CA2359853A1 - Human chemokine beta-10 mutant polypeptides - Google Patents

Human chemokine beta-10 mutant polypeptides Download PDF

Info

Publication number
CA2359853A1
CA2359853A1 CA002359853A CA2359853A CA2359853A1 CA 2359853 A1 CA2359853 A1 CA 2359853A1 CA 002359853 A CA002359853 A CA 002359853A CA 2359853 A CA2359853 A CA 2359853A CA 2359853 A1 CA2359853 A1 CA 2359853A1
Authority
CA
Canada
Prior art keywords
amino acid
polypeptide
seq
acid residues
polypeptides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002359853A
Other languages
French (fr)
Inventor
Henrik S. Olsen
Haodong Li
Mark D. Adams
Solange H.L. Gentz
Ralph Alderson
Yuling Li
David Parmelee
John R. White
Edward R. Appelbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Human Genome Sciences Inc
SmithKline Beecham Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2359853A1 publication Critical patent/CA2359853A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • C07K14/523Beta-chemokines, e.g. RANTES, I-309/TCA-3, MIP-1alpha, MIP-1beta/ACT-2/LD78/SCIF, MCP-1/MCAF, MCP-2, MCP-3, LDCF-1, LDCF-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

Human chemokine Beta-10 polypeptides and DNA (RNA) encoding such chemokine polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such chemokine polypeptides for the treatment of leukemia, tumors, chronic infections, autoimmune disease, fibrotic disorders, wound healing and psoriasis. Antagonists against such chemokine polypeptides and their use as a therapeutic to treat rheumatoid arthritis, autoimmune and chronic inflammatory and infective diseases, allergic reactions, prostaglandin-independent fever and bone marrow failure are also disclosed.

Description

DEMANDES OU BR~1/ETS VOLUMINEUX
LA PRESENTS PARTIE DE CETTE DEMANDS OU CE BREVET
COMPREND PLUS D'UN TOME. - .-CECt EST LE TOME ~ DE _oZ _ Np't'E: Pour !es tomes additionels, veuiiiez cr~ntacter to Bureau canadien des brevets a JUM80 APPL~CATIONS/PAi'EIVTS
THiS SECT10N OF THE APPLICATIONIPATENT CONTAINS MORE
THAN ONE VOLUME -_ , THIS IS VOLUME _ OF
NOTE:-For additional volumes-pfease contact'the Canadian Patent Office to Human Chemokine Beta-10 Mutant Polypeptides Field of the Invention The present invention relates to deletion and substitution mutant polypeptides of human chemokine beta- 10 (Ck~3-10), as well as nucleic acid molecules encoding such polypeptides and processes for producing such polypeptides using recombinant techniques.
In one aspect, the invention also relates to uses of the full-length and mature forms of Ck(3-10, as well as deletion and substitution mutants, in medical treatment regimens. In particular, the Ck(3-10 polypeptides described herein may be employed to treat a variety of conditions, including rheumatoid arthritis, inflammation, respiratory diseases, allergy, and IgE-mediated allergic reactions. Ck(3-10 is also known as MCP-4.
Background of Invention Chemokines, also referred to as intercrine cytokines, are a subfamily of structurally and functionally related cytokines. These molecules are 8-14 kd in size. In general chemokines exhibit 20% to 75% homology at the amino acid level and are characterized by four conserved cysteine residues that form two disulfide bonds. Based on the arrangement of the first two cysteine residues, chemokines have been classified into two subfamilies, alpha and beta. In the alpha subfamily, the first two cysteines are separated by one amino acid and hence are referred to as the "C--X--C" subfamily. In the beta subfamily, the two cysteines are in an adjacent position and are, therefore, referred to as the --C--C--subfamily. Thus far, at least eight different members of this family have been identified in humans.
The intercrine cytokines exhibit a wide variety of functions. A hallmark feature is their ability to elicit chemotactic migration of distinct cell types, including monocytes, neutrophils, T lymphocytes, basophils and fibroblasts. Many chemokines have proinflammatory activity and are involved in multiple steps during an inflammatory reaction.
These activities include stimulation of histamine release, lysosomal enzyme and leukotriene release, increased adherence of target immune cells to endothelial cells, enhanced binding of complement proteins, induced expression of granulocyte adhesion molecules and complement receptors, and respiratory burst. In addition to their involvement in inflammation, certain chemokines have been shown to exhibit other activities.
For example, macrophage inflammatory protein I (MIP- 1) is able to suppress hematopoietic stem cell proliferation, platelet factor-4 (PF-4) is a potent inhibitor of endothelial cell growth, Interleukin-8 (IL-8) promotes proliferation of keratinocytes, and GRO is an autocrine growth factor for melanoma cells.
In light of the diverse biological activities, it is not surprising that chemokines have been implicated in a number of physiological and disease conditions, including lymphocyte trafficking, wound healing, hematopoietic regulation and immunological disorders such as allergy, asthma and arthritis. An example of a hematopoietic lineage regulator is MIP-1.
MIP-1 was originally identified as an endotoxin-induced proinflammatory cytokine produced from macrophages. Subsequent studies have shown that MIP-1 is composed of two different, but related, proteins MIP-la and MIP-1(3. Both MIP-la and MIP-1(3 are chemo-attractants for macrophages, monocytes and T lymphocytes. Interestingly, biochemical purification and subsequent sequence analysis of a multipotent stem cell inhibitor (SCI) revealed that SCI is identical to MIP-1(3. Furthermore, it has been shown that MIP-1(3 can counteract the ability of MIP-la to suppress hematopoietic stem cell proliferation. This finding leads to the hypothesis that the primary physiological role of MIP-1 is to regulate hematopoiesis in bone marrow, and that the proposed inflammatory function is secondary. The mode of action of MIP-la as a stem cell inhibitor relates to its ability to block the cell cycle at the GZS interphase.
Furthermore, the inhibitory effect of MIP-la seems to be restricted to immature progenitor cells and it is actually stimulatory to late progenitors in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF).
Marine MIP-1 is a major secreted protein from lipopolysaccharide stimulated RAW
264.7, a marine macrophage tumor cell line. It has been purified and found to consist of two related proteins, MIP-la and MIP-1(3.
Several groups have cloned what are likely to be the human homologs of MIP-la and MIP-1(3. In all cases, cDNAs were isolated from libraries prepared against activated T-cell RNA.
MIP-1 proteins can be detected in early wound inflammation cells and have been shown to induce production of IL-1 and IL-6 from wound fibroblast cells. In addition, purified native MIP-1 (comprising MIP-l, MIP-la and MIP-1 (3 polypeptides) causes acute inflammation when injected either subcutaneously into the footpads of mice or intracistemally into the cerebrospinal fluid of rabbits (Wolpe and Cerami, FASEB J .
3:2565-73 ( 1989)). In addition to these proinflammatory properties of MIP-1, which can be direct or indirect, MIP-1 has been recovered during the early inflammatory phases of wound healing in an experimental mouse model employing sterile wound chambers (Fahey, et al.
Cytokine, 2:92 (1990)). For example, International Patent Application Serial No.
PCT/LTS92/05198 filed by Chiron Corporation, discloses a DNA molecule which is active as a template for producing mammalian macrophage inflammatory proteins (MIPs) in yeast.
The murine MIP-loc and MIP-1 (3 are distinct but closely related cytokines.
Partially purified mixtures of the two proteins affect neutrophil function and cause local inflammation and fever. MIP-loc has been expressed in yeast cells and purified to homogeneity. Structural analysis confirmed that MIP-loc has a very similar secondary and tertiary structure to platelet factor 4 (PF-4) and interleukin 8 (IL-8) with which it shares limited sequence homology. It has also been demonstrated that MIP-loc is active in vivo to protect mouse stem cells from subsequent in vitro killing by tritiated thymidine. MIP-la was also shown to enhance the proliferation of more committed progenitor granulocyte macrophage colony-forming cells in response to granulocyte macrophage colony-stimulating factor. (Clemens, J.M.
et al., Cytokine 4:76-82 ( 1992)).
There are three forms of monocyte chemotactic protein, namely, MCP-1, MCP-2 and MCP-3. All of these proteins have been structurally and functionally characterized and have also been cloned and expressed. MCP-l and MCP-2 have the ability to attract leukocytes (monocytes, and leukocytes), while MCP-3 also attracts eosinophils and T
lymphocytes (Dahinderi, E., et al., J. Exp. Med. 179:751-756 (1994)).
Human MCP-1 is a basic peptide of 76 amino acids with a predicted molecular mass of 8,700 daltons. MCP-1 is inducibly expressed mainly in monocytes, endothelial cells and fibroblasts. Leonard, E.J. and Yoshimura, T., Immunol. Today 11:97-101 (1990).
The factors which induce this expression is IL-1, TNF or lipopolysaccharide treatment.
Other properties of MCP-1 include the ability to strongly activate mature human basophils in a pertussis toxin-sensitive manner. MCP-1 is a cytokine capable of directly inducing histamine release by basophils, (Bischoff, S.C., et al., J. Exp. Med.
175:1271-1275 (1992)). Furthermore, MCP-1 promotes the formation of leukotriene C4 by basophils pretreated with Interleukin 3, Interleukin 5, or granulocyte/macrophage colony-stimulating factor. MCP-1 induced basophil mediator release may play an important role in allergic inflammation and other pathologies expressing MCP-1.
Clones having a nucleotide sequence encoding a human monocyte chemotactic and activating factor (MCAF) reveal the primary structure of the MCAF polypeptide to be composed of a putative signal peptide sequence of 23 amino acid residues and a mature MCAF of 76 amino acid residues. Furutani, Y.H., et al., Biochem. Biophys. Res.
Commu. 159:249-55 ( 1989). The complete amino acid sequence of human glioma-derived monocyte chemotactic factor (GDCF-2) has also been determined. This peptide attracts human monocytes but not neutrophils. It was established that GDCF-2 comprises 76 amino acid residues. The peptide chain contains 4 half-cysteines, at positions 11, 12, 36 and 52, which create a pair of loops, clustered at the disulfide bridges. Further, the MCP-1 gene has been designated to human chromosome 17. Mehrabian, M.R., et al., Genomics 9:200-3 (1991).
Certain data suggests that a potential role for MCP-1 is mediating monocytic infiltration of the artery wall. Monocytes appear to be central to atherogenesis both as the progenitors of foam cells and as a potential source of growth factors mediating intimal hyperplasia. Nelken, N.A., et al., J. Clin. Invest. 88:1121-7 (1991). It has also been found that synovial production of MCP-1 may play an important role in the recruitment of mononuclear phagocytes during inflammation associated with rheumatoid arthritis and that synovial tissue macrophages are the dominant source of this cytokine. MCP-1 levels were found to be significantly higher in synovial fluid from rheumatoid arthritis patients compared to synovial fluid from osteoarthritis patients or from patients with other arthritides. Koch, A.E., et al., J. Clin. Invest. 90:772-9 ( 1992).
MCP-2 and MCP-3 are classified in a subfamily of proinflammatory proteins and are functionally related to MCP-1 because they specifically attract monocytes, but not neutrophils. Van Damme, J., et al., J. Exp. Med. 176:59-65 (1992). MCP-3 shows 71 %
and 58% amino acid homology to MCP-1 and MCP-2 respectively. MCP-3 is an inflammatory cytokine that regulates macrophage functions.
The transplantation of hemolymphopoietic stem cells has been proposed in the treatment of cancer and hematological disorders. Many studies demonstrate that transplantation of hematopoietic stem cells harvested from the peripheral blood has advantages over the transplantation of marrow-derived stem cells. Due to the low number of circulating stem cells, there is a need for induction of pluripotent marrow stem cell mobilization into the peripheral blood. Reducing the amount of blood to be processed to obtain an adequate amount of stem cells would increase the use of autotransplantation procedures and eliminate the risk of graph versus host reaction connected with allotransplantation. Presently, blood mobilization of marrow CD34+ stem cells is obtained by the injection of a combination of agents, including antiblastic drugs and G-CSF or 5 GM-CSF. Drugs which are capable of stem cell mobilization include IL-1, IL-7, IL-8, and MIP-1 a. Both IL-1 and IL-8 demonstrate proinflammatory activity that may be dangerous for good engrafting. IL-7 must be administered at high doses over a long duration and MIP-loc is not very active as a single agent and shows best activity when in combination with G-CSF.
Summary of the Invention This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptides of the present invention are human chemokine beta-4 (also referred to as "Ck(3-4") and human chemokine monocyte chemotactic protein (referred to as "MCP-4," and also known and referred to as human chemokine beta-10 and "Ck(3-10"), which, collectively, are referred to as "the chemokine polypeptides". The invention also relates to inhibiting the action of such polypeptides.
The immune cells which are responsive to the chemokines have a vast number of in vivo functions and therefore their regulation by such chemokines is an important area in the treatment of disease.
For example, eosinophils destroy parasites to lessen parasitic infection.
Eosinophils are also responsible for chronic inflammation in the airways of the respiratory system.
Macrophages are responsible for suppressing tumor formation in vertebrates.
Further, basophils release histamine which may play an important role in allergic inflammation.
Accordingly, promoting and inhibiting such cells, has wide therapeutic application.
In accordance with one aspect of the present invention, there are provided novel polypeptides which are Ck(3-4, and MCP-4 (also referred to as Ck(3-10), as well as fragments, analogs and derivatives thereof. The polypeptides of the present invention are of human origin.
In accordance with another aspect of the present invention, there are provided polynucleotides (DNA or RNA) which encode such polypeptides.
In accordance with yet a further aspect of the present invention, there is provided a process for producing such polypeptides by recombinant techniques.
In one aspect, the present invention provides deletion and substitution mutants of human chemokine Ck(3-10, as well as biologically active and diagnostically or therapeutically useful derivatives thereof.
In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules encoding polypeptides of the present invention including mRNAs, DNAs, cDNAs, genomic DNAs, as well as analogs and biologically active and diagnostically or therapeutically useful fragments, analogs and derivatives thereof.
The present invention further provides isolated nucleic acid molecules comprising polynucleotides which encode mutants of the Ck(3-10 polypeptide having the amino acid sequence shown in Figure 2 (SEQ ID N0:4) or the amino acid sequence encoded by the cDNA clone deposited as ATCC Deposit Number 75849 on July 29, 1994. The nucleotide sequence determined by sequencing the deposited Ck(3-10 clone, which is shown in Figure 2 (SEQ ID N0:3), contains an open reading frame encoding a polypeptide of 98 amino acid residues, with a leader sequence of about 23 amino acid residues. The amino acid sequence of full-length and mature forms of the Ck(3-10 protein is also shown in Figure 2 (SEQ ID
N0:4).
Thus, one aspect of the invention provides an isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding an N-terminal deletion mutant of the Ck~3-10 polypeptide having the complete amino acid sequence in Figure 2 (SEQ ID N0:4), wherein said deletion mutant has one or more deletions at the N-terminus; (b) a nucleotide sequence encoding an C-terminal deletion mutant of the Ck(3-10 polypeptide having the complete amino acid sequence in Figure 2 (SEQ ID N0:4), wherein said deletion mutant has one or more deletions at the C-terminus; (c) a nucleotide sequence encoding a deletion mutant of the Ck(3-10 polypeptide having the complete amino acid sequence in Figure 2 (SEQ
ID N0:4), wherein said deletion mutant has one or more deletions at the N and C-termini;
(d) a nucleotide sequence encoding an N-terminal deletion mutant of the Ck~3-10 polypeptide encoded by the cDNA clone contained in ATCC Deposit No. 75849, wherein said deletion mutant has one or more deletions at the N-terminus; (e) a nucleotide sequence encoding a C-terminal deletion mutant of the Ck(3-10 polypeptide encoded by the cDNA
clone contained in ATCC Deposit No. 75849, wherein said deletion mutant has one or more deletions at the C-terminus; (f) a nucleotide sequence encoding a deletion mutant of the Ck~3-10 polypeptide encoded by the cDNA clone contained in ATCC Deposit No. 75849, wherein said deletion mutant has one or more deletions at the N- and C-termini; and (g) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), (e) or (f) above.
Further embodiments of the invention include isolated nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% homologous or identical, and more preferably at least 95%, 96%, 97%, 98%, or 99% identical, to any of the nucleotide sequences in (a), (b), (c), (d), (e), (f) or (g), above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b), (c), (d), (e), (f) or (g), above. These polynucleotides which hybridize do not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues.
The Ck(3-10 deletion mutant polypeptides encoded by each of the above nucleic acid molecules may have an N-terminal methionine residue.
The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells.
In accordance with yet a further aspect of the present invention, there is provided a process for producing such polypeptide by recombinant techniques comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing a nucleic acid sequence encoding a polypeptide of the present invention, under conditions promoting expression of said protein and subsequent recovery of said protein.
The invention further provides an isolated Ck(3-10 polypeptide having an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of an N-terminal deletion mutant of the Ck(3-10 polypeptide having the complete amino acid sequence in Figure 2 (SEQ lT7 N0:4), wherein said deletion mutant has one or more deletions at the N-terminus; (b) the amino acid sequence of an C-terminal deletion mutant of the Ck(3-10 polypeptide having the complete amino acid sequence in Figure 2 (SEQ >D N0:4), wherein said deletion mutant has one or more deletions at the C-terminus; (c) the amino acid sequence of a deletion mutant of the Ck(3-10 polypeptide having the complete amino acid sequence in Figure 2 (SEQ ID NO: 4), wherein said deletion mutant has one or more deletions at the N-and C-termini; (d) the amino acid sequence of an N-terminal deletion mutant of the Ck~3-10 polypeptide encoded by the cDNA clone contained in ATCC Deposit No. 75849, wherein said deletion mutant has one or more deletions at the N-terminus; (e) the amino acid sequence of a C-terminal deletion mutant of the Ck(3-10 polypeptide encoded by the cDNA
clone contained in ATCC Deposit No. 75849, wherein said deletion mutant has one or more deletions at the C-terminus; and (f) the amino acid sequence of the Ck(3-10 polypeptide encoded by the cDNA clone contained in ATCC Deposit No. 75849, wherein said deletion mutant has one or more deletions at the N- and C-termini.
Polypeptides of the present invention also include homologous polypeptides and substitution mutants having an amino acid sequence with at least 90% identity, and more preferably at least 95% identity to those described in (a), (b), (c), (d), (e) or (f) above, as well as polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99%
identical to those above.
An additional embodiment of this aspect of the invention relates to a peptide or polypeptide which has the amino acid sequence of an epitope bearing portion of a Ck(3-10 polypeptide having an amino acid sequence described in (a), (b), (c), (d), (e) or (f) above.
An additional nucleic acid embodiment of the invention relates to an isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of an epitope-bearing portion of a Ck(3-10 polypeptide having an amino acid sequence in (a), (b), (c), (d), (e) or (f), above.
Further, each of the above Ck(3-10 polypeptide deletion mutants may have an N-terminal methionine which may or may not be encoded by the nucleotide sequence shown in SEQ ID N0:3.
The present invention also provides, in another aspect, pharmaceutical compositions comprising a Ck(3-10 polynucleotide, probe, vector, host cell, polypeptide, fragment, variant, derivative, epitope bearing portion, antibody, antagonist or agonist.
In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such polypeptide, or polynucleotide encoding such polypeptide for therapeutic purposes, for example, for treating rheumatoid arthritis, inflammation, respiratory diseases, allergy, and IgE-mediated allergic reactions.
An additional aspect of the invention is related to a method for treating an individual in need of an increased level of Ck~3-10 activity in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an isolated Ck(3-10 polypeptide.
A still further aspect of the invention is related to a method for treating an individual in need of a decreased level of Ck(3-10 activity in the body comprising, administering to such an individual a composition comprising a therapeutically effective amount of a Ck(3-10 antagonist of the invention. Such antagonists include the full-length and mature Ck(3-10 polypeptides shown in Figure 2 (SEQ ID N0:4), as well as Ck(3-10 fragments (e.g., a Ck~3-10 fragment having amino acids 27 to 98 in SEQ ID N0:4).
In accordance with yet a further aspect of the present invention, there are provided antibodies against Ck(3-10 polypeptides. In another embodiment, the invention provides an isolated antibody that binds specifically to a Ck(3-10 polypeptide having an amino acid sequence described in (a), (b), (c), (d), (e) or (f) above.
The invention further provides methods for isolating antibodies that bind specifically to a Ck(3-10 polypeptide having an amino acid sequence as described herein.
In accordance with another aspect of the present invention, there are provided agonists of Ck(3-10 polypeptide activities which mimic the polypeptide of the present invention and thus have one or more Ck(3-10 polypeptide activity.
In accordance with yet another aspect of the present invention, there are provided chemokine antagonists. These chemokine antagonists may be used to inhibit the action of chemokines, for example, in the treatment of rheumatoid arthritis, inflammation, respiratory diseases, allergy, and IgE-mediated allergic reactions.
In accordance with yet a further aspect of the present invention, there is also provided nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to a nucleic acid sequence of the present invention.
The present invention also provides a screening method for identifying compounds capable of enhancing or inhibiting a cellular response induced by a chemokine polypeptide.
This method involves contacting cells which express a receptor to which a chemokine polypeptide binds with the candidate compound, assaying a cellular response induced by the chemokine polypeptide, and comparing the cellular response to a standard cellular response, the standard being assayed when contact is made in absence of the candidate compound;
whereby, an increased cellular response over the standard indicates that the compound is an agonist and a decreased cellular response over the standard indicates that the compound is an antagonist. The above referenced receptor will generally be one which binds a chemokine other than Ck~3-10, wherein the activity induced by this other chemokine is inhibited by the candidate compound. Often this candidate compound will be a Ck(3-10 polypeptide.
In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such polypeptides, or polynucleotides encoding such polypeptides for therapeutic purposes, for example, to treat solid tumors, chronic infections, auto-immune diseases, psoriasis, asthma, allergy, to regulate hematopoiesis, and to promote wound healing.

In accordance with yet a further aspect of the present invention, there are provided antibodies against such polypeptides.
In accordance with yet another aspect of the present invention, there are provided antagonist/inhibitors to such polypeptides, which may be used to inhibit the action of such 5 polypeptides, for example, in the treatment of auto-immune diseases, chronic inflammatory and infective diseases, histamine-mediated allergic reactions, prostaglandin-independent fever, bone marrow failure, silicosis, sarcoidosis, hyper-eosinophilic syndrome and lung inflammation.
These and other aspects of the present invention should be apparent to those skilled 10 in the art from the teachings herein.
BRIEF DESCRIPTION OF THE FIGURES
The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
FIGURE 1 displays the cDNA sequence (SEQ ID NO: l ) and corresponding deduced amino acid sequence (SEQ ID N0:2) of Ck(3-4. The initial 24 amino acids represent the deduced leader sequence of Ck(3-4 such that the putative mature polypeptide comprises 70 amino acids. The standard one-letter abbreviation for amino acids is used.
FIGURE 2 displays the cDNA sequence (SEQ ID N0:3) and corresponding deduced amino acid sequence (SEQ ID N0:4) of MCP-4 (also referred to as Ck(3-10). The initial 23 amino acids represent the putative leader sequence of MCP-4 (Ck(3-10) such that the putative mature polypeptide comprises 75 amino acids. As noted in Figure 5, however, there are several amino terminal ends of MCP-4 produced in cells, represented by arrows in Figure 1, as shown in Figure 5 and as discussed herein. In addition several carboxyl termini have been observed in certain forms of MCP-4 and produced in cells; shown in Figure 5 and discussed herein. The standard one-letter abbreviation for amino acids is used.
FIGURE 3 displays the amino acid sequence homology between Ck(3-4 and the mature peptide of eotaxin (SEQ ID N0:17) (bottom). The standard one-letter abbreviation for amino acids is used.
FIGURE 4 displays the amino acid sequence homology between human MCP-4 (Ck(3-10) (top) and human MCP-3 (SEQ ID N0:18) (bottom). The standard one-letter abbreviation for amino acids is used.
FIGURE 5 shows the amino acid sequences of several different forms of MCP-4 (Ck(3-10) (SEQ ID N0:4) isolated by expression in vitro. Bac 1, 2 and 3 show sequences of three NHZ terminal variants of MCP-4 expressed using baculovirus. Dro 1, 2 and 3+
show sequences of MCP-4 isolated by expression of MCP-4 cDNA in Drosophila cells in vitro.
The figure also shows an homology comparison of the full length MCP-4 sequence with sequences of MCP-3 (SEQ ID N0:19) and eotaxin (SEQ ID N0:20). Identical residues are indicated by vertical lines.
FIGURE 6 is a pair of graphs showing (A) release of N-acetyl-(3-D-glucosaminidase from cytochalasin B-treated human blood monocytes in response to MCP-4 (Ck(3-10), Eotaxin, MCP-1, MCP-2, MCP-3 and RANTES, and (B) migration index of cytochalasin B-treated monocytes in response to MCP-4 (Ck(3-10), MCP-1, MCP-3 and a negative control.
Enzyme activity is presented on a linear scale of arbitrary fluorescence units along the vertical axis in (A). Relative migration index is presented on a linear scale on the vertical axis in (B) Chemokine concentration in nM is presented in both graphs on a log scale along the horizontal axis.
As discussed in the examples below, cell migration was measured in 48 well chemotaxis chambers. The migrating cells were counted in five high power fields. The migration is expressed as migration index (mean of migrated cells/mean of migrated cells in absence of added chemokine). Each point is the average of three replicate cultures. The bar shows the standard deviation about the average for the three cultures.
FIGURE 7 is a set of graphs showing migration of CD4+ and CD8+ T-lymphocytes in response to various concentrations of MCP-4 (Ck(3-10), Eotaxin, MCP-l, MIP-la and a negative control. Upper graphs show migration of CD4+ T-lymphocytes. Lower graphs show migration of CD8+ T-lymphocytes. In both upper and lower pairs the left graph shows migration in response to MCP-1, MIP-la and a negative control and the right graph shows migration in response to MCP-4 (Ck(3-10), Eotaxin. Number of migrating cells is indicted on a linear scale along the vertical axis. Chemokine concentrations in the attractant media are indicated in nM on a log scale along the horizontal axis.
As discussed in the examples below, cell migration was measured in 48 well chemotaxis chambers. The migrating cells were counted in five high power fields. The migration is expressed as migration index (mean of migrated cells/mean of migrated cells in absence of added chemokine). Each point is the average of three replicate cultures. The bar shows the standard deviation about the average for the three cultures.
FIGURE 8 provides a pair of graphs showing the migration of human eosinophils in response to a negative control, 100 nM MCP-1, 100 nM MCP-3 and several concentration of MCP-4 (Ck(3-10) and Eotaxin. Migration index is indicted on a linear scale along the vertical axis. Chemokine concentrations in the attractant media are indicated in nM on a log scale along the horizontal axis.
As discussed in the examples below, cell migration was measured in 48 well chemotaxis chambers. The migrating cells were counted in five high power fields. The migration is expressed as migration index (mean of migrated cells/mean of migrated cells in absence of added chemokine). Each point is the average of three replicate cultures. The bar shows the standard deviation about the average for the three cultures.
FIGURE 9 is a graph showing survival of cortical neuronal cells cultured in the presence of various concentrations of Ck(3-4, Basic FGF and HGO100. The number of viable cell counts are indicted on a linear scale along the vertical axis, in terms of calcein emission.
Concentrations of the factors in the growth medium are indicated in ng/ml on a log scale along the horizontal axis. Each point is the average of six replicate cultures. The bar shows the standard error of the mean about the average for the six cultures.
FIGURE 10 is a graph showing neurite outgrowth of cortical neurons cultured in the presence of various concentrations of Ck(3-4, Basic FGF and HGO100. Neurite outgrowth is indicted on a linear scale along the vertical axis, in terms of neurofilament protein measured optical density at 490 nm (OD490)_ Concentrations of the factors in the growth medium are indicated in ng/ml on a log scale along the horizontal axis. Each point is the average of six replicate cultures. The bar shows the standard error of the mean about the average for the six cultures.
FIGURE 11 is a graph showing chemotaxis of peripheral blood lymphocytes in response to cultured in the presence of various concentrations of Ck(3-4 and MCP-1. In each graph chemotaxis is indicted on a linear scale along the vertical axis, in terms of ratio of fluorescence emission at 530 nm stimulated by 485 nm excitation.
Concentrations of the factors in the growth medium are indicated in ng/ml on a log scale along the horizontal axis.
Each point is the average of several; replicate cultures. The bar shows the standard error of the mean about the average for the cultures.
FIGURE 12 shows the N-terminal deletion variants of Ck(3-10 (SEQ ID
N0:4). Constructs 1 through 7 were tested as described in Examples 16 and 17.
FIGURE 13 shows an analysis of the Ck(3-10 amino acid sequence (SEQ ID N0:4).
Alpha, beta, turn and coil regions; hydrophilicity and hydrophobicity;
amphipathic regions;
flexible regions; antigenic index and surface probability are shown, and all were generated using the default settings. In the "Antigenic Index or Jameson-Wolf' graph, the positive peaks indicate locations of the highly antigenic regions of the Ck(3-10 protein, i.e., regions from which epitope-bearing peptides of the invention can be obtained. The domains defined by these graphs are contemplated by the present invention.
The data presented in Figure 13 are also represented in tabular form in Table I. The columns are labeled with the headings "Res", "Position", and Roman Numerals I-XIV. The column headings refer to the following features of the amino acid sequence presented in Figure 13, and Table I: "Res": amino acid residue of SEQ >D N0:4 and Figure 2;
"Position": position of the corresponding residue within SEQ ID N0:4 and Figure 2; I:
Alpha, Regions - Gamier-Robson; II: Alpha, Regions - Chou-Fasman; III: Beta, Regions -Garnier-Robson; IV: Beta, Regions - Chou-Fasman; V: Turn, Regions - Gamier-Robson;
VI: Turn, Regions - Chou-Fasman; VII: Coil, Regions - Gamier-Robson; VIII:
Hydrophilicity Plot - Kyte-Doolittle; IX: Hydrophobicity Plot - Hopp-Woods; X:
Alpha, Amphipathic Regions - Eisenberg; XI: Beta, Amphipathic Regions - Eisenberg;
XII: Flexible Regions - Karplus-Schulz; XIII: Antigenic Index - Jameson-Wolf; and XIV:
Surface Probability Plot - Emini.
FIGURE 14 shows the effect of wild type and N-terminal deletion mutants of Ck(3-10 on calcium mobilization in eosinophils.
FIGURE 15 shows the effect of wild type and N-terminal deletion mutants of Ck(3-10 on eosinophil chemotaxis.
Detailed Description Definitions The following definitions are provided to facilitate understanding of certain terms used throughout this specification.
The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, or could be contained within a cell, and still be isolated in that such vector or composition, or particular cell is not part of its original natural environment. The term "isolated" does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA
preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotide/sequences of the present invention.
In the present invention, a "secreted" Ck(3-4 or Ck(3-10 protein refers to a protein capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as a Ck(3-4 or Ck(3-10 protein released into the extracellular space without necessarily containing a signal sequence. If the Ck(3-4 or Ck(3-10 secreted protein is released into the extracellular space, the Ck(3-4 or Ck(3-10 secreted protein can undergo extracellular processing to produce a "mature" Ck(3-4 or Ck(3-10 protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.
As used herein, a Ck(3-4 "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO: l or the cDNA contained within the clone deposited with the ATCC. Similarly, a Ck(3-10 "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID N0:3 or the cDNA contained within the clone deposited with the ATCC. For example, the Ck(3-4 or Ck(3-10 polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a Ck(3-4 or Ck(3-10 "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.
In specific embodiments, the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length. In a further embodiment, polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a 5 portion of any intron. In another embodiment, the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the Ck(3-4 or Ck(3-10 gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
10 In the present invention, the full length Ck(3-4 sequence identified as SEQ
ID NO:l was generated by overlapping sequences of the deposited clone (contig analysis). A
representative clone containing all or most of the sequence for SEQ ID NO: l was deposited with the American Type Culture Collection ("ATCC") on July 29, 1994, and was given the ATCC Deposit Number 75848. Additionally, the full length Ck(3-10 sequence identified as 15 SEQ m N0:3 was generated by overlapping sequences of the deposited clone (contig analysis). A representative clone containing all or most of the sequence for SEQ ID N0:3 was deposited with the American Type Culture Collection ("ATCC") on July 29, 1994, and was given the ATCC Deposit Number 75849. The ATCC is located at 10801 University Boulevard, Manassas, VA 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.
A Ck(3-4 or Ck(3-10 "polynucleotide" also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID
NO:1 or SEQ ID N0:3, the complement thereof, or the cDNA within the deposited clones.
"Stringent hybridization conditions" refers to an overnight incubation at 42 degree C in a solution comprising 50% formamide, 5x SSC (750 mM NaCI, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 gg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in O.lx SSC at about 65 degree C.
Also contemplated are nucleic acid molecules that hybridize to the Ck(3-4 or Ck(3-10 polynucleotides under lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37 degree C in a solution comprising 6X SSPE (20X SSPE = 3M
NaCI; 0.2M
NaH~PO,,; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50 degree C with 1XSSPE, 0.1 % SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. SX SSC).
Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.
Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide,"
since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone generated using digo dT as a primer).
The Ck(3-4 or Ck(3-10 polynucleotide can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, Ck(3-4 or Ck(3-10 polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single-and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the Ck(3-4 or Ck~3-10 polynucleotides can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. Ck(3-4 or Ck(3-10 polynucleotides may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons.
"Modified" bases include, for example, tritylated bases and unusual bases such as inosine.
A variety of modifications can be made to DNA and RNA; thus, "polynucleotide"
embraces chemically, enzymatically, or metabolically modified forms.
Ck~3-4 or Ck(3-10 polypeptides can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The Ck~3-4 or Ck~3-10 polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a Ck(3-4 or Ck(3-10 polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given Ck(3-4 or Ck(3-10 polypeptide.
Also, a given Ck(3-4 or Ck(3-10 polypeptide may contain many types of modifications. Ck(3-4 or Ck(3-10 polypeptides may be branched , for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic Ck(3-4 or Ck(3-10 polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
(See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993);
POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C.
Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).) Ckj3-4 or Ck(3-10 Polynucleotides and Poly~eptides In accordance with an aspect of the present invention, there are provided isolated nucleic acids (polynucleotides) which encode for the mature Ck(3-4 polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID N0:2) or for the mature polypeptide encoded by the cDNA of the clone deposited as ATCC Deposit No. 75848 on July 29, 1994 and for the mature MCP-4 (also known as Ck(3-10) polypeptide having the deduced amino acid sequence of Figures 2, 5 or 12 (SEQ ID N0:4), or for the mature polypeptide encoded by the cDNA of the clone deposited as ATCC Deposit No. 75849 on July 29, 1994.
Also provided in accordance with this aspect of the invention are polynucleotides encoding MCP-4 polypeptides comprising in sequence residues 28-93 set out in Figures 2, 5, and 12 (SEQ
ID N0:4), and, among these, particularly polynucleotides encoding a polypeptide having an amino acid sequence selected from the group consisting of residues 1-98. 17-98, 20-98, 22-98, 24-98, 28-98, 28-95 and 28-93 set out in Figures 2, 5, and 12 (SEQ ID
N0:4), and fragments, analogs and derivatives thereof.
The polynucleotide encoding Ck(3-4, clone HGBAN46, was discovered in a cDNA
library derived from a human gall bladder. Ck(3-4 is structurally related to the chemokine family. It contains an open reading frame encoding a protein of 96 amino acid residues of which the first 26 amino acids residues are the putative leader sequence such that the mature protein comprises 70 amino acids. The protein exhibits the highest degree of homology to eotaxin with 20% identity and 37% similarity over the entire coding sequence as shown in Figure 3. It is also important that the four spatially conserved cysteine residues in chemokines are found in the polypeptides of the present invention.
The polynucleotide encoding MCP-4 (also known as Ck(3-10), clone HE9DR66, was discovered in a cDNA library derived from nine week early human tissue.
MCP-4 is structurally related to the chemokine family. It contains an open reading frame encoding a protein of 98 amino acid residues of which approximately the first 20 amino acid residues are putative or actual leader sequences as shown in Figures 2 and 5 (SEQ ID N0:4) and discussed elsewhere herein, and the mature protein comprises around 75 amino acids depending on the cleavage site, or sites, also as shown in Figure 5. The protein has a marked sequence similarity to MCP-1, MCP-2, MCP-3 and Eotoxin and exhibits the highest degree of homology to MCP-3 with 65% identity and 77% similarity over the entire coding sequence (See, e.g. Figures 4 and 5).
Particularly preferred MCP-4 polypeptides (also referred to herein as Ck(3-10) of the present invention, described herein below in greater detail, include polypeptides having the amino acid sequences set out in Figure 2, Figure 5 or Figure 12 (SEQ ID N0:4).
It will be appreciated that such preferred polypeptides include those with free amino and blocked amino termini, particular those noted in Figure 5, in which the terminal glutamine is a blocked pyroglutamine residue. In accordance with this aspect of the invention are preferred MCP-4 polypeptides comprising in sequence residues 28-93 set out in Figures 2, 5 or 12 (SEQ ID N0:4), and, among these, particularly polypeptides having an amino acid sequence selected from the group consisting of residues 1-98, 17-98, 20-98, 22-98, 24-98, 28-98, 28-95 and 28-93 set out in Figures 2, 5 or 12 (SEQ ID N0:4), and fragments, analogs and derivatives thereof.
Signal Seauences The present invention also encompasses mature forms of the polypeptide having the polypeptide sequence of SEQ ID N0:2 or SEQ 1D N0:4 and/or the polypeptide sequence encoded by the cDNA in a deposited clone. Polynucleotides encoding the mature forms (such as, for example, the polynucleotide sequence in SEQ ID NO: l or SEQ ID
N0:3 and/or the polynucleotide sequence contained in the cDNA of a deposited clone) are also encompassed by the invention. According to the signal hypothesis, proteins secreted by mammalian cells have a signal or secretary leader sequence which is cleaved from the mature protein once export of the growing protein chain across the rough endoplasmic reticulum has been initiated. Most mammalian cells and even insect cells cleave secreted proteins with the same specificity. However, in some cases, cleavage of a secreted protein is not entirely uniform, which results in two or more mature species of the protein. Further, it has long been known that cleavage specificity of a secreted protein is ultimately determined by the primary structure of the complete protein, that is, it is inherent in the amino acid sequence of the polypeptide.
Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 ( 1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage points) for a given protein.
In the present case, the deduced amino acid sequence of the secreted chemokine polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated.
As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty.
Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID
N0:2 or SEQ ID N0:4 which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.
Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER.

Nonetheless, the present invention provides the mature protein produced by expression of the polynucleotide sequence of SEQ ID NO:1 or SEQ ID N0:3 and/or the polynucleotide sequence contained in the cDNA of a deposited clone, in a mammalian cell (e.g., COS cells, as desribed below). These polypeptides, and the polynucleotides encoding such 5 polypeptides, are contemplated by the present invention.
Polynucleotide and Polypeptide Variants The present invention is directed to variants of the polynucleotide sequence disclosed in SEQ ID NO:1 or SEQ 1D N0:3, the complementary strand thereto, and/or the cDNA
10 sequence contained in a deposited clone.
The present invention also encompasses variants of the polypeptide sequence disclosed in SEQ ID N0:2 or SEQ ID N0:4 and/or encoded by a deposited clone.
"Variant" refers to a polynucleotide or polypeptide differing from the Ck(3-4 or Ck(3-10 polynucleotide or polypeptide, but retaining essential properties thereof.
Generally, 15 variants are overall closely similar, and, in many regions, identical to the Ck(3-4 or Ck(3-10 polynucleotide or polypeptide.
The present invention is also directed to nucleic acid molecules which comprise, or alternatively consist of, a nucleotide sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for example, the nucleotide coding sequence in SEQ ID
20 NO: l or SEQ ID N0:3 or the complementary strand thereto, the nucleotide coding sequence contained in a deposited cDNA clone or the complementary strand thereto, a nucleotide sequence encoding the polypeptide of SEQ ID N0:2 or SEQ ID N0:4, a nucleotide sequence encoding the polypeptide encoded by the cDNA contained in a deposited clone, and/or polynucleotide fragments of any of these nucleic acid molecules (e.g., those fragments described herein). Polynucleotides which hybridize to these nucleic acid molecules under stringent hybridization conditions or lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.
The present invention is also directed to polypeptides which comprise, or alternatively consist of, an amino acid sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to, for example, the polypeptide sequence shown in SEQ ID
N0:2 or SEQ ID N0:4, the polypeptide sequence encoded by the cDNA contained in a deposited clone, and/or polypeptide fragments of any of these polypeptides (e.g., those fragments described herein).
By a nucleic acid having a nucleotide sequence at least, for example, 95%
"identical"
to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the nucleic acid is identical to the reference sequence except that the nucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the Ck(3-4 or Ck(3-10 polypeptide. In other words, to obtain a nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5 % of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown of SEQ ID NO:1 or SEQ ID N0:3, the ORF
(open reading frame), or any fragment specified as described herein.
As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs.
A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245.) In a sequence alignment the query and subject sequences are both DNA sequences. An RNA
sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA
sequences to calculate percent identiy are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=l, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the lenght of the subject nucleotide sequence, whichever is shorter.
If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results.
This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence.
Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment.
This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score.
This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matchedlaligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.
For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matchedltotal number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for.
No other manual corrections are to made for the purposes of the present invention.
By a polypeptide having an amino acid sequence at least, for example, 95%
"identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
As a practical matter, whether any particular polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences of SEQ
ID N0:2 or SEQ ID N0:4 or to the amino acid sequence encoded by the cDNA
contained in a deposited clone can be determined conventionally using known computer programs. A
preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245(1990)). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences.
The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.
If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, a manual correction must be made to the results.
This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment.
This percentage is then subtracted from the percent identity, calculated by the above FASTDB
program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N-and C-terminal residues of the subject sequence.
For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected.
Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the purposes of the present invention.
The Ck[3-4 and Ck(3-10 variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred.
Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Ck(3-4 and Ck~3-10 polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).
Naturally occurnng Ck(3-4 and Ck(3-10 variants are called "allelic variants,"
and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level and are included in the present invention. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.
Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the Ck(3-4 and Ck(3-10 polypeptides. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J.
Biotechnology 7:199-216 ( 1988).) Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J.
Biol. Chem 268:22105-22111 ( 1993)) conducted extensive mutational analysis of human cytokine IL-la. They used random mutagenesis to generate over 3,500 individual IL-la mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.
Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.
Thus, the invention further includes Ck(3-4 and Ck(3-10 polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity.
The present application is directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequences disclosed herein, (e.g., encoding a polypeptide having the amino acid sequence of an N and/or C terminal deletion disclosed 5 below as the general formula n-m of SEQ ID N0:4 (e.g., n-m, n-m', n-m', n'-m', and n'-m2) where n and m are integers as described below), irrespective of whether they encode a polypeptide having Ck~3-10 functional activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having Ck(3-10 functional activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a 10 hybridization probe or a polymerase chain reaction (PCR) primer. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having Ck(3-10 functional activity include, inter alia, (1) isolating a Ck(3-10 gene or allelic or splice variants thereof in a cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the Ck(3-10 gene, as 15 described in Verma et al., Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988); and (3) Northern Blot analysis for detecting Ck~3-10 mRNA
expression in specific tissues.
Preferred, however, are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequences disclosed herein, which do, 20 in fact, encode a polypeptide having Ck(3-10 functional activity. By "a polypeptide having Ck(3-10 functional activity" is intended polypeptides exhibiting activity similar, but not necessarily identical, to a functional activity of the Ck~3-10 polypeptides of the present invention (e.g., complete (full-length) Ck(3-10, mature Ck~3-10 and soluble Ck(3-10 (e.g., having sequences contained in the extracellular domain of Ck(3-10) as measured, for 25 example, in a particular immunoassay or biological assay. For example, a Ck(3-10 functional activity can routinely be measured by determining the ability of a Ck(3-10 polypeptide to bind a Ck(3-10 ligand. Ck(3-10 functional activity may also be measured by determining the ability of a polypeptide, such as cognate ligand which is free or expressed on a cell surface, to induce cells expressing the polypeptide.
Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequence of the deposited cDNA, the nucleic acid sequence shown in Figure 2 (SEQ ID
N0:3), or fragments thereof, will encode polypeptides "having Ck(3-10 functional activity." In fact, since degenerate variants of any of these nucleotide sequences all encode the same polypeptide, in many instances, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having Ck(3-10 functional activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.
For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie et al., "Deciphering the Message in Protein Sequences:
Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.
The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.
The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.
As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein.
For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved.
Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.
For example, site directed changes at the amino acid level of Ck(3-10 can be made by replacing a particular amino acid with a conservative amino acid. Preferred conservative mutations include: For example preferred complementary mutations include: M 1 replaced with A, G, I, L, S, T, or V; K2 replaced with H, or R; V3 replaced with A, G, I, L, S, T, or M; S4 replaced with A, G, I, L, T, M, or V; A5 replaced with G, I, L, S, T, M, or V; V6 replaced with A, G, I, L, S, T, or M; L7 replaced with A, G, I, S, T, M, or V;
L8 replaced with A, G, I, S, T, M, or V; L10 replaced with A, G, I, S, T, M, or V; L11 replaced with A, G, I, S, T, M, or V; L12 replaced with A, G, I, S, T, M, or V; M13 replaced with A, G, I, L, S, T, or V; T14 replaced with A, G, I, L, S, M, or V; A15 replaced with G, I, L, S, T, M, or V; A16 replaced with G, I, L, S, T, M, or V; F17 replaced with W, or Y;

replaced with Q; Q20 replaced with N; G21 replaced with A, I, L, S, T, M, or V; L22 replaced with A, G, I, S, T, M, or V; A23 replaced with G, I, L, S, T, M, or V; Q24 replaced with N; D26 replaced with E; A27 replaced with G, I, L, S, T, M, or V; L28 replaced with A, G, I, S, T, M, or V; N29 replaced with Q; V30 replaced with A, G, I, L, S, T, or M; S32 replaced with A, G, I, L, T, M, or V; T33 replaced with A, G, I, L, S, M, or V; F36 replaced with W, or Y; T37 replaced with A, G, I, L, S, M, or V; F38 replaced with W, or Y; S39 replaced with A, G, I, L, T, M, or V; S40 replaced with A, G, I, L, T, M, or V; K41 replaced with H, or R; K42 replaced with H, or R; I43 replaced with A, G, L, S, T, M, or V; S44 replaced with A, G, I, L, T, M, or V; L45 replaced with A, G, I, S, T, M, or V; Q46 replaced with N; R47 replaced with H, or K; L48 replaced with A, G, I, S, T, M, or V; K49 replaced with H, or R; S50 replaced with A, G, I, L, T, M, or V;

replaced with F, or W; V52 replaced with A, G, I, L, S, T, or M; I53 replaced with A, G, L, S, T, M, or V; T54 replaced with A, G, I, L, S, M, or V; T55 replaced with A, G, I, L, S, M, or V; S56 replaced with A, G, I, L, T, M, or V; R57 replaced with H, or K;

replaced with N; K61 replaced with H, or R; A62 replaced with G, I, L, S, T, M, or V; V63 replaced with A, G, I, L, S, T, or M; I64 replaced with A, G, L, S, T, M, or V; F65 replaced with W, or Y; R66 replaced with H, or K; T67 replaced with A, G, I, L, S, M, or V; K68 replaced with H, or R; L69 replaced with A, G, I, S, T, M, or V; G70 replaced with A, I, L, S, T, M, or V; K71 replaced with H, or R; E72 replaced with D; I73 replaced with A, G, L, S, T, M, or V; A75 replaced with G, I, L. S, T, M, or V; D76 replaced with E;
K78 replaced with H, or R; E79 replaced with D; K80 replaced with H, or R; W81 replaced with F, or Y; V82 replaced with A, G, I, L, S, T, or M; Q83 replaced with N;
N84 replaced with Q; Y85 replaced with F, or W; M86 replaced with A, G, I, L, S, T, or V;
K87 replaced with H, or R; H88 replaced with K, or R; L89 replaced with A, G, I, S, T, M, or V; G90 replaced with A, I, L, S, T, M, or V; R91 replaced with H, or K; K92 replaced with H, or R; A93 replaced with G, I, L, S, T, M, or V; H94 replaced with K, or R; T95 replaced with A, G, I, L, S, M, or V; L96 replaced with A, G, I, S, T, M, or V; K97 replaced with H, or R; and T98 replaced with A, G, I, L, S, M, or V of SEQ ID N0:4.
The resulting constructs can be routinely screened for activities or functions described throughout the specification and known in the art. Preferably, the resulting constructs have an increased and/or a decreased Ck(3-10 activity or function, while the remaining Ck(3-10 activities or functions are maintained. More preferably, the resulting constructs have more than one increased and/or decreased Ck(3-10 activity or function, while the remaining Ck(3-10 activities or functions are maintained.
Besides conservative amino acid substitution, variants of Ck(3-10 include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as, for example, an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification.
Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.
For example, Ck(3-10 polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 ( 1967);
Robbins et al., Diabetes 36: 838-845 ( 1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 ( 1993).) For example, preferred non-conservative substitutions of Ck(3-10 include: M1 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; K2 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; V3 replaced with D, E, H, K, R, N, Q, F, W. Y, P, or C; S4 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; AS replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; V6 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;
L7 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; L8 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; C9 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or P; L10 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; L11 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; L12 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; M13 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; T14 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; A15 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; A16 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; F17 replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C; N18 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C; P19 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C; Q20 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C; G21 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; L22 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; A23 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; Q24 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C; P25 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C; D26 replaced with H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; A27 replaced with D, E, H , K, R, N, Q, F, W, Y, P, or C; L28 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;
N29 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C; V30 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; P31 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C; S32 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; T33 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; C34 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or P; C35 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or P; F36 replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C; T37 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; F38 replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C; S39 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; S40 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; K41 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C;

replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; I43 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; S44 replaced with D, E, H, K, R, N, Q, F, W, Y, P , or C; L45 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; Q46 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C; R47 replaced with D, E, A, G, I, L, S , T, M, V, N, Q, F, W, Y, P, or C; L48 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; K49 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; S50 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; Y51 replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C; V52 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;
I53 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; T54 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; T55 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; S56 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; R57 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; C58 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or P; P59 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C; Q60 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C; K61 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C;

replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; V63 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; I64 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;

replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C; R66 replaced with D, E, A, G, I, L; S, T, M, V, N, Q, F, W, Y, P, or C; T67 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; K68 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, 5 or C; L69 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; G70 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; K71 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; E72 replaced with H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; I73 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; C74 replaced with D, E, H , K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or P; A75 replaced with D, E, H, K, R, N, 10 Q, F, W, Y, P, or C; D76 replaced with H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; P77 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C;
K78 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; E79 replaced with H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; K80 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; W81 replaced with D, E, H, K, R, N, Q, A, G, 15 I, L, S, T, M, V, P, or C; V82 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; Q83 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C; N84 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C; Y85 replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C; M86 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; K87 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; H88 20 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; L89 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; G90 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; R91 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C;

replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; A93 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; H94 replaced with D, E, A, G, I, L, S, T, M, V, N, 25 Q, F, W, Y, P, or C; T95 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; L96 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; K97 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; and T98 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C of SEQ ID N0:4.
The resulting constructs can be routinely screened for activities or functions 30 described throughout the specification and known in the art. Preferably, the resulting constructs have an increased and/or decreased Ck(3-10 activity or function, while the remaining Ck(3-10 activities or functions are maintained. More preferably, the resulting constructs have more than one increased and/or decreased Ck(3-10 activity or function, while the remaining Ck(3-10 activities or functions are maintained.
Additionally, more than one amino acid (e.g., 2, 3, 4, 5, 6, 7, 8, 9 and 10) can be replaced with the substituted amino acids as described above (either conservative or nonconservative). The substituted amino acids can occur in the full length, mature, or proprotein form of Ck(3-10 protein, as well as the N- and C- terminal deletion mutants, having the general formula n-m of SEQ ID N0:4 (e.g., n-m, n-m', n-m', n'-m', and n'-m') where n and m are integers as described below.
A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a Ck(3-10 polypeptide having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions. Of course, in order of ever-increasing preference, it is highly preferable for a polypeptide to have an amino acid sequence which comprises the amino acid sequence of a Ck(3-10 polypeptide, which contains at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions. In specific embodiments, the number of additions, substitutions, and/or deletions in the amino acid sequence of Figure 2 (SEQ ID
N0:4) or fragments thereof (e.g., the mature form and/or other fragments described herein), is 1-5, 5 10, 5-25, 5-50, 10-50 or 50-150, conservative amino acid substitutions are preferable.
Polynucleotide and Polype~tide Fra;aments The present invention is also directed to polynucleotide fragments of the polynucleotides of the invention. In the present invention, a "polynucleotide fragment"
refers to a short polynucleotide having a nucleic acid sequence which: is a portion of that contained in a deposited clone, or encoding the polypeptide encoded by the cDNA in a deposited clone; is a portion of that shown in SEQ ID NO:1 or SEQ ID N0:3 or the complementary strand thereto, or is a portion of a polynucleotide sequence encoding the polypeptide of SEQ ID N0:2 or SEQ ID N0:4. The nucleotide fragments of the invention are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt, at least about 50 nt, at least about 75 nt, or at least about 150 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA
sequence contained in a deposited clone or the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID N0:3. In this context "about" includes the particularly recited value, a value larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. These nucleotide fragments have uses that include, but are not limited to, as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.
Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments comprising, or alternatively consisting of, a sequence from about nucleotide number 1-69, 70-120, 121-171, 172-222, 223-273, or 274 to the end of SEQ ID N0:3, or the complementary strand thereto, or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, and ranges larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini.
Preferably, these fragments encode a polypeptide which has biological activity. More preferably, these polynucleotides can be used as probes or primers as discussed herein.
Polynucleotides which hybridize to these nucleic acid molecules under stringent hybridization conditions or lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides. In the present invention, a "polypeptide fragment" refers to an amino acid sequence which is a portion of that contained in SEQ ID N0:2 or SEQ ID N0:4 or encoded by the cDNA contained in a deposited clone.
Protein (polypeptide) fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments comprising, or alternatively consisting of, from about amino acid number 1-23, 24-40, 41-60, 61-80, or 81 to the end of the coding region of Ck~3-10 shown in Figure 2 (SEQ ID N0:4). Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length.
In this context "about" includes the particularly recited ranges or values, and ranges or values larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.
Polynucleotides encoding these polypeptides are also encompassed by the invention.
Even if deletion of one or more amino acids from the N-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional activities (e.g., biological activities, ability to multimerize, ability to bind Ck(3-10 ligand) may still be retained. For example, the ability of shortened Ck(3-10 muteins to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptides generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that an Ck(3-10 mutein with a large number of deleted N-terminal amino acid residues may retain some biological or immunogenic activities. In fact, peptides composed of as few as six Ck(3-10 amino acid residues may often evoke an immune response.
Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both.
Accordingly, polypeptide fragments include the secreted Ck(3-10 protein as well as the mature form. Further preferred polypeptide fragments include the secreted Ck~3-10 protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, the present invention further provides polynucleotides which encode Ck(3-10 polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence shown in SEQ ID N0:4, up to the cysteine residue at position number 34, and polynucleotides encoding such polypeptides. In particular, the present invention provides polynucleotides which encode polypeptides comprising the amino acid sequence of residues n-98 of SEQ ID N0:4, where n is an integer in the range of 1 to 30, and preferably n is in the range of 20 to 35, and most preferrably n is in the range 29 to 35, where Cys-35 is the position of the first residue from the N-terminus the Ck(3-10 polypeptide (shown in SEQ ID N0:4) believed to be required for receptor binding activity. Further, n may be in the range of 29-35, 30-35, 31-35, 32-35, 33-35, 34-35, or n may equal 35.
More in particular, the invention provides polynucleotides which encode polypeptides comprising the amino acid sequence shown in SEQ ID N0:4 as residues 1-98, 2-98, 3-98, 4-98, 5-98, 6-98, 7-98, 8-98, 9-98, 10-98, 11-98, 12-98, 13-98, 14-98, 15-98, 16-98, 17-98, 18-98, 19-98, 20-98, 21-98, 22-98, 23-98, 24-98, 25-98, 26-98, 27-98, 28-98, 29-98, 30-98, 31-98, 32-98, 33-98, 34-98, or 35-98. Particularly preferred are polynucleotides which encode polypeptides comprising the amino acid sequence shown in SEQ >D N0:4 as residues 18-98, 19-98, 21-98, 23-98, 25-98, 26-98, 27-98, 29-98, 30-98, 31-98, 32-98, 33-98, 34-98 or 35-98, with the most preferred within this group being 25-98, 26-98, 27-98, 28-98, 29-98 and 30-98.
The present invention further provides polynucleotides which encode polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the Ck(3-10 polypeptide up to the cysteine residue at position 74 of SEQ ID
NO: 4. In particular, the present invention provides polynucleotides which encode polypeptides having the amino acid sequence of residues 17-m of the amino acid sequence in SEQ ID
N0:4, where m is any integer in the range of 74 to 98, preferably the polypeptide comprises residues 23-m where m is in the range of 74-98 since residue cysteine-74 is the first residue from the C-terminus of the complete Ck(3-10 polypeptide (shown in SEQ ID NO:
4) believed to be required for receptor binding and target cell modulation activities. Further, m may be in the range of 74-98, 75-98, 76-98, 77-98, 78-98, 79-98, 80-98, 81-98, 82-98, 83-98, 84-98, 85-98, 86-98, 87-98, 88-98, 90-98, 91-98, 92-98, 93-98, 94-98, 95-98, 96-98, 97-98 or n may equal 98.
More in particular, the invention provides polynucleotides which encode polypeptides comprising the amino acid sequence shown in SEQ ID N0:4 as residues 17-74, 17-75, 17-76, 17-77, 17-78, 17-79, 17-80, 17-81, 17-82, 17-83, 17-84, 17-85, 17-86, 17-87, 17-88, 17-89, 17-90, 17-91, 17-92, 17-93, 17-94, 17-95, 17-96, 17-97, or 17-98.
Particularly preferred are polynucleotides which encode polypeptides comprising the amino acid sequence shown in SEQ ID N0:4 as residues 23-74, 23-75, 23-76, 23-77, 23-78, 23-79, 23-80, 23-81, 23-82, 23-83, 23-84, 23-85, 23-86, 23-87, 23-88, 23-89, 23-90, 23-91, 23-92, 23-93, 23-94, 23-95, 23-96, 23-97, 23-98 23-74, 23-75, 23-76, 23-77, 23-78, 23-79, 23-80, 23-81, 23-82, 23-83, 23-84, 23-85, 23-86, 23-87, 23-88, 23-89, 23-90, 23-91, 23-92, 23-93, 23-94, 23-95, 23-96, and 23-97.
Particularly, N-terminal deletions of the Ck(3-10 polypeptide can be described by the general formula n'-98, where n' is an integer from 2 to 93, where n ' corresponds to the position of the amino acid residue identified in SEQ ID N0:4. More in particular, the invention provides polynucleotides encoding polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues of: K-2 to T-98; V-3 to T-98; S-4 to T-98;
A-5 to T-98; V-6 to T-98; L-7 to T-98; L-8 to T-98; C-9 to T-98; L-10 to T-98;
L-11 to T-98;
L-12 to T-98; M-13 to T-98; T-14 to T-98; A-15 to T-98; A-16 to T-98; F-17 to T-98; N-18 to T-98; P-19 to T-98; Q-20 to T-98; G-21 to T-98; L-22 to T-98; A-23 to T-98;
Q-24 to T-98; P-25 to T-98; D-26 to T-98; A-27 to T-98; L-28 to T-98; N-29 to T-98; V-30 to T-98; P-31 to T-98; S-32 to T-98; T-33 to T-98; C-34 to T-98; C-35 to T-98; F-36 to T-98; T-37 to T-98; F-38 to T-98; S-39 to T-98; S-40 to T-98; K-41 to T-98; K-42 to T-98; I-43 to T-98;
S-44 to T-98; L-45 to T-98; Q-46 to T-98; R-47 to T-98; L-48 to T-98; K-49 to T-98; S-50 to T-98; Y-51 to T-98; V-52 to T-98; I-53 to T-98; T-54 to T-98; T-55 to T-98;
S-56 to T-98;
R-57 to T-98; C-58 to T-98; P-59 to T-98; Q-60 to T-98; K-61 to T-98; A-62 to T-98; V-63 to T-98; I-64 to T-98; F-65 to T-98; R-66 to T-98; T-67 to T-98; K-68 to T-98;
L-69 to T-98; G-70 to T-98; K-71 to T-98; E-72 to T-98; I-73 to T-98; C-74 to T-98; A-75 to T-98; D-76 to T-98; P-77 to T-98; K-78 to T-98; E-79 to T-98; K-80 to T-98; W-81 to T-98; V-82 to T-98; Q-83 to T-98; N-84 to T-98; Y-85 to T-98; M-86 to T-98; K-87 to T-98; H-88 to T-98;
L-89 to T-98; G-90 to T-98; R-91 to T-98; K-92 to T-98; and A-93 to T-98 of the full length Ckb-10 polypeptide shown in Figure 2 (SEQ ID N0:4). Polynucleotides encoding these polypeptides are also encompassed by the invention.
The present application is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to the polynucleotide sequence encoding the Ck(3-10 polypeptide described above. The present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
Also as mentioned above, even if deletion of one or more amino acids from the C-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional activities (e.g., biological activities, ability to multimerize, 5 ability to bind Ck(3-10 ligand) may still be retained. For example the ability of the shortened Ck(3-10 mutein to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptide generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete polypeptide retains such 10 immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that an Ck(3-10 mutein with a large number of deleted C-terminal amino acid residues may retain some biological or immunogenic activities.
In fact, peptides composed of as few as six Ck(3-10 amino acid residues may often evoke an immune response.
15 Accordingly, the present invention further provides polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the Ck(3-10 polypeptide shown in Figure 2 (SEQ ID N0:4), as described by the general formula 1-m', where m' is an integer from 7 to 97, where m' corresponds to the position of amino acid residue identified in SEQ ID N0:4. More in particular, the invention provides 20 polynucleotides encoding polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues of M-1 to K-97; M-1 to L-96; M-1 to T-95; M-1 to H-94; M-1 to A-93; M-1 to K-92; M-1 to R-91; M-1 to G-90; M-1 to L-89; M-1 to H-88; M-1 to K-87;
M-1 to M-86; M-1 to Y-85; M-1 to N-84; M-1 to Q-83; M-1 to V-82; M-1 to W-81;
M-1 to K-80; M-1 to E-79; M-1 to K-78; M-1 to P-77; M-1 to D-76; M-1 to A-75; M-1 to C-74;
25 M-1 to I-73; M-1 to E-72; M-1 to K-71; M-1 to G-70; M-1 to L-69; M-1 to K-68; M-1 to T-67; M-1 to R-66; M-1 to F-65; M-1 to I-64; M-1 to V-63; M-1 to A-62; M-1 to K-61; M-1 to Q-60; M-1 to P-59; M-1 to C-58; M-1 to R-57; M-1 to S-56; M-1 to T-55; M-1 to T-54;
M-1 to I-53; M-1 to V-52; M-1 to Y-51; M-1 to S-50; M-1 to K-49; M-1 to L-48;
M-1 to R-47; M-1 to Q-46; M-1 to L-45; M-1 to S-44; M-1 to I-43; M-1 to K-42; M-1 to K-41; M-1 30 to S-40; M-1 to S-39; M-1 to F-38; M-1 to T-37; M-1 to F-36; M-1 to C-35; M-1 to C-34;
M-1 to T-33; M-1 to S-32; M-1 to P-31; M-1 to V-30; M-1 to N-29; M-1 to L-28;
M-1 to A-27; M-1 to D-26; M-1 to P-25; M-1 to Q-24; M-1 to A-23; M-1 to L-22; M-1 to G-21; M-1 to Q-20; M-1 to P-19; M-1 to N-18; M-1 to F-17; M-1 to A-16; M-1 to A-15; M-1 to T-14; M-1 to M-13; M-1 to L-12; M-1 to L-11; M-1 to L-10; M-1 to C-9; M-1 to L-8; and M-35 1 to L-7 of the full length Ckb-10 polypeptide shown in Figure 2 or SEQ ID
N0:4.
Polynucleotides encoding these polypeptides are also encompassed by the invention.
The present invention further provides polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the mature Ck(3-10 polypeptide shown in Figure 2 (SEQ ID N0:4), as described by the general formula 24-m2, where m' is an integer from 30 to 97, where m2 corresponds to the position of amino acid residue identified in SEQ ID N0:4. More in particular, the invention provides polynucleotides encoding polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues of Q-24 to K-97; Q-24 to L-96; Q-24 to T-95; Q-24 to H-94; Q-24 to A-93; Q-24 to K-92; Q-24 to R-91; Q-24 to G-90; Q-24 to L-89; Q-24 to H-88; Q-24 to K-87; Q-24 to M-86; Q-24 to Y-85; Q-24 to N-84; Q-24 to Q-83; Q-24 to V-82;
Q-24 to W-81; Q-24 to K-80; Q-24 to E-79; Q-24 to K-78; Q-24 to P-77; Q-24 to D-76; Q-24 to A-75; Q-24 to C-74; Q-24 to I-73; Q-24 to E-72; Q-24 to K-71; Q-24 to G-70; Q-24 to L-69;
Q-24 to K-68; Q-24 to T-67; Q-24 to R-66; Q-24 to F-65; Q-24 to I-64; Q-24 to V-63; Q-24 to A-62; Q-24 to K-61; Q-24 to Q-60; Q-24 to P-59; Q-24 to C-58; Q-24 to R-57;
Q-24 to S-56; Q-24 to T-55; Q-24 to T-54; Q-24 to I-53; Q-24 to V-52; Q-24 to Y-51; Q-24 to S-50;
Q-24 to K-49; Q-24 to L-48; Q-24 to R-47; Q-24 to Q-46; Q-24 to L-45; Q-24 to S-44; Q-24 to I-43; Q-24 to K-42; Q-24 to K-41; Q-24 to S-40; Q-24 to S-39; Q-24 to F-38; Q-24 to T-37; Q-24 to F-36; Q-24 to C-35; Q-24 to C-34; Q-24 to T-33; Q-24 to S-32; Q-24 to P-31; Q-24 to V-30; and Q-24 to N-29 of the mature Ckb-10 polypeptide shown in Figure 2 or SEQ ID N0:4. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Moreover, a signal sequence may be added to these C-terminal contructs. For example, amino acids 1-23 of SEQ 117 N0:4, amino acids 2-23 of SEQ ID N0:4, amino acids 3-23 of SEQ ID N0:4, amino acids 4-23 of SEQ H7 N0:4, amino acids 5-23 of SEQ
ID N0:4, amino acids 6-23 of SEQ H~ N0:4, amino acids 7-23 of SEQ H7 N0:4, amino acids 8-23 of SEQ ID N0:4, amino acids 9-23 of SEQ H~ N0:4, amino acids 10-23 of SEQ
ID N0:4, amino acids 11-23 of SEQ ID N0:4, amino acids 12-23 of SEQ ID N0:4, amino acids 13-23 of SEQ m N0:4, amino acids 14-23 of SEQ H7 N0:4, amino acids 15-23 of SEQ ID N0:4, amino acids 16-23 of SEQ ID N0:4, amino acids 17-23 of SEQ ID
N0:4, amino acids 18-23 of SEQ ID N0:4, amino acids 19-23 of SEQ ID N0:4, amino acids 20-23 of SEQ ~ N0:4, amino acids 21-23 of SEQ ID N0:4, or amino acids 22-23 of SEQ
ID
N0:4 can be added to the N-terminus of each of the C-terminal constructs listed above.
In a preferred embodiment, any of the above listed constucts may include an N-terminal methionine. Polynucleotides encoding these polypeptides are also encompassed.
The present application is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to the polynucleotide sequence encoding the Ck(3-10 polypeptide described above. The present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
In addition, any of the above listed N- or C-terminal deletions can be combined to produce a N- and C-terminal deleted Ck(3-10 polypeptide. The invention also provides polynucleotides which encode polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini of the full-length Ck(3-10 polypeptide comprising or alternatively consisting of, amino acid residues described by the general formula n-m of SEQ
ID N0:4, (e.g., n-m, n-m', n-m2, n'-m, n'-m', or n'-m2) where n, n', m, m' and m' are integers as described above. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Particularly preferred are polynucleotides which encode Ck(3-10 polypeptides having N and C-terminal deletions and include the polypeptides comprising amino acid residues:

17-74,17-75,17-76,17-77,17-78,17-79,17-80,17-81,17-82,17-83,17-84,17-85, 17-86,17-87,17-88,17-89,17-90,17-91,17-92,17-93,17-94,17-95,17-96,17-97, 17-98,18-74,18-75,18-76,18-77,18-78,18-79,18-80,18-81,18-82,18-83,18-84, 18-85,18-86,18-87,18-88,18-89,18-90,18-91,18-92,18-93,18-94,18-95,18-96, 18-97,18-98,19-74,19-75,19-76,19-77,19-78,19-79,19-80,19-81,19-82,19-83, 19-84,19-85,19-86,19-87,19-88,19-89,19-90,19-91,19-92,19-93,19-94,19-95, 19-96,19-97,19-98,20-74,20-75,20-76,20-77,20-78,20-79,20-80,20-81,20-82, 20-83,20-84,20-85,20-86,20-87,20-88,20-89,20-90,20-91,20-92,20-93,20-94, 20-95,20-96,20-97,20-98,21-74,21-75,21-76,21-77,21-78,21-79,21-80,21-81, 21-82,21-83,21-84,21-85,21-86,21-87,21-88,21-89,21-90,21-91,21-92,21-93, 21-94,21-95,21-96,21-97,21-98,22-74,22-75,22-76,22-77,22-78,22-79,22-80, 22-81,22-82,22-83,22-84,22-85,22-86,22-87,22-88,22-89,22-90,22-91,22-92, 22-93,22-94,22-95,22-96,22-97,22-98,23-74,23-75,23-76,23-77,23-78,23-79, 23-80,23-81,23-82,23-83,23-84,23-85,23-86,23-87,23-88,23-89,23-90,23-91, 23-92,23-93,23-94,23-95,23-96,23-97,23-98,24-74,24-75,24-76,24-77,24-78, 24-79,24-80,24-81,24-82,24-83,24-84,24-85,24-86,24-87,24-88,24-89,24-90, 24-91,24-92,24-93,24-94,24-95,24-96,24-97,24-98,25-74,25-75,25-76,25-77, 25-78,25-79,25-80,25-81,25-82,25-83,25-84,25-85,25-86,25-87,25-88,25-89, 25-90,25-91,25-92,25-93,25-94,25-95,25-96,25-97,25-98,26-74,26-75,26-76, 26-77,26-78,26-79,26-80,26-81,26-82,26-83,26-84,26-85,26-86,26-87,26-88, 26-89,26-90,26-91,26-92,26-93,26-94,26-95,26-96,26-97,26-98,27-74,27-75, 27-76,27-77,27-78,27-79,27-80,27-81,27-82,27-83,27-84,27-85,27-86,27-87, 27-88,27-89,27-90,27-91,27-92,27-93,27-94,27-95,27-96,27-97,27-98,28-74, 28-75,28-76,28-77,28-78,28-79,28-80,28-81,28-82,28-83,28-84,28-85,28-86, 28-87,28-88,28-89,28-90,28-91,28-92,28-93,28-94,28-95,28-96,28-97,28-98, 29-74, 29-75, 29-76, 29-77, 29-78, 29-79, 29-80, 29-81, 29-82, 29-83, 29-84, 29-85, 29-86, 29-87, 29-88, 29-89, 29-90, 29-91, 29-92, 29-93, 29-94, 29-95, 29-96, 29-97 and 29-98 of SEQ ID N0:4. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Also included are a nucleotide sequence encoding a polypeptide consisting of a portion of the complete Ck~3-10 amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 75849, where this portion excludes any integer of amino acid residues from 1 to about 88 amino acids from the amino terminus of the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 75849, or any integer of amino acid residues from 1 to about 88 amino acids from the carboxy terminus, or any combination of the above amino terminal and carboxy terminal deletions, of the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No.
75849.
Polynucleotides encoding all of the above deletion mutant polypeptide forms also are provided.
The present application is also directed to proteins containing polypeptides at least 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the Ck~3-10 polypeptide sequence set forth herein by the general formula n-m of SEQ ID N0:4, (e.g., n-m, n-m', n-m2, n'-m, n'-m', or n'-mz) where n, n', m, m' and m' are integers as described above. In preferred embodiments, the application is directed to proteins containing polypeptides at least 90%, 95%, 96%, 97%, 98% or 99% identical to polypeptides having the amino acid sequence of the specific Ck~3-10 N- and C-terminal deletions recited herein.
Polynucleotides encoding these polypeptides are also encompassed by the invention.
Additional preferred polypeptide fragments comprise, or alternatively consist of, the amino acid sequence of residues: M-1 to A-15; K-2 to A-16; V-3 to F-17; S-4 to N-18; A-5 to P-19; V-6 to Q-20; L-7 to G-21; L-8 to L-22; C-9 to A-23; L-10 to Q-24; L-11 to P-25; L-12 to D-26; M-13 to A-27; T-14 to L-28; A-15 to N-29; A-16 to V-30; F-17 to P-31; N-18 to S-32; P-19 to T-33; Q-20 to C-34; G-21 to C-35; L-22 to F-36; A-23 to T-37; Q-24 to F-38;
P-25 to S-39; D-26 to S-40; A-27 to K-41; L-28 to K-42; N-29 to I-43; V-30 to S-44; P-31 to L-45; S-32 to Q-46; T-33 to R-47; C-34 to L-48; C-35 to K-49; F-36 to S-50;
T-37 to Y-51; F-38 to V-52; S-39 to I-53; S-40 to T-54; K-41 to T-55; K-42 to S-56; I-43 to R-57; S-44 to C-58; L-45 to P-59; Q-46 to Q-60; R-47 to K-61; L-48 to A-62; K-49 to V-63; S-50 to I-64; Y-51 to F-65; V-52 to R-66; I-53 to T-67; T-54 to K-68; T-55 to L-69; S-56 to G-70;
R-57 to K-71; C-58 to E-72; P-59 to I-73; Q-60 to C-74; K-61 to A-75; A-62 to D-76; V-63 to P-77; I-64 to K-78; F-65 to E-79; R-66 to K-80; T-67 to W-81; K-68 to V-82;
L-69 to Q-83; G-70 to N-84; K-71 to Y-85; E-72 to M-86; I-73 to K-87; C-74 to H-88; A-75 to L-89;
D-76 to G-90; P-77 to R-91; K-78 to K-92; E-79 to A-93; K-80 to H-94; W-81 to T-95; V-82 to L-96; Q-83 to K-97; N-84 to T-98 of SEQ ID N0:4. These polypeptide fragments may retain the biological activity of Ck(3-10 polypeptides of the invention and/or may be useful to generate or screen for antibodies, as described further below. Polynucleotides encoding these polypeptide fragments are also encompassed by the invention.
The present application is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to the polynucleotide sequence encoding the Ck(3-10 polypeptide described above. The present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
Additionally, the present application is also directed to proteins containing polypeptides at least 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the Ck(3-10 polypeptide fragments set forth above. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Preferably, the polynucleotide fragments of the invention encode a polypeptide which demonstrates a Ck(3-10 functional activity. By a polypeptide demonstrating a Ck(3-10 "functional activity" is meant, a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) Ck~3-10 protein. Such functional activities include, but are not limited to, biological activity, antigenicity [ability to bind (or compete with a Ck(3-10 polypeptide for binding) to an anti- Ck(3-10 antibody], immunogenicity (ability to generate antibody which binds to a Ck(3-10 polypeptide), ability to form multimers with Ck(3-10 polypeptides of the invention, and ability to bind to a receptor or ligand for a Ck(3-10 polypeptide.
The functional activity of Ck(3-10 polypeptides, and fragments, variants derivatives, and analogs thereof, can be assayed by various methods.
For example, in one embodiment where one is assaying for the ability to bind or compete with full-length Ck(3-10 polypeptide for binding to anti- Ck(3-10 antibody, various immunoassays known in the art can be used, including but not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA
(enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A
assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
5 In another embodiment, where a Ck(3-10 ligand is identified, or the ability of a polypeptide fragment, variant or derivative of the invention to multimerize is being evaluated, binding can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel chromatography, protein affinity chromatography, and affinity blotting. See generally, Phizicky, E., et al., 1995, Microbiol. Rev.
59:94-123. In 10 another embodiment, physiological correlates of Ck(3-10 binding to its substrates (signal transduction) can be assayed.
In addition, assays described herein (see Examples) and otherwise known in the art may routinely be applied to measure the ability of Ck(3-10 polypeptides and fragments, variants derivatives and analogs thereof to elicit Ck~3-10 related biological activity (either in 15 vitro or in vivo). Other methods will be known to the skilled artisan and are within the scope of the invention.
Among the especially preferred fragments of the invention are fragments characterized by structural or functional attributes of Ck(3-10. Such fragments include amino acid residues that comprise alpha-helix and alpha-helix forming regions ("alpha-regions"), 20 beta-sheet and beta-sheet-forming regions ("beta-regions"), turn and turn-forming regions ("turn-regions"), coil and coil-forming regions ("coil-regions"), hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, surface forming regions, and high antigenic index regions (i.e., containing four or more contiguous amino acids having an antigenic index of greater than or equal to 1.5, as identified using the default 25 parameters of the Jameson-Wolf program) of complete (i.e., full-length) Ck(3-10 (SEQ ID
N0:4). Certain preferred regions are those set out in Figure 13 and include, but are not limited to, regions of the aforementioned types identified by analysis of the amino acid sequence depicted in Figure 2 (SEQ ID N0:4), such preferred regions include;
Garnier-Robson predicted alpha-regions, beta-regions, turn-regions, and coil-regions;
Chou-Fasman 30 predicted alpha-regions, beta-regions, turn-regions, and coil-regions; Kyte-Doolittle predicted hydrophilic and hydrophobic regions; Eisenberg alpha and beta amphipathic regions; Emini surface-forming regions; and Jameson-Wolf high antigenic index regions, as predicted using the default parameters of these computer programs.
Polynucleotides encoding these polypeptides are also encompassed by the invention.
35 In additional embodiments, the polynucleotides of the invention encode functional attributes of Ck(3-10. Preferred embodiments of the invention in this regard include fragments that comprise alpha-helix and alpha-helix forming regions ("alpha-regions"), beta-sheet and beta-sheet forming regions ("beta-regions"), turn and turn-forming regions ("turn-regions"), coil and coil-forming regions ("coil-regions"), hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions and high antigenic index regions of Ck(3-10.
The data representing the structural or functional attributes of Ck(3-10 set forth in Figure 13 and/or Table I, as described above, was generated using the various modules and algorithms of the DNA*STAR set on default parameters. In a preferred embodiment, the data presented in columns VIII, IX, XIII, and XIV of Table I can be used to determine regions of Ck(3-10 which exhibit a high degree of potential for antigenicity.
Regions of high antigenicity are determined from the data presented in columns VIII, IX, XIII, and/or IV by choosing values which represent regions of the polypeptide which are likely to be exposed on the surface of the polypeptide in an environment in which antigen recognition may occur in the process of initiation of an immune response.
Certain preferred regions in these regards are set out in Figure 13, but may, as shown in Table I, be represented or identified by using tabular representations of the data presented in Figure 13. The DNA*STAR computer algorithm used to generate Figure 13 (set on the original default parameters) was used to present the data in Figure 13 in a tabular format (See Table I). The tabular format of the data in Figure 13 may be used to easily determine specific boundaries of a preferred region.
The above-mentioned preferred regions set out in Figure 13 and in Table I
include, but are not limited to, regions of the aforementioned types identified by analysis of the amino acid sequence set out in Figure 1. As set out in Figure 13 and in Table I, such preferred regions include Gamier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions, Chou-Fasman alpha-regions, beta-regions, and coil-regions, Kyte-Doolittle hydrophilic regions and hydrophobic regions, Eisenberg alpha- and beta-amphipathic regions, Karplus-Schulz flexible regions, Emini surface-forming regions and Jameson-Wolf regions of high antigenic index.

Table I

Res sitionI II IIIIV V VI VII VIII IX X XI XIIXIII XIV
Po Met 1 A A . . . . . -0.36-0.07 * . 0.30 0.74 .

Lys 2 A A . . . . . -0.82-0.00 * . 0.30 0.58 .

Val 3 A A . . . . . -1.240.21 * . -0.300.34 .

Ser 4 A A . . . . . -1.670.47 * . -0.600.28 .

Ala 5 A A . . . . . -1.940.54 * . -0.600.12 .

Val 6 A A . . . . . -2.161.11 * . -0.600.08 *

Leu 7 A A . . . . . -3.011.16 * . -0.600.05 .

1~ Leu 8 A A . . . . . -2.971.46 . . -0.600.04 .

Cys 9 A A . . . . . -3.271.64 . . -0.600.05 .

Leu 10 A A . . . . . -2.991.61 . . -0.600.06 .

Leu I1 A A . . . . . -2.721.41 . . -0.600.10 .

Leu 12 A A . . . . -2.501.23 . . -0.600.19 .

15 Met 13 A A . . . . . -2.391.16 . . -0.600.23 .

Thr 14 A A . . . . . -1.721.26 . . -0.600.24 .

Ala 15 A A . . . . . -1.120.97 * . -0.600.47 .

Ala 16 A A . . . . . -0.310.71 * . -0.600.73 .

Phe 17 A A . . . . . 0.16 0.50 . . -0.600.87 .

2~ Asn 18 . . . . . T C -0.060.44 F 0.15 0.85 .

Pro 19 . . . . . T C -0.330.63 " F 0.15 0.70 .

Gln 20 . . . . T T . 0.26 0.63 * F 0.35 0.81 .

Gly 21 . . . . . T C 0.63 0.24 * F 0.45 0.88 .

Leu 22 . . . . . . C 1.33 0.27 * F 0.25 0.88 .

25 Ala 23 . . B . . . . 0.74 -0.16 * F 0.65 0.85 .

Gln 24 . . B . . T . 0.14 -0.06 . F 0.85 0.86 .

Pro 25 . . B . . T . 0.14 0.20 . F 0.25 0.86 .

Asp 26 . . B . . T . -0.37-0.09 . F 1.00 1.37 .

Ala 27 . . B . . T . 0.23 0.06 . . 0.10 0.59 .

Leu 28 . . B . . . . 0.52 0.09 . . -0.030.59 .

Asn 29 . . B . . . . 0.21 0.04 . . 0.04 0.47 .

Val 30 . . B . . . . -0.240.53 . F -0.040.67 *

Pro 31 . . . . T . . -0.910.60 . F 0.43 0.44 .

Ser 32 . . . . T T . -1.020.49 * F 0.70 0.15 .

35 Thr 33 . . B . . T . -0.520.87 * F 0.23 0.17 .

Cys 34 . . B . . T . -1.220.71 * . 0.01 0.16 .

Cys 35 . . B . . T . -0.671.07 . . -0.060.10 .

Phe 36 . . B B . . . -0.761.07 * . -0.530.10 .

Thr 37 . . B B . . . -0.410.97 . . -0.320.24 .

4~ Phe 38 A . . B . . . -0.060.40 . . 0.26 0.89 *

Ser 39 A . . . . T . -0.28-0.17 . F 1.84 2.06 *

Ser 40 . . . . T T . 0.09 -0.27 * F 2.37 1.00 .

Lys 41 . . . . T T . -0.02-0.37 * F 2.80 1.55 .

Lys 42 A . . . . T . 0.29 -0.47 . F 1.97 0.95 .

45 Ile 43 A . . B . . . 1.10 -0.46 . F 1.44 1.23 .

Ser 44 A . . B . . . 0.59 -0.84 . . 1.31 1.20 .

Leu 45 . . B B . . . 0.93 -0.16 . . 0.78 0.50 .

Gln 46 . . B B . . . 0.59 -0.16 . . 0.85 1.42 .

Arg 47 . . B B . . . 0.30 -0.46 * F 1.20 1.42 *

50 Leu 48 . . B . . T . 0.33 -0.09 . F 1.80 2.69 *

Lys 49 . . B . . T . -0.26-0.13 . F 2.00 1.15 *

Ser 50 . . B . . T . 0.24 0.16 * . 0.90 0.41 '' Tyr 51 . . B . . T . -0.070.64 * . 0.40 0.72 *

Val 52 . . B B . . . -0.480.44 * . -0.200.52 *

55 Ile 53 . . B B . . . 0.44 0.83 * . -0.400.52 *

Thr 54 . . B B . . . -0.270.44 . F -0.450.65 ~

Thr 55 . . B B . . . -0.180.26 . F 0.19 0.47 *

Ser 56 . . B . . . . 0.07 0.04 . F 0.88 1.04 *

Arg 57 . . . . T . . 0.97 -0.24 * F 2.22 1.25 *

Table I (continued) Res I II III N V VI VII VIII IX X XI XIIXIII XIV
Position Cys 58 . . . . . T C 1.27 -0.73* . F 2.86 1.73 Pro 59 . . . . T T . 0.72 -0.71* * F 3.40 1.30 Gln 60 . . . . T T . 0.14 -0.46* * F 2.61 0.49 Lys 61 . . B . . T . -0.26 0.23. * F 1.27 0.65 Ala 62 . . B B . . . -0.26 0.44. " . 0.08 0.36 Val 63 . . B B . . . 0.10 0.01. * . 0.04 0.41 Ile 64 . . B B . . . 0.36 0.10. * . -0.300.29 1~ Phe 65 . . B B . . . -0.46 0.10. * . -0.300.58 Arg 66 A . . B . . . -0.84 0.29. * . -0.300.65 Thr 67 A . . B . . . -0.21 0.07. * F -0.150.92 Lys 68 A . . B . . . 0.64 -0.61. * F 0.90 2.12 Leu 69 . A . . T . . 0.64 -1.40. * F 1.30 1.87 IS Gly 70 . A . . T . . 0.68 -0.71. * F 1.15 0.91 Lys 71 A A . . . . . -0.02 -0.63. * F 0.75 0.24 Glu 72 A A . . . . . 0.29 -0.13* * . 0.30 0.30 Ile 73 A A . . . . . 0.03 -0.81* * . 0.60 0.50 Cys 74 A A . . . . . 0.89 -0.81* * . 0.60 0.39 20 Ala 75 A A . . . . . 1.23 -0.81* * . 0.60 0.45 Asp 76 A . . . . T . 1.23 -0.81* '~' F 1.30 1.11 Pro 77 A . . . . T . 0.94 -1.50. * F 1.30 4.14 Lys 78 A . . . . T . 0.98 -1.16* * F 1.30 4.31 Glu 79 A . . . . T . 1.64 -1.01* * F 1.30 1.92 25 Lys 80 A . . . . . . 2.23 -0.61* * F 1.10 2.15 Trp 81 A . . . . . . 1.99 -0.64* * F 1.10 1.73 Val 82 A . . . . . . 1.60 0.11* . . 0.05 1.56 Gln 83 A . . . . . . 1.60 0.73* . . -0.400.77 Asn 84 A A . . . . . 1.57 0.73* . . -0.451.47 3~ Tyr 85 A A . . . . . 0.71 0.31* . . -0.152.69 Met 86 A A . . . . . 0.66 0.36* * . -0.151.28 Lys 87 A A . . . . . 1.62 0.39* . . -0.300.79 His 88 A A . . . . . 1.67 -0.01* . . 0.30 0.99 Leu 89 A A . . . . . 1.08 -0.77* . . 0.75 1.99 35 Gly 90 A A . . . . . 1.29 -0.89* . F 0.90 I.O1 Arg 91 A A . . . . . 1.58 -0.39* . F 0.60 1.01 Lys 92 A A . . . . . 0.72 -0.40* . F 0.60 1.76 Ala 93 A A . . . . . 0.80 -0.40* . . 0.45 1.47 His 94 A A . . . . . 1.30 -0.83* . . 0.75 1.50 4~ Thr 95 A A . . . . . 1.26 -0.34* . . 0.45 1.08 Leu 96 . A B . . . . 0.76 0.09* . . -0.151.37 Lys 97 . A B . . . . 0.32 0.01. . . -0.151.29 Thr 98 . A B . . . . 0.52 -0.06. . . 0.45 1.14 Among highly preferred fragments in this regard are those that comprise regions of Ck(3-10 that combine several structural features, such as several of the features set out above.
Other preferred polypeptide fragments are biologically active Ck(3-10 fragments.
Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the Ck(3-10 polypeptide. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.
Polynucleotides encoding these polypeptide fragments are also encompassed by the invention.
However, many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID N0:3 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence would be cumbersome.
Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 283 of SEQ ID N0:3, b is an integer of 15 to 297, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID N0:3, and where the b is greater than or equal to a + 14.
Such polypeptides may be produced by expressing a cDNA of the invention, particularly a cDNA having the sequence set out in Figures 1 (SEQ ID NO:1 ), 2, 5, or 12 (SEQ ID N0:3), or having the sequence of the human cDNA of the deposited clones, using for instance a baculovirus vector in insect host cells.
The polynucleotides of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA
may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the mature polypeptides may be identical to the coding sequence shown in Figures 1 (SEQ
ID NO:1 ) and 2 (SEQ ID N0:3) or that of the deposited clones or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptides, or the other polypeptides noted herein, as for instance noted herein above, as the amino acid sequences of Figures 1 (SEQ ID
N0:2), 2, 5 or 12 (SEQ ID N0:4), or those encoded by the deposited cDNAs.
The polynucleotide which encodes polypeptides of Figures 1 (SEQ ID N0:2), 2, 5 , or 12 (SEQ ID N0:4), and as noted elsewhere herein, or for the polypeptides encoded by the deposited cDNAs, may include: only the coding sequence for the mature polypeptide; the coding sequence for the mature polypeptide and additional coding sequence such as a leader or secretory sequence or a proprotein sequence; the coding sequence for the mature polypeptide (and optionally additional coding sequence) and non-coding sequence, such as introns or non-coding sequence 5' and/or 3' of the coding sequence for the mature 5 polypeptides.
Thus, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.
The present invention further relates to variants of the hereinabove described 10 polynucleotides which encode for fragments, analogs and derivatives of the polypeptide having the deduced amino acid sequence of Figures 1 and 2, and the sequences set out in Figure 5 and 12, or the polypeptides encoded by the cDNA of the deposited clones. The variant of the polynucleotides may be a naturally occurring allelic variant of the polynucleotides or a non-naturally occurring variant of the polynucleotides.
15 Thus, the present invention includes polynucleotides encoding the same mature polypeptides as shown in Figures 1 and 2, the polypeptides set out in Figure 5 or 12, or the same mature polypeptides encoded by the cDNA of the deposited clones as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the polypeptides of Figures 1 and 2, or the polypeptides set out in Figure 5 or 12, or the 20 polypeptides encoded by the cDNA of the deposited clones. Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.
As hereinabove indicated, the polynucleotides may have a coding sequence which is a naturally occurring allelic variant of the coding sequence shown in Figures 1 and 2, or the polypeptides set out in Figure 5 or 12, or of the coding sequence of the deposited clones. As 25 known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.
The present invention also includes polynucleotides, wherein the coding sequence for the mature polypeptides may be fused in the same reading frame to a polynucleotide 30 sequence which aids in expression and secretion of a polypeptide from a host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell. The polypeptide having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to form the mature form of the polypeptide. The polynucleotides may also encode for a proprotein which is the mature 35 protein plus additional 5' amino acid residues. A mature protein having a prosequence is a proprotein and is an inactive form of the protein. Once the prosequence is cleaved an active mature protein remains.
Thus, for example, the polynucleotide of the present invention may encode for a mature protein, or for a protein having a prosequence or for a protein having both a prosequence and a presequence (leader sequence).
The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptides of the present invention. The marker sequence may be a hexa-histidine tag supplied by a pQE-9 vector to provide for purification of the mature polypeptides fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemaglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, L, et al., Cell, 37:767 ( 1984)).
The present invention further relates to polynucleotides which hybridize to the hereinabove-described sequences if there is at least 50% and preferably 70%
identity between the sequences. The present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides . As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNA of Figures 1 and 2, or the polypeptides set out in Figure 5 or 12, or the deposited cDNA.
The deposits) referred to herein will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for purposes of Patent Procedure. These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. ~ 112.
The sequence of the polynucleotides contained in the deposited materials, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.
The present invention further relates to chemokine polypeptides which have the deduced amino acid sequences of Figures l and 2 or which has the amino acid sequence encoded by the deposited cDNA, as well as fragments, analogs and derivatives of such polypeptides.
The terms "fragment," "derivative" and "analog" when referring to the polypeptides of Figures 1 and 2 or that encoded by the deposited cDNA, means polypeptides which retain essentially the same biological function or activity as such polypeptides.
Thus, an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
The chemokine polypeptides of the present invention may be recombinant polypeptides, natural polypeptides or a synthetic polypeptides, preferably recombinant polypeptides.
The fragment, derivative or analog of the polypeptides of Figures 1 and 2, or of the polypeptides of Figure 5 or 12, or that encoded by the deposited cDNAs may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.
Epitopes and Antibodies The present invention encompasses polypeptides comprising, or alternatively consisting of, an epitope of the polypeptide having an amino acid sequence of SEQ ID N0:2 or SEQ ID N0:4, or an epitope of the polypeptide sequence encoded by a polynucleotide sequence contained in ATCC Deposit No: 75848 or 75849 or encoded by a polynucleotide that hybridizes to the complement of the sequence of SEQ ID NO:1 or SEQ ID
N0:3 or contained in ATCC Deposit No: 75848 or 75849 under stringent hybridization conditions or lower stringency hybridization conditions as defined supra. The present invention further encompasses polynucleotide sequences encoding an epitope of a polypeptide sequence of the invention (such as, for example, the sequence disclosed in SEQ ID NO:1 or SEQ
ID N0:3), polynucleotide sequences of the complementary strand of a polynucleotide sequence encoding an epitope of the invention, and polynucleotide sequences which hybridize to the complementary strand under stringent hybridization conditions or lower stringency hybridization conditions defined supra.
The term "epitopes," as used herein, refers to portions of a polypeptide having antigenic or immunogenic activity in an animal, preferably a mammal, and most preferably in a human. In a preferred embodiment, the present invention encompasses a polypeptide comprising an epitope, as well as the polynucleotide encoding this polypeptide. An "immunogenic epitope," as used herein, is defined as a portion of a protein that elicits an antibody response in an animal, as determined by any method known in the art, for example, by the methods for generating antibodies described infra. (See, for example, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 ( 1983)). The term "antigenic epitope," as used herein, is defined as a portion of a protein to which an antibody can immunospecifically bind its antigen as determined by any method well known in the art, for example, by the immunoassays described herein. Immunospecific binding excludes non-specific binding but does not necessarily exclude cross- reactivity with other antigens.
Antigenic epitopes need not necessarily be immunogenic.
Fragments which function as epitopes may be produced by any conventional means.
(See, e.g., Houghten, Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985), further described in U.S. Patent No. 4,631,211).
In the present invention, antigenic epitopes preferably contain a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and, most preferably, between about 15 to about 30 amino acids.
Preferred polypeptides comprising immunogenic or antigenic epitopes are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length.
Additional non-exclusive preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as portions thereof. Antigenic epitopes are useful, for example, to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. Preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these antigenic epitopes. Antigenic epitopes can be used as the target molecules in immunoassays. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe et al., Science 219:660-666 (1983)).
Similarly, immunogenic epitopes can be used, for example, to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra;
Wilson et al., supra; Chow et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle et al., J. Gen. Virol. 66:2347-2354 ( 1985). Preferred immunogenic epitopes include the immunogenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these immunogenic epitopes. The polypeptides comprising one or more immunogenic epitopes may be presented for eliciting an antibody response together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse), or, if the polypeptide is of sufficient length (at least about 25 amino acids), the polypeptide may be presented without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting).
Epitope-bearing polypeptides of the present invention may be used to induce antibodies according to methods well known in the art including, but not limited to, in vivo immunization, in vitro immunization, and phage display methods. See, e.g., Sutcliffe et al., supra; Wilson et al., supra, and Bittle et al., J. Gen. Virol., 66:2347-2354 (1985). If in vivo immunization is used, animals may be immunized with free peptide;
however, anti-peptide antibody titer may be boosted by coupling the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine residues may be coupled to a carrier using a linker such as maleimidobenzoyl- N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carriers using a more general linking agent such as glutaraldehyde.
Animals such as rabbits, rats and mice are immunized with either free or carrier- coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 pg of peptide or carrier protein and Freund's adjuvant or any other adjuvant known for stimulating an immune response. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.
As one of skill in the art will appreciate, and as discussed above, the polypeptides of the present invention comprising an immunogenic or antigenic epitope can be fused to other polypeptide sequences. For example, the polypeptides of the present invention may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CH1, CH2, CH3, or any combination thereof and portions thereof) resulting in chimeric polypeptides. Such fusion proteins may facilitate purification and may increase half life in vivo. This has been shown for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. See, e.g., EP 394,827;
Traunecker et al., Nature, 331:84-86 ( 1988). Enhanced delivery of an antigen across the epithelial barrier to the immune system has been demonstrated for antigens (e.g., insulin) conjugated to an FcRn binding partner such as IgG or Fc fragments (see, e.g., PCT
Publications WO
96/22024 and WO 99/04813). IgG Fusion proteins that have a disulfide-linked dimeric structure due to the IgG portion desulfide bonds have also been found to be more efficient in binding and neutralizing other molecules than monomeric polypeptides or fragments thereof alone. See, e.g., Fountoulakis et al., J. Biochem., 270:3958-3964 (1995).
Nucleic acids encoding the above epitopes can also be recombined with a gene of interest as an epitope tag (e.g., the hemagglutinin ("HA") tag or flag tag) to aid in detection and purification of the expressed polypeptide. For example, a system described by Janknecht et al.
allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972- 897). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an amino-terminal tag consisting of six histidine residues.
The tag serves as a matrix binding domain for the fusion protein. Extracts from cells infected with the recombinant vaccinia virus are loaded onto Ni2+
nitriloacetic acid-agarose column and histidine-tagged proteins can be selectively eluted with imidazole-containing buffers.
Additional fusion proteins of the invention may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively 5 referred to as "DNA shuffling"). DNA shuffling may be employed to modulate the activities of polypeptides of the invention, such methods can be used to generate polypeptides with altered activity, as well as agonists and antagonists of the polypeptides.
See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, Trends Biotechnol. 16(2):76-10 82 (1998); Hansson, et al., J. Mol. Biol. 287:265-76 (1999); and Lorenzo and Blasco, Biotechniques 24(2):308- 13 (1998) (each of these patents and publications are hereby incorporated by reference in its entirety). In one embodiment, alteration of polynucleotides corresponding to SEQ ID NO:I or SEQ ID N0:3 and the polypeptides encoded by these polynucleotides may be achieved by DNA shuffling. DNA shuffling involves the assembly 15 of two or more DNA segments by homologous or site-specific recombination to generate variation in the polynucleotide sequence. In another embodiment, polynucleotides of the invention, or the encoded polypeptides, may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections, parts, 20 domains, fragments, etc., of a polynucleotide encoding a polypeptide of the invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
Antibodies 25 Further polypeptides of the invention relate to antibodies and T-cell antigen receptors (TCR) which immunospecifically bind a polypeptide, polypeptide fragment, or variant of SEQ ID N0:2 or SED >D N0:4, andlor an epitope, of the present invention (as determined by immunoassays well known in the art for assaying specific antibody-antigen binding).
Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, 30 multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the invention), and epitope-binding fragments of any of the above. The term "antibody," as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin 35 molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen. The immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgGI, IgG2, IgG3, IgG4, IgAI and IgA2) or subclass of immunoglobulin molecule.

Most preferably the antibodies are human antigen-binding antibody fragments of the present invention and include, but are not limited to, Fab, Fab' and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain. Antigen-binding antibody fragments, including single-chain antibodies, may comprise the variable regions) alone or in combination with the entirety or a portion of the following: hinge region, CH 1, CH2, and CH3 domains. Also included in the invention are antigen-binding fragments also comprising any combination of variable regions) with a hinge region, CHI, CH2, and CH3 domains. The antibodies of the invention may be from any animal origin including birds and mammals.
Preferably, the antibodies are human, murine (e.g., mouse and rat), donkey, ship rabbit, goat, guinea pig, camel, horse, or chicken. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulin and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Patent No. 5,939,598 by Kucherlapati et al.
The antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a polypeptide of the present invention or may be specific for both a polypeptide of the present invention as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., PCT publications WO 93/17715; WO
92/08802; WO
91/00360; WO 92/05793; Tutt, et al., J. Immunol. 147:60-69 (1991); U.S. Patent Nos.
4,474,893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny et al., J.
Immunol.
148:1547-1553 (1992).
Antibodies of the present invention may be described or specified in terms of the epitope(s) or portions) of a polypeptide of the present invention which they recognize or specifically bind. The epitope(s) or polypeptide portions) may be specified as described herein, e.g., by N-terminal and C-terminal positions, by size in contiguous amino acid residues, or listed in the Tables and Figures. Preferred epitopes of the invention include:
those identified in Table 1 and Figure 13, as well as polynucleotides that encode these epitopes. Antibodies which specifically bind any epitope or polypeptide of the present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind polypeptides of the present invention, and allows for the exclusion of the same.
Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In specific embodiments, antibodies of the present invention cross-react with murine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof. Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In a specific embodiment, the above-described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combinations) of 2, 3, 4, 5, or more of the specific antigenic and/or immunogenic polypeptides disclosed herein. Further included in the present invention are antibodies which bind polypeptides encoded by polynucleotides which hybridize to a polynucleotide of the present invention under stringent hybridization conditions (as described herein).
Antibodies of the present invention may also be described or specified in terms of their binding affinity to a polypeptide of the invention. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10-2 M, 10-2 M, 5 X 10-3 M, 10-~ M, 5 X 10-4 M, 10-4 M, 5 X 10-5 M, 10-5 M, 5 X 10-6 M, 10-6M, 5 X 10-' M, 10' M, 5 X 10-g M, 10-g M, 5 X 10-9 M, 10-9 M, 5 X 10-' ° M, 10'' ° M, 5 X 10-" M, 10-"
M, 5 X 10-' 2 M, ' °-' 2 M, 5 X 10-'~ M, 10-" M, 5 X 10-'4 M, 10-'4 M, 5 X 10-'5 M, or 10-'5 M.
The invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of the invention as determined by any method known in the art for determining competitive binding, for example, the immunoassays described herein. In preferred embodiments, the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85 %, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.
Antibodies of the present invention may act as agonists or antagonists of the polypeptides of the present invention. For example, the present invention includes antibodies which disrupt the receptor/ligand interactions with the polypeptides of the invention either partially or fully. Preferrably, antibodies of the present invention bind an antigenic epitope disclosed herein, or a portion thereof. The invention features both receptor-specific antibodies and ligand-specific antibodies. The invention also features receptor-specific antibodies which do not prevent ligand binding but prevent receptor activation.
Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art. For example, receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or its substrate by immunoprecipitation followed by western blot analysis (for example, as described supra).
In specific embodiments, antibodies are provided that inhibit ligand activity or receptor WO 00/40726 PCT/iJS00/00296 activity by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50% of the activity in absence of the antibody.
The invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand. Likewise, included in the invention are neutralizing antibodies which bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor. Further included in the invention are antibodies which activate the receptor. These antibodies may act as receptor agonists, i.e., potentiate or activate either all or a subset of the biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor. The antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities of the peptides of the invention disclosed herein. The above antibody agonists can be made using methods known in the art. See, e.g., PCT publication WO 96/40281; U.S. Patent No.
5,811,097; Deng et al., Blood 92(6):1981-1988 (1998); Chen et al., Cancer Res.
58(16):3668-3678 (1998); Harrop et al., J. Immunol. 161(4):1786-1794 (1998);
Zhu et al., Cancer Res. 58( 15):3209-3214 ( 1998); Yoon et al., J. Immunol. 160(7):3170-3179 ( 1998);
Prat et al., J. Cell. Sci. 111(Pt2):237-247 (1998); Pitard et al., J. Immunol.
Methods 205(2):177-190 (1997); Liautard et al., Cytokine 9(4):233-241 (1997); Carlson et al., J.
Biol. Chem. 272( 17):11295-11301 ( 1997); Taryman et al., Neuron 14(4):755-762 ( 1995);
Muller et al., Structure 6(9):1153-1167 (1998); Bartunek et al., Cytokine 8(1):14-20 (1996) (which are all incorporated by reference herein in their entireties).
Antibodies of the present invention may be used, for example, but not limited to, to purify, detect, and target the polypeptides of the present invention, including both in vitro and in vivo diagnostic and therapeutic methods. For example, the antibodies have use in immunoassays for qualitatively and quantitatively measuring levels of the polypeptides of the present invention in biological samples. See, e.g., Harlow et al., Antibodies:
A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) (incorporated by reference herein in its entirety).
As discussed in more detail below, the antibodies of the present invention may be used either alone or in combination with other compositions. The antibodies may further be recombinantly fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalently and non-covalently conjugations) to polypeptides or other compositions. For example, antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins. See, e.g., PCT
publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Patent No. 5,314,995; and EP
396,387.

The antibodies of the invention include derivatives that are modified, i.e, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from generating an anti-idiotypic response. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.
The antibodies of the present invention may be generated by any suitable method known in the art. Polyclonal antibodies to an antigen-of- interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen.
Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.
Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed.
1988);
Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties).
The term "monoclonal antibody" as used herein is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.
Methods for producing and screening for specific antibodies using hybridoma technology are routine and well known in the art and are discussed in detail in the Examples.
In a non-limiting example, mice can be immunized with a polypeptide of the invention or a cell expressing such peptide. Once an immune response is detected, e.g., antibodies specific for the antigen are detected in the mouse serum, the mouse spleen is harvested and splenocytes isolated. The splenocytes are then fused by well known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC.
Hybridomas are selected and cloned by limited dilution. The hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention. Ascites fluid, which generally contains high levels of 5 antibodies, can be generated by immunizing mice with positive hybridoma clones.
Accordingly, the present invention provides methods of generating monoclonal antibodies as well as antibodies produced by the method comprising culturing a hybridoma cell secreting an antibody of the invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with an antigen of the invention 10 with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind a polypeptide of the invention.
Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, Fab and F(ab')2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to 15 produce Fab fragments) or pepsin (to produce F(ab')2 fragments). F(ab')2 fragments contain the variable region, the light chain constant region and the CH 1 domain of the heavy chain.
For example, the antibodies of the present invention can also be generated using various phage display methods known in the art. In phage display methods, functional 20 antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In a particular embodiment, such phage can be utilized to display antigen binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled 25 antigen or antigen bound or captured to a solid surface or bead. Phage used in these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the antibodies of the present invention include those disclosed in 30 Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al., J.
Immunol.
Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol. 24:952-958 (1994);
Persic et al., Gene 187 9-18 (1997); Burton et al., Advances in Immunology 57:191-280 (1994); PCT application No. PCT/GB91/01134; PCT publications WO 90/02809; WO
91/10737; WO 92/01047; WO 92/18619; WO 93/11236; WO 95/15982; WO 95/20401; and 35 U.S. Patent Nos. 5,698,426; 5,223,409; 5,403,484; 5,580,717; 5,427,908;
5,750,753;
5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743 and 5,969,108; each of which is incorporated herein by reference in its entirety.

As described in the above references, after phage selection, the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab' and F(ab')2 fragments can also be employed using methods known in the art such as those disclosed in PCT publication WO 92/22324; Mullinax et al., BioTechniques 12(6):864-869 (1992); and Sawai et al., AJRI 34:26-34 (1995); and Better et al., Science 240:1041-1043 ( 1988) (said references incorporated by reference in their entireties).
Examples of techniques which can be used to produce single-chain Fvs and antibodies include those described in U.S. Patents 4,946,778 and 5,258,498;
Huston et al., Methods in Enzymology 203:46-88 ( 1991 ); Shu et al., PNAS 90:7995-7999 ( 1993); and Skerra et al., Science 240:1038-1040 ( 1988). For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it may be preferable to use chimeric, humanized, or human antibodies. A chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986);
Gillies et al., (1989) J. Immunol. Methods 125:191-202; U.S. Patent Nos. 5,807,715; 4,816,567;
and 4,816397, which are incorporated herein by reference in their entirety.
Humanized antibodies are antibody molecules from non-human species antibody that binds the desired antigen having one or more complementarity determining regions (CDRs) from the non-human species and a framework regions from a human immunoglobulin molecule.
Often, framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Patent No. 5,585,089; Riechmann et al., Nature 332:323 ( 1988), which are incorporated herein by reference in their entireties.) Antibodies can be humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT
publication WO
91/09967; U.S. Patent Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, Molecular Immunology 28(4/5):489-(1991); Studnicka et al., Protein Engineering 7(6):805-814 (1994); Roguska. et al., PNAS
91:969-973 ( 1994)), and chain shuffling (U.S. Patent No. 5,565,332).

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Patent Nos. 4,444,887 and 4,716,11 l;
and PCT publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO
96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.
Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For example, the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells. Alternatively, the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes. The mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice. The chimeric mice are then bred to produce homozygous offspring which express human antibodies. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar, Int. Rev.
Immunol.
13:65-93 (1995). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO
96/33735;
European Patent No. 0 598 877; U.S. Patent Nos. 5,413,923; 5,625,126;
5,633,425;
5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793; 5,916,771; and 5,939,598, which are incorporated by reference herein in their entirety. In addition, companies such as Abgenix, Inc. (Freemont, CA) and Genpharm (San Jose, CA) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.
Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., Biotechnology 12:899-903 ( 1988)).
Further, antibodies to the polypeptides of the invention can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" polypeptides of the invention using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, FASEB J.
7(5):437 444; ( 1989) and Nissinoff, J. Immunol. 147(8):2429-2438 ( 1991 )). For example, antibodies which bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide of the invention to a ligand can be used to generate anti-idiotypes that "mimic" the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand. Such neutralizing anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand. For example, such anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligands/receptors, and thereby block its biological activity.
Polynucleotides Encoding Antibodies The invention further provides polynucleotides comprising a nucleotide sequence encoding an antibody of the invention and fragments thereof. The invention also encompasses polynucleotides that hybridize under stringent or lower stringency hybridization conditions, e.g., as defined supra, to polynucleotides that encode an antibody, preferably, that specifically binds to a polypeptide of the invention, preferably, an antibody that binds to a polypeptide having the amino acid sequence of SEQ ID N0:2 or SEQ ID
N0:4.
The polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art. For example, if the nucleotide sequence of the antibody is known, a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., BioTechniques 17:242 ( 1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.
Alternatively, a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody of the invention) by PCR
amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by PCR may then be cloned into replicable cloning vectors using any method well known in the art.
Once the nucleotide sequence and corresponding amino acid sequence of the antibody is determined, the nucleotide sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA
techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entireties ), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.
In a specific embodiment, the amino acid sequence of the heavy and/or light chain variable domains may be inspected to identify the sequences of the complementarity determining regions (CDRs) by methods that are well know in the art, e.g., by comparison to known amino acid sequences of other heavy and light chain variable regions to determine the regions of sequence hypervariability. Using routine recombinant DNA
techniques, one or more of the CDRs may be inserted within framework regions, e.g., into human framework regions to humanize a non-human antibody, as described supra. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., J. Mol. Biol. 278: 457-479 (1998) for a listing of human framework regions). Preferably, the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds a polypeptide of the invention. Preferably, as discussed supra, one or more arruno acia substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds. Other alterations to the polynucleotide are encompassed by the present invention and within the skill of the art.
In addition, techniques developed for the production of "chimeric antibodies"
(Morrison et al., Proc. Natl. Acad. Sci. 81:851-855 (1984); Neuberger et al., Nature 312:604-608 ( 1984); Takeda et al., Nature 314:452-454 ( 1985)) by splicing genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. As described supra, a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region, e.g., humanized antibodies.
Alternatively, techniques described for the production of single chain antibodies 5 (U.S. Patent No. 4,946,778; Bird, Science 242:423- 42 (1988); Huston et al., Proc. Natl.
Acad. Sci. USA 85:5879-5883 (1988); and Ward et al., Nature 334:544-54 (1989)) can be adapted to produce single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide. Techniques for the assembly of functional Fv fragments in E. coli 10 may also be used (Skerra et al., Science 242:1038- 1041 ( 1988)).
Methods of Producing Antibodies The antibodies of the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by cherrucal synthesis or preferably, by 15 recombinant expression techniques.
Recombinant expression of an antibody of the invention, or fragment, derivative or analog thereof, (e.g., a heavy or light chain of an antibody of the invention or a single chain antibody of the invention), requires construction of an expression vector containing a polynucleotide that encodes the antibody. Once a polynucleotide encoding an antibody 20 molecule or a heavy or light chain of an antibody, or portion thereof (preferably containing the heavy or light chain variable domain), of the invention has been obtained, the vector for the production of the antibody molecule may be produced by recombinant DNA
technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are 25 described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination.
The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding 30 an antibody molecule of the invention, or a heavy or light chain thereof, or a heavy or light chain variable domain, operably linked to a promoter. Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT
Publication WO 86/05807; PCT Publication WO 89/01036; and U.S. Patent No.
5,122,464) and the variable domain of the antibody may be cloned into such a vector for 35 expression of the entire heavy or light chain.
The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention. Thus, the invention includes host cells containing a polynucleotide encoding an antibody of the invention, or a heavy or light chain thereof, or a single chain antibody of the invention, operably linked to a heterologous promoter. In preferred embodiments for the expression of double-chained antibodies, vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.
A variety of host-expression vector systems may be utilized to express the antibody molecules of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences;
insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.SK promoter). Preferably, bacterial cells such as Escherichia coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule. For example, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al., Gene 45:101 ( 1986); Cockett et al., Bio/Technology 8:2 ( 1990)).
In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of an antibody molecule, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., EMBO J. 2:1791 ( 1983)), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res. 13:3101-3109 (1985); Van Heeke & Schuster, J. Biol. Chem. 24:5503-5509 ( 1989)); and the like. pGEX
vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.
In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells.
The antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV
promoter (for example the polyhedrin promoter).
In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination.
Insertion in a non- essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts. (e.g., see Logan & Shenk, Proc. Natl. Acad. Sci. USA 81:355-359 (1984)). Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences.
These signals include the ATG initiation codon and adjacent sequences.
Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic.
The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., Methods in Enzymol. 153:51-544 (1987)).
In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used.
Such mammalian host cells include but are not limited to CHO, VERY, BHK, Hela, COS, MDCK, 293, 3T3, WI38, and in particular, breast cancer cell lines such as, for example, WO 00/40726 PCT/iJS00/00296 BT483, Hs578T, HTB2, BT20 and T47D, and normal mammary gland cell line such as, for example, CRL7030 and Hs578Bst.
For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody molecule may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the antibody molecule. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule.
A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 ( 1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA
48:202 ( 1992)), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817 ( 1980)) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:357 ( 1980); O'Hare et al., Proc.
Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G-418 Clinical Pharmacy 12:488-505; Wu and Wu, Biotherapy 3:87-95 ( 1991 ); Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-(1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann.
Rev.
Biochem. 62:191-217 (1993); May, 1993, TIB TECH 11(5):155-215); and hygro, which confers resistance to hygromycin (Santerre et al., Gene 30:147 (1984)).
Methods commonly known in the art of recombinant DNA technology may be routinely applied to select the desired recombinant clone, and such methods are described, for example, in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley &
Sons, NY
(1993); Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY
( 1990); and in Chapters 12 and 13, Dracopoli et al. (eds), Current Protocols in Human Genetics, John Wiley & Sons, NY ( 1994); Colberre-Garapin et al., J. Mol.
Biol. 150:1 ( 1981 ), which are incorporated by reference herein in their entireties.
The expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase (Grouse et al., Mol. Cell. Biol. 3:257 (1983)).
The host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides.
Alternatively, a single vector may be used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature 322:52 (1986);
Kohler, Proc.
Natl. Acad. Sci. USA 77:2197 ( 1980)). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.
Once an antibody molecule of the invention has been produced by an animal, chemically synthesized, or recombinantly expressed, it may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. In addition, the antibodies of the present invention or fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.
The present invention encompasses antibodies recombinantly fused or chemically conjugated (including both covalently and non-covalently conjugations) to a polypeptide (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention to generate fusion proteins. The fusion does not necessarily need to be direct, but may occur through linker sequences. The antibodies may be specific for antigens other than polypeptides (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention. For example, antibodies may be used to target the polypeptides of the present invention to particular cell types, either in vitro or in vivo, by fusing or conjugating the polypeptides of the present invention to antibodies specific for particular cell surface receptors. Antibodies fused or conjugated to the polypeptides of the present invention may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., Harbor et al., supra, and PCT publication WO 93/21232; EP
439,095;
Naramura et al., Immunol. Lett. 39:91-99 (1994); U.S. Patent 5,474,981;
Gillies et al., PNAS 89:1428-1432 ( 1992); Fell et al., J. Immunol. 146:2446-2452( 1991 ), which are incorporated by reference in their entireties.
The present invention further includes compositions comprising the polypeptides of the present invention fused or conjugated to antibody domains other than the variable 5 regions. For example, the polypeptides of the present invention may be fused or conjugated to an antibody Fc region, or portion thereof. The antibody portion fused to a polypeptide of the present invention may comprise the constant region, hinge region, CH 1 domain, CH2 domain, and CH3 domain or any combination of whole domains or portions thereof. The polypeptides may also be fused or conjugated to the above antibody portions to form 10 multimers. For example, Fc portions fused to the polypeptides of the present invention can form dimers through disulfide bonding between the Fc portions. Higher multimeric forms can be made by fusing the polypeptides to portions of IgA and IgM. Methods for fusing or conjugating the polypeptides of the present invention to antibody portions are known in the art. See, e.g., U.S. Patent Nos. 5,336,603; 5,622,929; 5,359,046; 5,349,053;
5,447,851;
15 5,112,946; EP 307,434; EP 367,166; PCT publications WO 96/04388; WO
91/06570;
Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88:10535-10539 (1991); Zheng et al., J.
Immunol. 154:5590-5600 (1995); and Vil et al., Proc. Natl. Acad. Sci. USA
89:11337-11341 ( 1992) (said references incorporated by reference in their entireties).
As discussed, supra, the polypeptides corresponding to a polypeptide, polypeptide 20 fragment, or a variant of SEQ ID N0:2 or SEQ ID N0:4 may be fused or conjugated to the above antibody portions to increase the in vivo half life of the polypeptides or for use in immunoassays using methods known in the art. Further, the polypeptides corresponding to SEQ ID N0:2 or SEQ ID N0:4 may be fused or conjugated to the above antibody portions to facilitate purification. One reported example describes chimeric proteins consisting of the 25 first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP
394,827;
Traunecker et al., Nature 331:84-86 ( 1988). The polypeptides of the present invention fused or conjugated to an antibody having disulfide- linked dimeric structures (due to the IgG) may also be more efficient in binding and neutralizing other molecules, than the 30 monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem.
270:3958-3964 ( 1995)). In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP A 232,262). Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may 35 hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations.
In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, Bennett et al., J. Molecular Recognition 8:52-58 (1995); Johanson et al., J. Biol.
Chem. 270:9459-9471 ( 1995).
Moreover, the antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc.
Natl. Acad.
Sci. USA 86:821-824 ( 1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the "HA" tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)) and the "flag" tag.
The present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance.
Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S.
Patent No.
4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase;
examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 125I, 131I, 11 lIn or 99Tc.
Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213Bi. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include paclitaxol, cytochalasin B , gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).
The conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, a-interferon, 13-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-alpha, TNF-beta, AIM I
(See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al., Int. Immunol., 6:1567-1574 (1994)), VEGI (See, International Publication No. WO 99/23105), a thrombotic agent or an anti-angiogenic agent, e.g., angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.
Antibodies may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen. Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.
Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987);
Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp.
475-506 ( 1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev.
62:119-58 (1982).
Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980, which is incorporated herein by reference in its entirety.
An antibody, with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factors) and/or cytokine(s) can be used as a therapeutic.
ImmunophenotYping The antibodies of the invention may be utilized for immunophenotyping of cell lines and biological samples. The translation product of the gene of the present invention may be useful as a cell specific marker, or more specifically as a cellular marker that is differentially expressed at various stages of differentiation and/or maturation of particular cell types.
Monoclonal antibodies directed against a specific epitope, or combination of epitopes, will allow for the screening of cellular populations expressing the marker. Various techniques can be utilized using monoclonal antibodies to screen for cellular populations expressing the marker(s), and include magnetic separation using antibody-coated magnetic beads, "panning" with antibody attached to a solid matrix (i.e., plate), and flow cytometry (See, e.g., U.S. Patent 5,985,660; and Morrison et al., Cell, 96:737-49 (1999)).
These techniques allow for the screening of particular populations of cells, such as might be found with hematological malignancies (i.e. minimal residual disease (MRD) in acute leukemic patients) and "non-self" cells in transplantations to prevent Graft-versus-Host Disease (GVHD). Alternatively, these techniques allow for the screening of hematopoietic stem and progenitor cells capable of undergoing proliferation and/or differentiation, as might be found in human umbilical cord blood.
Assays For Antibody Binding The antibodies of the invention may be assayed for immunospecific binding by any method known in the art. The immunoassays which can be used include but are not limited to competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich"
immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays, to name but a few. Such assays are routine and well known in the art (see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, which is incorporated by reference herein in its entirety). Exemplary immunoassays are described briefly below (but are not intended by way of limitation).
Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIPA buffer ( 1 % NP-40 or Triton X- 100, 1 % sodium deoxycholate, 0.1 % SDS, 0.15 M NaCI, 0.01 M sodium phosphate at pH 7.2, 1 % Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the antibody of interest to the cell lysate, incubating for a period of time (e.g., 1-4 hours) at 4° C, adding protein A and/or protein G sepharose beads to the cell lysate, incubating for about an hour or more at 4° C, washing the beads in lysis buffer and resuspending the beads in SDS/sample buffer. The ability of the antibody of interest to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the antibody to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads). For further discussion regarding immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. l, John Wiley & Sons, Inc., New York at 10.16.1.
Western blot analysis generally comprises preparing protein samples, electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%- 20% SDS-PAGE
depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), blocking the membrane with primary antibody (the antibody of interest) diluted in blocking buffer, washing the membrane in washing buffer, blocking the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., 32P or 125I) diluted in blocking buffer, washing the membrane in wash buffer, and detecting the presence of the antigen. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected and to reduce the background noise. For further discussion regarding western blot protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. l, John Wiley & Sons, Inc., New York at 10.8.1.
ELISAs comprise preparing antigen, coating the well of a 96 well microtiter plate with the antigen, adding the antibody of interest conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the well and incubating for a period of time, and detecting the presence of the antigen. In ELISAs the antibody of interest does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes the antibody of interest) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the antibody may be coated to the well. In this case, a second antibody conjugated to a detectable compound may be added following the addition of the antigen of interest to the coated well. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected as well as other variations of ELISAs known in the 5 art. For further discussion regarding ELISAs see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. l, John Wiley & Sons, Inc., New York at 11.2.1.
The binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays. One example of a competitive binding assay is a radioimmunoassay comprising the incubation of labeled 10 antigen (e.g., 3H or 125I) with the antibody of interest in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen.
The affinity of the antibody of interest for a particular antigen and the binding off-rates can be determined from the data by scatchard plot analysis. Competition with a second antibody can also be determined using radioimmunoassays. In this case, the antigen is incubated with 15 antibody of interest conjugated to a labeled compound (e.g., 3H or 125I) in the presence of increasing amounts of an unlabeled second antibody.
Therapeutic U s a s The present invention is further directed to antibody-based therapies which involve 20 administering antibodies of the invention to an animal, preferably a mammal, and most preferably a human, patient for treating one or more of the disclosed diseases, disorders, or conditions. Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies of the invention (including 25 fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein).
The antibodies of the invention can be used to treat, inhibit or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention, including, but not limited to, any one or more of the diseases, disorders, or conditions described herein. The treatment and/or prevention of diseases, disorders, or 30 conditions associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions. Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.
A summary of the ways in which the antibodies of the present invention may be used 35 therapeutically includes binding polynucleotides or polypeptides of the present invention locally or systemically in the body or by direct cytotoxicity of the antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic purposes without undue experimentation.
The antibodies of this invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors (such as, e.g., IL-2, IL-3 and IL-7), for example, which serve to increase the number or activity of effector cells which interact with the antibodies.
The antibodies of the invention may be administered alone or in combination with other types of treatments (e.g., radiation therapy, chemotherapy, hormonal therapy, immunotherapy and anti-tumor agents). Generally, administration of products of a species origin or species reactivity (in the case of antibodies) that is the same species as that of the patient is preferred. Thus, in a preferred embodiment, human antibodies, fragments derivatives, analogs, or nucleic acids, are administered to a human patient for therapy or prophylaxis.
It is preferred to use high affinity and/or potent in vivo inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and therapy of disorders related to polynucleotides or polypeptides, including fragments thereof, of the present invention.
Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or polypeptides of the invention, including fragments thereof. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10-2 M, 10-2 M, 5 X 10-3 M, 10-~ M, 5 X 10-'' M, 10-'' M, 5 X 10-5 M, 10-5 M, 5 X 10-6 M, 10-6 M, 5 X 10-' M, 10-' M, 5 X 10-g M, 10-g M, 5 X 10-9 M, 10-~ M, 5 X 10-' ° M, 10-' ° M, 5 X 10-" M, 10-" M, 5 X 10-'' M, 10-" M, 5 X 10-'~ M, 10-'~ M, 5 X 10-'4 M, 10-''' M, 5 X 10-'5 M, and 10-'S
M.
Gene Therapy In a specific embodiment, nucleic acids comprising sequences encoding antibodies or functional derivatives thereof, are administered to treat, inhibit or prevent a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention, by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the invention, the nucleic acids produce their encoded protein that mediates a therapeutic effect.
Any of the methods for gene therapy available in the art can be used according to the present invention. Exemplary methods are described below.
For general reviews of the methods of gene therapy, see Goldspiel et al., Clinical Pharmacy 12:488-505 (1993); Wu and Wu, Biotherapy 3:87-95 (1991); Tolstoshev, Ann.
Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, TIBTECH
11 (5):155-215 ( 1993). Methods commonly known in the art of recombinant DNA

technology which can be used are described in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); and Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY ( 1990).
In a preferred aspect, the compound comprises nucleic acid sequences encoding an antibody, said nucleic acid sequences being part of expression vectors that express the antibody or fragments or chimeric proteins or heavy or light chains thereof in a suitable host.
In particular, such nucleic acid sequences have promoters operably linked to the antibody coding region, said promoter being inducible or constitutive, and, optionally, tissue-specific. In another particular embodiment, nucleic acid molecules are used in which the antibody coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the antibody encoding nucleic acids (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 ( 1989); Zijlstra et al., Nature 342:435-438 ( 1989). In specific embodiments, the expressed antibody molecule is a single chain antibody; alternatively, the nucleic acid sequences include sequences encoding both the heavy and light chains, or fragments thereof, of the antibody.
Delivery of the nucleic acids into a patient may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid- carrying vectors, or indirect, in which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo or ex vivo gene therapy.
In a specific embodiment, the nucleic acid sequences are directly administered in vivo, where it is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art, e.g., by constructing them as part of an appropriate nucleic acid expression vector and administering it so that they become intracellular, e.g., by infection using defective or attenuated retrovirals or other viral vectors (see U.S. Patent No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 ( 1987)) (which can be used to target cell types specifically expressing the receptors), etc. In another embodiment, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation.
In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO
92/06180; WO
92/22635; W092/20316; W093/14188, WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, Proc. Natl. Acad. Sci. USA
86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989)).
In a specific embodiment, viral vectors that contains nucleic acid sequences encoding an antibody of the invention are used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding the antibody to be used in gene therapy are cloned into one or more vectors, which facilitates delivery of the gene into a patient. More detail about retroviral vectors can be found in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdrl gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy.
Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644-651 (1994); Kiem et al., Blood 83:1467-1473 (1994);
Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr.
Opin. in Genetics and Devel. 3:110-114 (1993).
Adenoviruses are other viral vectors that can be used in gene therapy.
Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-( 1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991);
Rosenfeld et al., Cell 68:143- 155 (1992); Mastrangeli et al., J. Clin. Invest. 91:225-234 (1993);
PCT Publication W094/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). In a preferred embodiment, adenovirus vectors are used.
Adeno-associated virus (AAV) has also been proposed for use in gene therapy (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Patent No.
5,436,146).
Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.

In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, Meth. Enzymol. 217:599-618 (1993);
Cohen et al., Meth. Enzymol. 217:618-644 ( 1993); Cline, Pharmac. Ther. 29:69-92 ( 1985) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.
The resulting recombinant cells can be delivered to a patient by various methods known in the art. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.
Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include but are not limited to epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes;
blood cells such as Tlymphocytes, Blymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.
In a preferred embodiment, the cell used for gene therapy is autologous to the patient.
In an embodiment in which recombinant cells are used in gene therapy, nucleic acid sequences encoding an antibody are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered in vivo for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of the present invention (see e.g. PCT
Publication WO
94/08598; Stemple and Anderson, Cell 71:973-985 (1992); Rheinwald, Meth. Cell Bio.
21 A:229 ( 1980); and Pittelkow and Scott, Mayo Clinic Proc. 61:771 ( 1986)).
In a specific embodiment, the nucleic acid to be introduced for purposes of gene therapy comprises an inducible promoter operably linked to the coding region, such that expression of the nucleic acid is controllable by controlling the presence or absence of the appropriate inducer of transcription. Demonstration of Therapeutic or Prophylactic Activity The compounds or pharmaceutical compositions of the invention are preferably tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans. For example, in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell 5 line or a patient tissue sample. The effect of the compound or composition on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays.
In accordance with the invention, in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue 10 sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
Ther~eutic/Pr~hylactic Administration and Composition The invention provides methods of treatment, inhibition and prophylaxis by 15 administration to a subject of an effective amount of a compound or pharmaceutical composition of the invention, preferably an antibody of the invention. In a preferred aspect, the compound is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side-effects). The subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is 20 preferably a mammal, and most preferably human.
Formulations and methods of administration that can be employed when the compound comprises a nucleic acid or an immunoglobulin are described above;
additional appropriate formulations and routes of administration can be selected from among those described herein below.
25 Various delivery systems are known and can be used to administer a compound of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 ( 1987)), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include but are not limited to 30 intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic 35 or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.
In another embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353- 365 ( 1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.) In yet another embodiment, the compound or composition can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, supra;
Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 ( 1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida ( 1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984);
Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 ( 1983); see also Levy et al., Science 228:190 (1985); During et al., Ann. Neurol. 25:351 (1989);
Howard et al., J.Neurosurg. 71:105 ( 1989)). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).
Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)).
In a specific embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Patent No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox- like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad. Sci.
USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.
The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc.
Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
The formulation should suit the mode of administration.
In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
The compounds of the invention can be formulated as neutral or salt forms.
Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
The amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances.
Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight. Generally, human antibodies have a longer half life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Further, the dosage and frequency of administration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation.
The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such containers) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
Diagnosis and Ima~in~
Labeled antibodies, and derivatives and analogs thereof, which specifically bind to a polypeptide of interest can be used for diagnostic purposes to detect, diagnose, or monitor diseases, disorders, andlor conditions associated with the aberrant expression and/or activity of a polypeptide of the invention. The invention provides for the detection of aberrant expression of a polypeptide of interest, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of aberrant expression.
The invention provides a diagnostic assay for diagnosing a disorder, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a particular disorder. With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Antibodies of the invention can be used to assay protein levels in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, et al., J. Cell . Biol.
105:3087-3096 ( 1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99Tc); luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
One aspect of the invention is the detection and diagnosis of a disease or disorder associated with aberrant expression of a polypeptide of interest in an animal, preferably a mammal and most preferably a human. In one embodiment, diagnosis comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled molecule which specifically binds to the polypeptide of interest; b) waiting for a time interval following the administering for permitting the labeled molecule to preferentially concentrate at sites in the subject where the polypeptide is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled molecule in the subject, such that detection of labeled molecule above the background level indicates that the subject has a particular disease or disorder associated with aberrant expression of the polypeptide of interest. Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.
It will be understood in the art that the size of the subject and the imaging system 5 used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., 10 "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments."
(Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B.
A.
Rhodes, eds., Masson Publishing Inc. (1982).
Depending on several variables, including the type of label used and the mode of administration, the time interval following the administration for permitting the labeled 15 molecule to preferentially concentrate at sites in the subject and for unbound labeled molecule to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days.
In an embodiment, monitoring of the disease or disorder is carried out by repeating 20 the method for diagnosing the disease or disease, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.
Presence of the labeled molecule can be detected in the patient using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label.
25 Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.
In a specific embodiment, the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Patent 30 No. 5,441,050). In another embodiment, the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument. In another embodiment, the molecule is labeled with a positron emitting metal and is detected in the patent using positron emission-tomography. In yet another embodiment, the molecule is labeled with a paramagnetic label and is detected in a patient 35 using magnetic resonance imaging (MRI).
Kits The present invention provides kits that can be used in the above methods. In one embodiment, a kit comprises an antibody of the invention, preferably a purified antibody, in one or more containers. In a specific embodiment, the kits of the present invention contain a substantially isolated polypeptide comprising an epitope which is specifically immunoreactive with an antibody included in the kit. Preferably, the kits of the present invention further comprise a control antibody which does not react with the polypeptide of interest. In another specific embodiment, the kits of the present invention contain a means for detecting the binding of an antibody to a polypeptide of interest (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate).
In another specific embodiment of the present invention, the kit is a diagnostic kit for use in screening serum containing antibodies specific against proliferative and/or cancerous polynucleotides and polypeptides. Such a kit may include a control antibody that does not react with the polypeptide of interest. Such a kit may include a substantially isolated polypeptide antigen comprising an epitope which is specifically immunoreactive with at least one anti-polypeptide antigen antibody. Further, such a kit includes means for detecting the binding of said antibody to the antigen (e.g., the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry). In specific embodiments, the kit may include a recombinantly produced or chemically synthesized polypeptide antigen. The polypeptide antigen of the kit may also be attached to a solid support.
In a more specific embodiment the detecting means of the above-described kit includes a solid support to which said polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the polypeptide antigen can be detected by binding of the said reporter-labeled antibody.
In an additional embodiment, the invention includes a diagnostic kit for use in screening serum containing antigens of the polypeptide of the invention. The diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody. In one embodiment, the antibody is attached to a solid support. In a specific embodiment, the antibody may be a monoclonal antibody.
The detecting means of the kit may include a second, labeled monoclonal antibody.
Alternatively, or in addition, the detecting means may include a labeled, competing antigen.
In one diagnostic configuration, test serum is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods of the present invention. After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support. The reagent is again washed to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined. Typically, the reporter is an enzyme which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or colorimetric substrate (Sigma, St. Louis, MO).
The solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plate or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).
Thus, the invention provides an assay system or kit for carrying out this diagnostic method. The kit generally includes a support with surface- bound recombinant antigens, and a reporter-labeled anti-human antibody for detecting surface-bound anti-antigen antibody.
Fusion Proteins Any chemokine polypeptide of the invention can be used to generate fusion proteins.
For example, a Ck~3-4 or Ck(3-10 polypeptide, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against a Ck(3-4 or Ck(3-10 polypeptide can be used to indirectly detect the second protein by binding to a Ck(3-4 or Ck(3-10.
Moreover, because secreted proteins target cellular locations based on trafficking signals, the chemokine polypeptides can be used as targeting molecules once fused to other proteins.
Examples of domains that can be fused to the chemokine polypeptides include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.
In certain preferred embodiments, Ck(3-10 proteins of the invention comprise fusion proteins wherein the Ck(3-10 polypeptides are those described above as m-n. In preferred embodiments, the application is directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequences encoding polypeptides having the amino acid sequence of the specific N- and C-terminal deletions recited herein.
Polynucleotides encoding these polypeptides are also encompassed by the invention.
Moreover, fusion proteins may also be engineered to improve characteristics of the chemokine polypeptides. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of a chemokine polypeptide of the invention to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the chemokine polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the chemokine polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.
As one of skill in the art will appreciate, polypeptides of the present invention and the epitope-bearing fragments thereof described above, can be combined with heterologous polypeptide sequences. For example, the polypeptides of the present invention may be fused with heterologous polypeptide sequences, for example, the polypeptides of the present invention may be fused with parts of the constant domain of immunoglobulins (IgA, IgE, IgG, IgM) or portions thereof (CH 1, CH2, CH3, and any combination thereof, including both entire domains and portions thereof), resulting in chimeric polypeptides.
These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 ( 1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-( 1995).) Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired.
For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K.
Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).) Moreover, the chemokine polypeptides can be fused to marker sequences, such as a peptide which facilitates purification of the chemokine polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311 ), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein.
(Wilson et al., Cell 37:767 (1984).) Thus, any of these above fusions can be engineered using the a Ck(3-4 or Ck(3-polynucleotides or polypeptides.
Vectors Host Cells and Protein Production The present invention also relates to vectors which include Ck~3-4 or Ck(3-10 polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector.
Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.
Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the Ck(3-4 and MCP-4 genes (also referred to as Ck(3-10 genes). The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
The polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotide may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.
The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease sites) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.
The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequences) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the E. coli.
lac or try, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will 5 preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.
The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein. Generally, a plasmid vector is 10 introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, 6418 or neomycin resistance for 15 eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria.
Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No.
20 201178)); insect cells such as Drosophila S2 and Spodoptera Sf9 cells;
animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.
More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs 25 comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The 30 following vectors are provided by way of example. Bacterial: pQE70, pQE60, pQE-9 available from QIAGEN, Inc, pBS, pDlO, phagescript, psiX174, pbluescript SK, pbsks, Phagescript vectors, pNHBA, pNHl6a, pNHl8A, pNH46A available from Stratagene Cloning Systems, Inc.; ptrc99a, pKK223-3, pKK233-3, pDR540, pRITS (Pharmacia).
Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXTI, pSG (Stratagene) pSVK3, pBPV, 35 pMSG, pSVL available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Preferred expression vectors for use in yeast systems include, but are not limited to pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZaIph, pPIC9, pPIC3.5, PHIL-D2, pHIL-S1, pPIC3.5K, pPIC9K, and PA0815 (all available from Invitrogen, Carlbad, CA). Other suitable vectors will be readily apparent to the skilled artisan.
Promoter regions can be selected from any desired gene using CAT
(chloramphenicol acctyl transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, PL and trp. Eukaryotic promoters include CMV immediate early, HSV
thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I.
Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
In a further embodiment, the present invention relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology ( 1986). It is specifically contemplated that Ck(3-4 or Ck(3-10 polypeptides of the invention may in fact be expressed by a host cell lacking a recombinant vector.
The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.
Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., Molecular Cloning: A
Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.
Transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 by that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin by 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence.
Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium.
Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.
Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.
Further representative examples of appropriate hosts include, but are not limited to, bacterial cells;
fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC
Accession No. 201178)); insect cells such as Drosophila S2 and Spodoptera Sf9 cells;
animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells.
Appropriate culture mediums and conditions for the above-described host cells are known in the art.
As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEMl (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.
Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.
Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.
Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23:175 ( 1981 ), and other cell lines capable of expressing a compatible vector, for example, the C 127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
The chemokine polypeptides can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or canon exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.
The chemokine polypeptides of the present invention may be a naturally purified product, including bodily fluids, tissues and cells, whether directly isolated or cultured;
products of chemical synthetic procedures; or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue, in some cases as a result of host-mediated processes.
Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.
In one embodiment, the yeast Pichia pastoris is used to express the chemokine polypeptides in a eukaryotic system. Pichia pastoris is a methylotrophic yeast which can metabolize methanol as its sole carbon source. A main step in the methanol metabolization pathway is the oxidation of methanol to formaldehyde using O~. This reaction is catalyzed by the enzyme alcohol oxidase. In order to metabolize methanol as its sole carbon source, Pichia pastoris must generate high levels of alcohol oxidase due, in part, to the relatively low affinity of alcohol oxidase for OZ. Consequently, in a growth medium depending on methanol as a main carbon source, the promoter region of one of the two alcohol oxidase genes (AOXl ) is highly active. In the presence of methanol, alcohol oxidase produced from the AOXI gene comprises up to approximately 30°Io of the total soluble protein in Pichia pastoris. See, Ellis, S.B., et al., Mol. Cell. Biol. 5:1111-21 (1985); Koutz, P.J, et al., Yeast 5:167-77 ( 1989); Tschopp, J.F., et al., Nucl. Acids Res. 15:3859-76 ( 1987). Thus, a heterologous coding sequence, such as, for example, a chemokine polynucleotide of the present invention, under the transcriptional regulation of all or part of the AOXI regulatory sequence is expressed at exceptionally high levels in Pichia yeast grown in the presence of methanol.
In one example, the plasmid vector pPIC9K is used to express DNA encoding a chemokine polypeptide of the invention, as set forth herein, in a Pichea yeast system essentially as described in "Pichia Protocols: Methods in Molecular Biology,"
D.R. Higgins and J. Cregg, eds. The Humana Press, Totowa, NJ, 1998. This expression vector allows expression and secretion of a Ck(3-4 or Ck(3-10 protein of the invention by virtue of the strong AOXI promoter linked to the Pichia pastoris alkaline phosphatase (PHO) secretory signal peptide (i.e., leader) located upstream of a multiple cloning site.
Many other yeast vectors could be used in place of pPIC9K, such as, pYES2, pYDI, pTEFI/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHIL-D2, PHIL-S l, pPIC3.5K, and PA0815, as one skilled in the art would readily appreciate, as long as the proposed expression construct provides appropriately located signals for transcription, translation, secretion (if desired), and the like, including an in-frame AUG as required.
In another embodiment, high-level expression of a heterologous coding sequence, such as, for example, a chemokine polynucleotide of the present invention, may be achieved by cloning the heterologous polynucleotide of the invention into an expression vector such as, for example, pGAPZ or pGAPZalpha, and growing the yeast culture in the absence of methanol.
In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., a chemokine coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with a chemokine polynucleotide of the invention, and which activates, alters, and/or amplifies an endogenous chemokine polynucleotide. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous chemokine polynucleotide sequences via homologous recombination, resulting in the formation of a new transcription unit (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; U.S. Patent No. 5,733,761, issued March 31, 1998;
5 International Publication No. WO 96/29411, published September 26, 1996;
International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc.
Natl. Acad.
Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).
In addition, polypeptides of the invention can be chemically synthesized using 10 techniques known in the art (~, see Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co., N.Y., and Hunkapiller et al., Nature, 310:105-( 1984)). For example, a polypeptide corresponding to a fragment of a chemokine polypeptide can be synthesized by use of a peptide synthesizer. Furthermore, if desired, nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution 15 or addition into a chemokine polypeptide sequence. Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-20 butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoro-amino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).
The invention encompasses Ck(3-4 and Ck(3-10 polypeptides which are differentially 25 modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, 30 NaBH4; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tumcamycm; etc.
Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical 35 modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression.
The polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, WO 00/40726 PCT/iJS00/00296 isotopic or affinity label to allow for detection and isolation of the protein.
Also provided by the invention are chemically modified derivatives of the polypeptides of the invention which may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see U.S. Patent No. 4,179,337). The chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like.
The polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.
The polymer may be of any molecular weight, and may be branched or unbranched.
For polyethylene glycol, the preferred molecular weight is between about 1 kDa and about 100 kDa (the term "about" indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog).
The polyethylene glycol molecules (or other chemical moieties) should be attached to the protein with consideration of effects on functional or antigenic domains of the protein.
There are a number of attachment methods available to those skilled in the art, e.g., EP 0 401 384, herein incorporated by reference (coupling PEG to G-CSF), see also Malik et al., Exp.
Hematol. 20:1028-1035 (1992) (reporting pegylation of GM-CSF using tresyl chloride).
For example, polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as, a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound. The amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues glutamic acid residues and the C-terminal amino acid residue. Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group.
One may specifically desire proteins chemically modified at the N-terminus.
Using polyethylene glycol as an illustration of the present composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective proteins chemically modified at the N-terminus modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.
The chemokine polypeptides of the invention may be in monomers or multimers (i.e., dimers, trimers, tetramers and higher multimers). Accordingly, the present invention relates to monomers and multimers of the chemokine polypeptides of the invention, their preparation, and compositions (preferably, Therapeutics) containing them. In specific embodiments, the polypeptides of the invention are monomers, dimers, trimers or tetramers.
In additional embodiments, the multimers of the invention are at least dimers, at least trimers, or at least tetramers.
Multimers encompassed by the invention may be homomers or heteromers. As used herein, the term homomer, refers to a multimer containing only polypeptides corresponding to the amino acid sequence of SEQ ID N0:2 or SEQ ID N0:4 or encoded by the cDNA
contained in the clones deposited as ATCC Deposit Nos. 75848 or 75849 (including fragments, variants, splice variants, and fusion proteins, corresponding to these as described herein). These homomers may contain chemokine polypeptides having identical or different amino acid sequences. In a specific embodiment, a homomer of the invention is a multimer containing only chemokine polypeptides having an identical amino acid sequence. In another specific embodiment, a homomer of the invention is a multimer containing chemokine polypeptides having different amino acid sequences. In specific embodiments, the multimer of the invention is a homodimer (e.g., containing chemokine polypeptides having identical or different amino acid sequences) or a homotrimer (e.g., containing chemokine polypeptides having identical and/or different amino acid sequences). In additional embodiments, the homomeric multimer of the invention is at least a homodimer, at least a homotrimer, or at least a homotetramer.
As used herein, the term heteromer refers to a multimer containing one or more heterologous polypeptides (i.e., polypeptides of different proteins) in addition to the chemokine polypeptides of the invention. In a specific embodiment, the multimer of the invention is a heterodimer, a heterotrimer, or a heterotetramer. In additional embodiments, the heteromeric multimer of the invention is at least a heterodimer, at least a heterotrimer, or at least a heterotetramer.
Multimers of the invention may be the result of hydrophobic, hydrophilic, ionic and/or covalent associations andlor may be indirectly linked, by for example, liposome formation. Thus, in one embodiment, multimers of the invention, such as, for example, homodimers or homotrimers, are formed when polypeptides of the invention contact one another in solution. In another embodiment, heteromultimers of the invention, such as, for example, heterotrimers or heterotetramers, are formed when polypeptides of the invention contact antibodies to the polypeptides of the invention (including antibodies to the heterologous polypeptide sequence in a fusion protein of the invention) in solution. In other embodiments, multimers of the invention are formed by covalent associations with and/or between the chemokine polypeptides of the invention. Such covalent associations may involve one or more amino acid residues contained in the polypeptide sequence (e.g., that recited in SEQ ID N0:2 or SEQ 1D N0:4, -or contained in the polypeptide encoded by the clones deposited as ATCC Deposit Nos. 75848 or 75849). In one instance, the covalent associations are cross-linking between cysteine residues located within the polypeptide sequences which interact in the native (i.e., naturally occurring) polypeptide. In another instance, the covalent associations are the consequence of chemical or recombinant manipulation. Alternatively, such covalent associations may involve one or more amino acid residues contained in the heterologous polypeptide sequence in a chemokine fusion protein.
In one example, covalent associations are between the heterologous sequence contained in a fusion protein of the invention (see, e.g., U.S. Patent Number 5,478,925). In a specific example, the covalent associations are between the heterologous sequence contained in a chemokine-Fc fusion protein of the invention (as described herein). In another specific example, covalent associations of fusion proteins of the invention are between heterologous polypeptide sequence from another protein that is capable of forming covalently associated multimers, such as for example, oseteoprotegerin (see, e.g., International Publication No:
WO 98/49305, the contents of which are herein incorporated by reference in its entirety). In another embodiment, two or more polypeptides of the invention are joined through peptide linkers. Examples include those peptide linkers described in U.S. Pat. No.
5,073,627 (hereby incorporated by reference). Proteins comprising multiple polypeptides of the invention separated by peptide linkers may be produced using conventional recombinant DNA technology.
Another method for preparing multimer polypeptides of the invention involves use of polypeptides of the invention fused to a leucine zipper or isoleucine zipper polypeptide sequence. Leucine zipper and isoleucine zipper domains are polypeptides that promote multimerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., Science 240:1759, ( 1988)), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize.
Examples of leucine zipper domains suitable for producing soluble multimeric proteins of the invention are those described in PCT application WO 94/10308, hereby incorporated by reference. Recombinant fusion proteins comprising a polypeptide of the invention fused to a polypeptide sequence that dimerizes or trimerizes in solution are expressed in suitable host cells, and the resulting soluble multimeric fusion protein is recovered from the culture supernatant using techniques known in the art.
Trimeric polypeptides of the invention may offer the advantage of enhanced biological activity. Preferred leucine zipper moieties and isoleucine moieties are those that preferentially form trimers. One example is a leucine zipper derived from lung surfactant protein D (SPD), as described in Hoppe et al. (FEBS Letters 344:191, ( 1994)) and in U. S .
patent application Ser. No. 08/446,922, hereby incorporated by reference.
Other peptides derived from naturally occurring trimeric proteins may be employed in preparing trimeric polypeptides of the invention.
In another example, proteins of the invention are associated by interactions between Flag~ polypeptide sequence contained in fusion proteins of the invention containing Flag~
polypeptide seuqence. In a further embodiment, associations proteins of the invention are associated by interactions between heterologous polypeptide sequence contained in Flag~
fusion proteins of the invention and anti-Flag~ antibody.
The multimers of the invention may be generated using chemical techniques known in the art. For example, polypeptides desired to be contained in the multimers of the invention may be chemically cross-linked using linker molecules and linker molecule length optimization techniques known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, multimers of the invention may be generated using techniques known in the art to form one or more inter-molecule cross-links between the cysteine residues located within the sequence of the polypeptides desired to be contained in the multimer (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Further, polypeptides of the invention may be routinely modified by the addition of cysteine or biotin to the C terminus or N-terminus of the polypeptide and techniques known in the art may be applied to generate multimers containing one or more of these modified polypeptides (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
Additionally, techniques known in the art may be applied to generate liposomes containing the polypeptide components desired to be contained in the multimer of the invention (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
Alternatively, multimers of the invention may be generated using genetic engineering techniques known in the art. In one embodiment, polypeptides contained in multimers of the invention are produced recombinantly using fusion protein technology described herein or otherwise known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). In a specific embodiment, polynucleotides coding for a homodimer of the invention are generated by ligating a polynucleotide sequence encoding a polypeptide of the invention to a sequence encoding a linker polypeptide and then further to a synthetic polynucleotide encoding the translated product of the polypeptide in the reverse orientation from the original C-terminus to the N-terminus (lacking the leader sequence) (see, e.g., US Patent Number 5,478,925, which is herein incorporated by 5 reference in its entirety). In another embodiment, recombinant techniques described herein or otherwise known in the art are applied to generate recombinant polypeptides of the invention which contain a transmembrane domain (or hyrophobic or signal peptide) and which can be incorporated by membrane reconstitution techniques into liposomes (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
Uses of the Ck 3~-4 and Ck~3-10 Polynucleotides The Ck(3-4 and Ck(3-10 polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.
The sequences of the present invention are valuable for chromosome identification.
The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. The mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.
Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA shown in SEQ ID NO:1 or SEQ >D N0:3.
Computer analysis of the cDNA is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.
PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome. Three or more clones can be assigned per day using a single thermal cycler. Using the present invention with the same oligonucleotide primers, sublocalization of the Ck(3-4 or Ck(3-10 polynucleotides can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.
Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step.
This technique can be used with cDNA as short as 500 or 600 bases; however, clones larger than 2,000 bp, preferrably 2,000-4,000 bp, have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection.
FISH requires use of the clones from which the EST was derived, and the longer the better.
For example, 2,000 by is good, 4,000 is better, and more than 4,000 is probably not necessary to get good results a reasonable percentage of the time. For a review of this technique, see Verma et al., Human Chromosomes: a Manual of Basic Techniques, Pergamon Press, New York (1988).
For chromosome mapping, the Ck(3-4 or Ck(3-10 polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.
Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes). Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This assumes 1 megabase mapping resolution and one gene per 20 kb).
Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease. Thus, once coinheritance is established, differences in the Ck~3-4 or Ck(3-10 polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained.
Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the Ck(3-4 or Ck(3-10 polynucleotide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.
Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using Ck(3-4 or Ck(3-10 polynucleotides.
Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.
Thus, the invention also provides a diagnostic method useful during diagnosis of a disorder, involving measuring the expression level of polynucleotides of the present invention in cells or body fluid from an individual and comparing the measured gene expression level with a standard level of polynucleotide expression level, whereby an increase or decrease in the gene expression level compared to the standard is indicative of a disorder.
In still another embodiment, the invention includes a kit for analyzing samples for the presence of proliferative and/or cancerous polynucleotides derived from a test subject. In a general embodiment, the kit includes at least one polynucleotide probe containing a nucleotide sequence that will specifically hybridize with a polynucleotide of the present invention and a suitable container. In a specific embodiment, the kit includes two polynucleotide probes defining an internal region of the polynucleotide of the present invention, where each probe has one strand containing a 31' mer-end internal to the region.
In a further embodiment, the probes may be useful as primers for polymerase chain reaction amplification.
Where a diagnosis of a disorder, has already been made according to conventional methods, the present invention is useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed polynucleotide of the present invention expression will experience a worse clinical outcome relative to patients expressing the gene at a level nearer the standard level.
By "measuring the expression level of polynucleotide of the present invention"
is intended qualitatively or quantitatively measuring or estimating the level of the polypeptide of the present invention or the level of the mRNA encoding the polypeptide in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA
level) or relatively (e.g., by comparing to the polypeptide level or mRNA
level in a second biological sample). Preferably, the polypeptide level or mRNA level in the first biological sample is measured or estimated and compared to a standard polypeptide level or mRNA
level, the standard being taken from a second biological sample obtained from an individual not having the disorder or being determined by averaging levels from a population of individuals not having a disorder. As will be appreciated in the art, once a standard polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison.
By "biological sample" is intended any biological sample obtained from an individual, body fluid, cell line, tissue culture, or other source which contains the polypeptide of the present invention or mRNA. As indicated, biological samples include body fluids (such as semen, lymph, sera, plasma, urine, synovial fluid and spinal fluid) which contain the polypeptide of the present invention, and other tissue sources found to express the polypeptide of the present invention. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.
The methods) provided above may preferrably be applied in a diagnostic method and/or kits in which polynucleotides and/or polypeptides are attached to a solid support. In one exemplary method, the support may be a "gene chip" or a "biological chip"
as described in US Patents 5,837,832, 5,874,219, and 5,856,174. Further, such a gene chip with polynucleotides of the present invention attached may be used to identify polymorphisms between the polynucleotide sequences, with polynucleotides isolated from a test subject.
The knowledge of such polymorphisms (i.e. their location, as well as, their existence) would be beneficial in identifying disease loci for many disorders, including cancerous diseases and conditions. Such a method is described in US Patents 5,858,659 and 5,856,104. The US Patents referenced supra are hereby incorporated by reference in their entirety herein.
The present invention encompasses polynucleotides of the present invention that are chemically synthesized, or reproduced as peptide nucleic acids (PNA), or according to other methods known in the art. The use of PNAs would serve as the preferred form if the polynucleotides are incorporated onto a solid support, or gene chip. For the purposes of the present invention, a peptide nucleic acid (PNA) is a polyamide type of DNA
analog and the monomeric units for adenine, guanine, thymine and cytosine are available commercially (Perceptive Biosystems). Certain components of DNA, such as phosphorus, phosphorus oxides, or deoxyribose derivatives, are not present in PNAs. As disclosed by P. E. Nielsen, M. Egholm, R. H. Berg and O. Buchardt, Science 254, 1497 (1991); and M.
Egholm, O.
Buchardt, L.Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, Nature 365, 666 (1993), PNAs bind specifically and tightly to complementary DNA strands and are not degraded by nucleases. In fact, PNA
binds more strongly to DNA than DNA itself does. This is probably because there is no electrostatic repulsion between the two strands, and also the polyamide backbone is more flexible.
Because of this, PNA/DNA duplexes bind under a wider range of stringency conditions than DNA/DNA duplexes, making it easier to perform multiplex hybridization. Smaller probes can be used than with DNA due to the strong binding. In addition, it is more likely that single base mismatches can be determined with PNA/DNA hybridization because a single mismatch in a PNA/DNA 15-mer lowers the melting point (Tm) by 8°-20° C, vs. 4°-16°
C for the DNA/DNA 15-mer duplex. Also, the absence of charge groups in PNA
means that hybridization can be done at low ionic strengths and reduce possible interference by salt during the analysis.
The present invention is useful for detecting cancer in mammals. In particular the invention is useful during diagnosis of pathological cell proliferative neoplasias which include, but are not limited to: acute myelogenous leukemias including acute monocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute erythroleukemia, acute megakaryocytic leukemia, and acute undifferentiated leukemia, etc.; and chronic myelogenous leukemias including chronic myelomonocytic leukemia, chronic granulocytic leukemia, etc. Preferred mammals include monkeys, apes, cats, dogs, cows, pigs, horses, rabbits and humans. Particularly preferred are humans.
Pathological cell proliferative disorders are often associated with inappropriate activation of proto-oncogenes. (Gelmann, E. P. et al., "The Etiology of Acute Leukemia:
Molecular Genetics and Viral Oncology," in Neoplastic Diseases of the Blood, Vol 1. , Wiernik, P. H. et al. eds., 161-182 (1985)). Neoplasias are now believed to result from the qualitative alteration of a normal cellular gene product, or from the quantitative modification of gene expression by insertion into the chromosome of a viral sequence, by chromosomal translocation of a gene to a more actively transcribed region, or by some other mechanism.
(Gelmann et al., supra) It is likely that mutated or altered expression of specific genes is involved in the pathogenesis of some leukemias, among other tissues and cell types.
(Gelmann et al., supra) Indeed, the human counterparts of the oncogenes involved in some animal neoplasias have been amplified or translocated in some cases of human leukemia and carcinoma. (Gelmann et al., supra) For example, c-myc expression is highly amplified in the non-lymphocytic leukemia cell line HL-60. When HL-60 cells are chemically induced to stop proliferation, the level of c-myc is found to be downregulated. (International Publication Number WO
91/15580) However, it has been shown that exposure of HL-60 cells to a DNA construct that is complementary to the 5' end of c-myc or c-myb blocks translation of the corresponding mRNAs which downregulates expression of the c-myc or c-myb proteins and causes arrest of cell proliferation and differentiation of the treated cells. (International Publication Number WO 91/15580; Wickstrom et al., Proc. Natl. Acad. Sci. 85:1028 (1988); Anfossi et al., Proc. Natl. Acad. Sci. 86:3379 (1989)). However, the skilled artisan would appreciate the present invention's usefulness would not be limited to treatment of proliferative diseases, disorders, and/or conditions of hematopoietic cells and tissues, in light of the numerous cells and cell types of varying origins which are known to exhibit proliferative phenotypes.
In addition to the foregoing, a Ck(3-4 or Ck(3-10 polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Antisense techniques are discussed, for example, in Okano, J. Neurochem. 56: 560 (1991);
"Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression,CRC Press, Boca Raton, FL ( 1988). Triple helix formation is discussed in, for instance Lee et al., Nucleic Acids Research 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Both methods rely on binding of the polynucleotide to a complementary DNA or RNA. For these techniques, preferred polynucleotides are usually oligonucleotides 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res.
6:3073 (1979);
Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991) ) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 ( 1991 ); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide.
Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat or prevent disease.
Ck(3-4 or Ck~3-10 polynucleotides are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. Ck(3-4 or Ck(3-10 offers a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.
The Ck(3-4 or Ck(3-10 polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel.
In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel.
This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The Ck(3-4 or Ck(3-10 polynucleotides can be used as additional DNA markers for RFLP.
The Ck(3-4 or Ck(3-10 polynucleotides can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences.
Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, synovial fluid, amniotic fluid, breast milk, lymph, pulmonary sputum or surfactant, urine,fecal matter, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA
corresponding to the DQa class II HLA gene. Similarly, Ck(3-4 or Ck(3-10 polynucleotides can be used as polymorphic markers for forensic purposes.
There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from Ck(3-4 or Ck(3-10 sequences. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.
Because Ck(3-4 is found expressed in gall bladder and Ck(3-10 is found expressed in nine week early human tissue, chemokine polynucleotides are useful as hybridization probes for differential identification of the tissues) or cell types) present in a biological sample. Similarly, polypeptides and antibodies directed to the chemokine polypeptides are useful to provide immunological probes for differential identification of the tissues) or cell type(s). In addition, for a number of diseases, disorders, and/or conditions of the above tissues or cells, particularly of the immune system, significantly higher or lower levels of Ck(3-4 or Ck(3-10 gene expression may be detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" Ck(3-4 or Ck(3-10 gene expression level, i.e., the Ck(3-4 or Ck(3-10 expression level in healthy tissue from an individual not having the immune system disorder.
Thus, the invention provides a diagnostic method of a disorder, which involves: (a) assaying Ck(3-4 or Ck(3-10 gene expression level in cells or body fluid of an individual; (b) comparing the Ck(3-4 or Ck(3-10 gene expression level with a standard Ck(3-4 or Ck(3-10 gene expression level, whereby an increase or decrease in the assayed Ck(3-4 or Ck(3-10 gene expression level compared to the standard expression level is indicative of disorder in the immune system.
In the very least, the Ck(3-4 or Ck(3-10 polynucleotides can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA
in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA
immunization techniques, and as an antigen to elicit an immune response.
Uses of Ck~3-4 and Ck(3-10 PolYpeptides Ck~3-4 and/or Ck~3-10 polypeptides can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.
Ck~3-4 and/or Ck(3-10 polypeptides can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J.
Cell. Biol.
101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine ( 125I, 121I), carbon ( 14C), sulfur (35S), tritium (3H), indium ( 1 l2In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.
In addition to assaying protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR
include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.
A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments."
(Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B.
A.
Rhodes, eds., Masson Publishing Inc. (1982).) Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of Ck(3-4 or Ck(3-10 polypeptide in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed Ck~3-4 or Ck(3-10 polypeptide gene expression level compared to the standard expression level is indicative of a disorder. With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Moreover, Ck(3-4 or Ck(3-10 polypeptides can be used to treat, prevent, and/or diagnose disease. For example, patients can be administered Ck(3-4 or Ck(3-10 polypeptides in an effort to replace absent or decreased levels of a Ck(3-4 or Ck(3-10 polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B, SOD, catalase, DNA repair proteins), to inhibit the activity of a polypeptide (e.g., an oncogene or tumor supressor), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth inhibition, enhancement of the immune response to proliferative cells or tissues).
Similarly, antibodies directed to Ck(3-4 or Ck(3-10 polypeptides can also be used to treat, prevent, and/or diagnose disease. For example, administration of an antibody directed to a Ck(3-4 or Ck(3-10 polypeptide can bind and reduce overproduction of the polypeptide.
Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).
At the very least, the Ck(3-4 or Ck(3-10 polypeptides can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Ck(3-4 or Ck(3-10 polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, Ck(3-4 or Ck(3-polypeptides can be used to test the following biological activities. Examples and Figures identified in the calcium mobilization and chemotactic of the immune anc inflamatory cells is essential to biological activities of antiviral, antibacterial and anticancer and would healing.
Gene Therapy Methods Another aspect of the present invention is to gene therapy methods for treating or preventing disorders, diseases and conditions. The gene therapy methods relate to the introduction of nucleic acid (DNA, RNA and antisense DNA or RNA) sequences into an animal to achieve expression of a Ck(3-4 or Ck(3-10 polypeptide of the present invention.
This method requires a polynucleotide which codes for a Ck(3-4 or Ck~3-10 polypeptide operatively linked to a promoter and any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques are known in the art, see, for example, W090/11092, which is herein incorporated by reference.
Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) comprising a promoter operably linked to a Ck(3-4 or Ck[3-10 polynucleotide ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide. Such methods are well-known in the art. For example, see Belldegrun, A., et al., J. Natl. Cancer Inst. 85: 207-216 (1993); Ferrantini, M. et al., Cancer Research 53:
1107-1112 (1993); Ferrantini, M. et al., J. Immunology 153: 4604-4615 (1994);
Kaido, T., et al., Int. J. Cancer 60: 221-229 (1995); Ogura, H., et al., Cancer Research 50: 5102-5106 (1990); Santodonato, L., et al., Human Gene Therapy 7:1-10 (1996);
Santodonato, L., et al., Gene Therapy 4:1246-1255 (1997); and Zhang, J.-F. et al., Cancer Gene Therapy 3: 31-38 ( 1996)), which are herein incorporated by reference. In one embodiment, the cells which are engineered are arterial cells. The arterial cells may be reintroduced into the patient through direct injection to the artery, the tissues surrounding the artery, or through catheter injection.
As discussed in more detail below, the Ck(3-4 and Ck~3-10 polynucleotide constructs can be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, and the like). The Ck(3-4 and Ck(3-10 polynucleotide constructs may be delivered in a pharmaceutically acceptable liquid or aqueous carrier.
In one embodiment, the Ck(3-4 or Ck(3-10 polynucleotide is delivered as a naked polynucleotide. The term "naked" polynucleotide, DNA or RNA refers to sequences that are free from any delivery vehicle that acts to assist, promote or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the Ck(3-4 and Ck(3-10 polynucleotides can also be delivered in liposome formulations and lipofectin formulations and the like can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Patent Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference.
The Ck(3-4 and Ck~3-10 polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they . contain sequences that allow for replication. Appropriate vectors include pWLNEO, pSV2CAT, pOG44, pXTI and pSG available from Stratagene; pSVK3, pBPV, pMSG and pSVL available from Pharmacia; and pEFI/V5, pcDNA3.1, and pRc/CMV2 available from Invitrogen. Other suitable vectors will be readily apparent to the skilled artisan.
Any strong promoter known to those skilled in the art can be used for driving the expression of Ck(3-4 and Ck(3-10 polynucleotide sequence. Suitable promoters include adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter;
human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs; the b-actin promoter; and human growth hormone promoters.
The promoter also may be the native promoter for Ck~3-4 or Ck(3-10.
Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.
The Ck(3-4 or Ck(3-10 polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular, fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels.
Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells.
They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.
For the naked nucleic acid sequence injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 mg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration.
The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked Ck(3-4 or Ck(3-10 DNA
constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.
The naked polynucleotides are delivered by any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, and so-called "gene guns". These delivery methods are known in the art.
The constructs may also be delivered with delivery vehicles such as viral sequences, viral particles, liposome formulations, lipofectin, precipitating agents, etc.
Such methods of delivery are known in the art.
In certain embodiments, the Ck(3-4 and Ck(3-10 polynucleotide constructs are complexed in a liposome preparation. Liposomal preparations for use in the instant invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. However, cationic liposomes are particularly preferred because a tight charge complex can be formed between the cationic liposome and the polyanionic nucleic acid.
Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA
(Felgner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference); mRNA (Malone et al., Proc. Natl. Acad. Sci. USA ( 1989) 86:6077-6081, which is herein incorporated by reference); and purified transcription factors (Debs et al., J. Biol. Chem. (1990) 265:10189-10192, which is herein incorporated by reference), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are particularly useful and are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Felgner et al., Proc. Natl Acad. Sci. USA ( 1987) 84:7413-7416, which is herein incorporated by reference). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer).
Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. PCT Publication No. WO 90/11092 (which is herein incorporated by reference) for a description of the synthesis of DOTAP
(1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes. Preparation of DOTMA
liposomes is explained in the literature, see, e.g., P. Felgner et al., Proc. Natl.
Acad. Sci. USA
84:7413-7417, which is herein incorporated by reference. Similar methods can be used to prepare liposomes from other cationic lipid materials.
Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials.
Such materials include phosphatidyl, choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.
For example, commercially dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), and dioleoylphosphatidyl ethanolamine (DOPE) can be used in various combinations to make conventional liposomes, with or without the addition of cholesterol. Thus, for example, DOPG/DOPC vesicles can be prepared by drying 50 mg each of DOPG and DOPC under a stream of nitrogen gas into a sonication vial. The sample is placed under a vacuum pump overnight and is hydrated the following day with deionized water. The sample is then sonicated for 2 hours in a capped vial, using a Heat Systems model 350 sonicator equipped with an inverted cup (bath type) probe at the maximum setting while the bath is circulated at 15EC. Alternatively, negatively charged vesicles can be prepared without sonication to produce multilamellar vesicles or by extrusion through nucleopore membranes to produce unilamellar vesicles of discrete size.
Other methods are known and available to those of skill in the art.
The liposomes can comprise multilamellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs), with SUVs being preferred. The various liposome-nucleic acid complexes are prepared using methods well known in the art.
See, e.g., Straubinger et al., Methods of Immunology (1983), 101:512-527, which is herein incorporated by reference. For example, MLVs containing nucleic acid can be prepared by depositing a thin film of phospholipid on the walls of a glass tube and subsequently hydrating with a solution of the material to be encapsulated. SUVs are prepared by extended sonication of MLVs to produce a homogeneous population of unilamellar liposomes. The material to be entrapped is added to a suspension of preformed MLVs and then sonicated.
When using liposomes containing cationic lipids, the dried lipid film is resuspended in an appropriate solution such as sterile water or an isotonic buffer solution such as 10 mM
Tris/NaCI, sonicated, and then the preformed liposomes are mixed directly with the DNA.
The liposome and DNA form a very stable complex due to binding of the positively charged liposomes to the cationic DNA. SUVs find use with small nucleic acid fragments. LUVs are prepared by a number of methods, well known in the art. Commonly used methods include Ca2+-EDTA chelation (Papahadjopoulos et al., Biochim. Biophys. Acta (1975) 394:483;
Wilson et al., Cell (1979) 17:77); ether injection (Deamer, D. and Bangham, A., Biochim.
Biophys. Acta ( 1976) 443:629; Ostro et al., Biochem. Biophys. Res. Commun. ( 1977) 76:836; Fraley et al., Proc. Natl. Acad. Sci. USA ( 1979) 76:3348); detergent dialysis (Enoch, H. and Strittmatter, P., Proc. Natl. Acad. Sci. USA (1979) 76:145);
and reverse-phase evaporation (REV) (Fraley et al., J. Biol. Chem. (1980) 255:10431; Szoka, F. and Papahadjopoulos, D., Proc. Natl. Acad. Sci. USA (1978) 75:145; Schaefer-Ridder et al., Science ( 1982) 215:166), which are herein incorporated by reference.
Generally, the ratio of DNA to liposomes will be from about 10:1 to about 1:10.
Preferably, the ratio will be from about 5:1 to about 1:5. More preferably, the ratio will be about 3:1 to about 1:3. Still more preferably, the ratio will be about 1:1.
U.S. Patent No. 5,676,954 (which is herein incorporated by reference) reports on the injection of genetic material, complexed with cationic liposomes carriers, into mice. U . S .
Patent Nos. 4,897,355, 4,946,787, 5,049,386, 5,459,127, 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 (which are herein incorporated by reference) provide cationic lipids for use in transfecting DNA
into cells and mammals. U.S. Patent Nos. 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 (which are herein incorporated by reference) provide methods for delivering DNA-cationic lipid complexes to mammals.
In certain embodiments, cells are engineered, ex vivo or in vivo, using a retroviral particle containing RNA which comprises a sequence encoding Ck(3-4 or Ck(3-10.
Retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.
The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14X, VT-19-17-H2, RCRE, RCRIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, Human Gene Therapy 1:5-14 (1990), which is incorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP04 precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
The producer cell line generates infectious retroviral vector particles which include polynucleotide encoding Ck(3-4 or Ck(3-10. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express Ck~3-4 or Ck(3-10.
In certain other embodiments, cells are engineered, ex vivo or in vivo, with Ck(3-4 or Ck(3-10 polynucleotide contained in an adenovirus vector. Adenovirus can be manipulated such that it encodes and expresses Ck(3-4 or Ck(3-10, and at the same time is inactivated in terms of its ability to replicate in a normal lytic viral life cycle.
Adenovirus expression is achieved without integration of the viral DNA into the host cell chromosome, thereby alleviating concerns about insertional mutagenesis. Furthermore, adenoviruses have been used as live enteric vaccines for many years with an excellent safety profile (Schwartz, A. R.
et al. (1974) Am. Rev. Respir. Dis.109:233-238). Finally, adenovirus mediated gene transfer has been demonstrated in a number of instances including transfer of alpha-1-antitrypsin and CFTR to the lungs of cotton rats (Rosenfeld, M. A. et al. (1991) Science 252:431-434; Rosenfeld et al., (1992) Cell 68:143-155). Furthermore, extensive studies to attempt to establish adenovirus as a causative agent in human cancer were uniformly negative (Green, M. et al. ( 1979) Proc. Natl. Acad. Sci. USA
76:6606).
Suitable adenoviral vectors useful in the present invention are described, for example, in Kozarsky and Wilson, Curr. Opin. Genet. Devel. 3:499-503 (1993);
Rosenfeld et al., Cell 68:143-155 (1992); Engelhardt et al., Human Genet. Ther. 4:759-769 (1993);
Yang et al., Nature Genet. 7:362-369 (1994); Wilson et al., Nature 365:691-692 (1993);
and U.S. Patent No. 5,652,224, which are herein incorporated by reference. For example, the adenovirus vector Ad2 is useful and can be grown in human 293 cells. These cells contain the E 1 region of adenovirus and constitutively express Ela and Elb, which complement the defective adenoviruses by providing the products of the genes deleted from the vector. In addition to Ad2, other varieties of adenovirus (e.g., Ad3, AdS, and Ad7) are also useful in the present invention.
Preferably, the adenoviruses used in the present invention are replication deficient.
Replication deficient adenoviruses require the aid of a helper virus and/or packaging cell line to form infectious particles. The resulting virus is capable of infecting cells and can express a polynucleotide of interest which is operably linked to a promoter, but cannot replicate in most cells. Replication deficient adenoviruses may be deleted in one or more of all or a portion of the following genes: E 1 a, E 1 b, E3, E4, E2a, or L 1 through L5.
In certain other embodiments, the cells are engineered, ex vivo or in vivo, using an adeno-associated virus (AAV). AAVs are naturally occurring defective viruses that require helper viruses to produce infectious particles (Muzyczka, N., Curr. Topics in Microbiol.
Immunol. 158:97 (1992)). It is also one of the few viruses that may integrate its DNA into non-dividing cells. Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate, but space for exogenous DNA is limited to about 4.5 kb.
Methods for producing and using such AAVs are known in the art. See, for example, U.S.
Patent Nos.
5,139,941, 5,173,414, 5,354,678, 5,436,146, 5,474,935, 5,478,745, and 5,589,377.
For example, an appropriate AAV vector for use in the present invention will include all the sequences necessary for DNA replication, encapsidation, and host-cell integration.
The Ck(3-4 or Ck~3-10 polynucleotide construct is inserted into the AAV vector using standard cloning methods, such as those found in Sambrook et al., Molecular Cloning: A
Laboratory Manual, Cold Spring Harbor Press ( 1989). The recombinant AAV
vector is then transfected into packaging cells which are infected with a helper virus, using any standard technique, including lipofection, electroporation, calcium phosphate precipitation, etc.
Appropriate helper viruses include adenoviruses, cytomegaloviruses, vaccinia viruses, or herpes viruses. Once the packaging cells are transfected and infected, they will produce infectious AAV viral particles which contain the Ck(3-4 or Ck(3-10 polynucleotide construct.
These viral particles are then used to transduce eukaryotic cells, either ex vivo or in vivo.
The transduced cells will contain the Ck(3-4 or Ck(3-10 polynucleotide construct integrated into its genome, and will express Ck(3-4 or Ck(3-10.
Another method of gene therapy involves operably associating heterologous control regions and endogenous polynucleotide sequences (e.g. encoding Ck~3-4 or Ck(3-10) via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997;
International Publication No. WO 96/29411, published September 26, 1996;
International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc.
Natl. Acad.
Sci. USA 86:8932-8935 ( 1989); and Zijlstra et al., Nature 342:435-438 ( 1989). This method involves the activation of a gene which is present in the target cells, but which is not normally expressed in the cells, or is expressed at a lower level than desired.
Polynucleotide constructs are made, using standard techniques known in the art, which contain the promoter with targeting sequences flanking the promoter.
Suitable promoters are described herein. The targeting sequence is sufficiently complementary to an endogenous sequence to permit homologous recombination of the promoter-targeting sequence with the endogenous sequence. The targeting sequence will be sufficiently near the 5' end of the Ck(3-4 or Ck(3-10 desired endogenous polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination.
The promoter and the targeting sequences can be amplified using PCR.
Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends.
Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter.
The amplified promoter and targeting sequences are digested and ligated together.
The promoter-targeting sequence construct is delivered to the cells, either as naked polynucleotide, or in conjunction with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc., described in more detail above. The P promoter-targeting sequence can be delivered by any method, included direct needle injection, intravenous injection, topical administration, catheter infusion, particle accelerators, etc: The methods are described in more detail below.
The promoter-targeting sequence construct is taken up by cells. Homologous recombination between the construct and the endogenous sequence takes place, such that an endogenous Ck(3-4 or Ck~3-10 sequence is placed under the control of the promoter. The promoter then drives the expression of the endogenous Ck(3-4 or Ck(3-10 sequence.
The polynucleotides encoding Ck(3-4 or Ck(3-10 may be administered along with other polynucleotides encoding an angiogenic protein. Examples of angiogenic proteins include, but are not limited to, acidic and basic fibroblast growth factors, VEGF-l, VEGF-2, VEGF-3, epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin like growth factor, colony stimulating factor, macrophage colony stimulating factor, granulocytelmacrophage colony stimulating factor, and nitric oxide synthase.
Preferably, the polynucleotide encoding Ck(3-4 or Ck(3-10 contains a secretory signal sequence that facilitates secretion of the protein. Typically, the signal sequence is positioned in the coding region of the polynucleotide to be expressed towards or at the 5' end of the coding region. The signal sequence may be homologous or heterologous to the polynucleotide of interest and may be homologous or heterologous to the cells to be transfected. Additionally, the signal sequence may be chemically synthesized using methods known in the art.
Any mode of administration of any of the above-described polynucleotides constructs can be used so long as the mode results in the expression of one or more molecules in an amount sufficient to provide a therapeutic effect. This includes direct needle injection, systemic injection, catheter infusion, biolistic injectors, particle accelerators (i.e., "gene guns"), gelfoam sponge depots, other commercially available depot materials, osmotic pumps (e.g., Alza minipumps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, and decanting or topical applications during surgery. For example, direct injection of naked calcium phosphate-precipitated plasmid into rat liver and rat spleen or a protein-coated plasmid into the portal vein has resulted in gene expression of the foreign gene in the rat livers (Kaneda et al., Science 243:375 (1989)).
A preferred method of local administration is by direct injection. Preferably, a recombinant molecule of the present invention complexed with a delivery vehicle is administered by direct injection into or locally within the area of arteries.
Administration of a composition locally within the area of arteries refers to injecting the composition centimeters and preferably, millimeters within arteries.
Another method of local administration is to contact a polynucleotide construct of the present invention in or around a surgical wound. For example, a patient can undergo surgery and the polynucleotide construct can be coated on the surface of tissue inside the wound or the construct can be injected into areas of tissue inside the wound.
Therapeutic compositions useful in systemic administration, include recombinant molecules of the present invention complexed to a targeted delivery vehicle of the present invention. Suitable delivery vehicles for use with systemic administration comprise liposomes comprising ligands for targeting the vehicle to a particular site.
Preferred methods of systemic administration, include intravenous injection, aerosol, oral and percutaneous (topical) delivery. Intravenous injections can be performed using methods standard in the art. Aerosol delivery can also be performed using methods standard in the art (see, for example, Stribling et al., Proc. Natl. Acad. Sci. USA
189:11277-11281, 1992, which is incorporated herein by reference). Oral delivery can be performed by complexing a polynucleotide construct of the present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal.
Examples of such carriers, include plastic capsules or tablets, such as those known in the art.
Topical delivery can be performed by mixing a polynucleotide construct of the present invention with a lipophilic reagent (e.g., DMSO) that is capable of passing into the skin.
Determining an effective amount of substance to be delivered can depend upon a number of factors including, for example, the chemical structure and biological activity of the substance, the age and weight of the animal, the precise condition requiring treatment and its severity, and the route of administration. The frequency of treatments depends upon a number of factors, such as the amount of polynucleotide constructs administered per dose, as well as the health and history of the subject. The precise amount, number of doses, and timing of doses will be determined by the attending physician or veterinarian.
Therapeutic compositions of the present invention can be administered to any animal, preferably to mammals and birds. Preferred mammals include humans, dogs, cats, mice, rats, rabbits sheep, cattle, horses and pigs, with humans being particularly preferred.
Biological Activities of Ck~3-4 and Ck(3-10 Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, can be used in assays to test for one or more biological activities. If Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck~3-10, do exhibit activity in a particular assay, it is likely that Ck(3-4 or Ck(3-10 may be involved in the diseases associated with the biological activity. Therefore, Ck(3-4 or Ck(3-10 could be used to treat, prevent, and/or diagnose the associated disease.
The chemokine polypeptides of the present invention are also useful for identifying other molecules which have similar biological activity. An example of a screen for this is isolating the coding region of the genes by using the known DNA sequence to synthesize oligonucleotide probes. Labeled oligonucleotides having a sequence complementary to that of the genes of the present invention are used to screen a library of human cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
The present invention also relates to a diagnostic assays for detecting altered levels of the polypeptides or the mRNA which provides the message for such polypeptides, both quantitatively and qualitatively. Such assays are well-known in the art and include an ELISA
assay, the radioimmunoassay and RT-PCR. The levels of the polypeptides, or their mRNAs, which are detected in the assays may be employed for the elucidation of the significance of the polypeptides in various diseases and for the diagnosis of diseases in which altered levels of the polypeptides may be significant.
This invention provides a method for identification of the receptors for the polypeptides. The gene encoding the receptors can be identified by expression cloning.
Polyadenylated RNA is prepared from a cell responsive to the polypeptides, and a cDNA
library created from this RNA is divided into pools and used to transfect COS
cells or other cells that are not responsive to the polypeptides. Transfected cells, which may be cultured on slides are exposed to the labeled polypeptides. The polypeptides can be labeled by a variety of means including iodidation or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and retransfected using an iterative sub-pooling and rescreening process, eventually yielding a single clones that encodes the putative receptor. As an alternative approach for receptor identification, the labeled polypeptides can be photoaffmity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE analysis and exposed to x-ray film. The labeled complex containing the receptors of the polypeptides can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing would be used to design a set of generate oligonucleotide probes to screen a cDNA library to identify the genes encoding the putative receptors.
Immune Activity Ck(3-4 or Ck~3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, may be useful in treating diseases, disorders, and/or conditions of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune diseases, disorders, and/or conditions may be genetic, somatic, such as cancer or some autoimmune diseases, disorders, and/or conditions, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, can be used as a marker or detector of a particular immune system disease or disorder.
The chemokine polypeptides may be used to inhibit bone marrow stem cell colony formation as adjunct protective treatment during cancer chemotherapy and for leukemia.
They may also be used to regulate hematopoiesis, by regulating the activation and differentiation of various hematopoietic progenitor cells .
Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, may be useful in treating, preventing, and/or diagnosing diseases, disorders, and/or conditions of hematopoietic cells. Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein diseases, disorders, and/or conditions (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV
infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.
Moreover, Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agomsts or antagonists of Ck(3-4 or Ck(3-10, can also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, could be used to treat or prevent blood coagulation diseases, disorders, and/or conditions (e.g., afibrinogenemia, factor deficiencies), blood platelet diseases, disorders, and/or conditions (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, Ck~3-4 or Ck~3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment or prevention of heart attacks (infarction), strokes, or scarring.
The chemokine polypeptides may also be used to treat auto-immune disease and lymphocytic leukemias by inhibiting T cell proliferation by the inhibition of biosynthesis.
Ck(3-4 or Ck~3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck~3-10, may also be useful in treating, preventing, and/or diagnosing autoimmune diseases, disorders, and/or conditions. Many autoimmune diseases, disorders, and/or conditions result from inappropriate recognition of self as foreign material by immune cells.
This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of Ck(3-4 or Ck~3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, that can inhibit an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune diseases, disorders, and/or conditions.
Examples of autoimmune diseases, disorders, and/or conditions that can be treated, prevented, and/or diagnosed or detected by Ck~3-4 or Ck(3-10 include, but are not limited to:
Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.
Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated, prevented, and/or diagnosed by Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.
Ck~3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck~3-4 or Ck(3-10, may also be used to treat, prevent, and/or diagnose organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.
Similarly, Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, may also be used to modulate inflammation.
For example, Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat, prevent, and/or diagnose inflammatory conditions, both chronic and acute conditions, including chronic prostatitis, granulomatous prostatitis and malacoplakia, inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-l.) Hyperproliferative Disorders Ck~3-4 or Ck~3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, can be used to treat, prevent, and/or diagnose hyperproliferative diseases, disorders, and/or conditions, including neoplasms. Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, may proliferate other cells which can inhibit the hyperproliferative disorder.
For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative diseases, disorders, and/or conditions can be treated, prevented, and/or diagnosed. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating, preventing, and/or diagnosing hyperproliferative diseases, disorders, and/or conditions, such as a chemotherapeutic agent.
Examples of hyperproliferative diseases, disorders, and/or conditions that can be treated, prevented, and/or diagnosed by Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, include, but are not limited to neoplasms located in the:colon, abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.
The chemokine polypeptides may also be used to inhibit epidermal keratinocyte proliferation for treatment of psoriasis, which is characterized by keratinocyte hyper-proliferation.
Similarly, other hyperproliferative diseases, disorders, and/or conditions can also be treated, prevented, and/or diagnosed by Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10. Examples of such hyperproliferative diseases, disorders, and/or conditions include, but are not limited to:
hypergammaglobulinemia, lymphoproliferative diseases, disorders, and/or conditions, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.
One preferred embodiment utilizes polynucleotides of the present invention to inhibit aberrant cellular division, by gene therapy using the present invention, and/or protein fusions or fragments thereof.
Thus, the present invention provides a method for treating cell proliferative diseases, disorders, and/or conditions by inserting into an abnormally proliferating cell a polynucleotide of the present invention, wherein said polynucleotide represses said expression.
Another embodiment of the present invention provides a method of treating cell-proliferative diseases, disorders, and/or conditions in individuals comprising administration of one or more active gene copies of the present invention to an abnormally proliferating cell or cells. In a preferred embodiment, polynucleotides of the present invention is a DNA
construct comprising a recombinant expression vector effective in expressing a DNA
sequence encoding said polynucleotides. In another preferred embodiment of the present invention, the DNA construct encoding the poynucleotides of the present invention is inserted into cells to be treated utilizing a retrovirus, or more preferrably an adenoviral vector (See G J. Nabel, et. al., PNAS 1999 96: 324-326, which is hereby incorporated by reference). In a most preferred embodiment, the viral vector is defective and will not transform non-proliferating cells, only proliferating cells. Moreover, in a preferred embodiment, the polynucleotides of the present invention inserted into proliferating cells either alone, or in combination with or fused to other polynucleotides, can then be modulated via an external stimulus (i.e. magnetic, specific small molecule, chemical, or drug administration, etc.), which acts upon the promoter upstream of said polynucleotides to induce expression of the encoded protein product. As such the beneficial therapeutic affect of the present invention may be expressly modulated (i.e. to increase, decrease, or inhibit expression of the present invention) based upon said external stimulus.
Polynucleotides of the present invention may be useful in repressing expression of oncogenic genes or antigens. By "repressing expression of the oncogenic genes " is intended the suppression of the transcription of the gene, the degradation of the gene transcript (pre-message RNA), the inhibition of splicing, the destruction of the messenger RNA, the prevention of the post-translational modifications of the protein, the destruction of the protein, or the inhibition of the normal function of the protein.
For local administration to abnormally proliferating cells, polynucleotides of the present invention may be administered by any method known to those of skill in the art including, but not limited to transfection, electroporation, microinjection of cells, or in vehicles such as liposomes, lipofectin, or as naked polynucleotides, or any other method described throughout the specification. The polynucleotide of the present invention may be delivered by known gene delivery systems such as, but not limited to, retroviral vectors (Gilboa, J. Virology 44:845 ( 1982); Hocke, Nature 320:275 ( 1986); Wilson, et al., Proc.
Natl. Acad. Sci. U.S.A. 85:3014), vaccinia virus system (Chakrabarty et al., Mol. Cell Biol. 5:3403 (1985) or other efficient DNA delivery systems (Pates et al., Nature 313:812 ( 1985)) known to those skilled in the art. These references are exemplary only and are hereby incorporated by reference. In order to specifically deliver or transfect cells which are abnormally proliferating and spare non-dividing cells, it is preferable to utilize a retrovirus, or adenoviral (as described in the art and elsewhere herein) delivery system known to those of skill in the art. Since host DNA replication is required for retroviral DNA
to integrate and the retrovirus will be unable to self replicate due to the lack of the retrovirus genes needed for its life cycle. Utilizing such a retroviral delivery system for polynucleotides of the present invention will target said gene and constructs to abnormally proliferating cells and will spare the non-dividing normal cells.
The polynucleotides of the present invention may be delivered directly to cell proliferative disorder/disease sites in internal organs, body cavities and the like by use of imaging devices used to guide an injecting needle directly to the disease site. The polynucleotides of the present invention may also be administered to disease sites at the time of surgical intervention.
By "cell proliferative disease" is meant any human or animal disease or disorder, affecting any one or any combination of organs, cavities, or body parts, which is characterized by single or multiple local abnormal proliferations of cells, groups of cells, or tissues, whether benign or malignant.
Any amount of the polynucleotides of the present invention may be administered as long as it has a biologically inhibiting effect on the proliferation of the treated cells.
Moreover, it is possible to administer more than one of the polynucleotide of the present invention simultaneously to the same site. By "biologically inhibiting" is meant partial or total growth inhibition as well as decreases in the rate of proliferation or growth of the cells.
The biologically inhibitory dose may be determined by assessing the effects of the polynucleotides of the present invention on target malignant or abnormally proliferating cell growth in tissue culture, tumor growth in animals and cell cultures, or any other method known to one of ordinary skill in the art.
The present invention is further directed to antibody-based therapies which involve administering of anti-polypeptides and anti-polynucleotide antibodies to a mammalian, preferably human, patient for treating one or more of the described diseases, disorders, and/or conditions. Methods for producing anti-polypeptides and anti-polynucleotide antibodies polyclonal and monoclonal antibodies are described in detail elsewhere herein.
Such antibodies may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.
A summary of the ways in which the antibodies of the present invention may be used therapeutically includes binding polynucleotides or polypeptides of the present invention locally or systemically in the body or by direct cytotoxicity of the antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic purposes without undue experimentation.
In particular, the antibodies, fragments and derivatives of the present invention are useful for treating a subject having or developing cell proliferative and/or differentiation diseases, disorders, and/or conditions as described herein. Such treatment comprises administering a single or multiple doses of the antibody, or a fragment, derivative, or a conjugate thereof.
The antibodies of this invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors, for example, which serve to increase the number or activity of effector cells which interact with the antibodies.
It is preferred to use high affinity and/or potent in vivo inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and therapy of diseases, disorders, and/or conditions related to polynucleotides or polypeptides, including fragements thereof, of the present invention. Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or polypeptides, including fragements thereof.
Preferred binding affinities include those with a dissociation constant or Kd less than SX 10-6M, 10-6M, SX 10-'M, 10-'M, SX10-gM, 10-gM, SX10-9M, 10-9M, SX10-'°M, 10-'°M, SX10-"M, 10-"M, SX10~''M, 10-'ZM, SX10-'~M, 10-'3M, SX10-'''M, 10-'''M, SX10-'SM, and 10-'SM.
The chemokine polypeptides may also be used to treat solid tumors by stimulating the invasion and activation of host defense cells, e.g., CD8+, cytotoxic T cells and macrophages.
Particularly, Ck(3-4 on peripheral blood lymphocytes and MCP-4 (also referred to as Ck~3-10) on CD8+ T-cells, eosinophils and monocyctes.
Moreover, polypeptides of the present invention are useful in inhibiting the angiogenesis of proliferative cells or tissues, either alone, as a protein fusion, or in combination with other polypeptides directly or indirectly, as described elsewhere herein. In a most preferred embodiment, said anti-angiogenesis effect may be achieved indirectly, for example, through the inhibition of hematopoietic, tumor-specific cells, such as tumor-associated macrophages (See Joseph IB, et al. J Natl Cancer Inst, 90(21):1648-53 (1998), which is hereby incorporated by reference). Antibodies directed to polypeptides or polynucleotides of the present invention may also result in inhibition of angiogenesis directly, or indirectly (See Witte L, et al., Cancer Metastasis Rev. 17(2):155-61 (1998), which is hereby incorporated by reference)).
Polypeptides, including protein fusions, of the present invention, or fragments thereof may be useful in inhibiting proliferative cells or tissues through the induction of apoptosis. Said polypeptides may act either directly, or indirectly to induce apoptosis of proliferative cells and tissues, for example in the activation of a death-domain receptor, such as tumor necrosis factor (TNF) receptor-l, CD95 (Fas/APO-1), TNF-receptor-related apoptosis-mediated protein (TRAMP) and TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2 (See Schulze-Osthoff K, et.al., Eur J Biochem 254(3):439-59 ( 1998), which is hereby incorporated by reference). Moreover, in another preferred embodiment of the present invention, said polypeptides may induce apoptosis through other mechanisms, such as in the activation of other proteins which will activate apoptosis, or through stimulating the expression of said proteins, either alone or in combination with small molecule drugs or adjuviants, such as apoptonin, galectins, thioredoxins, antiinflammatory proteins (See for example, Mutat Res 400(1-2):447-55 (1998), Med Hypotheses.50(5):423-33 (1998), Chem Biol Interact. Apr 24;111-112:23-34 (1998), J Mol Med.76(6):402-12 (1998), Int J Tissue React;20(1):3-15 (1998), which are all hereby incorporated by reference).
Polypeptides, including protein fusions to, or fragments thereof, of the present invention are useful in inhibiting the metastasis of proliferative cells or tissues. Inhibition may occur as a direct result of administering polypeptides, or antibodies directed to said polypeptides as described elsewere herein, or indirectly, such as activating the expression of proteins known to inhibit metastasis, for example alpha 4 integrins, (See, e.g., Curr Top Microbiol Immunol 231:125-41 (1998), which is hereby incorporated by reference). Such thereapeutic affects of the present invention may be achieved either alone, or in combination with small molecule drugs or adjuvants.
In another embodiment, the invention provides a method of delivering compositions containing the polypeptides of the invention (e.g., compositions containing polypeptides or polypeptide antibodes associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs) to targeted cells expressing the polypeptide of the present invention. Polypeptides or polypeptide antibodes of the invention may be associated with with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions.
Polypeptides, protein fusions to, or fragments thereof, of the present invention are useful in enhancing the immunogenicity and/or antigenicity of proliferating cells or tissues, either directly, such as would occur if the polypeptides of the present invention 'vaccinated' the immune response to respond to proliferative antigens and immunogens, or indirectly, such as in activating the expression of proteins known to enhance the immune response (e.g.
chemokines), to said antigens and immunogens.
Infectious Disease Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck~3-10, can be used to treat, prevent, and/or diagnose infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated, prevented, and/or diagnosed. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, or agonists or antagonists of Ck(3-4 or Ck(3-10, may also directly inhibit the infectious agent, without necessarily eliciting an immune response.
Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated, prevented, and/or diagnosed by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention. Examples of viruses, include, but are not limited to Examples of viruses, include, but are not limited to the following DNA and RNA
viruses and viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Dengue, EBV, HIV, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza A, Influenza B, and parainfluenza), Papiloma virus, Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, respiratory syncytial virus, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), Japanese B encephalitis, Junin, Chikungunya, Rift Valley fever, yellow fever, meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used to treat, prevent, and/or diagnose any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat:
meningitis, Dengue, EBV, and/or hepatitis (e.g., hepatitis B). In an additional specific embodiment polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat patients nonresponsive to one or more other commercially available hepatitis vaccines. In a further specific embodiment polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat, prevent, and/or diagnose AIDS.
Chemokines may also be used to enhance host defenses against resistant chronic infections, for example, mycobacteria, listeria or leishmania infections, or opportunistic infections such as, for example, cryptococcus infections, via the attraction of microbicidal leukocytes, such as peripheral blood leukocytes ("PBLs") by CK~3-4 and CD4+ T-cells, monocytes and eosinophils by MCP-4.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated, prevented, and/or diagnosed by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention include, but not limited to, include, but not limited to, the following Gram-Negative and Gram-positive bacteria and bacterial families and fungi:
Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Cryptococcus neoformans, Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia (e.g., Borrelia burgdorferi), Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, E. coli (e.g., Enterotoxigenic E. coli and Enterohemorrhagic E. coli), Enterobacteriaceae (Klebsiella, Salmonella (e.g., Salmonella typhi, and Salmonella paratyphi), Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Mycobacterium leprae, Vibrio cholerae, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Meisseria meningitides, Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus (e.g., Heamophilus influenza type B), Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, Shigella spp., Staphylococcal, Meningiococcal, Pneumococcal and Streptococcal (e.g., Streptococcus pneumoniae and Group B
Streptococcus). These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis (e.g., mengitis types A and B), Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections.
Polynucleotides or polypeptides, agonists or antagonists of the invention, can be used to treat, prevent, and/or diagnose any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, agonists or antagonists of the invention are used to treat:
tetanus, Diptheria, botulism, and/or meningitis type B.
The chemokine polypeptides also increase the presence of eosinophils which have the distinctive function of killing the larvae of parasites that invade tissues, as in schistosomiasis, trichinosis and ascariasis.
Moreover, parasitic agents causing disease or symptoms that can be treated, prevented, and/or diagnosed by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention include, but not limited to, the following families or class:
Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas and Sporozoans (e.g., Plasmodium virax, Plasmodium falciparium, Plasmodium malariae and Plasmodium ovate). These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), malaria, pregnancy complications, and toxoplasmosis. polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used to treat, prevent, and/or diagnose any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat, prevent, and/or diagnose malaria.
Preferably, treatment or prevention using a polypeptide or polynucleotide and/or agonist or antagonist of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.
Wound Healing and Epithelial Cell Proli eration Ck(3-4 and MCP-4 (also referred to as Ck~3-10) may also be used in wound healing, both via the recruitment of debris clearing and connective tissue promoting inflammatory cells and also via its control of excessive TGF~3-mediated fibrosis. In this same manner, Ck(3-4 and MCP-4 may also be used to treat other fibrotic disorders, including liver cirrhosis, osteoarthritis and pulmonary fibrosis.
In accordance with yet a further aspect of the present invention, there is provided a process for utilizing Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, for therapeutic purposes, for example, to stimulate epithelial cell proliferation and basal keratinocytes for the purpose of wound healing, and to stimulate hair follicle production and healing of dermal wounds. Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, q 30 may be clinically useful in stimulating wound healing including surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, burns resulting from heat exposure or chemicals, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and complications associted with systemic treatment with steroids, radiation therapy and antineoplastic drugs and antimetabolites. Ck(3-4 or Ck~3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, could be used to promote dermal reestablishment subsequent to dermal loss Ck(3-4 or Ck~3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, could be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed. The following are types of grafts that Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, agonists or antagonists of Ck(3-4 or Ck(3-10, could be used to increase adherence to a wound bed: autografts, artificial skin, allografts, autodermic graft, autoepdermic grafts, avacular grafts, Blair-Brown grafts, bone graft, brephoplastic grafts, cutis graft, delayed graft, dermic graft, epidermic graft, fascia graft, full thickness graft, heterologous graft, xenograft, homologous graft, hyperplastic graft, lamellar graft, mesh graft, mucosal graft, Ollier-Thiersch graft, omenpal graft, patch graft, pedicle graft, penetrating graft, split skin graft, thick split graft.
Ck~3-4 or Ck(3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, can be used to promote skin strength and to improve the appearance of aged skin.
It is believed that Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, will also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small intesting, and large intestine. Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, could promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type II pneumocytes, mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, and gastrointestinal tract. Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, agonists or antagonists of Ck(3-4 or Ck(3-10, may promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes.
Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, could also be used to reduce the side effects of gut toxicity that result from radiation, chemotherapy treatments or viral infections. Ck(3-4 or Ck(3-10 polynucleotides or polypeptides, as well as agonists or antagonists of Ck(3-4 or Ck(3-10, f f DEMANDES OU BREVETS VOLUMINEUX

COMPREND PLUS D'UN TOME.
CECI EST LE TOME ~ DE _oZ
NOTF_ Pour !es tomes additioc~els, veuiiiez cantacter le Bureau canadien des brevets JUMBO APPLICATIONS/PA~f'E1VTS
THiS SECTION OF THE APPLICATIONIPATENT CONTAINS MORE
THAN ONE VOLUME
THIS IS VOLUME ~' O1=
NOTE:~Fo~ additional vofumes~piease cantact~the Canadian.Patent Office ~ -

Claims (22)

What Is Claimed Is:
1. An isolated polynucleotide comprising a nucleic acid sequence at least 90%
identical to a member selected from the group consisting of:
(a) a nucleotide sequence encoding amino acid residues 29 to 98 of SEQ ID
NO:4;
(b) a nucleotide sequence encoding amino acid residues 30 to 98 of SEQ ID
NO:4;
(c) a nucleotide sequence encoding amino acid residues 31 to 98 of SEQ ID
NO:4;
(d) a nucleotide sequence encoding amino acid residues 32 to 98 of SEQ ID
NO:4;
(e) a nucleotide sequence encoding amino acid residues 33 to 98 of SEQ ID
NO:4;
(f) a nucleotide sequence encoding amino acid residues 34 to 98 of SEQ ID
NO:4;
(g) a nucleotide sequence encoding amino acid residues 35 to 98 of SEQ ID
NO:4;
(h) a nucleotide sequence encoding amino acid residues 25 to 98 of SEQ ID
NO:4;
(i) a nucleotide sequence encoding amino acid residues 26 to 98 of SEQ ID
NO:4;
(j) a nucleotide sequence encoding amino acid residues 27 to 98 of SEQ ID NO:4 (k) a nucleotide sequence encoding the polypeptide encoded by the human cDNA
contained in ATCC Deposit No: 75849, excepting the N-terminal amino acid residues 1 to 29;
(l) a nucleotide sequence encoding the polypeptide encoded by the human cDNA
contained in ATCC Deposit No: 75849, excepting the N-terminal amino acid residues 1 to 28;
(m) a nucleotide sequence encoding the polypeptide encoded by the human cDNA
contained in ATCC Deposit No: 75849, excepting the N-terminal amino acid residues 1 to 27;
(n) a nucleotide sequence encoding the polypeptide encoded by the human cDNA
contained in ATCC Deposit No: 75849, excepting the N-terminal amino acid residues 1 to 24; and (o) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l), (m), or (n), above.
2. The isolated polynucleotide of claim 1 wherein said polynucleotide has the nucleotide sequence in Figure 2 (SEQ ID NO:3) encoding the polypeptide having the amino acid sequence in positions 30 to 98 of SEQ ID NO:4.
3. The isolated polynucleotide of claim 1 wherein said polynucleotide has the nucleotide sequence in Figure 2 (SEQ ID NO:3) encoding the polypeptide having the amino acid sequence in positions 29 to 98 of SEQ ID NO:4.
4. The isolated polynucleotide of claim 1 wherein said polynucleotide has the nucleotide sequence in Figure 2 (SEQ ID NO:3) encoding the polypeptide having the amino acid sequence in positions 28 to 98 of SEQ ID NO:4.
5. The isolated polynucleotide of claim 1 wherein said polynucleotide has the nucleotide sequence in Figure 2 (SEQ ID NO:3) encoding the polypeptide having the amino acid sequence in positions 25 to 98 of SEQ ID NO:4.
6. An isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide having a nucleotide sequence identical to a nucleotide sequence in (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l), (m), or (n) of claim 1 wherein said polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues.
7. A method for making a recombinant vector comprising inserting an isolated nucleic acid molecule of claim 1 into a vector.
8. A recombinant vector produced by the method of claim 7.
9. A method of making a recombinant host cell comprising introducing the recombinant vector of claim 8 into a host cell.
10. A recombinant host cell produced by the method of claim 9.
11. A recombinant method for producing a polypeptide, comprising culturing the recombinant host cell of claim 10 under conditions such that said polypeptide is expressed and recovering said polypeptide.
12. An isolated polypeptide comprising an amino acid sequence at least 90%
identical to a member selected from the group consisting of:

(a) amino acid residues 29 to 98 of SEQ ID NO:4;
(b) amino acid residues 30 to 98 of SEQ ID NO:4;
(c) amino acid residues 31 to 98 of SEQ ID NO:4;
(d) amino acid residues 32 to 98 of SEQ ID NO:4;
(e) amino acid residues 33 to 98 of SEQ ID NO:4;
(f) amino acid residues 34 to 98 of SEQ ID NO:4;
(g) amino acid residues 35 to 98 of SEQ ID NO:4;

(h) amino acid residues 25 to 98 of SEQ ID NO:4;
(i) amino acid residues 26 to 98 of SEQ ID NO:4;
(j) amino acid residues 27 to 98 of SEQ ID NO:4;
(k) the polypeptide encoded by the human cDNA contained in ATCC Deposit No:
75849, excepting the N-terminal amino acid residues 1 to 29;
(l) the polypeptide encoded by the human cDNA contained in ATCC Deposit No:
75849, excepting the N-terminal amino acid residues 1 to 28;
(m) the polypeptide encoded by the human cDNA contained in ATCC Deposit No:
75849, excepting the N-terminal amino acid residues 1 to 27; and (n) the polypeptide encoded by the human cDNA contained in ATCC Deposit No:
75849, excepting the N-terminal amino acid residues 1 to 24.
13. An isolated antibody that binds specifically to an isolated polypeptide of claim 12.
14. A pharmaceutical composition comprising an isolated polypeptide of claim 12 in a pharmaceutically acceptable carrier.
15. The product produced by the method of claim 11.
16. An agonist of the polypeptide of claim 12.
17. An antagonist of the polypeptide of claim 12.
18. A method for preventing, treating, or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 12 or of the polynucleotide of claim 1.
19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject related to expression or activity of a secreted protein comprising:
(a) determining the presence or absence of a mutation in the polynucleotide of claim 1;
(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.
20. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject related to increased or decreased expression or activity of the polypeptide of claim 14 comprising:
(a) determining the presence or amount of expression or activity of the polypeptide of claim 14 in a biological sample;
(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression or activity of the polypeptide.
21. An isolated Ck.beta.-10 N-terminal deletion mutant polypeptide consisting of an amino acid sequence selected from the group consisting of: 29-98, 30-98, 31-98, 32-98, 33-98, 34-98 and 35-98 of SEQ ID NO:4.
22. An isolated Ck.beta.-10 N-terminal deletion mutant polypeptide consisting of an amino acid sequence selected from the group consisting of: 30-98, 29-98, 28-98, 27-98, 26-98, and 25-98 of SEQ ID NO:4.
CA002359853A 1999-01-08 2000-01-07 Human chemokine beta-10 mutant polypeptides Abandoned CA2359853A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11543999P 1999-01-08 1999-01-08
US60/115,439 1999-01-08
PCT/US2000/000296 WO2000040726A1 (en) 1999-01-08 2000-01-07 Human chemokine beta-10 mutant polypeptides

Publications (1)

Publication Number Publication Date
CA2359853A1 true CA2359853A1 (en) 2000-07-13

Family

ID=22361410

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002359853A Abandoned CA2359853A1 (en) 1999-01-08 2000-01-07 Human chemokine beta-10 mutant polypeptides

Country Status (4)

Country Link
EP (1) EP1141295A4 (en)
AU (1) AU2493000A (en)
CA (1) CA2359853A1 (en)
WO (1) WO2000040726A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989247B2 (en) 2000-11-28 2006-01-24 Celltech R & D, Inc. Compositions and methods for diagnosing or treating psoriasis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9308060D0 (en) * 1993-04-19 1993-06-02 Cancer Res Campaign Tech Stem cell inhibitor
US5981230A (en) * 1994-08-23 1999-11-09 Human Genome Sciences, Inc. Polynucleotide encoding chemokine β-4
DE69631253T2 (en) * 1995-10-24 2004-11-18 Human Genome Sciences, Inc. MOBILIZATION OF HEMATOPOIETIC STEM CELLS BY A CHEMOKIN
EP0885293B1 (en) * 1996-02-23 2006-06-07 Human Genome Sciences, Inc. Human chemokine polypeptides

Also Published As

Publication number Publication date
EP1141295A1 (en) 2001-10-10
EP1141295A4 (en) 2002-09-18
WO2000040726A1 (en) 2000-07-13
AU2493000A (en) 2000-07-24

Similar Documents

Publication Publication Date Title
US7368244B2 (en) Peptidoglycan recognition proteins
US9907832B2 (en) Method for increasing interferon activity in an individual
US20060121514A1 (en) Prostacyclin-stimulating Factor-2
CA2366174A1 (en) Human colon cancer associated gene sequences and polypeptides
CA2362423A1 (en) 47 human secreted proteins
AU784332B2 (en) Cytokine receptor common gamma chain like
CA2370131A1 (en) 62 human secreted proteins
CA2383041A1 (en) 49 human secreted proteins
CA2382185A1 (en) 48 human secreted proteins
CA2378331A1 (en) Calcium channel transport polynucleotides, polypeptides, and antibodies
CA2364209A1 (en) 49 human secreted proteins
CA2364630A1 (en) 50 human secreted proteins
CA2383828A1 (en) 26 human secreted proteins
CA2359853A1 (en) Human chemokine beta-10 mutant polypeptides
AU7354700A (en) Human neuropeptide receptor
US6534485B1 (en) Bone marrow-specific protein
US6936688B2 (en) Human chemokine beta-10 mutant polypeptides
EP1206541A1 (en) Dendritic enriched secreted lymphocyte activation molecule
CA2368719A1 (en) 50 human secreted proteins
CA2382769A1 (en) 42 human secreted proteins
CA2382743A1 (en) 48 human secreted proteins
US20030171319A1 (en) Human chemokine beta-10 mutant polypeptides
WO2001094557A1 (en) Human chemokine beta-10 mutant polypeptides
WO2000066778A1 (en) Pituitrone gene and polypeptides
CA2363716A1 (en) 49 human secreted proteins

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued