CA2332331A1 - Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases - Google Patents

Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases Download PDF

Info

Publication number
CA2332331A1
CA2332331A1 CA002332331A CA2332331A CA2332331A1 CA 2332331 A1 CA2332331 A1 CA 2332331A1 CA 002332331 A CA002332331 A CA 002332331A CA 2332331 A CA2332331 A CA 2332331A CA 2332331 A1 CA2332331 A1 CA 2332331A1
Authority
CA
Canada
Prior art keywords
egfr
family
radiation
antibodies
receptor tyrosine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002332331A
Other languages
French (fr)
Inventor
Francisco Robert
Mansoor N. Saleh
Donald Jay Buchsbaum
Harlan W. Waksal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UAB Research Foundation
ImClone LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2332331A1 publication Critical patent/CA2332331A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A method to inhibit the growth of tumors in human patients, comprising treating the human patients with an effective amount of a combination of radiation and a non-radiolabeled protein receptor tyrosine kinase inhibitor, the overexpression of which can lead to tumorigenesis.

Description

TREATMENT OF HUMAN TUMORS WITH RADIATION AND
INHIBITORS OF GROWTH FACTOR RECEPTOR TYROSINE KINASES
Normal cells proliferate by the highly controlled activation of growth factor receptors by their respective ligands. An example of such receptors are the growth factor receptor tyrosine kinases.
Cancer cells also proliferate by the activation of growth factor receptors, but lose the careful control of normal proliferation. The loss of control may be caused by numerous factors, such as the autocrine secretion of growth factors, increased expression of receptors, and autonomous activation of biochemical pathways regulated by growth factors.
Some examples of receptors involved in tumorigenesis are the receptors for epidermal growth factor (EGFR), platelet-derived growth factor (PDGFR), insulin-like growth factor (IGFR), nerve growth factor (NGFR), and fibroblast growth factor (FGF).
Members of the epidermal growth factor (EGF) receptor family are particularly important growth factor receptor tyrosine kinases associated with tumorigenesis of epidermal cells. The first member of the EGF receptor family to be discovered was the glycoprotein having an apparent molecular weight of approximately 165 kD. This glycoprotein, which was described by Mendelsohn et al.
in U.S. Patent No. 4,943,533, is known as the EGF receptor (EGFR) and also as human EGF receptor-1 (HERD.
The EGFR is overexpressed on many types of epidermoid tumor cells. EGF
and transforming growth factor alpha (TGF-alpha) are two known ligands of EGFR.
Examples of tumors that express EGF receptors include glioblastomas, as well as cancers of the lung, breast, head and neck, and bladder. The amplification and/or overexpression of the EGF receptors on the membranes of tumor cells is associated with a poor prognosis.
Some progress has been made in treating cancer. Useful treatments include those that rely on the programmed death of cells that have suffered DNA
damage.
The programmed death of cells is known as apoptosis.
Treatments of cancer traditionally include chemotherapy or radiation therapy.
Some examples of chemotherapeutic agents include doxorubicin, cis-platin, and taxol.
The radiation can be either from an external beam or from a source placed inside a patient, i.e., brachytherapy.
Another type of treatment includes inhibitors of growth factors or growth factor receptors involved in the proliferation of cells. Such inhibitors neutralize the activity of the growth factor or receptor, and inhibit the growth of tumors that express the receptor.
For example, U.S. Patent No. 4,943,533 describes a marine monoclonal antibody called 225 that binds to the EGF receptor. The patent is assigned to the University of California and licensed exclusively to ImClone Systems Incorporated.
The 225 antibody is able to inhibit the growth of cultured EGFR-expressing tumor lines as well as the growth of these tumors in vivo when grown as xenografts in nude mice. See Masui et al., Cancer Res. ~, 5592-5598 (1986).
Similarly, Prewett et al. reported the inhibition of tumor progression of well-established prostate tumor xenografts in mice with a chimeric form of the anti-EGFR
225 monoclonal antibody discussed above. The chimeric form is called c225.
Journal of lmmunotherapy ]~, 419-427 (1997).
A disadvantage of using marine monoclonal antibodies in human therapy is the possibility of a human anti-mouse antibody (HAMA) response due to the presence z of mouse Ig sequences. This disadvantage can be minimized by replacing the entire constant region of a marine (or other non-human mammalian) antibody with that~of a human constant region. Replacement of the constant regions of a marine antibody with human sequences is usually referred to as chimerization.
The chimerization process can be made even more effective by also replacing the framework variable regions of a marine antibody with the corresponding human sequences. The framework variable regions are the variable regions of an antibody other than the hypervariable regions. The hypervariable regions are also known as the complementarity-determining regions (CDRs).
The replacement of the constant regions and framework variable regions with human sequences is usually referred to as humanization. The humanized antibody is less immunogenic (i.e. elicits less of a HAMA response) as more marine sequences are replaced by human sequences. Unfortunately, both the cost and effort increase as more regions of a marine antibodies are replaced by human sequences.
Another approach to reducing the immunogenicity of antibodies is the use of antibody fragments. For example, an article by Aboud-Pirak et al., Journal of the National Cancer Institute $Q, 1605-1611 (1988), compares the anti-tumor effect of an anti-EGF receptor antibody called 108.4 with fragments of the antibody. The tumor model was based on KB cells as xenografts in nude mice. KB cells are derived from human oral epidermoid carcinomas, and express elevated levels of EGF
receptors.
Aboud-Pirak et al. found that both the antibody and the bivalent F(ab')2 fragment retarded tumor growth in vivo, although the F(ab')2 fragment was less efficient. The monovalent Fab fragment of the antibody, whose ability to bind the cell-associated receptor was conserved, did not, however, retard tumor growth.
Attempts have also been made to improve cancer treatments by combining some of the techniques mentioned above. For example, Baselga et al. reported anti-tumor effects of the chemotherapeutic agent doxorubicin with anti-EGFR
monoclonal antibodies in the Journal of the National Cancer Institute $5, 1327-1333 (1993).
Others have attempted to enhance the sensitivity of cancer cells to radiation by combining the radiation with adjuvants. For example, Bonnen, U.S. Patent 4,846,782, reported increased sensitivity of human cancers to radiation when the radiation was combined with interferon. Snelling et al. reported a minor improvement in the radiation treatment of patients with astrocytomas with anaplastic foci when the radiation was combined with an anti-EGFR monoclonal antibody radiolabeled with iodine-125 in a phase II clinical trial. See Hybridoma 14, 1 I 1-114 (1995).
Similarly, Balaban et al. reported the ability of anti-EGFR monoclonal antibodies to sensitize human squamous carcinoma xenografts in mice to radiation when the radiation treatment was preceded by administration of an anti-EGFR
antibody called LA22. See Biochimica et Biophysica Acta 1314, 147-156 (1996).
Saleh et al. also reported better tumor control in vitro and in mice when radiation therapy was augmented with anti-EGFR monoclonal antibodies. Saleh et al.
concluded that: "Further studies...may lead to a novel combined modality RT/Mab therapy." See abstract 4197 in the proceedings of the American Association for Cancer Research ~, 612 (1996).
While some of the studies described above suggest further experiments in humans, the results reported are for models in mice. Such models do not necessarilly provide a reasonable expectation for success in humans. As was stated in the New York Times of May 3, 1998, in regard to the spectacular success reported by Judah Folkman in treating tumors in mice with angiostatin and endostatin: "Until patients take them, he said, it is dangerous to make predictions. All he knows, Dr.
Folkman said, is that'if you have cancer and you are a mouse, we can take good care of you.' "
See page 1 of the New York Times of May 3, 1998.

Cancer continues to be a major health problem. The objective of the present invention is to provide an improved method for treating certain cancers in humans.
SUMMARY OF ~'~E INVENTION
This, and other objectives as will be apparent to those having ordinary skill in the art, have been achieved by providing a new method to inhibit the growth of tumors in human patients. The method comprises treating the human patients with an effective amount of a combination of radiation and a non-radiolabeled protein receptor tyrosine kinase inhibitor, the overexpression of which can lead to tumorigenesis.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides an improved method for treating tumors, 1 S particularly malignant tumors, in human patients who have cancer, or are at risk of developing cancer. The types of tumors that can be treated in accordance with the invention are tumors that overexpress one or more growth factor receptor tyrosine kinases. Some examples of growth factor receptor tyrosine kinases that can lead to tumorigenesis if overexpressed include the EGFR family of receptors, PDGFR
family of receptors, IGFR family of receptors, NGFR family of receptors, TGF family of receptors, and FGFR family of receptors.
The EGFR family of receptors includes EGFR, which is also referred to in the literature as HER1; HER2, which is also referred to in the literature as Neu, c-erbB-2, and p185erbB-2; erbB-3 and erbB-4. In this specification, EGFR refers to the EGFR
family of receptors. The specific member of the EGFR family of receptors that is also called EGFR will be referred to as EGFR/HER1.
The PDGFR family of receptors includes PDGFRa and PDGFR~i. The IGF
family of receptors includes IGFR-1. Members of the FGFR family include FGFR-1, FGFR-2, FGFR-3, and FGFR-4. The TGFR family of receptors includes TGFRa and TGFR~i.
Any type of tumor that overexpresses at least one growth factor receptor tyrosine kinase, the overexpression of which can lead to tumorigenesis, can be treated in accordance with the method of the invention. These types of tumor include carcinomas, gliomas, sarcomas, adenocarcinomas, adenosarcomas and adenomas.
Such tumors occur in virtually all parts of the human body, including every organ. The tumors may, for example, be present in the breast, lung, colon, kidney, bladder, head and neck, ovary, prostate, brain, pancreas, skin, bone, bone marrow, blood, thymus, uterus, testicles, cervix, and liver. For example, tumors that overexpress the EGF receptor include breast, lung, colon, kidney, bladder, head and neck, especially squamous cell carcinoma of the head and neck, ovary, prostate, and brain.
The tumors are treated with a combination of radiation therapy and a non-radiolabeled growth factor receptor tyrosine kinase inhibitor. For the purposes of this specification, the inhibition of a growth factor receptor tyrosine kinase means that the growth of cells overexpressing such receptors is inhibited.
No particular mechanism of inhibition is implied. Nevertheless, growth factor receptor tyrosine kinases are generally activated by means of phosphorylation events.
Accordingly, phosphorylation assays are useful in predicting the inhibitors useful in the present invention. Some useful assays for tyrosine kinase activity are described in Panek et al., Journal of Pharmacology and Experimental Therapeutics ~, 1433-(1997) and in Batley et al., Life Sciences ~2_, 143-150 (1998). The description of these assays is incorporated herein by reference.
In the preferred embodiment, there is synergy when tumors in human patients are treated with a combination of an inhibitor of a growth factor receptor tyrosine kinase and radiation, as described herein. In other words, the inhibition of tumor growth from the combined treatment with an inhibitor and radiation is better than would be expected from treatment with either the inhibitor or radiation alone.
Synergy may be shown, for example, by greater inhibition of tumor growth with the combined treatment than would be expected from treatment with either inhibitor or radiation alone. Preferably, synergy is demonstrated by remission of the cancer with the combined treatment with inhibitor and radiation where remission is not expected from treatment with either inhibitor or radiation alone.
The source of radiation can be either external or internal to the patient being treated. When the source is external to the patient, the therapy is known as external beam radiation therapy (EBRT). When the source of radiation is internal to the patient, the treatment is called brachytherapy (BT).
The radiation is administered in accordance with well known standard techniques with standard equipment manufactured for this purpose, such as AECL
Theratron and Varian Clinac. The dose of radiation depends on numerous factors as is well known in the art. Such factors include the organ being treated, the healthy organs in the path of the radiation that might inadvertently be adversely affected, the tolerance of the patient for radiation therapy, and the area of the body in need of treatment. The dose will typically be between l and 100 Gy, and more particularly between 2 and 80 Gy. Some doses that have been reported include 35 Gy to the spinal cord, 15 Gy to the kidneys, 20 Gy to the liver, and 65-80 Gy to the prostate.
It should be emphasized, however, that the invention is not limited to any particular dose. The dose will be determined by the treating physician in accordance with the particular factors in a given situation, including the factors mentioned above.
The distance between the source of the external radiation and the point of entry into the patient may be any distance that represents an acceptable balance between killing target cells and minimizing side effects. Typically, the source of the external radiation is between 70 and 100 cm from the point of entry into the patient.

Brachytherapy is generally carried out by placing the source of radiation in the patient. Typically, the source of radiation is placed approximately 0-3 cm from the tissue being treated. Known techniques include interstitial, intercavitary, and surface brachytherapy. The radioactive seeds can be implanted permanently or temporarily.
Some typical radioactive atoms that have been used in permanent implants include iodine-125 and radon. Some typical radioactive atoms that have been used in temporary implants include radium, cesium-137, and iridium-192. Some additional radioactive atoms that have been used in brachytherapy include americium-241 and gold-198.
The dose of radiation for brachytherapy can be the same as that mentioned above for external beam radiation therapy. In addition to the factors mentioned above for determining the dose of external beam radiation therapy, the nature of the radioactive atom used is also taken into account in determining the dose of brachytherapy.
The growth factor receptor tyrosine kinase inhibitor is administered before, during, or after commencing the radiation therapy, as well as any combination thereof, i.e. before and during, before and after, during and after, or before, during, and after commencing the radiation therapy. The antibody is typically administered between 1 and 30 days, preferably between 3 and 20 days, more preferably between 5 and days before commencing radiation therapy and/or termination of external beam radiation therapy.
Any non-radiolabeled inhibitor of a growth factor receptor tyrosine kinase, the overexpression of which can be tumorigenic, is useful in the method of the invention.
The types of tumors that overexpress such receptors have been discussed above.
The inhibitors may be biological molecules or small molecules.

Biological inhibitors include proteins or nucleic acid molecules that inhibit the growth of cells that overexpress a growth factor receptor tyrosine kinase.
Most typically, biological molecules are antibodies, or functional equivalents of antibodies.
Functional equivalents of antibodies have binding characteristics comparable to those of antibodies, and inhibit the growth of cells that overexpress growth factor receptor tyrosine kinase receptors. Such functional equivalents include, for example, chimerized, humanized and single chain antibodies as well as fragments thereof.
Functional equivalents of antibodies include polypeptides with amino acid sequences substantially the same as the amino acid sequence of the variable or hypervariable regions of the antibodies of the invention. "Substantially the same"
amino acid sequence is defined herein as a sequence with at least 70%, preferably at least about 80%, and more preferably at least about 90% homology to another amino acid sequence, as determined by the FASTA search method in accordance with Pearson and Lipman, Proc. Natl. Acad. Sci. USA ~, 2444-2448 (1988). The DNA
molecules that encode functional equivalents of antibodies typically bind under stringent conditions to the DNA of the antibodies.
The functional equivalent of an antibody is preferably a chimerized or humanized antibody. A chimerized antibody comprises the variable region of a non-human antibody and the constant region of a human antibody. A humanized antibody comprises the hypervariable region (CDRs) of a non-human antibody. The variable region other than the hypervariable region, e.g. the framework variable region, and the constant region of a humanized antibody are those of a human antibody.
For the purposes of this application, suitable variable and hypervariable regions of non-human antibodies may be derived from antibodies produced by any non-human mammal in which monoclonal antibodies are made. Suitable examples of mammals other than humans include, for example, rabbits, rats, mice, horses, goats, or primates. Mice are preferred.

Functional equivalents further include fragments of antibodies that have binding characteristics that are the same as, or are comparable to, those of the whole antibody. Suitable fragments of the antibody include any fragment that comprises a sufficient portion of the hypervariable (i.e. complementarity determining) region to S bind specifically, and with sufficient affinity, to a growth factor receptor tyrosine kinase to inhibit growth of cells that overexpress such receptors.
Such fragments may, for example, contain one or both Fab fragments or the F(ab')z fragment. Preferably the antibody fragments contain all six complementarity determining regions of the whole antibody, although functional fragments containing fewer than all of such regions, such as three, four or five CDRs, are also included.
The preferred fragments are single chain antibodies, or Fv fragments. Single chain antibodies are polypeptides that comprise at least the variable region of the 1 S heavy chain of the antibody linked to the variable region of the light chain, with or without an interconnecting linker. Thus, Fv fragment comprises the entire antibody combining site. These chains may be produced in bacteria or in eucaryotic cells.
The antibodies and functional equivalents may be members of any class of immunoglobulins, such as: IgG, IgM, IgA, IgD, or IgE, and the subclasses thereof.
The preferred antibodies are members of the IgGI subclass. The functional equivalents may also be equivalents of combinations of any of the above classes and subclasses.
Antibodies may be made from the desired receptor by methods that are well known in the art. The receptors are either commercially available, or can be isolated by well known methods. For example, methods for isolating and purifying EGFR
are found in Spada, U.S. Patent 5,646,153 starting at column 41, line 55. Methods for isolating and purifying FGFR are found in Williams et al., U.S. Patent 5,707,632 in examples 3 and 4. The methods for isolating and purifying EGFR and FGFR

described in the Spada and Williams et al. patents are incorporated herein by reference.
Methods for making monoclonal antibodies include the immunological method described by Kohler and Milstein in Nature X56, 495-497 (1975) and by Campbell in "Monoclonal Antibody Technology, The Production and Characterization of Rodent and Human Hybridomas" in Burdon et al., Eds, Laboratoty Techniques in Biochemistry and Molecular Biology, Volume 13, Elsevier Science Publishers, Amsterdam (1985). The recombinant DNA method described by Huse et al. in Science 4~6, 1275-1281 (1989) is also suitable.
Briefly, in order to produce monoclonal antibodies, a host mammal is inoculated with a receptor or a fragment of a receptor, as described above, and then, optionally, boosted. In order to be useful, the receptor fragment must contain sufficient amino acid residues to define the epitope of the molecule being detected. If the fragment is too short to be immunogenic, it may be conjugated to a carrier molecule. Some suitable carrier molecules include keyhold limpet hemocyanin and bovine serum albumen. Conjugation may be carned out by methods known in the art. One such method is to combine a cysteine residue of the fragment with a cysteine residue on the Garner molecule.
Spleens are collected from the inoculated mammals a few days after the final boost. Cell suspensions from the spleens are fused with a tumor cell. The resulting hybridoma cells that express the antibodies are isolated, grown, and maintained in culture.
Suitable monoclonal antibodies as well as growth factor receptor tyrosine kinases for making them are also available from commercial sources, for example, from Upstate Biotechnology, Santa Cruz Biotechnology of Santa Cruz, California, Transduction Laboratories of Lexington, Kentucky, R&D Systems Inc of Minneapolis, Minnesota, and Dako Corporation of Carpinteria, California.

Methods for making chimeric and humanized antibodies are also known in the art. For example, methods for making chimeric antibodies include those described in U.S. patents by Boss (Celltech) and by Cabilly (Genentech). See U.S. Patent Nos.
4,816,397 and 4,816,567, respectively. Methods for making humanized antibodies are described, for example, in Winter, U.S. Patent No. 5,225,539.
The preferred method for the humanization of antibodies is called CDR-grafting. In CDR-grafting, the regions of the mouse antibody that are directly involved in binding to antigen, the complementarity determining region or CDRs, are grafted into human variable regions to create "reshaped human" variable regions.
These fully humanized variable regions are then joined to human constant regions to create complete "fully humanized" antibodies.
In order to create fully humanized antibodies that bind well to antigen, it is advantageous to design the reshaped human variable regions carefully. The human variable regions into which the CDRs will be grafted should be carefully selected, and it is usually necessary to make a few amino acid changes at critical positions within the framework regions {FRs) of the human variable regions.
For example, the reshaped human variable regions may include up to ten amino acid changes in the FRs of the selected human light chain variable region, and as many as twelve amino acid changes in the FRs of the selected human heavy chain variable region. The DNA sequences coding for these reshaped human heavy and light chain variable region genes are joined to DNA sequences coding for the human heavy and light chain constant region genes, preferably y 1 and x, respectively. The reshaped humanized antibody is then expressed in mammalian cells and its affinity for its target compared with that of the corresponding marine antibody and chimeric antibody.
Methods for selecting the residues of the humanized antibody to be substituted and for making the substitutions are well known in the art. See, for example, Co et al., Nature S 1, 501-502 (1992); Queen et al., Proc. Natl. Acad. Sci. ~, 10029-( 1989) and Rodrigues et al., Int. J. Cancer, Sunnlement 7, 45-50 ( I 992). A
method for humanizing and reshaping the 225 anti-EGFR monoclonal antibody described by Goldstein et al. in PCT application WO 96/40210. This method can be adapted to humanizing and reshaping antibodies against other growth factor receptor tyrosine kinases.
Methods for making single chain antibodies are also known in the art. Some suitable examples include those described by Wels et al. in European patent application 502 812 and Int. J. Cancer ~0_, 137-144 (1995).
Other methods for producing the functional equivalents described above are disclosed in PCT Application WO 93/21319, European Patent Application 239 400, PCT Application WO 89/09622, European Patent Application 338 745, U.S. Patent 1 S 5,658,570, U.S. Patent 5,693,780, and European Patent Application EP 332 424.
Preferred antibodies are those that inhibit the EGF receptor. Preferred EGFR
antibodies are the chimerized, humanized, and single chain antibodies derived from a marine antibody called 225, which is described in U.S. Patent No. 4,943,533.
The patent is assigned to the University of California and licensed exclusively to ImClone Systems Incorporated.
The 225 antibody is able to inhibit the growth of cultured EGFR/HERI-expressing tumor cells in vitro as well as in vivo when grown as xenografts in nude mice. See Masui et al., Cancer Res. ~, 5592-5598 (1986). More recently, a treatment regimen combining 225 plus doxorubicin or cis-platin exhibited therapeutic synergy against several well established human xenograft models in mice.
Basalga et al., J. Natl. Cancer Inst. $5, 1327-1333 (15. 3).
The chimerized, humanized, and single chain antibodies derived from marine antibody 225 can be made from the 225 antibody, which is available from the ATCC.

Alternatively, the various fragments needed to prepare the chimerized, humanized, and single chain 225 antibodies can be synthesized from the sequence provided in Wels et al. in Int. J. Cancer øQ, 137-144 (1995). Chimerized 225 antibody (c225) can be made in accordance with the methods described above. Humanized 225 antibody can be prepared in accordance with the method described in example IV of PCT
application WO 96/40210, which is incorporated herein by reference. Single chain 225 antibodies (Fv225) can be made in accordance with methods described by Wels et al. in Int. J. Cancer 60, 137-144 (1995) and in European patent application 502 812.
The sequences of the hypervariable (CDR) regions of the light and heavy chain are reproduced below. The amino acid sequence is indicated below the nucleotide sequence.
HEAVY CHAIN HYPERVARIABLE REGIONS lVH):
AACTATGGTGTACAC (SEQ ID 1 ) N Y G V H (SEQ ID 2) GTGATATGGAGTGGTGGAAACACAGACTATAATACACCTTTCACATCC
(SEQ ID 3) V I W S G G N T D Y N T P F T S (SEQ
ID 4) GCCCTCACCTACTATGATTACGAGTTTGCTTAC (SEQ ID S) A L T Y Y D Y E F A Y (SEQ ID 6) LIGHT CHAIN HYPERVARIABLE REGIONS ~VL):

AGGGCCAGTCAGAGTATTGGCACAAACATACAC (SEQ ID 7) R A S Q S I G T N I H (SEQ ID 8) GCTTCTGAGTCTATCTCT (SEQ ID 9) A S E S I S (SEQ ID 10) CAACAAAATAATAACTGGCCAACCACG (SEQ ID 11 ) Q Q N N N W P T T (SEQ ID 12) In addition to the biological molecules discussed above, the inhibitors useful in the present invention may also be small molecules. For the purposes of this specification, small molecules include any organic or inorganic molecule, other than a biological molecule, that inhibits the growth of cells that overexpress at least one growth factor receptor tyrosine kinase. The small molecules typically have molecular weights less than 500, more typically less than 450. Most of the small molecules are organic molecules that usually comprise carbon, hydrogen and, optionally, oxygen, nitrogen, and/or sulfur atoms.
Numerous small molecules have been described as being useful to inhibit EGFR. For example, Spada et al., U.S. Patent 5,656,655, discloses styryl substituted heteroaryl compounds that inhibit EGFR. The heteroaryl group is a monocyclic ring WO 99/b0023 PCT/US99/10741 with one or two heteroatoms, or a bicyclic ring with 1 to about 4 heteroatoms, the compound being optionally substituted or polysubstituted. The compounds disclosed in U.S. Patent 5,656,655 are incorporated herein by reference.
$ Spada et al., U.S. Patent 5,646,153 discloses bis mono and/or bicyclic aryl heteroaryl carbocyclic and heterocarbocyclic compounds that inhibit EGFR
and/or PDGFR. The compounds disclosed in U.S. Patent 5,646,153 are incorporated herein by reference.
Bridges et al., U.S. Patent 5,679,683 discloses tricyclic pyrimidine compounds that inhibit the EGFR. The compounds are fused heterocyclic pyrimidine derivatives described at column 3, line 35 to column 5, line 6. The description of these compounds at column 3, line 35 to column S, line 6 is incorporated herein by reference.
Barker, U.S. Patent 5,616,582 discloses quinazoline derivatives that have receptor tyrosine kinase inhibitory activity. The compounds disclosed in U.S.
Patent 5,616,582 are incorporated herein by reference.
Fry et al., Science ~ø5_, 1093-1095 (1994) discloses a compound having a structure that inhibits EGFR. The structure is shown in Figure 1. The compound shown in Figure 1 of the Fry et al. article is incorporated herein by reference.
Osherov et al., disclose tyrphostins that inhibit EGFR/HER1 and HER2. The compounds disclosed in the Osherov et al. article, and, in particular, those in Tables I, II, III, and IV are incorporated herein by reference.
Levitzki et al., U.S. Patent 5,196,446, discloses heteroarylethenediyl or heteroarylethenediylaryl compounds that inhibit EGFR. The compounds disclosed in U.S. Patent 5,196,446 from column 2, line 42 to column 3, line 40 are incorporated herein by reference.

Batley et al., Life Sciences 6?, 143-150 (1998), disclose a compound called PD 161570 that inhibits members of the FGF are family of receptors. PD 161570 ~is identified as t-butyl-3-(6-(2,6-dichlorophenyl)-2-(4-diethylamino-butylamino)-pyrido(2,3-d)pyrimidin-7-yl)urea having the structure shown in Figure 1 on page 146.
The compound described in Figure 1 on page 146 of the Batley et al. article in Life Sciences ~2_, 143-150 (1998) is incorporated herein by reference.
Panek, et al., Journal of Pharmacology and Experimental Therapeutics ~, 1433-1444 (1997) disclose a compound identified as PD166285 that inhibits the EGFR, PDGFR, and FGFR families of receptors. PD166285 is identified as 6-(2,6-dichlorophenyl)-2-(4-(2-diethylaminoethoxy)phenylamino)-8-methyl-8H-pyrido(2,3-d)pyrimidin-7-one having the structure shown in Figure 1 on page 1436. The compound described in Figure 1 on page 1436 of the Panek et al. article is incorporated herein by reference.
Parrizas, et al., Endocrinology ~8-, 1427-1433 disclose tyrphostins that inhibit the IGF-1 receptor. The compounds disclosed in the Parnzas et al. article, in particular those in Table 1 on page 1428, are incorporated herein by reference.
The administration of small molecule and biological drugs to human patients is accomplished by methods known in the art. For small molecules, such methods are described in Spada, U.S. Patent 5,646,153 at column 57, line 47 to column 59, line 67.
This description of administering small molecules is incorporated herein by reference.
The biological molecules, preferably antibodies and functional equivalents of antibodies, significantly inhibit the growth of tumor cells when administered to a human patient in an effective amount in combination with radiation, as described above. The optimal dose of the antibodies and functional equivalents of antibodies can be determined by physicians based on a number of parameters including, for example, age, sex, weight, severity of the condition being treated, the antibody being administered, and the route of administration. In general, a serum concentration of polypeptides and antibodies that permits saturation of the target receptor is desirable.
For example, a concentration in excess of approximately 0.1 nM is normally sufficient. For example, a dose of 100 mg/m2 of C225 provides a serum concentration of approximately 20 nM for approximately eight days.
S
As a rough guideline, doses of antibodies may be given weekly in amounts of 10-300 mg/mz. Equivalent doses of antibody fragments should be used at more frequent intervals in order to maintain a serum level in excess of the concentration that permits saturation of the receptors.
Some suitable routes of administration include intravenous, subcutaneous, and intramuscle administration. Intravenous administration is preferred.
The peptides and antibodies of the invention may be administered along with additional pharmaceutically acceptable ingredients. Such ingredients include, for example, adjuvants, such as BCG, immune system stimulators and chemotherapeutic agents, such as those mentioned above.
Example 1. Clinical Trial In a clinical trial, human patients were treated with anti-EGFR chimeric monoclonal antibody c225 at the indicated doses along with 2 Gy (per fraction) of external beam radiation per day, five days a week, for seven weeks, a total of 70Gy.
The results are shown in the table, wherein CR means complete response, PR
means partial response, and TBD means to be determined.

TABLE
Clinical Response Patient Dose Level Clinical Overall (mg/mz) (Physical Exam)Response*
*Radiographic follow-up ongoing SUPPLEMENTAL ENABLEMENT
The invention as claimed is enabled in accordance with the above specification and readily available references and starting materials. Nevertheless, Applicants have, on May 13, 1998, re-deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md., 20852 USA (ATCC) the hybridoma cell line that produces the marine monoclonal antibody called m225. This antibody was originally deposited in support of U.S. patent 4,943,533 of Mendelsohn et al. with accession number HB8508.

SUBSTITUTE SHEET {RULE 26) The re-deposit was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and the regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture for thirty {30) years from date of deposit.
The organism will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Applicants and ATCC which assures unrestricted availability upon issuance of the pertinent U.S. patent.
Availability of the deposited strains is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

Claims (39)

CLAIMS:
1. A method to inhibit the growth of tumors in human patients, comprising treating the human patients with an effective amount of a combination of radiation and a non-radiolabeled protein receptor tyrosine kinase inhibitor, the overexpression of which can lead to tumorigenesis.
2. A method according to claim 1 wherein the inhibitor is a monoclonal antibody or a fragment that comprises the hypervariable region thereof.
3. A method according to claim 2 wherein the monoclonal antibody is chimerized or humanized.
4. A method according to claim 1 wherein the inhibitor is a small molecule.
5. A method according to claim 1 wherein the protein receptor tyrosine kinase is EGFR, PDGFR, TGF, IGFR, NGFR, or FGFR.
6. A method according to claim 5 wherein the growth factor receptor tyrosine kinase is a member of the EGFR family.
7. A method according to claim 6 wherein the member of the EGFR
family is EGFR/HER-1.
8. A method according to claim 6 wherein the member of the EGFR
family is HER2.
9. A method according to claim 6 wherein the member of the EGFR
family is erbB3.
10. A method according to claim 6 wherein the member of the EGFR
family is erbB4.
11. A method according to claim 5 wherein the growth factor receptor tyrosine kinase is a member of the PDGFR family.
12. A method according to claim 11 wherein the member of the PDGFR
family is PDGFR.alpha..
13. A method according to claim 11 wherein the member of the PDGFR
family is PDGFR.beta..
14. A method according to claim 5 wherein the growth factor receptor tyrosine kinase is a member of the FGFR family.
15. A method according to claim 14 wherein the member of the FGFR
family is FGFR-1.
16. A method according to claim 14 wherein the member of the FGFR
family is FGFR-2.
17. A method according to claim 14 wherein the member of the FGFR
family is FGFR-3.
18. A method according to claim 14 wherein the member of the FGFR
family is FGFR-4.
19. A method according to claim 5 wherein the growth factor receptor tyrosine kinase is a member of the IGFR family.
20. A method according to claim 19 wherein the member of the IGFR
family is IGFR-1.
21. A method according to claim 5 wherein the growth factor receptor tyrosine kinase is a member of the TGF family.
22. A method according to claim 5 wherein the growth factor receptor tyrosine kinase is NGFR.
23. A method according to claim 2 wherein the monoclonal antibody is specific for EGFR/HER1.
24. A method according to claim 23 wherein the monoclonal antibody inhibits EGFR/HER1 phosphorylation.
25. A method according to claim 3 wherein the antibody is specific for EGFR/HER1.
26. A method according to claim 25 wherein the antibody inhibits EGFR/HER1 phosphorylation.
27. A method according to claim 4 wherein the small molecule is specific for EGFR.
28. A method according to claim 27 wherein the small molecule inhibits EGFR phosphorylation.
29. A method according to claim 2 wherein the tumors overexpress EGFR/HER1.
30. A method according to claim 29 wherein the tumors are tumors of the breast, lung, colon, kidney, bladder, head and neck, ovary, prostate, and brain.
31. A method according to claim 2 wherein the antibodies are administered before radiation.
32. A method according to claim 2 wherein the antibodies are administered during radiation.
33. A method according to claim 2 wherein the antibodies are administered after the radiation.
34. A method according to claim 2 wherein the antibodies are administered before and during radiation.
35. A method according to claim 2 wherein the antibodies are administered during and after radiation.
36. A method according to claim 2 wherein the antibodies are administered before and after radiation.
37. A method according to claim 2 wherein the antibodies are administered before, during, and after radiation.
38. A method according to claim 2 wherein the source of the radiation is external to the human patient.
39. A method according to claim 2 wherein the source of radiation is internal to the human patient.
CA002332331A 1998-05-15 1999-05-14 Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases Abandoned CA2332331A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US8561398P 1998-05-15 1998-05-15
US7961298A 1998-05-15 1998-05-15
US60/085,613 1998-05-15
US09/079,612 1998-05-15
US20613898A 1998-12-07 1998-12-07
US09/206,138 1998-12-07
PCT/US1999/010741 WO1999060023A1 (en) 1998-05-15 1999-05-14 Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases

Publications (1)

Publication Number Publication Date
CA2332331A1 true CA2332331A1 (en) 1999-11-25

Family

ID=27373511

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002332331A Abandoned CA2332331A1 (en) 1998-05-15 1999-05-14 Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases

Country Status (14)

Country Link
EP (1) EP1080113A4 (en)
JP (1) JP2002515511A (en)
KR (1) KR20010071271A (en)
CN (1) CN1314917A (en)
AU (1) AU4079999A (en)
BR (1) BR9910511A (en)
CA (1) CA2332331A1 (en)
CZ (1) CZ20004224A3 (en)
HK (1) HK1040720A1 (en)
IL (1) IL139707A0 (en)
MX (1) MXPA00011248A (en)
PL (1) PL348634A1 (en)
SK (1) SK17282000A3 (en)
WO (1) WO1999060023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085622B2 (en) 2010-09-03 2015-07-21 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800738B1 (en) 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
JP4124480B2 (en) 1991-06-14 2008-07-23 ジェネンテック・インコーポレーテッド Immunoglobulin variants
US6417168B1 (en) 1998-03-04 2002-07-09 The Trustees Of The University Of Pennsylvania Compositions and methods of treating tumors
EP1745799B1 (en) 1998-03-04 2015-09-02 The Trustees of The University of Pennsylvania Compositions and methods of treating tumors
US6706721B1 (en) 1998-04-29 2004-03-16 Osi Pharmaceuticals, Inc. N-(3-ethynylphenylamino)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine mesylate anhydrate and monohydrate
AU780454B2 (en) 1999-06-03 2005-03-24 Jessie L.S. Au Methods and compositions for modulating cell proliferation and cell death
GB9925958D0 (en) * 1999-11-02 1999-12-29 Bundred Nigel J Therapeutic use
UA74803C2 (en) 1999-11-11 2006-02-15 Осі Фармасьютікалз, Інк. A stable polymorph of n-(3-ethynylphenyl)-6,7-bis(2-methoxyetoxy)-4-quinazolinamine hydrochloride, a method for producing thereof (variants) and pharmaceutical use
US7087613B2 (en) 1999-11-11 2006-08-08 Osi Pharmaceuticals, Inc. Treating abnormal cell growth with a stable polymorph of N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine hydrochloride
JP2004527456A (en) * 2000-08-09 2004-09-09 イムクローン システムズ インコーポレイティド Treatment of hyperproliferative diseases with EGF receptor antagonists
WO2002045653A2 (en) * 2000-12-08 2002-06-13 Uab Research Foundation Combination radiation therapy and chemotherapy in conjuction with administration of growth factor receptor antibody
CU22979A1 (en) * 2000-12-08 2004-09-09 Centro Inmunologia Molecular IMMUNOTHERAPEUTIC COMBINATION FOR THE TREATMENT OF TUMORS OVER-EXPRESSING RECEPTORS WITH KINASE ACTIVITY IN TYPOSINE WASTE
US7081454B2 (en) 2001-03-28 2006-07-25 Bristol-Myers Squibb Co. Tyrosine kinase inhibitors
ES2362931T3 (en) 2002-03-04 2011-07-15 Imclone Llc SPECIFIC HUMAN ANTIBODIES AGAINST KDR AND USES OF THE SAME.
WO2003082267A1 (en) * 2002-04-02 2003-10-09 Pharmacia Italia Spa Combined therapy against tumors comprising substituted acryloyl distamycin derivatives and radiotherapy
JP4563171B2 (en) 2002-05-24 2010-10-13 シェーリング コーポレイション Neutralizing human anti-IGFR antibody
WO2005016970A2 (en) 2003-05-01 2005-02-24 Imclone Systems Incorporated Fully human antibodies directed against the human insulin-like growth factor-1 receptor
US20070036795A1 (en) 2003-06-09 2007-02-15 Samuel Waksal Method of inhibiting receptor tyrosine kinases with an extracellular antagonist and an intracellular agonist
US7312215B2 (en) 2003-07-29 2007-12-25 Bristol-Myers Squibb Company Benzimidazole C-2 heterocycles as kinase inhibitors
UA85058C2 (en) 2003-08-13 2008-12-25 Пфайзер Продактс Инк. Modified human monoclonal antibody which specifically binds to human insulin-like growth factor i receptor (igf-ir)
CN1938428A (en) 2003-11-12 2007-03-28 先灵公司 Plasmid system for multigene expression
TW200526684A (en) 2003-11-21 2005-08-16 Schering Corp Anti-IGFR1 antibody therapeutic combinations
CA2560305C (en) * 2004-03-19 2016-07-05 Imclone Systems Incorporated Human anti-epidermal growth factor receptor antibody
CN1968706A (en) 2004-06-03 2007-05-23 霍夫曼-拉罗奇有限公司 Treatment with cisplatin and an EGFR-inhibitor
CA2589885A1 (en) 2004-12-03 2006-06-08 Schering Corporation Biomarkers for pre-selection of patients for anti-igf1r therapy
MY146381A (en) 2004-12-22 2012-08-15 Amgen Inc Compositions and methods relating relating to anti-igf-1 receptor antibodies
BRPI0611984A2 (en) 2005-06-17 2009-07-07 Imclone Systems Inc use of igf-ir antibodies to manufacture a drug to treat a bone tumor
EP1926996B1 (en) 2005-09-20 2011-11-09 OSI Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
AU2006301492B2 (en) * 2005-10-11 2011-06-09 Amgen Research (Munich) Gmbh Compositions comprising cross-species-specific antibodies and uses thereof
TW200812615A (en) 2006-03-22 2008-03-16 Hoffmann La Roche Tumor therapy with an antibody for vascular endothelial growth factor and an antibody for human epithelial growth factor receptor type 2
EP2056874B1 (en) 2006-08-21 2012-09-19 F. Hoffmann-La Roche AG Tumor therapy with an anti-vegf antibody
PT2129396E (en) 2007-02-16 2013-11-18 Merrimack Pharmaceuticals Inc Antibodies against erbb3 and uses thereof
EP2155788B1 (en) * 2007-04-03 2012-06-27 Micromet AG Cross-species-specific bispecific binders
AU2008295140A1 (en) 2007-09-05 2009-03-12 F. Hoffmann-La Roche Ag Combination therapy with type I and type II anti-CD20 antibodies
US20090098118A1 (en) 2007-10-15 2009-04-16 Thomas Friess Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent
AR071891A1 (en) 2008-05-30 2010-07-21 Imclone Llc ANTI-FLT3 HUMAN ANTIBODIES (THIROSINE KINASE 3 RECEPTOR HUMAN FMS TYPE)
BRPI0917871A2 (en) 2008-08-15 2017-06-20 Merrimack Pharmaceuticals Inc anti-erbb3 therapeutic agent for use in tumor therapy, methods for predicting tumor responsiveness of an anti-erbb3 therapeutic agent, for selecting anti-erbb3 therapy for a patient, for predicting cell response to treatment with a therapeutic agent , to identify a biomarker, and to prevent administration of an anti-erbb3 cancer drug, and kit to predict cell response to treatment with a therapeutic agent
WO2010099139A2 (en) 2009-02-25 2010-09-02 Osi Pharmaceuticals, Inc. Combination anti-cancer therapy
US20110171124A1 (en) 2009-02-26 2011-07-14 Osi Pharmaceuticals, Inc. In situ methods for monitoring the EMT status of tumor cells in vivo
EP2408479A1 (en) 2009-03-18 2012-01-25 OSI Pharmaceuticals, LLC Combination cancer therapy comprising administration of an egfr inhibitor and an igf-1r inhibitor
KR20130080871A (en) 2009-03-20 2013-07-15 제넨테크, 인크. Bispecific anti-her antibodies
EP2236139A1 (en) 2009-03-31 2010-10-06 F. Hoffmann-La Roche AG Combination therapy of erlotinib with an anti-IGF-1R antibody, which does not inhibit binding of insulin to the insulin receptor
US20100247484A1 (en) 2009-03-31 2010-09-30 Heinrich Barchet Combination therapy of an afucosylated antibody and one or more of the cytokines gm csf, m csf and/or il3
JP2013501741A (en) 2009-08-14 2013-01-17 ロシュ グリクアート アーゲー Combination therapy with afucosylated CD20 antibody and fludarabine and / or mitoxantrone
TWI409079B (en) 2009-08-14 2013-09-21 Roche Glycart Ag Combination therapy of an afucosylated cd20 antibody with bendamustine
AR078161A1 (en) 2009-09-11 2011-10-19 Hoffmann La Roche VERY CONCENTRATED PHARMACEUTICAL FORMULATIONS OF AN ANTIBODY ANTI CD20. USE OF THE FORMULATION. TREATMENT METHOD
CA2783656A1 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
AU2011223655A1 (en) 2010-03-03 2012-06-28 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
PL2544680T3 (en) 2010-03-11 2015-08-31 Merrimack Pharmaceuticals Inc Use of erbb3 inhibitors in the treatment of triple negative breast cancer
RU2585489C2 (en) 2010-04-27 2016-05-27 Рош Гликарт Аг COMBINED THERAPY WITH AFUCOSYLATED CD20 ANTIBODY AND mTOR INHIBITOR
TW201208703A (en) 2010-08-17 2012-03-01 Roche Glycart Ag Combination therapy of an afucosylated CD20 antibody with an anti-VEGF antibody
MX2013006739A (en) 2010-12-16 2013-07-17 Roche Glycart Ag Combination therapy of an afucosylated cd20 antibody with a mdm2 inhibitor.
CA2825894C (en) 2011-02-02 2021-11-30 Amgen Inc. Prognosis of cancer using a circulating biomarker
WO2012116040A1 (en) 2011-02-22 2012-08-30 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
WO2012129145A1 (en) 2011-03-18 2012-09-27 OSI Pharmaceuticals, LLC Nscle combination therapy
US8628773B2 (en) 2011-04-07 2014-01-14 Amgen Inc. Antigen binding proteins
JP2014519813A (en) 2011-04-25 2014-08-21 オーエスアイ・ファーマシューティカルズ,エルエルシー Use of EMT gene signatures in cancer drug discovery, diagnosis, and treatment
AU2012335541B2 (en) 2011-11-11 2017-07-06 Duke University Combination drug therapy for the treatment of solid tumors
US20130302274A1 (en) 2011-11-25 2013-11-14 Roche Glycart Ag Combination therapy
CA2865256C (en) * 2012-02-23 2020-02-11 U3 Pharma Gmbh Her3 inhibitor for modulating radiosensitivity
AR090263A1 (en) 2012-03-08 2014-10-29 Hoffmann La Roche COMBINED ANTIBODY THERAPY AGAINST HUMAN CSF-1R AND USES OF THE SAME
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
EP3919079A1 (en) 2012-09-07 2021-12-08 Genentech, Inc. Combination therapy of a type ii anti-cd20 antibody with a selective bcl-2 inhibitor
AR094403A1 (en) 2013-01-11 2015-07-29 Hoffmann La Roche ANTI-HER3 ANTIBODY COMBINATION THERAPY
EP3087394A2 (en) 2013-12-27 2016-11-02 Merrimack Pharmaceuticals, Inc. Biomarker profiles for predicting outcomes of cancer therapy with erbb3 inhibitors and/or chemotherapies
JP2017516458A (en) 2014-03-24 2017-06-22 ジェネンテック, インコーポレイテッド Cancer treatment with c-met antagonist and correlation with HGF expression of c-met antagonist
US10184006B2 (en) 2015-06-04 2019-01-22 Merrimack Pharmaceuticals, Inc. Biomarkers for predicting outcomes of cancer therapy with ErbB3 inhibitors
HUE044139T2 (en) 2015-07-07 2019-09-30 Hoffmann La Roche Combination therapy with an anti-her2 antibody-drug conjugate and a bcl-2 inhibitor
CN108601752A (en) 2015-12-03 2018-09-28 安吉奥斯医药品有限公司 MAT2A inhibitor for treating MTAP deletion form cancers
WO2017125429A1 (en) 2016-01-18 2017-07-27 Institut National De La Santé Et De La Recherche Médicale (Inserm) The use of a temporary inhibitor of p53 for preventing or reducing cancer relapse
CN109415441B (en) 2016-05-24 2023-04-07 英斯梅德股份有限公司 Antibodies and methods of making same
EP3658584A1 (en) 2017-07-26 2020-06-03 H. Hoffnabb-La Roche Ag Combination therapy with a bet inhibitor, a bcl-2 inhibitor and an anti-cd20 antibody
EP3658188A1 (en) 2017-07-26 2020-06-03 H. Hoffnabb-La Roche Ag Combination therapy with a bet inhibitor and a bcl-2 inhibitor
TW201920282A (en) * 2017-09-29 2019-06-01 中國大陸商上海藥明生物技術有限公司 Bispecific antibodies against EGFR and PD-1
CN111989092A (en) 2018-04-18 2020-11-24 豪夫迈·罗氏有限公司 Combination therapy of BET inhibitors and proteasome inhibitors
WO2020234445A1 (en) 2019-05-23 2020-11-26 F. Hoffmann-La Roche Ag Combination therapy with a bet inhibitor and a bcl-2 inhibitor
WO2021155006A1 (en) 2020-01-31 2021-08-05 Les Laboratoires Servier Sas Inhibitors of cyclin-dependent kinases and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4128089A (en) 1988-09-15 1990-03-22 Rorer International (Overseas) Inc. Monoclonal antibodies specific to human epidermal growth factor receptor and therapeutic methods employing same
CA2222231A1 (en) * 1995-06-07 1996-12-19 Imclone Systems Incorporated Antibody and antibody fragments for inhibiting the growth of tumors
US5760041A (en) 1996-02-05 1998-06-02 American Cyanamid Company 4-aminoquinazoline EGFR Inhibitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085622B2 (en) 2010-09-03 2015-07-21 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins

Also Published As

Publication number Publication date
SK17282000A3 (en) 2002-04-04
HK1040720A1 (en) 2002-06-21
IL139707A0 (en) 2002-02-10
JP2002515511A (en) 2002-05-28
EP1080113A4 (en) 2002-04-17
EP1080113A1 (en) 2001-03-07
CN1314917A (en) 2001-09-26
CZ20004224A3 (en) 2002-02-13
AU4079999A (en) 1999-12-06
WO1999060023A1 (en) 1999-11-25
MXPA00011248A (en) 2004-09-06
BR9910511A (en) 2001-11-20
KR20010071271A (en) 2001-07-28
PL348634A1 (en) 2002-06-03

Similar Documents

Publication Publication Date Title
US20090297509A1 (en) Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases
CA2332331A1 (en) Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases
AU782994C (en) Treatment of refractory human tumors with epidermal growth factor receptor antagonists
KR100269879B1 (en) A combination of anti-erbb-2 monoclonal antibodies and method of using.
EP3954712A1 (en) Anti-pd-l1/vegf bifunctional antibody and use thereof
KR101683884B1 (en) Anti-epcam antibody and uses thereof
US20110274688A1 (en) Prevention of tumors with monoclonal antibodies against neu
US20030202973A1 (en) Treatment of refractory human tumors with epidermal growth factor receptor and HER1 mitogenic ligand (EGFRML) antagonists
AU2009255305B2 (en) Monoclonal antibodies to basic fibroblast growth factor
Modjtahedi et al. Antitumor activity of combinations of antibodies directed against different epitopes on the extracellular domain of the human EGF receptor
EP2337800B1 (en) Antibody combinations and use of same for treating cancer
US20150110788A1 (en) Bispecific antibodies with an fgf2 binding domain
AU2004200705A1 (en) Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases
CN114685674B (en) Antibody fusion protein and application thereof
CA2351585A1 (en) Influencing of angigenesis using cd66a
KR20060040212A (en) Hybridoma cell line and monoclonal antibody to the epidermal growth factor receptor

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued