CA2231641A1 - Lignin-based concrete admixtures - Google Patents

Lignin-based concrete admixtures Download PDF

Info

Publication number
CA2231641A1
CA2231641A1 CA002231641A CA2231641A CA2231641A1 CA 2231641 A1 CA2231641 A1 CA 2231641A1 CA 002231641 A CA002231641 A CA 002231641A CA 2231641 A CA2231641 A CA 2231641A CA 2231641 A1 CA2231641 A1 CA 2231641A1
Authority
CA
Canada
Prior art keywords
lignin
admixture
concrete
air
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002231641A
Other languages
French (fr)
Inventor
Jairo H. Lora
Gopal C. Goyal
Theodore Bremner
Jiri Zhor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Alcell Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcell Technologies Inc filed Critical Alcell Technologies Inc
Publication of CA2231641A1 publication Critical patent/CA2231641A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/18Lignin sulfonic acid or derivatives thereof, e.g. sulfite lye
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Abstract

The invention provides for an admixture for reducing the water content of a concrete mix. The admixture comprises an alkaline solution of a lignin in a sulfomethylolated form. The admixture further comprises an air detrainer. Also provided are novel cement compositions comprising the admixture of the invention.

Description

CA 0223l64l l998-04-09 W O 97/13733 PCT~US95/I3836 LIGNIN-BASED CONCRETE ADMIXTURES

BACKGROUND OF THE INVENTION

Cement compositions are brought into a workable form by mixing the solid components with an amount of water which is greater than that required to hydrate the cement components therein. The mixed mineral binder composition is poured into a form and allowed to harden at atmospheric temperature. During the hardening, some of the excess water remains, leaving cavities in the formed structural unit and, thus, reduces the mechanical strength of the resultant unit. It is well known that the compressive strength of the resultant structure generally bears an inverse relationship to the water-cement ratio of the starting mix. The need to use smaller quantities of water is limited by the required flow and workability properties of the fresh mixture.

In structural cement compositions, it is highly desirable to maintain very low water content in order to achieve high strength in the final product. However, since the amount of water needed for adequate workability of the cement exceeds that required by the chemistry of curing, this excess water results in weaker concrete.

Concrete admixtures refer to compounds and compositions added to concrete mixtures to alter their properties. Water-reducing agents have been used as concrete admixtures. They are generally used to improve workability while decreasing water addition so that a stronger and more durable concrete is obtained. Water-reducing agents are classified by their ability to reduce water content as superplasticizers or high-range water reducers and plasticizers or normal-range water reducers.

CA 0223l64l l998-04-09 W O 97/13733 PCTrUS95/13836 Plasticizers and superplasticizers are made using chemicals with surface-active characteristics. One of the traditional resources for the manufacture of water-reducing admixtures for concrete are the waste products from the pulp and paper industry, namely lignin and its derivatives. Traditionally, sulfite pulping has been the major source of lignosulfonates which after extended purification are used as normal range water-reducing and retarding admixtures for concrete.

. The chemical structure and composition of water-reducing admixtures influence their surfactant properties which generally determine their effectiveness in cement-water mixtures.

Lignin-type water-reducing agents are well known for use in preparing concrete mixes. Such agents serve to reduce the amount of water that would ordinarily be required to make a pourable mix, without however disturbing most of the other beneficial properties of the mix. On various occasions, however, the use of such water-reducing agents may entrain air into the mix.
Entrained air (from any source) tends to reduce compressive strength. As a general rule, with every one volume percent air in the concrete, 5~ of strength is lost. Thus, 5~ air means about 25~ strength loss.
However, air entrainment maybe desirable in certain applications such as the manufacture of concrete blocks.

Lignosulfonates are also known to slow down the curing of concrete thus causing what is known in the art as set retardation. Set retardation is particularly increased when the lignosulfonate contains impurities such as wood sugars.

CA 0223l64l l998-04-09 W O 97/13733 PCT~US95n3836 hignosulfonates are classified as anionic surfactants since the hydrophilic groups associated with the organic polymers are sulfonates. It has been reported that when absorbed onto cement particles, these ~urfactants impart a strong negative charge which lowers the surface tension of the surrounding water and greatly enhances the fluidity of the system. Lignosul~onates also exhibit set retarding properties. Lignosulfonates, when used in an amount sufficient to furnish the desired water reduction in a mix, normally entrain more air than desired and retard the setting time of concrete far beyond the ranges for a high-range water-reducing admixture.

Lignosulfonate-based concrete admixtures are usually prepared from the waste liquor ~ormed by the production of sulfite pulp. By neutralization, precipitation and fermentation of this liquor a range of lignosulfonates of varying purity, composition and molecular weight distribution is produced. A number of researchers have reported several attempts to enhance the lignosulfonates so that they would meet the requirements of a superplasticizer as a high range water-reducing admixture. To date no purely lignosulfonate based superplasticizer for concrete has been placed on the market.

For example, in U.S. Pat. No. 4,239,550 is disclosed a flowing agent for concrete and mortar based on lignin sulfonate and on ring-sulfonated or sulfomethylolated aromatic substances. According to the invention, the flowing agent imparts to concrete or mortar high fluidity without leading to undesirably long setting times. In U.S. Pat. No. 4,460,720 is disclosed a superplasticizer cement admixture for portland cement based compositions formed from a low molecular weight alkali metal poly-acrylate in combination with an alkali metal or alkaline earth metal poly-naphthalene sulfonate-formaldehyde or an alkali metal lignosulfonate or an CA 0223l64l l998-04-09 W O 97/13733 PCTrUS95/13836 alkaline earth metal lignosulfonate or mixtures thereof.
In U.S. Pat. No. 4,623,682 is disclosed cement mixes having extended workability without substantial loss in rate of hardening when containing an admixture combination of a sulfonated naphtalene-formaldehyde condensate and fractionated sulfonated lignin such as ultra-filtered lignosulfonate. In U.S. Pat. No. 4,351,671 is disclosed an additive for lignin type water-reducing agent which reduces air entrainment in the concrete mix and in U.S.
Pat. No. 4,367,094 is disclosed an agent for preventing deterioration in the slump properties of mortar concrete, containing as a main ingredient a lignin sulfonate.

Environmental considerations present an important aspect in the development of pulping technologies. Due to increasing environmental demands during the last three decades, traditional sulfite pulping has almost completely been replaced by the kraft pulping process. Both sulfite and kraft pulping processes are noted for their contribution to air and water pollution, which requires costly pollution control equipment to bring kraft and sulfite pulping operations into environmental compliance. These pulping technologies can now be economically replaced by more environmentally friendly processes. One of these processes is the organosolv pulping process which has minimal impact on the environment and produces a pure lignin as one of the coproducts to the pulp. Unlike the traditional sulfite process, the new organosolv pulping process allows for the recovery of a pure, non-sulfonated form of lignin. This organosolv lignin can be suitable as a raw material for the preparation of a superplasticizer water-reducing admixtures for concrete.

CA 0223l64l l998-04-09 W O 97/13733 PCT~US95/13836 By the methods of the present invention is provided an environmentally friendly organosolv lignin-based superplasticizing and water-reducing admixture composition. The superplasticizer admixture compositions of the invention can impart a high degree of fluidity to cement compositions, can cause retention of the fluidity over extended time and can achieve these results at low dosages. By manipulation of the conditions for the manufacture of the admixture, it is possible to obtain products that do not have an adverse effect on set retardation. Unlike lignosulfonates, the lignin-based admixtures of this invention are high in purity and free of sugar contamination.

SUMMARY OF THE INVENTION

The invention provides for a novel lignin-based admixture produced from derivatized organosolv lignin.
This lignin-based admixture uses a coproduct from an environmentally friendly process while fulfilling a need in the construction industry. The novel lignin-based admixture is produced by derivatizing organosolv lignin by treating the lignin in a sulfomethylolation step. The derivatized lignin can be formulated with an air detrainer and the resulting admixture when added to concrete mixes effectively functions as a superplasticizer and as a high-range water reducer.

Novel features and aspects of the invention, aswell as other benefits will be readily ascertained from the more detailed description of the preferred embodiments which follow.

W O 97/13733 PCTrUS95113836 pESCRIPTION OF THE PREFERRED EMBODIMENTS

The lignin which can be employed in this invention is a high purity lignin, particularly an organosolv lignin. The lignin is separated as a by-product of the pulping and chemical delignification of plant biomass with organic solvents, for example ethanol.
Organosolv lignin is a nontoxic, free-flowing, powder. It is soluble in aqueous alkali and in selected organic solvents. It is generally characterized by its hydrophobicity, high purity, melt flow and a low level of carbohydrates and inorganic contaminants.

An example of the lignins which are suitable to accomplish the objectives of the invention are organosolv lignins such as regular ALCELL~ lignin or low molecular weight ALCELL~ lignin. The regular ALCELL~ lignin can be characterized by a number average molecular weight of about 700 to 1500 g/mol and the low molecular weight ALCELL~ lignin can be characterized by a low average molecular weight in the range of less than 600 g/mol.

Alternatively to organosolv lignins, it is believed that high purity lignins such as steam explosion or soda lignins can be suitable to accomplish the objectives of the invention.

The organosolv lignins of the invention can be derivatized using a sulfomethylolation procedure. Before carrying the sulfomethylolation procedures described below, the lignin is solubilized into an alkaline solution. The amount of alkali used can vary depending on the type of lignin and the reaction conditions. For example, with ALCELL~ lignin or low molecular weight ALCELL~ lignin, from about 8~ to about 20~ caustic based on lignin solids can be used. The amount of water used was adjusted to obtain a solids content in the final admixture of from about 30~ to about 45~.

W O 97/13733 PCTrUS95/13836 se~ore sulfomethylolation, the molecular weight of the lignin can be increased by cross-linking reactions.
This can be accomplished by heating the lignin in alkaline solution for from about 1 to about 4 hours at from about 60~C to about 95~C. An alternative cro~s-linking approach consists in taking lignin in alkaline solution and reacting it with an aldehyde. When ~or example formaldehyde is used, the reaction between the lignin and formaldehyde is a methylolation reaction. The lo aldehyde can be added in a range of from about 0.3 to about 0.8 moles of aldehyde per lignin C-9 unit or of from about 5~ to about 13~ on a lignin weight basis. The methylolation reaction can be carried out at from about 60~C to about 95~C for from about 1 to about 3 hours.

15The lignin in alkaline solution can be sulfomethylolated in a number of ways. The lignin can be reacted with a salt of hydroxymethane sulfonic acid such as for example its sodium salt. The latter is also known as "adduct" and is available commercially. It is the addition product resulting from the réaction of - formaldehyde with either sodium bisulfite or sodium sulfite. Preferably, the amount of adduct used for sulfomethylolation can be from about 8~ to about 30~
adduct solids based on a weight basis with the lignin and the sulfomethylolation reaction time is from about 2 to about 6 hours. Sulfomethylolation is generally performed at from about 70~C to about 100~C.

The lignin can also be sulfomethylolated in a two-step process by initially reacting the lignin solution~ 30 with excess of an aldehyde such as formaldehyde to methylolate the lignin thus introducing reactive aliphatic hydroxyl groups. This is done by following a similar procedure as described above to increase molecular weight -CA 0223l64l l998-04-09 W O 97/13733 . PCTrUS95/13836 but using higher levels of aldehyde such as for example of from about 10 to about 30~ formaldehyde on lignin weight.
This methylolation step is generally followed by reaction with from about 10 to about 25~ sodium sulfite on a weight basis with lignin, at from about 120~C to about 160~C for from about 1 to about 4 hours.

The lignin-based admixtures can be mixed with a concrete mix in a range of from about 0.2~ to about 1~ on a weight basis with the cement in the concrete. The admixture causes a water reduction of from about 5~ to bout 15~ resulting in higher concrete strength and improved resistance to freeze and thaw.

In certain applications, it may be desirable to control the entrained air in the resulting mix. An air detrainer such as tributyl phosphate, dibutyl phthalate, octyl alcohol, water-insoluble esters, carbonic and boric acids and silicones can be used. Tributyl phosphate (TBP) can be added to the derivatized lignin in a range of from about 0.3~ to about 5~ weight basis based on lignin solids resulting in a reduction in the air content of from about 9~ to about 32~ to as low as from about 2~ to about 3 while maintaining reasonably high slump values.

~xample I: Preparation of Sulfite Adduct The adduct can be prepared by addition of about 60 grams of 50~ formaldehyde to a solution of about 126 grams sodium sulfite in about 700 milliliters of water.

CA 0223l64l l998-04-09 W O 97/13733 . PCT~US95/I3836 _g_ ExamPle II: Manufacture of Admixtures A series of lignin-based admixtures were prepared by sulfomethylolation using as starting materials low molecular weight organosolv lignin, organosolv lignin and their methylolated counterparts. Initially, the lignins were dissolved in an aqueous solution of sodium hydroxide containing the alkali levels specified in Table 1. The amount of water used was adjusted to obtain a solids content in the final admixture of approximately 35~
by weight. Those samples that were methylolated were treated with 0.5 moles of formaldehyde per lignin C-9 unit for 2 hours at 70~C. The sulfomethylolation was carried at a temperature of about 95~C and for 6 hours with adduct prepared as in Example I and using the levels described in Table 1.

Table 1 Startinq Liqnin Adduct Sodium Hydroxide (Mole per Lignin C-9 Unit) Low Molecular Weight 0.15 0.59 Low Molecular Weight 0.23 0.67 Low Molecular Weight 0.31 0.74 Methylolated Regular 0.15 0.67 Methylolated Regular 0.23 0.71 Methylolated Regular 0.31 0.78 Regular 0.15 0.58 Regular 0.23 0.66 Regular 0.31 0.73 Methylolated Low 0.15 0.55 Molecular Weight Methylolated Low 0.23 0.63 Molecular Weight CA 0223l64l l998-04-09 W O 97/13733 PCTrUS95/13836 Example III: Testinq on Cement Slurries The sulfomethylolated organosolv lignin-based admixtures were tested in cement slurries. The mixes were prepared by mixing together the following ingredients:

Component Dosaqe Portland Cement (Type 10) 5000 grams Water 2250 grams Admixture Solids 0.3% by weight on Cement Table 2 Startinq Liqnin Moles of adduct Per lignin C9 unit 0.15 0.23 0;31 Set Retardation (min) Low Molecular 200 380 380 Weight Regular 40 60 20 Methylolated 240 320 ---Low Molecular Weight Methylolated 0 120 120 Regular Table 2 shows the initial set retardation on cement slurries. In general, the retardation decreases when the molecular weight and the level of adduct used decreases.

W O 97113733 -11- PCTAgS95~13836 Table 3 ~iqnin Moles of Adduct per Liqnin Cs Unit 0.15 0.23 0.31 Torque Decrease (Nm~

Low Molecular 3.58 4.18 4.28 Weight Regular 3.74 3.60 3.51 Methylolated -2-.95 4.06 ---Low Molecular Weight Methylolated 3.32 3.36 4.06 Regular Table 3 shows the fluidifying effect of the lignin admixtures on cement slurries as determined by decrease in torque resistance. In general, lower molecular weight and high levels of adduct resulted in a greater fluidifying effect.

CA 0223l64l l998-04-09 W O 97/13733 PCT~US95/13836 Exam~le IV: Testinq on Concrete Mixes Sulfomethylolated low molecular weight lignin is obtained with a ratio of 0.31 moles per C-9 unit using the procedure of Example II was evaluated as an admixture in concrete mixes. The effect of tributyl phosphate as an air entrainer agent was also evaluated. The proportions of the concrete mixes were as follows:

Com~onent Dosaqes (kq/m3) Portland Cement (Type 10) 307 Fine Aggregate 862 Coarse Aggregate 935 Water 187 Admixture 4.87 (0.5~ solids on a weight basis with cement) The proportion of cement in the mixes conformed to the requirements of ASTM specification C-494.

Table 4 shows the plasticizing effect of the low molecular weight sulfomethylolated organosolv lignin on concrete as shown by the high slump numbers relative to the case where no admixture is used. If an air detrainer is not used, a high air content can be observed which causes a decrease in concrete strength. Tributyl phosphate can be added to reduce the air content while maintaining a high slump and high strength. As can be seen, by adjusting the amount of detrainer agent added, a wide variety of air contents can be attained, including air contents for non-air entrained concrete (below 3.5~) and air contents for typical air entrained concrete of 4 to 8~.

W O 97/13733 PCT~US95/I3836 Table 4 Low Molecular Tributyl Air Slump Compressive weight phosphate content mm strength sulfomethylolated ~ MPa lignin (~ solids based on cement) 0 0 2.5 40 37.77 0.5- o 25.5 155 11.31 0.5 2 5.0 155 35.82 0.5 3 3.0 llo 37.3 0.5 4 4.0 120 37.1 ExamPle V:

In this example, sulfomethylolated low molecular weight organosolv lignin formulated with an air detrainer showed a higher plasticity over a commercial lignosulfonate such as for example PDA-25XL from Conchem.
The results are shown in Table 5.

Table 5 Admixture Air Content Slump (~) (mm) Control 2.5 40 Sulfomethylolated 2.5 120 low molecular weight ALCELL~ lignin +
~ 25 4~ TBP on lignin solids Commercial 2.5 85 lignosulfonate based admixture CA 0223l64l l998-04-09 W O 97/13733 PCTrUS95/13836 Example VI:

In this example, a low molecular weight lignin-based admixture prepared as in Example II with a 0.31 moles of adduct per lignin C-9 unit was subjected to superplasticizing admixture qualification tests. The admixture contained about 1.5~ TBP as an air detrainer.
Two basic mix proportions were used, one for the non-air-entrained concrete and one for the air-entrained concrete.
The following concrete mix proportions were used.

ComPonent Dosages (per m3) Non Air Entrained Air Entrained Portland Cement 307 Kg 307 Kg (Type 10) Fine Aggregate 734 Kg 694 Kg Coarse Aggregate 1150 Kg 1128 Kg Water 175 Kg 160 KG
Admixture 4 h 4 L
(at 35~ solids) Air Entraining None 362 mL
Admixture Reference mixes were prepared without the superplasticizer admixture. Reference air entrained mix was prepared using 147 mL of air entraining agent per m3.

W O 97/13733 PCTrUS95/13836 The mixing procedure was in accordance with CSA
StandardCAN3-A266.6-M85. Fresh concrete was tested for workability by measuring the slump in accordance with ASTM
specification C-143-9Oa. The time of setting was determined by measuring the penetration resistance on mortar extracted ~rom the concrete mixture in accordance with ASTM specification C403-92. The compressive strength of hardened concrete was measured in accordance with ASTM
specification C-192-9Oa, ASTM specification C-39-86 and ASTM specification C-617-87. Length change was measured in accordance with CAN/CSA-A23.2-3C and CAN/CSA-A23.2-14A.
Durability factor was calculated from relative dynamic modulus o~ elasticity changes in concrete prisms exposed to repeated cycles of ~reezing and thawing in accordance with ASTM speci~ication C666-92.

Table 6 is a summary of the superplasticizing admixture qualification tests for the non air-entrained mix compositions.

CA 0223l64l l998-04-09 W O 97/13733 PCTrUS95/13836 Table 6 Concrete property Non-Air Air CSA/CANS
Entrained Entrained A266.6-M85 Concrete Concrete Ty~e SPR
Water content, ~ of reference 87 87 max. 88 Slum~ retention, ~ 76 63 min. 50 Time of initial set retardation h:min 2:40 2:45 1:00 to 3:00 Compressive strength, of ref x 1.05 (CSA) 1 day 137 150 min. 130 3 days 131 155 min. 130 7 days 143 142 min. 125 28 days 124 137 min. 120 180 days 130 145 min. 100 Length Change (shrinkage) ~ of 119 106 max. 135 ref. or increase over reference 0.005 0.002 max. 0.010 Relative durability factor not required 109/99 ~ of ref. xl.l(CSA) min. 100 When length change of reference concrete is 0.030~ or greater ~ of reference limit applies; increase over reference limit applies when length change of reference is less than 0.030~.

As can be observed, the admixture met the requirements of the standard and resulted in concrete with higher strength than the reference. The admixtures can therefore be classified as a superplasticizer.

CA 0223l64l l998-04-09 W O 97/13733 PCT~US95/13836 ExamPle VII: Testinq on Concrete MasonrY Blocks Sulfomethylolated low molecular weight lignin with 35~ solids content by weight was tested in concrete blocks production, both as a water reducer and as replacement for an air entrainer agent. Each mix was prepared with 172 kg of cement and 1814 kg of fine aggregate. The amount of water per mix was adjusted to obtain the desired workability of concrete. The admixture and quantities were as follows:

Admixture Quantity (mL) Control Airex L 120 Mix 1 Sulfomethylolated 1500 Low Molecular Weight Lignin + 1.2~ TBP
Mix 2 Sulfomethylolated 750 Low Molecular Weight Lignin Mix 3 Sulfomethylolated 1500 Low Molecular Weight Lignin Mix 4 Sulfomethylolated 2000 Low Molecular Weight Lignin Mix 5 Sulfomethylolated 3000 Low Molecular Weight Lignin A total of 110 standard hollow masonry units (blocks) were prepared from each concrete mix. All blocks were prepared and cured using standard procedure.
Subsequently a randomly chosen sample from each batch was tested for compressive strength Table 7 summarized the PCTrUS95/13836 results of testing of standard hollow concrete masonry units. As can be seen, the use of the lignin-based admixtures of the invention resulted in higher strength.
In general, as the admixture level increases, the concrete strength increases.

Table 7 Concrete Mix Block Age Gross Stress (days) (~) Control 8 100 Control 15 100 Mix 1 8 115 Mix 2 15 98 Mix 3 15 107 Mix 4 15 108 Mix 5 15 118 The invention and many of its attendant advantages will be understood from the foregoing description, and it will be apparent that various modifications and changes can be made without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the compositions and processes hereinbefore described being merely preferred e~bodiments.

Claims (17)

We claim:
1. An admixture for reducing the water content of a concrete mix comprising an alkaline solution of a lignin in a range of from about 30% to about 45% on a solids weight basis with said lignin solution.
2. The admixture of claim 1 wherein said lignin is in sulfomethylolated form.
3. The admixture of claim 2 further comprising an air detrainer.
4. The admixture composition of claim 3 wherein said air detrainer is tributyl phosphate.
5. The admixture of claim 4 wherein said air detrainer is from about 0.3% to about 5% on a weight basis with said lignin.
6. A cement composition comprising a cement and an admixture for reducing the water content of said cement composition, said admixture in a range of from about 0.2%
to about 1% on a solids weight basis with said cement
7. The composition of claim 6 wherein said admixture comprises an alkaline solution of a lignin in a range of from about 30% to about 45% on a solids weight basis with said lignin solution.
8. The composition of claim 7 wherein said lignin is in sulfomethylolated form.
9 The composition of claim 8 wherein said admixture comprises an air detrainer.
10. The composition of claim 9 wherein said air detrainer is tributyl phosphate.
11. The composition of claim 10 wherein said air detrainer is from about 0.3% to about 5% on a weight basis with said lignin.
12. A method for reducing the water content of a cement mix comprising the step of adding an admixture to said concrete mix in a range of from about 0.2% to about 1% on a solids weight basis with said cement.
13. The method of claim 12 wherein said admixture comprises an organosolv lignin.
14. The method of claim 13 wherein said organosolv lignin is in sulfomethylolated form.
15. The method of claim 14 wherein said admixture further comprises an air detrainer.
16. The method of claim 15 wherein said air detrainer is tributyl phosphate.
17. The method of claim 16 wherein said air detrainer is from about 0.3% to about 5% on a weight basis with said lignin.
CA002231641A 1995-10-11 1995-10-11 Lignin-based concrete admixtures Abandoned CA2231641A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1995/013836 WO1997013733A1 (en) 1995-10-11 1995-10-11 Lignin-based concrete admixtures

Publications (1)

Publication Number Publication Date
CA2231641A1 true CA2231641A1 (en) 1997-04-17

Family

ID=22250050

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002231641A Abandoned CA2231641A1 (en) 1995-10-11 1995-10-11 Lignin-based concrete admixtures
CA002231630A Abandoned CA2231630A1 (en) 1995-10-11 1996-10-11 Sulfomethylolated lignin-based concrete admixtures

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA002231630A Abandoned CA2231630A1 (en) 1995-10-11 1996-10-11 Sulfomethylolated lignin-based concrete admixtures

Country Status (6)

Country Link
EP (1) EP0855995A4 (en)
JP (2) JPH11513358A (en)
CN (1) CN1219921A (en)
CA (2) CA2231641A1 (en)
NO (2) NO981626L (en)
WO (2) WO1997013733A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036344A2 (en) * 1999-11-04 2001-05-25 Lignotech Usa, Inc. Low retarding, high fluidity producing lignin dispersant for concrete
DE10313937A1 (en) 2003-03-27 2004-10-14 Wacker Polymer Systems Gmbh & Co. Kg dispersants
CN100400458C (en) * 2005-01-04 2008-07-09 华南理工大学 Lignins metro shield grouting additive and its preparation method
CN101575418B (en) * 2009-06-19 2011-06-22 华南理工大学 Lignin-based high-efficiency water reducing agent with high sulfonation degree and high molecular weight and method for preparing same
BR112012032999B1 (en) 2010-06-26 2022-11-29 Virdia, Llc LIGNOCELLULOSIS HYDROLYZATE AND ACID HYDROLYSIS AND DEACIDIFICATION METHODS TO GENERATE SUGAR MIXTURES FROM LIGNOCELLULOSE
IL206678A0 (en) 2010-06-28 2010-12-30 Hcl Cleantech Ltd A method for the production of fermentable sugars
WO2012000773A1 (en) 2010-06-29 2012-01-05 Construction Research & Technology Gmbh Semi-rigid covering layer
IL207329A0 (en) 2010-08-01 2010-12-30 Robert Jansen A method for refining a recycle extractant and for processing a lignocellulosic material and for the production of a carbohydrate composition
IL207945A0 (en) 2010-09-02 2010-12-30 Robert Jansen Method for the production of carbohydrates
PT106039A (en) 2010-12-09 2012-10-26 Hcl Cleantech Ltd PROCESSES AND SYSTEMS FOR PROCESSING LENHOCELLULOSIC MATERIALS AND RELATED COMPOSITIONS
US9512495B2 (en) 2011-04-07 2016-12-06 Virdia, Inc. Lignocellulose conversion processes and products
CN102627673A (en) * 2012-03-23 2012-08-08 辽宁岩砂晶建材有限公司 Method for sulfomethylation of lignin degradation
CN111333358A (en) * 2020-05-08 2020-06-26 中建西部建设西南有限公司 Concrete antifreezing agent and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689296A (en) * 1971-11-29 1972-09-05 Jean Guy Landry Cement composition containing alkanolaminolignosulfonate - formaldehyde setting retarder
US3960582A (en) * 1975-04-21 1976-06-01 Westvaco Corporation Low porosity cement and process for producing same
US3959004A (en) * 1975-04-21 1976-05-25 Westvaco Corporation Process for producing low porosity cement
US4032353A (en) * 1975-04-21 1977-06-28 Westvaco Corporation Low porosity aggregate-containing cement composition and process for producing same
FI790180A (en) * 1978-01-30 1979-07-31 Holmen Gmbh FLYMEDEL FOER BETONG OCH BRUK SAMT FOERFARANDE FOER DESS FRAMSTAELLNING
GB8527960D0 (en) * 1985-11-13 1985-12-18 Mini Agriculture & Fisheries Electro chemical treatment of lignins
US4764597A (en) * 1987-06-15 1988-08-16 Westvaco Corporation Method for methylolation of lignin materials
US5102992A (en) * 1988-04-19 1992-04-07 Center For Innovative Technology Method of producing prepolymers from hydroxyalkyl lignin derivatives
US5010156A (en) * 1988-05-23 1991-04-23 Eastman Kodak Company Organosolv lignin-modified phenolic resins and method for their preparation
US4926944A (en) * 1989-01-17 1990-05-22 Westvaco Corporation Lignin-based cement fluid loss control additive
US5203629A (en) * 1990-08-07 1993-04-20 W.R. Grace & Co.-Conn. Method for modifying concrete properties

Also Published As

Publication number Publication date
WO1997013732A2 (en) 1997-04-17
NO981626L (en) 1998-06-05
NO981625D0 (en) 1998-04-08
CN1219921A (en) 1999-06-16
JPH11513653A (en) 1999-11-24
EP0855995A4 (en) 2000-01-12
JPH11513358A (en) 1999-11-16
CA2231630A1 (en) 1997-04-17
EP0855995A2 (en) 1998-08-05
WO1997013733A1 (en) 1997-04-17
NO981625L (en) 1998-06-05
NO981626D0 (en) 1998-04-08
WO1997013732A3 (en) 1997-05-15

Similar Documents

Publication Publication Date Title
US4460720A (en) Multicomponent concrete superplasticizer
KR840001611B1 (en) Strength enhacing admixture for concrete composition
US4948429A (en) Method of controlling air entrainment in concrete compositions
EP0077129B1 (en) Additive for hydraulic cement mixes
KR100220203B1 (en) Additive composition for cement admixture
US4968734A (en) Cement admixture
JPS6018615B2 (en) Hydraulic cement composition
US6238475B1 (en) Ammoxidized lignosulfonate cement dispersant
CA1129896A (en) Plasticizer combination for building materials
CA2231641A1 (en) Lignin-based concrete admixtures
US4042407A (en) Hydraulic composition
US4655838A (en) Cement additive composition
WO1985001500A1 (en) Additive for hydraulic cement mixes
US4272430A (en) Additive for inorganic binders
US4662942A (en) Cement additives
CA1217482A (en) Alkylsulfonated polysaccharides and mortar and concrete mixes containing them
US4746367A (en) Superplasticizer composition for use with hydraulic cements
CA1325311C (en) Cement admixture
US6648964B2 (en) Admixtures for mineral binders based on hydrogenated disaccharide, admixture-containing mineral binders, and a process for the preparation thereof
JP3192464B2 (en) Cement admixture
Chang et al. Straw pulp waste liquor as a water-reducing admixture
CA1162951A (en) Cement superplasticizer
Mullick Use of lignin-based products in concrete
GB2279655A (en) Additives for cement compositions
JPH09142910A (en) Cement composition and method for controlling hardening time of cement

Legal Events

Date Code Title Description
FZDE Discontinued