and process for manufacturing it
FR2668476A1 (en) REFRACTORY MATERIALS CONSISTING OF GRAINS AND PROCESS FOR THEIR MANUFACTURE.
RU2250887C2 (en) Silicium carbide containing composites and method for production the same
WO2022018088A1 (en) Silicon ceramic coating for protecting a substrate
EP1618079A1 (en) Use of a silicon carbide-based ceramic material in aggressive environments
JP2005161359A (en) Method for coating mold for silicon casting, and mold for silicon casting
JP4020224B2 (en) Molten metal processing parts
FR3042496A1 (en) USE OF FILLED ZIRCONIA - SPINELLE GRAINS FOR THE MANUFACTURE OF REFRACTORY PRODUCTS

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead