CA2416410C - Ventilation interface for sleep apnea therapy - Google Patents

Ventilation interface for sleep apnea therapy Download PDF

Info

Publication number
CA2416410C
CA2416410C CA2416410A CA2416410A CA2416410C CA 2416410 C CA2416410 C CA 2416410C CA 2416410 A CA2416410 A CA 2416410A CA 2416410 A CA2416410 A CA 2416410A CA 2416410 C CA2416410 C CA 2416410C
Authority
CA
Canada
Prior art keywords
nasal insert
nasal
ventilation interface
exit port
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2416410A
Other languages
French (fr)
Other versions
CA2416410A1 (en
Inventor
Thomas J. Wood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innomed Technologies Inc
Original Assignee
Innomed Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/044,925 external-priority patent/US6595215B2/en
Priority claimed from US10/096,795 external-priority patent/US6776162B2/en
Application filed by Innomed Technologies Inc filed Critical Innomed Technologies Inc
Publication of CA2416410A1 publication Critical patent/CA2416410A1/en
Application granted granted Critical
Publication of CA2416410C publication Critical patent/CA2416410C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

The ventilation interface for sleep apnea therapy interfaces a ventilation device to the patient's airways. The ventilation interface includes a pair of nasal inserts made from flexible, resilient silicone which are oval shaped in cross-section and slightly tapered from a base proximal the ventilation supply to the distal tip end. A bead flange is disposed about the exterior of each insert at the distal end of the insert. In one embodiment, a valve is disposed between the nasal inserts and a source of positive airway pressure, the valve having a rim with a one-way diaphragm pivotally attached to the valve body with an inflatable bladder depending from the rim which seals against an exit port during inspiration and deflates to uncover the exit port on expiration. Another embodiment has nasal inserts without positive airway pressure but with a removable filter in the inserts for filtering inspired air.

Description

VENTILATION INTERFACE FOR SLEEP APNEA THERAPY
BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
The present invention relates to ventilation devices, and particularly to a ventilation device having nasal inserts which are inserted into the nostrils and seal against the nostrils without the aid of harnesses, head straps, adhesive tape or other external devices, and having exhalation ports designed to eliminate whistling noises, the ventilation interface having particular utility in various modes of therapy for obstructive sleep apnea. The invention may include a valve used in lieu of the exhalation port:, and may include nasal inserts used with filters for eliminating allergens and irritants from inhaled air but used without positive airw,sy pressure.
2. DESCRIPTION OF THE RELATED ART
i5 Sleep apnea is a potentially lethal affliction in which breathing stops recurrently during sleep. Sl.eE:p apnea may be of the obstructive type (sometimes known as the pickwickian syndrome) in which the upper airway is blocked in spite of airflow drive; the central type with decreased respiratory drive; or a mixed type. Breathing may cease for periods long enough to cause or to exacerbate cardiac conditions, and may be accompanied by swallowing of the tongue. Sleep apnea frequently results in fitful periods of both day and night sleeping with drowsiness and exhaustion, leaving the patient physically and mentally debilitated.

In recent years it has been found that various forms of positive airway pressure during sleep can be an effective form of therapy for the apnea sufferer. Ventilation ~~an be applied in the form of Continuous Positive Airway Pressure (C: PAP) in which a positive pressure is maintained in the airway throughout the respiratory cycle, Bilevel Positive Airway Pressure (BiPAP) in which positive pressure is maintained during inspiration but reduced during expiration, and Intermittent Mechanical Positive Pressure Ventilation in which pressure is applied when an episode c:>f apnea is sensed. Positive airway pressure devices have traditionally employed either a face mask which only covers the patient's nose, or nasal pillows as the interface between the ventilation device and the patient's airway. However, there are problems with both of these interfaces.
The face mask requires a harness, headband, or other headgear to keep the mask in position, which many patients find uncomfortable, particularly when sleeping. The face mask must seal the mask against the patient's face, and may cause irritation and facial sores, particularly if the patient moves his head while sleeping, causing the mask to rub against the skim. Face masks are also position dependent, and may leak if the mask changes position with movement of the patient' s head. The face mask applies pressure to the sinus area of the face adjacent to the nose, causing the airways to narrow, thereby increasing the velocity of flow through the airway, but decreasing the pressure against the nasal mucosal. walls. This strips moisture from the mucosal wall during inspiration, thereby causing drying and a burning sensation. These factors will often result in the patient' s removal of the mask and discontinuance of positive airway pressure therapy.
Nasal pillows are pillowed style nasal seals which are pressed against the inferior portion of the nares to close the nostril openings. Nasal pillows require a headband or harness to maintain the pressure, resulting in the same patient discomfort noted with face masks. Nasal pillows have about a 0.2.'5" internal diameter at the nasal entry port where the seal is made. 'therefore, pressurized air must pass through a constricted port, increasing the velocity of airflow, with resultant drying and burning of the nasal airways . The narrowed interface diameter of the nasal pillows causes a pressure drop, which is directly proportional to the drop in the number of available air molecules within the closed system. :Ct is the volume of air molecules at the area in the patient' s throat where the apneic events appear that is needed to correct apnea. The narrower the airways or the internal diameter of the nasal interface, the :Lower the volume of air molecules that will be available and th~~ great.er the driving pressure that is required to meet the volume demand. An increase in driving pressure does not fully compensate for the l.o:~s in the number of air molecules available.
A further problem with existing ventilation devices is that the carbon dioxide bleed ports f:or venting exhaled gases are noisy on both nasal face masks and nasal pillows. The whistling noise that occurs while utilizing such devices can prove quite annoying to the patient, awakening the patient and causing the patient to discontinue use of the ventilation device.
A number of devices have been proposed which include a ventilation interface for supplying gases to be inhaled, for collecting exhaled gases, or for mounting sensors for measuring or monitoring respiratory function.
U. S. Patent Nos. 5, 335, 654 and 5, 535, 739, issued on August 9, 1994 to Rapoport and July 16, 1996 to Rapoport et al., respectively, describe a CPAP system using a conventional nasal mask, the innovation comprising a flow sensor in the input line connected to a signal processor to determine the waveform of airflow, which is connected to a flow controller to adjust the press°are of airflow as required. U.S.
Des. Pat. No. 333, 015, issued February 2, 1993 to Farmer et al. . shows an ornamental design for a nasal mask. U.S. Des. Patent No. 262,322, issued December 15, 1981 to Mizerak, shows an ornamental design for a nasal cannula with a mouth mask.
U. S. Patent No. 4, 782, 832, issued November 8, 1988 to Trimble et al . , discloses nasal pillows held in the patient' s nose by a harness arrangement, the device having a p:Lenum with two accordion or bellows shaped nipples for fitting against the nostril openings. U.S. Patent Nos. 4, 774, 946, issued October 4, 1988 to Ackerman et al., teaches a nasal and endotracheal tube apparatus for administering CPAP to infants, the nose tubes having a bulbous portion for seating in the nares of an infant and a headband with a Velcro0 closure for supporting the cannula and supply tubes.
U. S. Patent Nos . 5, 269, 296, issued to Landis on December 14, 1993, and 5, 477, 852 and 5, 687, 715, issued to Landis et al. on December 26, 1995, and November 18, 1997, respectively, describe CPAP devices for the treatment of sleep apnea with relatively stiff or rigid nasal cannulae or prongs surrounded b;y inflatable cuffs to retain the cannulae in the nares, but which also may be supplemented by an inflatable head harness to position the cannulae and hold them in place, the two cannulae being joined by a conduit having vent holes to vent exhaled air. U. S. Patent No. 5, 533, 506, issued ,Tuly 9, 1996 to the present inventor, discloses <~ nasal tube assembly in which the tubes are tapered, frustro-conical assemblies with a soft membrane over the distal tip and a washer at the k>ase of the nasal tube to prevent the tubes from falling through a support bar connected to a harness, the nasal tubes forming a positive seal with the inside of the nostrils to prevent the escape of gases.
U. S. Patent No. 5, 682, 881, issued November 4, 1997 to Winthrop et al., shows a nasal cannula for CPAP therapy with cone shaped nasal prongs in which the cannuia is secured to the patient' s upper lip by adhesive tape strips. U. S. Patent. No. 4, 915, 105, issued April 10, 1990 to Lee, teaches a miniature respiratory breather apparatus in which relatively stiff or rigid nasal tubes have elastomeric packings for sealing the tubes in the nares.
Several patents describe improvements to nasal cannulae, but without sealing the nose tubes against the nostrils to prevent leakage of gas, including: U. S. Patents No. 3, 513, 844, issued May 26, 1970 to Smith (metal strip in cannula cross-tube to retain configuration matching patient's lip) ; U.S. Patent No. 4, 106, 505, issued August 15, 1978 to Salter et al. (cannula body with ends extending upward and rearward) ; U.S. Patent No. 4, 915, 109, issued April 10, 1990 to Marcy ( clasp with lanyard supporting supply tubes t=o ease pressure on ears ) ;
U. S. Patent No. 5, 025, 805, issued June 25, 1991 to Nutter (cylindrical soft sponge cuff around supply tubes to ease pressure and prevent skin injuries); U.S. Patent No. 5,096,491, issued September 10, 1991 to Derrick (device for collecting gases exhaled from both nose and mouth) ;
U.S. Patent No. 5, 335, 659, issued August 9, 1994 to Pologe (device for mounting optical sensor on nasal septum) ; U. S. Patent No. 5, 509, 409, issued April 23, 1996 to Weatherholt (nasal cannula with face guards) ;
U. S. Patent No. 5, 572, 994, issued NovE:mber 12, 1996 to Smith (rotatable coupling in supply tubing) ; U. S. Patent No. 5, 636, 630, issued June 10, 1997 to Miller et al. (support for supply tubes); U.S. Patent No.
5, 704, 916, issued January 6, 1998 to Byrd (novel head strap for nasal cannula); and U.S. Patent No. 5,'704,799, issued April 21, 1998 to Nielsen (device with one-way flow through cannula and flow restrictor to equalize flow into two nose members).

None of the above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed.
Thus a ventilation interface for s:Leep apnea therapy solving the aforementioned problems is desired.
SUMMARY OF THE INVENTION
The present invention is a ventilation interface. The ventilation interface includes a pair of rlasa~_ inserts . Each nasal insert is a hollow body made from a flexible, resilient, soft, biocompatible material. Each nasal insert has a :base end adapted for connection to a ventilator air flow and an open distal tip end. Each nasal insert is substantially oval in cross-section at the base end and the distal end and continuously oval in cross-section between the base end and the distal end. A flange is formed as a bead disposed about the distal tip end of each nasal insert. The flange is adapted for forming a seal against a naris of a patient's nose. Each nasal insert is capable of being compressed and inserted into the patient' s naris to a patient' s mucosal membrane and being retained therein solely by the flange, by the resilience of the nasal insert, and by lateral pressure against the naris from ventilator air flow through each nasal insert.
Also part of the invention is a ventilation interface which includes a nasal insert. The nasal insert is a hollow body made from a flexible, resilient, soft, biocompatible material, having a base end and a tip end. The nasal insert is substantially oval in cross-section at the base end and the tip end arid continuously oval in cross-section between the base end and the tip end. A flange is formed as a bead disposed about the tip end of the nasal insert. The flange is adapted for forming a seal against a naris of a patient's nose. A valve is included having a hollow valve body.. The hollow valve body includes a superior end attached to the base end of the nasal insert and an inferior end adapted for attachment to supply tubing from a ventilator.
The valve has an exit port: defined in the valve body. A gate is pivotally attached to the valve body. The gate has a rigid rim and a one-way gas permeable diaphragm extending across the rim. The valve has a flexible, tubular bladder having a first end attached to the rim of the gate and an open second end attached to the valve body. The nasal insert is capable of being compressed and inserted into the patient' s naris to a patient' s mucosal membrane and being retained therein solely by the flange and by the resilience of the nasal insert.
The gate pivots between a first position during inspiration and a second position during expiration. In the first position the rim of the gate is above the exit port, and the bladder inflates to form a seal over the exit port. In the second position the rim of the gate is below the exit port, opening the exit port for release of exhaled air to the atmosphere.
Also part of the invention is a ventilation interface including a nasal insert. The nasal insert is a hollow body made from a flexible, resilient, soft, biocompai=ible material, having a base end and a tip end. The nasal insert is substantially oval in cross-section at the base end and the tip end and continuously oval in cross-section between the base end and the tip end. A flange is formed as a bead disposed about the tip end of the nasal insert. The flange is adapted for forming a seal against a nari.s of a patient's nose. A one-way expiratory diaphragm is disposed across the base end of the nasal insert. The expiratory diaphragm permits passage of exhaled air from the tip end through the base end, bui: prevents passage of inhaled air through the base end towards the t:ip end. A one-way inspiratory diaphragm is disposed in the nasal. insert adjacent the base end. The inspiratory diaphragm permits passage of inhaled air from outside the nasal insert, through the inspiratoz:y diaphragm, and into the nasal insert, but prevents passage of exhaled air through the inspiratory diaphragm and out of the nasal insert. A removable filter is disposed over the inspiratory diaphragm. Means are provided for retaining the filter. The nasal insert is capable of being compressed and inserted into the patient's naris to a pat:ient's mucosal membrane and being retained therein solely by the flange and by the resilience of the nasal insert. The inspiratory diaphragm is disposed below the patient's naris.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a front environmental view of a ventilation interface for sleep apnea therapy according to the present invention.
Fig. 2A is an exploded elevational of a ventilation interface according to the present invention.
Fig. 2B is a perspective view of a ventilation interface embodied in a nasal cannula body according to the present invention.
Fig.3 is a section view along the lines 3-3 of Fig.
2A.

Fig.4 is a section view along the lines 4-4 of Fig.
2A.

Fig.5 is a section view along the lines 5-5 of Fig.
2A.

Fig. 6 is a perspective view of an embodiment of the ventilation interface with the nasal inserts incorporated into independent supply tubes.
Fig. 7 is a perspective view of an embodiment of the ventilation interface with the nasal inserts incorporated into independent supply tubes, and having valves disposed between the nasal inserts and supply tubes.
Fig. 8 is a longitudinal sectional view through the valve assembly of Fig. 7 showing the position of the valve during the inspiratory cycle.
Fig. 9 is a longitudinal sectional view through the valve assembly of Fig. 7 showing the position of the valve during the expiratory cycle.
Fig. 10 is a front perspective view of a left nostril nasal insert fitted with a filter for therapeutic treatment of asthma and other respiratory ailments, the right nostril nasal insert being a mirror image.
Fig. 11 is a top view of the nasal insert of Fig. 10.
Fig. 12 is a section view along the lines 10-10 of Fig. 12.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The ventilation interface for .sleep apnea therapy interfaces a ventilation device which provides positive airway pressure (either continuous, bilevel, or intermittent) with the patient's airways. The ventilation interface includes a pair of nasal inserts made from flexible, resilient silicone which are oval shaped in cross-section and slightly tapered from a base proximal the ventilation supply to the distal tip end. A bead flange is disposed about the exterior of each insert at the distal end of the insert . A bleed port for release of exhaled air is defined through a conical vent projecting normally to the path of the incoming air flow, and continues through a nipple extending to the exterior of the air conduit . In one embodiment, a pair of nasal inserts are integral with a nasal cannula body, with bleed ports axially aligned with each insert. In another embodiment, each insert is independently connected to a separate, thin-walled, flexible supply line.
Advantageously, the construction, of the nasal inserts permits the ventilation interface to be retained in the patient' s pares without requiring a harness, head strap, or other retaining device. The nasal inserts do not merely seal the base of the nostrils, but are inserted into the nostrils farther than nasal pillows, as far as the nasal mucosal membrane, and are retained by resilient expansion of the inserts, the flanges engaging notches in the pares, together with the pressure of incoming air, which forms a positive seal to prevent the leakage of air past the inserts . The nasal inserts are constructed according to specifications which permit the inserts to be relatively thin-walled, and are oval-shaped in cross-section to conform to the shape of the nostrils. This construction permits the nasal inserts to have a large internal diameter in order to pass a greater volume of air than nasal pillows or prongs, without significant narrowing of the air passages, thereby maintaining lateral pressure, and avoiding drying and burning of the patient' s nasal passages, as well as supplying a sufficient number of air molecules at. the desired pressure to keep the patient's airways patent. Consequently, the ventilation device is more comfortable for the patient: to wear while sleeping than conventional positive airway pressure devices, but at the same time is more effective in treating the patien't's apnea.
The bleed ports are specially designed to avoid the whistling ~5 noises commonly experienced with conventional nasal masks and nasal pillows . By proj ecting the vent structure into the air passage normal to the direction of the air flow from the supply tubes, incoming air must turn ninety degrees and exit through a long, restricted diameter bleed port to vent to the atmosphere, eliminating whistling noises to increase patient comfort. In the embodiment having a nasal cannula body, the bleed ports are axially aligned with the nasal inserts, providing COZ with a direct path to exit the cannula body. When the nasal inserts are attached to independent supply tubes, the bleed ports are at the base of the nostrils, providing essentially normal exhalation.
When the nasal inserts are directly connected to the supply tubes, the nasal inserts may be even more train-walled than when attached to a cannula body, resulting in an even greater volume of air supplied through the cannula body, up to a 20o increase in volume. In this case the supply tubes may be similar to he~it-shrink tubing, being made from a very thin-walled thermoplastic material that is lightweight and flexible so that the supply tubing may collapse when not in use, but will expand to a predetermined diameter under pressure applied by a ventilator.
Under some circumstances it may prove advantageous to insert a valve between the nasal inserts and the supply lines to control the flow of air through the inserts . The valve may serve as an alternative to the bleed ports, providing isolation between inhaled and exhaled air, or may be connected to an electrical or mechanical control device for BiPAP or Intermittent Mechanical Positive Pressure Ventilation.
One valve which may be used includes a valve body having a gate with a rim attached to one wall by a hinge and disposed to pivot between an inspiratory position in which the rim extends transversely across the inside perimeter of the nasal insert, and an expiratory position in which the rim swings downward against a stop. A one-way diaphragm extends across the rim which only permits inspiratory air to pass through the diaphragm. An ex>it port is defined in a sidewall of the valve body opposite the hinge. A flexible, inflatable bladder depends from the rim and is attached to true sidewalk of the valve body below the exit port. During inspiration incoming air inflates the bladder and raises the rim against a stop positioned above the exit port, the bladder inflating against the e::it port and blocking the passage of air through the exit port. On expiration, the pressure of expired air against the one-way diaphragm opens the valve, expired air leaving the valve body through the exit port.
The nasal inserts may also be used without a mechanical ventilation supply, or positive airway pressure, in certain applications. For example, a one-way expiratory diaphragm may be placed across the base of the nasal inserts . A one-way inspiratory diaphragm is disposed in the sidewall of the nasal insert adjacent the base, so that the inspiratory diaphragm is disposed below the bottom of the nostril when the nasal inserts are worn. The inspiratory diaphragm may include a removable filter which is retained against the diaphragm by an elastic mesh, spring clips, hooks, or other retainer means. The filter may be of the type used to filter out dust, pollen, bacteria, allergens, and other nasal irritants. Use of the nasal inserts fitted with the filter while sleeping may be of therapeutic value in the treatment of asthma and other respiratory ailments.
The ventilation interface for sleep apnea therapy is designated generally as 10 in the drawings. The ventilation interface 10 provides an interface for connecting a ventilation device which provides positive airway pressure (either continuous, bilevel, or intermittent) with the patient's airways. As shown in Figs. 1 and 2A, the ventilation interface 10 includes a conventional adapter or Y-connector 12 having a first end adapted to receive a supply hose 14 from a mechanical ventilator (not shown) .and a second end having a pair of ports 16 with barbed connectors far attachment to two supply tubes 18.
Supply tubes 18 may be, e. g. , 0. 312 5" ID (inside diameter) flexchem tubing, made of polyvinyl chloride or other conventional gas supply tubing. For sleep apnea therapy, the mechanical ventilator will usually supply room air at a pressure of between five and fifteen centimeters of water. The room air may be supplemented with oxygen if desired by splicing an oxygen supply line into supply hose 14 or using a triple port connector in lieu o.f '~-connector 12. It is normally unnecessary to humidify or add moisture to the air supplied by the mechanical ventilator in using the ventilation interface 10 of the present invention, as the interface 10 is designed to avoid stripping moisture from the nares, so that moi~~ture does not have to be added to relieve patient discomfort from drying or burning sensation in the nasal airways.
In the embodiment shown in Figs . 1 and 2A, the ends of the supply tubes distal from the Y-connector 12 are attached to opposite ends of a nasal cannula body 22 by barbed connectors 20. Barbed connectors 20 preferably have an inside diameter substantially equal to the inside diameter of supply tubes 18 in order to prevent any constriction or narrowing of the air passage which may cause increased velocity in air flow. Nasal cannula body 22, described more fully below, has a pair of nasal inserts 30 which are inser~;.ed into the nares of the patient P. The supply tubes may be looped over the patient's ears and joined to the Y-connector 12, which may be suspended at about the patient' s chest level when the patient :is star,,ding, as shown in Fig. 1. For Bi-level Positive Airway Pressure (BiPAP) or Intermittent Mechanical Positive Pressure Ventilation l.herapy, a suitable valve may be connected between the supply tubes 18 and the cannula body 22. An exemplary valve is described in the Applicant's prior application, Serial Number 09/524,371, filed March 13, 2000.
The nasal cannula body 22 is s:~own in greater detail in Fig. 2B.
The cannula body 22 is an arcuate, hollow, body having substantially flat top wall 22a and flat sidewalls 22b merging with a semi-cylindrical bottom wall 22c defining an air chamber 22d (seen more clearly in Fig. 3) for the passage of air and other gases, and having cylindrical tubes 24 at opposite ends which receive one end of the barbed connectors 20. A notch 26 is defined transversely across the top wall 22a of the cannula body 22, defining a pair of mounting pads 28. A pair of nasal inserts 30 are formed integral with the mounting pads 28. The nasal inserts 30 are hallow and form a continuous flow path or conduit for the passage of inhaled and exhaled gases between the patient's nasal air passages and the air chamber 22d.
The nasal inserts are shown in greater detail in Figs . 3, 4, and 5. The nasal inserts 30 are substantially oval in cross-section, with the major axis substantially parallel with the notch and the minor axis normal to the notch. The nasal inserts 30 taper slightly from a wide base 32 proximal the cannula body 22 to the open distal tip ends 39.
The nasal inserts 30 have a flange 36 about the distal tip ends 34 on the exterior surface of the inserts 30, which may be formed as a semi-cylindrical bead.
The cannula body 22, including the nasal inserts 30, are preferably made from silicone elastomer. The cannula body 22 or air chamber 22d has an internal diameter of at least 0.3125 inches throughout its length. The walls of the nasal inserts 30 may be thinner than the top wall 22a. The thickness of the walls of the nasal inserts 30 are preferably between about 1/32 and 1/20 inches. The thickness of the walls at the flange 36 may be about 1/16 inches. The hardness of the walls of the nasal insert 30, as tested on a type A
Shore durometer, may range between about 15 and 40, preferably about 30. If the walls of the nasal inserts 30 are made any thinner, they will fail to have sufficient integrity, and if made any thicker, they will have insufficient flexibility to form a seal against the nares.
Z. ~1 The thinness and softness of the nasal inserts 30 make them virtually unnoticeable while in the nostrils. For an adult patient, the nasal inserts may have a height of between <about 0.25 and 0.75 inches. The internal diameter of the nasal inserts 30 may measure about 0.75" on the major axis and 0.5" on the minor axis, allowing for generous laminar air flow and delivering pressure more by volume of air molecules than velocity of air flow, and deliver about double the volume of nasal pillows, which have a round internal diameter of, for example, about 0.25 inches. Nasal pillows cannot be made with such large internal diameters, because it. becomes difficult to create a seal under the bottom of the nose, as the pillows would have an internal diameter larger than the internal diameter of the nares, and the pillows are not as flexible as the nasal inserts 30 of the present invention.
/ In use, the nasal inserts 30 are inserted up the patient' s nostrils until the flanges 36 lodge against the mucous membranes. As such, the nasal inserts 30 are considered an invasive device. Testing has confirmed that the nasal inserts 30 are biocompatible and meet regulatory requirements. The nasal inserts are retained in the patient's nares by the flanges 36, by the flexibility and resiliency of the silicone elastomer, and by lateral pressure of the room air, which is maintained at between five and fifteen centimeters of water.
The oval cross-section of the nasal inserts 30 is shaped to conform to the normally oval shape of the nares. The relative large internal diameter of the nasal inserts 30 permits air to be supplied to the patient's airways in sufficient volume at the driving pressure without accelerating the rate of airflow that the patient has sufficient positive airway pressure to be of therapeutic value in maintaining the patient's airways patent during an episode of obstructive apnea without drying the nasal passages. The notch 26 in the top wall 22a of the cannula body 22 lends additional fl.e~;ibility to the cannula body 22, so that the nasal cannula 22 can be adjusted for deviated septums, thick septums, and other anatomical variations in the configuration of the nostrils.
The cannula body 22 has a pair of bleeder ports 38 disposed in the bottom wall 22c directly below and axially aligned with the nasal inserts 30. The bleeder ports are formed by an upper conically shaped nipple 40 extending upward into the air chamber 22d, and a lower conically shaped nipple 42 extending below the bottom wall 22c. The bleeder port has an internal diameter_ if about three millimeters and extends for a length of abc>ut 0.25 inches. The upper nipple 40 extends about 0.125 inches into the air chamber 22d. The internal diameter of the bleeder port 38 is ample to permit venting of carbon dioxide exhaled by the patient while not being so large as to cause a significant pressure drop in the cannula body 22, and axial alignment of the bleeder port 38 with the nasal inserts 22 creates a direct path for venting of the expired gases. Ate the same time, laminar flow of air supplied by the supply tubes is normal to the bleeder ports 38, so that air supplied by the ventilator must bend ninety degrees to exit through the elongated bleeder port 38. The effect of this construction is that the bleeder port 38 is virtually silent in operation, eliminating the whistle associated with bleeder holes in conventional ventilation interfaces.
Fig. 6 is a general~yy diagrammatic view of an alternative embodiment of the ventilation interface, designated 50 in the drawing.
In this embodiment, each nasal insert 52 is connected to a separate supply tube 54, the supply tubes 54 b~°ing connected to the mechanical ventilator supply hose 56 by a suitab:Le Y-connector 58 or adapter, the cannula body 22 and common air chamber 22d being omitted. The nasal inserts 52 have substantial:Ly the same construction as nasal inserts 30, being oval in cross-section and having a similar height and an annular flange 60 about the distal t.ip for lodging the nasal insert 52 in a naris. The nasal insert 52 is al:~o made from silicone elastomer, and has the same softness, thickness, flexibility and resilience as the nasal insert 30. In this configuration, since the inserts are not connected to the cannula body 22, the angle at which the inserts 52 enter the nostrils is not restricted by the cannula body 22, and therefore the nares can accept a greater displacement, and may accommodate a 20% greater volume of air molecules through the insert 52 than the insert 30.
In this embodiment, the supply tubes 54 may be made from a flexible, lightweight, but relatively inelastic thermoplastic material, similar to heat shrink tubing, so that the supply tubes 54 may be at least partially collapsed in the absence of pressure from the mechanical ventilator, but expand to their maximum diameter under a pressure of between five to fifteen centimeters of water. The light weight of the supply tubes 54 decreases any pressure on the patient' s ears resulting from the weight of the supply tubes, increasing patient comfort. The bleeder ports 62 have a similar construction to the bleeder ports 38, having an internal nipple 65 normal to the axis of the nasal insert 52 and an external nipple 64, the bleeder ports 62 being j ust above the base of the inserts 52 and normal to the f low of supply air through the inserts 52.
It will be understood by those skilled in the art that the dimensions of the nasal inserts 30 and 52, and of the bleeder ports 38 and 62, are representative dimensions for a ventilation interface 10 or 50 designed for adults, and that the ventilation interface 10 or 50 may be made with correspondingly reduced dimensions for teenage children, preteens, and infants . It will also be understood that the nasal inserts 30 and 52 may be made from thermoplastic elastomers other than silicone, providing that the material has similar softness, resilience, flexibility, and biocompatibility. It will also be understood by those skilled in the art that the nasal inserts 30 and 52, although illustrated in conjunction with ventilation devices for the treatment of sleep apnea, may be used in any other application where it is desirable to have an interface forming a seal between a person's nasal airways and a ventilation or gas collection device, including, but not limited to, rescue breathing apparatus used by firefighters and other emergency personnel., scuba diving tanks, etc.
In lieu of bleeder ports, the ventilation interface may use a valve for providing an exit port fo:r exhaled air, and for providing isolation between inhaled and exhaled air. Figs. 7-9 show the apparatus of Fig. 6 modified by a flapper type valve inserted inline between the nasal inserts 70 and the supply tubes 54. The valve includes a valve body 72 having an exit port 74 defined by a mesh grid in a sidewall of the valve body 74. In Fig. 7 the components shown below the valve body 72 are identical to those shown in Fig. 6, and will not be described further. Nasal inserts 70 are identical in construction to inserts 30 and 52, and will not be described further.
Valve body 72 may be constructed from the same material as nasal inserts 70. Although shown as generally oval in cross-section in Figs.
7-9, the shape of the valve body is not critical and it will be understood that the valve body 72 may have any suitable shape in transverse cross-section, including oval, circular, square, etc.
Fig. 8 is a sectional view showing the position of the valve components during the inspiratory cycle. The valve body 72 is hollow and defines an air conduit extending between its inferior end 76 and superior end 78. Disposed within the valve body 72 is a flapper type disk or gate 80, having a relatively rigid rim 82 defining the perimeter of the gate 80, and a one-way diaphragm 84 stretched across and supported by the rim 82. The perimeter of the rim 82 is slightly smaller than the inside perimeter of t:he valve body 72 so that the gate 80 closes the air conduit when dispo~>ed in the position shown in Fig.
8. The one-way diaphragm 84 permits air from the supply tubes 54 to pass through the diaphragm in the direction shown by the arrows in Fig.
8, but does not permit expired air tc travel through the diaphragm 84 in the opposite direction. The gate 80 is pivotally attached to a sidewall of the valve body 72 by a hinge 86. A flexible, inflatable/deflatable tubular bladder 88 extends between the inferior end 76 of the valve body 72 and the rim 82 of the gate 80. The bladder 88 is open at the inferior end of the valve body 72 and is closed by the rim 82 and diaphragm 84 at the opposite end of the bladder 88.
During inspiration, inspired air travels from the supply tubes 54 and enters the valve body 72 at the inferior end 76. The inspired air inflates the bladder 88, causing the rim 82 of the gate 80 to pivot upward against a stop 90 disposed on a sidewall of the valve body 72 which limits travel of the gate 80. The stop 90 may be a post or protrusion extending into the hollow valve body 72, or the stop 90 may be an internal flange disposed about the entire inner circumference of the valve body 72 which defines a valve seat and which forms a seal with the rim 82 during inspiration. As shown in Fig. 8, the bladder 88 inflates against the exit port 74, sealing the exit port 74 so that air does not escape through the exit port 74 during inspiration.
Inspired air continues through the one-way diaphragm 84 and exits the superior end of the valve body 72, thence passing through the nasal inserts 70 and into the patient's nasal air passages.

Fig. 9 shows the posit=ion of tree valve during expiration. The patient exhales air through the nasal inserts 70 and the air enters the superior end of the valve body 72. 'The pressure of the expired air against the one-way diaphragm causes the gate 80 to pivot on the hinge 86 until the rim 82 engages a stop post 92 disposed on a sidewall of the valve body 72, which limits downward travel of the gate 80. The flexible bladder 88 is drawn down by the rim 82, uncovering the exit port 74. Expired air is then released to the atmosphere through the exit port 74, as shown by the direction of the arrows in Fig. 9.
The flexible bladder 88 may be made from a thin layer of biocompatible, gas impermeable material, e. g. , latex. The rim 82 of the gate 80 may be made from any rigid plastic material. The one-way diaphragm 84 may be any one-way gas permeable membrane. Such membranes are well-known in the medical arts.
The nasal inserts may also be used without being connected to a source of positive airway pressure. Figs. 10-12 show an embodiment of the nasal inserts fitted with a filter that may be used for the treatment and prevention of asthmatic attacks and other respiratory impairments. A front view of a nasal insert adapted for the left nostril is shown in Fig. 10, the nasal insert for the right nostril being a mirror image. The nasal insert 100 has substantially the same construction as the nasal inserts 30, 52, and 70, i.e., the nasal inserts 100 are substantially oval in cross-section, tapering slightly from a wide base 102 to the tip end 104. The nasal insert 100 has a flange 106 about the tip end 104 on the exterior surface of the insert 100, which may be formed as a semi-cylindrical bead.
The nasal insert, 100 is preferably made from silicone elastomer.
The thickness of the walls of the nasal insert 100 is preferably between about 1/32 and 1/20 inches. The thickness of the wall at the ~.0 flange 106 may be about 1/16 inches. The hardness of the wall of the nasal insert 100, as tested on a ty~>e A Shore durometer, may range between about 15 and 40, preferably about 30. The thinness and softness of the nasal insert 100 makes the insert virtually unnoticeable while in the nostrils. For an adult patient, the nasal insert 100 may have a height of bet=ween about 0 . 25 and 0 . 75 inches .
The internal diameter of the nasal insert 100 may measure about 0.75"
on the major axis and 0.5" on the minor axis, allowing for generous laminar air flow.
As shown in Figs. 10-12, the nasal insert 100 has a one-way expiratory diaphragm 108 disposed across the base 102 of the insert and is adapted for receiving a filter insert in the sidewall which is disposed laterally in the insert 100. The one-way expiratory diaphragm 108 is positioned directly below the patient's naris, and permits the flow of exhaled air through the diaphragm 108 in the direction shown by the solid arrows 110 in Fig. 12, but does not permit air flow through the diaphragm in the opposite direction.
The nasal insert includes a one-way inspiratory diaphragm 112 disposed laterally in the sidewall of the insert 100. The inspiratory diaphragm 112 permits the flow of air into the insert 100 in the direction shown by the dashed arrows. 114 in Fig. 12, but not in the opposite direction. The inserts 100 include a removable, disposable, replaceable filter 116 and means for maintaining the filter 116 in the sidewall of the insert 100. Fig. 12 shows an elastic mesh 118, the elastic mesh 118, one-way diaphragm 112 and sidewall 120 defining an envelope for retaining the filter 116, the mesh 118 and diaphragm defining a slot 122. The filter 116 may be inserted through the slot 122 where it is retained against the one-way diaphragm 112 by the elastic mesh 118, and may be removed by using a fingernail, toothpick, nail file, or other device for pulling the filter 116 out of the envelope. Other devices may be used to retain the filter 116 against the one-way diaphragm 112 if desired, e.g., spring clips, hooks, etc.
The filter 116 filters out any particles that may cause allergies or asthmatic attacks, such as dust, pollen, allergens, and bacteria from inspired air. Such filters are well known in the medical arts, and will not be described further.
The preferred embodiments of t:he invention provide a ventilation interface for sleep apnea therapy having nasal inserts which seal against the hares and do not require a harness, head strap, or other external devices to maintain pressure for retaining the inserts in or against the patient's no~str:Lls. The nasal inserts are made of flexible, resilient plastic with a bead flange for retaining the inserts in the hares. The walls of the insert are thin-walled and maintain lateral pressure in the hares in order to provide a greater internal diameter for the delivery of a greater volume of air molecules at a constant delivery pressure and without forcing ventilation gases through restricted ports or passageways. Drying and burning of the patient's nasal airways is avoided while delivering a therapeutic volume of air to maintain the apnei.c patient's airways in a patent condition. The ventilation interface may be equipped with a valve disposed between the nasal inserts and the source of positive airway pressure for controlling the flow of air through the nasal inserts.
The ventilation interface may be equipped with a removable filter for filtering allergens from inspired air in order to prevent asthmatic and allergic attacks.
It is to be understood that the present .invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of th.e following claims.
p2

Claims (18)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A ventilation interface, comprising:
(a) a pair of nasal inserts, each nasal insert being a hollow body made from a flexible, resilient, soft, biocompatible material, each nasal insert having a base end adapted for connection to a ventilator air flow and an open distal tip end, each nasal insert being substantially oval in cross-section at the base end and the distal end and continuously oval in cross-section between the base end and the distal end; and (b) a flange formed as a bead disposed about the distal tip end of each said nasal insert, the flange being adapted for forming a seal against a naris of a patient's nose;
(c) wherein each said nasal insert is capable of being compressed and inserted into the patient's naris to a patient's mucosal membrane and being retained therein solely by said flange, by the resilience of said nasal insert, and by lateral pressure against the naris from ventilator air flow through each said nasal insert.
2. The ventilation interface according to claim 1, wherein each said nasal insert is made from silicone.
3. The ventilation interface according to any one of claims 1 or 2, wherein each said nasal insert has an internal diameter of 0.75 inches on a major axis and 0.5 inches on a minor axis.
4. The ventilation interface according to any one of claims 1-3, wherein each said nasal insert has a wall thickness between about 1/32 and 1/20 inches.
5. The ventilation interface according to any one of claims 1-4, wherein each said nasal insert has a softness measuring between about 15 and 40 on a type A Shore durometer.
6. The ventilation interface according to claim 1, further comprising a pair of valves, each of the valves including a hollow valve body defined by at least one sidewall and having a superior end and an inferior end, the base of each said nasal insert being attached to the superior end of one of said valve bodies, respectively, in order to form a continuous air conduit.
7. The ventilation interface according to claim 6, further comprising a pair of supply tubes for delivering a gas from a ventilator, the inferior end of each of said valve bodies being connected to a separate one of the pair of supply tubes so that each said nasal insert is independently supplied with gas from the ventilator.
8. The ventilation interface according to claim 6, wherein each said valve further comprises:
(a) an exit port defined in said at least one sidewall, the exit port being formed by a mesh grid;
(b) a hinge attached to said at least one sidewall opposite said exit port;

(c) a gate pivotally attached to said hinge, the gate having a rigid rim defining the perimeter of the gate and a one-way, gas permeable diaphragm extending across the rim; and (d) a flexible, tubular bladder having a first end attached to the rim of said gate and an open second end attached to the side wall of said valve body;
wherein said gate pivots between a first position during inspiration in which the rim of said gate is above said exit port, said bladder inflating to form a seal over said exit port, and a second position during expiration in which the rim of said gate is below said exit port, opening said exit port for release of exhaled air to the atmosphere.
9. The ventilation interface according to claim 8, wherein said one-way diaphragm permits inflow of inspired air from the inferior end of said valve body through said diaphragm and the superior end of said valve body, but blocks outflow of exhaled air in a direction opposite to inflow.
10. The ventilation interface according to claim 8, wherein each said valve further comprises a stop extending from the sidewall of said valve body positioned above said exit port in order to limit travel of said gate during inspiration.
11. The ventilation interface according to claim 8, wherein each said valve further comprises a stop post extending from the sidewall of said valve body positioned below said exit port in order to limit travel of said gate during expiration.
12. A ventilation interface, comprising:
(a) a nasal insert, the nasal insert being a hollow body made from a flexible, resilient, soft, biocompatible material, having a base end and a tip end, the nasal insert being substantially oval in crass-section at the base end and the tip end and continuously oval in cross-section between the base end and the tip end;
(b) a flange formed as a bead disposed about the tip end of said nasal insert, the flange being adapted for forming a seal against a naris of a patient's nose; and (c) a valve having a hollow valve body including a superior end attached to the base end of said nasal insert and an inferior end adapted for attachment to supply tubing from a ventilator, the valve having:
(i) an exit port defined in said valve body;
(ii) a gate pivotally attached to said valve body, the gate having a rigid rim and a one-way gas permeable diaphragm extending across the rim; and (iii) a flexible, tubular bladder having a first end attached to the rim of said gate and an open second end attached to said valve body;
(d) wherein said nasal insert is capable of being compressed and inserted into the patient's naris to a patient's mucosal membrane and being retained therein solely by said flange and by the resilience of said nasal insert; and (e) wherein said gate pivots between a first position during inspiration in which the rim of said gate is above said exit port, said bladder inflating to form a seal over said exit port, and a second position during expiration in which the rim of said gate is below said exit port, opening said exit port for release of exhaled air to the atmosphere.
13. The ventilation interface according to claim 12, wherein said one-way diaphragm permits inflow of inspired air from the inferior end of said valve body through said diaphragm and the superior end of said valve body, but blocks outflow of exhaled air in a direction opposite to inflow.
14. The ventilation interface according to claim 12, wherein said valve further comprises a ;stop extending from said valve body positioned above said exit port in order to limit travel of said gate during inspiration.
15. The ventilation interface according to claim 12, wherein said valve further comprises a stop post. extending from said valve body positioned below said exit port in order to limit travel of said gate during expiration.
16. A ventilation interface, comprising:
(a) a nasal insert, the nasal insert being a hollow body made from a flexible, resilient, soft, biocompatible material, having a base end and a tip end, the nasal insert being substantially oval in cross-section at the base end and the tip end and continuously oval in cross-section between the base end and the tip end;
(b) a flange formed as a bead disposed about the tip end of said nasal insert, the flange being adapted for forming a seal against a naris of a patient's nose;

(c) a one-way expiratory diaphragm disposed across the base end of said nasal insert, the expiratory diaphragm permitting passage of exhaled air from the tip end through the base end, but preventing passage of inhaled air through the base end towards the tip end;
(d) a one-way inspiratory diaphragm disposed in said nasal insert adjacent the base end, the inspiratory diaphragm permitting passage of inhaled air from outside said nasal insert, through the inspiratory diaphragm, and into said nasal insert, but preventing passage of exhaled air through the inspiratory diaphragm and out of said nasal insert;
(e) a removable filter disposed over said inspiratory diaphragm; and (f) means for retaining said filter;
wherein said nasal insert is capable of being compressed and inserted into the patient's naris to a patient's mucosal membrane and being retained therein solely by said flange and by the resilience of said nasal insert, said inspiratory diaphragm being disposed below the patient's naris.
17. The ventilation interface according to claim 16, wherein said filter is capable of filtering at least one irritant selected from the group consisting of dust, pollen, allergens and bacteria from inhaled air.
18. The ventilation interface according to any one of claims 16 and 17, wherein said retaining means comprises an elastic mesh disposed over said inspiratory diaphragm.
CA2416410A 2002-01-15 2003-01-14 Ventilation interface for sleep apnea therapy Expired - Fee Related CA2416410C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/044,925 US6595215B2 (en) 2000-03-13 2002-01-15 Ventilation interface for sleep apnea therapy
US10/044,925 2002-01-15
US10/096,795 US6776162B2 (en) 2000-03-13 2002-03-14 Ventilation interface for sleep apnea therapy
US10/096,795 2002-03-14

Publications (2)

Publication Number Publication Date
CA2416410A1 CA2416410A1 (en) 2003-07-15
CA2416410C true CA2416410C (en) 2010-06-29

Family

ID=27615929

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2416410A Expired - Fee Related CA2416410C (en) 2002-01-15 2003-01-14 Ventilation interface for sleep apnea therapy

Country Status (1)

Country Link
CA (1) CA2416410C (en)

Also Published As

Publication number Publication date
CA2416410A1 (en) 2003-07-15

Similar Documents

Publication Publication Date Title
US6997177B2 (en) Ventilation interface for sleep apnea therapy
US9919121B2 (en) Ventilation interface for sleep apnea therapy
US6807967B2 (en) Ventilation interface for sleep apnea therapy
US7059328B2 (en) Ventilation interface for sleep apnea therapy
US7191781B2 (en) Nasal ventilation interface and system
US7234465B2 (en) Nasal ventilation interface and system
CA2556016C (en) Sealing nasal cannula
US9038634B2 (en) Ventilation mask with integrated piloted exhalation valve
US20050235999A1 (en) Nasal ventilation interface and system
US20130184602A1 (en) Ventilation Mask with Integrated Piloted Exhalation Valve
EP1317941B1 (en) Nasal ventilation cannula
CA2416410C (en) Ventilation interface for sleep apnea therapy
CA2368825C (en) Ventilation interface for sleep apnea therapy

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20210831

MKLA Lapsed

Effective date: 20200114

MKLA Lapsed

Effective date: 20200114