CA2204102A1 - Method of manufacturing air conveyor panels - Google Patents

Method of manufacturing air conveyor panels

Info

Publication number
CA2204102A1
CA2204102A1 CA 2204102 CA2204102A CA2204102A1 CA 2204102 A1 CA2204102 A1 CA 2204102A1 CA 2204102 CA2204102 CA 2204102 CA 2204102 A CA2204102 A CA 2204102A CA 2204102 A1 CA2204102 A1 CA 2204102A1
Authority
CA
Canada
Prior art keywords
panel
cavities
laser
desired location
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2204102
Other languages
French (fr)
Inventor
Yan Ross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sidel Conveying Canada Inc
Original Assignee
VCS Control Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VCS Control Systems Inc filed Critical VCS Control Systems Inc
Priority to CA 2204102 priority Critical patent/CA2204102A1/en
Publication of CA2204102A1 publication Critical patent/CA2204102A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)

Abstract

Disclosed herein is an automated method of manufacturing an air conveyor panel. The panel comprises an array of holes used as air nozzles. The method generally comprises the steps of mapping with a computer the desired location shape and axial orientation of cavities to be machined in the panel sequentially directing a laser beam at each desired location of cavities also with the computer; sequentially laser ablation drilling cavities by photothermally vaporizing a portion of the panel at each desired location. A
major portion of the cavities consisting of holes piercing said panel for use as air nozzles. It is disclosed that the laser beam has an intensity sufficient to photothermally vaporize a portion of the panel at each desired location.
In a preferred embodiment the panel is constructed of steel and has a thickness of about 0.1 to 1.2 cm while the nozzles have a diameter of 3/4mm to 2mm.

Description

CA 02204102 1997-04-1~

METHOD OF MANUFACTURING AIR CONVEYOR PANELS

FIELD OF THE INVENTION

The present invention relates to a method of manufacturing air conveyor panels. More specifically the present invention relates to a method of ",acl,i";"g small diameter air nozzles in modular panels for later assembly into an air conveyor.

BACKGROUND OF THE INVENTION

Air conveyors are known in the art and use directed air flows to move articles from one location to another. The air flows can support and move the articles. Examples of air conveyors are provided in United States Patents zo 3,684,327, 4,500,229, 4,369,005 and 3,734,567.

These conveyors commonly include a longitudinal plenum containing pressurized air and having an upper panel provided with a pattern of air nozzles Articles riding the conveyor actually ride on the air cushion created by air escaping the nozzles under pressure. The upper panel is commonly provided with side walls so as to form a U-shaped channel wherein articles are conveyed.

A number of air conveyor variations are known in the art. For example, the size, placement and orie,ltdlion of nozzles can vary. To urge articles in a pledelel " ,i"ed direction, an array of nozzles have an oblique-axis oriel lldliO
with respect to the planar surface defined by the conveyor upper panel.
Vvhen only lift is required, nozzles are oriented at right angle with respect to the upper panel. Also, the size and shape of the nozzles may vary. The best control over the articles being conveyed is usually obtained when the nozzles are numerous, quite small in diameter and the pressure inside the plenum is high. This will result in good conveying pelrunl'allce obtained by precise, high velocity air jets impacting and directing the articles being conveyed .

In manufacturing air conveyor panels, it is known to use metallic, polymeric or composite materials. However, in many materials, it is not lec;hllic.3'!y possible to create very small nozzles by conventional drilling or punching techniques. This is a major drawback, because the use of larger diameter nozzles compels air conveyor designers to produce high volume, low pressure conveyors. As a further drawback, when machining oblique-axis nozzles, it is common to use a two step method including a first step of drilling or punching a right angle bore to a predelellllilled depth in the CA 02204102 1997-04-1~

conveyor upper panel followed by a second step of drilling or punching an oblique-axis hole starting at the depth of the right angle bore.

To overcome some of these d~ bd~,h~ of the prior art, it is known from United States Patent No. 5,456,556, to prepare an upper conveyor panel 5 provided with large nozzles adapted to receive nozzle inserts which are friction fitted into each large nozzle. The nozzle inserts are usually molded with small diameter nozzles of any given oriellLdlioll. Although such ar,dngè",e"L is meritorious, each nozzle insert is installed by hand. The injection molding of nozzle inserts also adds expense to the overall cost of manufacture. Thus, this technique has so far received limited favour in a mass-production setting.

It is also known to use lasers for drilling or machining v~o,h~,iece~ for example when making semi conductors (see for example United States Patent 5,580,446). However, the prior art does not teach the use of laser to z5 manufacture air conveyor panels.

Consequently, there remains a need for an improved, low cost, high production method of manufacturing air conveyor panels which overcome the drawbacks of the prior art.

OBJECTS OF THE INVENTION

An object of the present invention is to provide a precise and cost-effective method for obtaining air conveyor panels provided with nozzles located, oriented and sized in acGolddllcewith chosen pelru,ll,ance requirements.

Another object of the present invention is to provide a method for not only machining nozzles but also other machinery requirements such as providing markings, cavities, fastening apertures, etc.

Other objects and further scope of c.,,~' ' ' 'y of the present invention will become apparent from the detailed description given hereinafter. It should be ullde,~luod, however, that this detailed desu,i,ulioll, while indicating preferred embodiments of the invention, is given by way of illustration only, since various changes and Illodifi~,dlions within the spirit and scope of the invention will become apparent to those skilled in the art.

SUMMARY OF THE INVENTION

Generally speaking, the present invention provides an automated method of manufacturing an air conveyor panel, the panel ,,u" ,~ il ,y an array of holes used as air nozzles, the method ~,o",~ i"g the steps of:
(a) mapping the desired location, shape and axial uriellldliull of cavities in said panel with a computer;
(b) sequentially directing a laser beam at each desired location of cavities with said computer;
(c) sequentially laser ablation drilling said cavities by 0 phululht:lll,a"; vaporizing a portion of said panel at each desired location, a major portion of said cavities consisting of holes piercing said panel for use as the air nozzles, and wherein the laser beam has an intensity sufFicient to phulull ,el 1 "allJ vaporize a portion of said panel at each desired location.

15 In a preferred ~",L,od;",el,l, the panel is constructed of steel and has a thickness of about 0.1 to 1.2 cm while the nozzles have a diameter of 3/4mm to 2mm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a schematic perspective view of a laser apparatus for use in carrying out the method of the present invention;

FIGURE 2 is a schematic front elevational view of a computer screen displaying thereon a grid pattern of apertures to be laser drilled into an air conveyor panel in a-,co,dd"ce with the method of the present invention;

FIGURE 3 is a cross-sectional view of a portion of an air conveyor assembly manufactured in ac1olddnce with the method of the present invention.

FIGURE 4 is a schematic pe,:"~e1t;~/c view of a portion of an air conveyor panel assembly of panels manufactured in accol ddl ,ce with the present invention.

FIGURE 5 is a schematic front cross-sectional view of an air conveyor 1S panel assembly l,U""~ i"g conveying tray and side panels provided with nozzles manufactured in accoldallce with the present invention.

DETAILED DESCRIPTION

Figure 1 shows a perspective view of the equipment used in the set-up for the method of manufacture of the present invention. The equipment is generally de:,iyll ' ~' by reference numeral 10. A motion controller 12 connects a computer 14 to a laser 16. In the configuration shown in figure 1, motion controller 12 is mounted on support bracket 18. The air conveyor panel 20 to be machined in accordance with the present invention is secured in place on retaining fixture 22.

The laser 16 produces a laser beam which is focused on panel 20 for laser ablation drilling of small diameter holes in panel 20. When the laser beam strikes the surface of panel 20, the hitting energy is sufficient to cause a phututhe~ al reaction such as melting or \/d,UOl i~dliUn thereby piercing small diameter holes 24 in panel 20. It will be readily u, Idt~ uod by one skilled in the art, that the type of laser used, power density used, and pulse duration can be chosen to achieve a purpose of piercing panel 20 without causing warping or unnecessary localized melting of panel 20.

In a preferred embodiment, panel 20 is ",ai"tdi"ed in fixed position on retaining fixture 22 while laser 16 is displaced at will by motion controller 12 under the direction of computer 14. Optionally, laser 16 could be held in fixed position while the work piece is being moved. Also, optionally both CA 02204102 1997-04-1~

laser 16 and panel 20 could be moved. However, in general, it is faster to displace the laser than the workpiece. Additionally, an inert shielding gas such as argon, nitrogen or helium could be used to prevent the formation of undesired by-products of laser ablation and prevent laser lens col lldl l lil IdLiOIl~
Optionally, a vacuum system could also be provided to draw gaseous by-products away from panel 20 while laser drilling was done.

Laser 16 is preferably pivotally mounted on a fork shaped support 26 itself mounted below telescopic shaft 28 itself rotatively mounted to motion controller 12. In operation, computer 14 uses a software to map out a grid array of holes 24 to be laser drilled in a given panel 20. As one skilled in the art will readily ~",de,~ld"d, the location, size and axis o,i~,ltdlion of each hole 24 in relation to panel 20 is calculated for the intended pelru,l"ance requirements of the air conveyor 20.

The computer 14 has the ability, through suitable interfaces, to issue COlllllldnd:~ for laser beam pldce",enl, axial orie"tdlion, focus, intensity as well as pulse duration. Because laser 16 can be oriented in five (5) axes, generally d~siy"dl~d by arrows 30 to 38, holes 24 can be laser drilled at a chosen axis angle ranging from 90~ to about 15'. Thus, resulting holes 24 will constitute nozzles capable of ejecting pressurized air in a p,~sele~ d direction. It is to be understood that motion controller 12 and laser 16 will be under numerical control and responsive to ~;OIIIIIIdlld::~ issued by computer CA 02204102 1997-04-1~

g 14 in acco,dallce with a pre-p,Ly,d"""ed routine and through suitable interfaces.

Although panels 20 can be constructed of polymeric or composite materials, metallic panels can also be laser drilled. For example, panel 20 could be 5 formed of rolled stainless steel. The strength of the material constituting panel 20 will in itself provide the structural rigidity of the panel once installed in an air conveyor. When stainless steel is used for panel 20, it is conceivable that the panel may be of a thickness of 0.1cm to 1.2cm. Of course, laser 16 can be used for other machining opeldlions on panel 20 such as to drill fastening apertures, to score groves or provide other markings or welds on panel 20.

Turning now to figure 2 there is shown a schematic view of the display screen 40 of computer 14. There can be seen a graphic l~ se"ldlioll of panel 20 together with a calculated array of holes to be laser drilled into the z5 panel.

Preferably, holes 24 drilled into panel 20 by laser 16 are of a diameter of 3/4 mm to 2mm. Such small holes 24 will therefore permit to operate an air conveyor under high pressure and high air nozzle velocity. Once in operation, such an air conveyor will allow greater control over the articles 20 being conveyed and provide the capability of handling heavier items.

Turning now to figure 3, there is shown a side elevation view of portions of panel 20 resulting from the method of manufacture of the present invention.
Holes 24 are shown after laser drilling at right angle with respect to panel 20 while holes 42 are shown after angled laser drilling into panel 20. Once in operation, panel 20 will allow air jets to escape from holes 24 and 42 and impart the required motions on articles being conveyed.

Turning now to figure 4, there is shown a partially ass~,bled air conveyor ~,ullllJIibiny panels 2û,44 and 46 manufactured in accolddllce to the method of the present invention. Thus, it is shown that panels cul "~, ibil ~g air jets can also be provided on the side walls 44 and 46 of the air conveyor. Such an alldngt:lllelll is more readily seen from figure 5 wherein a plenum 48 surrounds panels 20, 44 and 46 which define a U shaped channel in which articles are being conveyed. Thus, greater control and less damage to articles being conveyed can be achieved by using side panels co",,u,i:,ing air nozzles.

Although the invention has been described above with respect with one specific form, it will be evident to a person skilled in the art that it may be modified and refined in various ways. It is therefore wished to have it understood that the present invention should not be limited in scope, except by the terms of the following claims.

Claims (8)

1. An automated method of manufacturing an air conveyor panel, the panel comprising an array of holes used as air nozzles, the method comprising the steps of:
(a) mapping the desired location, shape and axial orientation of cavities in said panel with a computer;
(b) sequentially directing a laser beam at each desired location of cavities with said computer;
(c) sequentially laser ablation drilling said cavities by photothermally vaporizing a portion of said panel at each desired location, a major portion of said cavities consisting of holes piercing said panel for use as the air nozzles, and wherein the laser beam has an intensity sufficient to photothermally vaporize a portion of said panel at each desired location.
2. The method of claim 1 wherein said step (c) of sequentially laser drilling said cavities by photothermal vaporization comprises providing an inert shielding gas to prevent the formation of undesired byproducts of the laser drilling and to prevent laser lens contamination.
3. The method of claim 1 wherein said step (c) of sequentially laser drilling said cavities by photothermal vaporization comprises providing a vaccum source to draw away any undesired byproducts of the laser drilling and to prevent laser lens contamination.
4. The method of claim 1 wherein said holes have an average diameter of about 3/4mm to 2mm.
5. The method of claim 1 wherein said panel is selected from the group of materials consisting of polymeric materials, composite materials or metallic materials or mixtures thereof.
6. The method of claim 5 wherein the material of said panel is metallic.
7. The method of claim 6 wherein the material of said panel is steel.
8. The method of claim 7 wherein said panel is of an average thickness of about 0.1 to 1.2 cm.
CA 2204102 1997-04-30 1997-04-30 Method of manufacturing air conveyor panels Abandoned CA2204102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2204102 CA2204102A1 (en) 1997-04-30 1997-04-30 Method of manufacturing air conveyor panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2204102 CA2204102A1 (en) 1997-04-30 1997-04-30 Method of manufacturing air conveyor panels

Publications (1)

Publication Number Publication Date
CA2204102A1 true CA2204102A1 (en) 1998-10-30

Family

ID=29274803

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2204102 Abandoned CA2204102A1 (en) 1997-04-30 1997-04-30 Method of manufacturing air conveyor panels

Country Status (1)

Country Link
CA (1) CA2204102A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358019A (en) * 2013-07-09 2013-10-23 嘉兴职业技术学院 Laser cutting head
CN104476212A (en) * 2014-10-27 2015-04-01 嘉兴职业技术学院 Cutting system of numerical control cutting machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358019A (en) * 2013-07-09 2013-10-23 嘉兴职业技术学院 Laser cutting head
CN104476212A (en) * 2014-10-27 2015-04-01 嘉兴职业技术学院 Cutting system of numerical control cutting machine

Similar Documents

Publication Publication Date Title
US6040553A (en) Method of manufacturing air conveyor panels by laser ablation drilling
CN107499043A (en) Glass carving machine
AU2009202798A1 (en) Apparatus for making variable diameter holes in metal plates
WO2006075209A3 (en) Laser machine tool having a x-y sliding structure with mass balancing means
EP0372789A3 (en) Apparatus for machining intricate feature cuts in thin walled tubular parts
CN213857522U (en) Tin ball laser jetting device
MXPA02009267A (en) Method for manufacturing a near net shape mold.
CN108583111A (en) A kind of glass finishing impression robot device and sheet glass processing and treating method
CN213857521U (en) Tin ball injector head
CN112388098A (en) Tin ball laser jetting device
US20020121508A1 (en) Laser cutting system
CA2204102A1 (en) Method of manufacturing air conveyor panels
US5703340A (en) Method and apparatus for forming a hole for using cooling air in hole forming process
US20030146198A1 (en) Arrangement for the working of three-dimensional, expandable upper surfaces of work pieces by means of a laser
US20040043704A1 (en) Method and apparatus for high speed cutting
CN207494793U (en) Suitable for the laser marking machine of mechanical spare and accessory parts
US20080217308A1 (en) Tangential Manufacturing System
CN202984915U (en) Laser seamless welding machine for precious metal products
EP1099522B1 (en) Drilling-milling machine for machining panels and the like
CN217701914U (en) Compact laser cutting material conveying device
CN206335352U (en) A kind of large-size horizontal multifunctional numerical control engraving machine
CN209190045U (en) A kind of smoke alarm dust cover laser cutting machine
CN111185673A (en) Carving and cutting integrated forming machine
CN114083159A (en) Multi-angle adjusting type laser cutting machine for machining environmental protection box
KR102239420B1 (en) Plasma cutting device

Legal Events

Date Code Title Description
FZDE Dead