CA1215543A - Process for making titanium metal from titanium ore - Google Patents

Process for making titanium metal from titanium ore

Info

Publication number
CA1215543A
CA1215543A CA000431232A CA431232A CA1215543A CA 1215543 A CA1215543 A CA 1215543A CA 000431232 A CA000431232 A CA 000431232A CA 431232 A CA431232 A CA 431232A CA 1215543 A CA1215543 A CA 1215543A
Authority
CA
Canada
Prior art keywords
titanium
ore
iron
fluoride
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000431232A
Other languages
French (fr)
Inventor
Robert A. Hard
Martin A. Prieto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Occidental Research Corp
Original Assignee
Occidental Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Occidental Research Corp filed Critical Occidental Research Corp
Priority to CA000431232A priority Critical patent/CA1215543A/en
Application granted granted Critical
Publication of CA1215543A publication Critical patent/CA1215543A/en
Expired legal-status Critical Current

Links

Abstract

ABSTRACT OF THE DISCLOSURE

The invention relates to a novel process for the preparation of titanium metal from an ore comprising titanium oxides which process comprises the steps of fluorinating the ore to convert the titanium oxides to titanium fluorides and then reducing the titanium fluorides to the metal. Such reduction may be carried out by contacting the titanium fluorides as a molten salt mixture with a molten alloy of zinc and aluminum at conditions whereby titanium is converted into a titanium-zinc alloy and the aluminum is converted into fluorides of aluminum. The titanium zinc alloy is separated from the fluorides of aluminum and the zinc is distilled from the alloy to leave behind titanium sponge. The ore may be an ilmenite ore and the fluorination may be carried out by contacting said ilmenite ore with a fluosilicate salt such as sodium fluosilicate.

Description

~Z~5S43 The instant invention relates to a process for the preparation of titanium metal from ore comprising titanium oxides which process comprises the steps of fluorinating the ore to convert the titanium oxides to ti~anium fluorides and then reducing the titanium fluorides to titanium metal. Such reduction-may be carried out by contacting the titanium fluorides as a molten salt mixture with a molten alloy of zinc and aluminum at conditions whereby titanium is converted into a titanium-~inc alloy and the aluminum is converted into a fluoride of aluminum. The ore may be an ilmenite ore and the fluorination may be carried out by contacting said ilmenite ore with a fluosilicate salt as sodium fluosilicate.
Titanium metal has been essential to the aerospace industry since the early fifties because it combines a high strength to weight ratio with the ability to perform at much higher temperatures than aluminum or magnesium.
It also has growing usage in the chemical processing industries because of its excellent resistance to chloride corrosion. Recently the world demand for titanium has outstripped the limited production facilities causing it to be put on allocation in the United States.
Most of the United States primary titanium is imported from Japan and Europe. A majority of titanium is made by the "Kroll Process" which involves magnesium reduction of titanium tetrachloride, which is in turn made from rutile ~TiO2). Titanium metal is also made by Na reduction and electrowinning.
The product of the "Kroll Process" is a metallic sponge which is later consolidated by a hlgh temperature arc melting process. The most important consideration for any process making titanium is to prevent contamination with either metallic or non-metallic impurities, because even small amounts of oxygen or nitrogen can make the product brittle and unworkable, although carefully controlled amounts of oxygen, nitrogen, and carbon may be added to ~. i ., . . :

--. . : . .

- . .

- ..

strengthen titanium alloys.
United States Patent 2,550,447 teaches a process for preparing titanium metal from titanium oxide ores such as rutile, anatase and ilmenite which comprises reduction of the ore by aluminum followed by iodination of the product obtained from such reduction. The iodinated product is then reacted with potassium iodide. Finally, titanium tetraiodide is removed from the potassium iodide and converted to titanium metal by either heat decomposition or reduction. This process is a very expensive method for making titanium metal.
United States Patent 2,781,261 discloses a process for converting titanium dioxide to titanium by fluorinating titanium oxideJ neutralizing the fluotitanic acid obtained, and reducing the neutralized fluotitanic acid with aluminum.
Unlted States Patent 2,837,426 teaches`a process for converting ilme-nite to an alkali metal fluotitanate by reacting ilmenite with sulfuric acid to form the titanium sulfate, removing a portion of the iron included with said titanium sulfate by reduction and precipitation of a reduced iron compound, and finally converting the titanic sulfate filtrate to an insoluble fluotita-nate by means of an ammonium and/or alkali metal fluoride solution.
United States Patent 3,857,264 teaches a process for preparing an alkali metal chlorotitanate by digesting ilmenite in a mixture of sulfuric and hydrochloric acid. Again, the iron present is precipitated out as ferrous sulfate and then further recovered by the addition of HCl to precipitate a ferrous chloride. Finally, potassium chloride is added to salt out potassium chlorotitanate which may be reduced with a Group I metal to titanium.
United States Patent 3,012,878 teaches a process for reducing titanium
- 2 -S~3 halides to titanium me~al by use of sodium metal.
United States Patent 3,825,415 teaches a process, similar to the process disclosed in United States Patent No.3,012,878, except that the process is carried out in the vapor phase.
United States Patent 4,127,409 and 4,073,056 are related to the recovery of zirconium and hafnium, respectively, by the reduction of the corresponding potassium chlorozirconates or hafniates by means of an alloy of aluminum and zinc.
According to the present invention, there is provided a process for the preparation of titanium metal from an ilmenite ore comprising titanium oxides and from about 14 to about 36%, by weight iron which comprises the steps of:
~ a) fluorinating said ore by contacting said ore with an alkali metal fluosilicate at a temperature of from about 600 to about 1000C to form a fluorinated ore and thereby convert the titanium oxide to titanium fluorides, and (b) reducing said tltanium fluorides to titanium metal.
Thus, titanium metal is prepared from ores containing oxides of titanium by fluorinating said ore to convert the oxides of titanium to fluorides of titanium and then reducing said fluorides of titanium to titanium metal.In a preferred embodiment of the-instant invention the ore is ilmenite which is a ferric titanate, i.e.~ ilmenite contains both iron and titanium in the oxide fo~m. The fluorination is preferably carried out by contacting the ore with a fluosilicate salt such as an alkali metal fluosilicate, for example, K2SiF6, Na2SiF6, etc. at a temperature from about 600C to 100~C preferably 750C to 950C. The iron and titanium are converted to fluorides which may be leached from the fluorinated ore by an aqueous solution.

`, .' :' ` : , ' :
: . : ~ , , : . '.:' : .......... .. ' : :
. .

~215543 The aqueous solution may contain a strong acid (a mineral acid) to enhance the recovery of soluble titanium. The leaching solution may be treated to oxidize the iron dissolved therein to the ferric state and precipitate out the hydrolysis product thereof as ferric hydroxide. The ferric hydroxide may be separated from the solution by filtration and filtrate utilized to recover soluble titanium. If an aqueous acid leaching solution is used, the iron may remain in the leaching solution after the fluorides of titanium are removed as shown below.
If the preferred fluosilicate is utilized as the fluorinating agent for the ore, the corresponding fluotitanate is the soluble titanium moiety.
For example when potassium fluosilicate is utilized as the fluorinating agent a potassium fluotitanate salt will be dissolved in the leaching solution.
The leaching solution will also contain various other soluble fluorides such as for example potassium fluoride. The solution may be evaporated and cooled to precipitate out the fluotitanate, for example, the potassium fluotitanate.
The fluotitanate precipitate may then be filtered and dried at a temperature of from about 110C to 150C and subsequently reduced to titanium metal. The most preferred method of reduction comprises contacting the fluotitanate as a molten salt with a molten zinc-aluminum alloy at a temperature of from 650 to 1000C in an inert atmosphere. The titanium present in the fluotitanate salt will be converted into a titanium-zinc alloy by contacting with the aluminum-zinc alloy under such conditions and the aluminum will be converted into corresponding aluminum halide, for example, aluminum fluoride. The aluminum halide will dissolve in the molten salt phase and may form a salt similar to cryolite i.e. a pseudocryolite such as mixtures of Na3AlF6, Na5~13F~and AlF3. The molten z m c-titanium alloy is separated from the molten salt mixture and passed through a distillation zone wherein ' ` " :
, ~

~21S543 the zinc is sublimed from the titanium under an inert atmosphere. The titanium may be recovered in the form of a sponge.
The fluotitanate may alternatively be converted to titanium oxide by contacting the recrystallized salt with an aqueous basic solution to hydrolyze the titanium to the titanium tetrahydroxide. The titanium tetrahydroxide may then be precipitated from the solution in the form of titanium oxide including two waters of crystallization. The hydrolysis of said fluotitanate salt may be effected in a solution having a pH of at least about 5.0, and preferably from at least about 5.5, at a temperature of at least about 20C.
llmenite which is an ore comprising titanium and iron oxides in admlxture is available from various locations such as southern Georgia, northern Florida, and California. The ore will typically comprise from 25 to 50% by weight, titanium and from 8 to 36% by weight, iron. A suitable ilmenite ore may be ground to a finely divided physical state to make it more susceptible to fluorination. For example, the ore may be ground to a particle size of from 30 to 400 mesh and preferably from 100 to 400 mesh. The ore may be fluorinated by fluorination agents known in the art such as F2, HF, SiF4, -NH4F, NH2HF2, etc. However, in a most preferred embodiment of the instant invention, the fluorinating agent will be a Eluosilicate salt. This material is especially suitable because the more active fluorinating agents tend to attack the various equipment suitable for carrying out the fluorinatihg process.
The fluosilicate salt is a solid at the suitable fluorinating temperatures and therefore such fluorination may occur as a solid state reaction between the ore and the fluosilicate. Typical fluosilicates include potassium and sodium salts. Sodium fluosilicates, for examplel may be blended with the ore at a weight ratio of from 0.5 to 5.0 and preferably from 1.0 to . ~ .. . . .

, :: , - ~ - ....

~ : : ,' ' , ' .
: ~, 2.5 to effect adequate fluorination. Other titanium-containing ores such as rutile and anatase, i.e., titanium oxides may also be utilized in this process, however, ilmenite is preferred and therefore utilized herein for description of the invention.
The fluorination will be carried out at conditions which are sufficient to convert both the titanium and the iron in the ore into the respective fluorlde derivatives; that~isj fluorides-of titanium and iron, respectively.
Por example, if sodium fluosilicate is utilized as a fluorinating agent, the mixture of the fluosilicate and the ore will be heated to a temperature of at least 600C preferably from 750 to 950C for a time sufficient to change the iron and titanium from oxides to the fluorides. At higher te~peratures the reactant mass may fuse and become difficult to remove from the reaction chamber; at lower ternperatures the reaction does not progress at a suitable rate.
It has been unexpectedly found that the presence of iron acts to enhance the fluorination reaction of the fluosilicates noted above, and as will be further elucidated below an increased recovery of soluble titanium is thus obtained. The ilmenite ores which are low in iron content may benefit from the addition of additional iron, for example, in the form of ferric oxide. Other titanium ores such as rutile and anatase, which are subsequently iron-free, have been found to be benefited greatly by the addition of iron. Furthermore, it is found that the ilmenite ores having at least from 14 to 36% iron are very easily flL~orinated by the above fluosilicates and may not require additional ferric oxide. For the purpose of this specification, the term "substantially iron free" shall mean less than about 14~, by weight, iron.
It has been found that the addition of carbon in conjunction with - .

~2~S54~

either the iron present in the ilmenite ore or iron, e.g. ferric oxide, which is added to the lower iron-containing ilmenites, or rutile or anatase has a synergistic effect on the subsequent recovery of titanium. For example from 1 to 10, and preferably from 1.2 to 4 weight % carbon may be admixed with the above iron-con-taining-titanium ore to enhance the recovery of titanium.
It has been found that when using the preferred alkali fluosilicates as fluorinating agents the fluorination reaction is benefited by being carried out under an atmosphere of a gaseous fluorinating agent such as silicon tetrafluoride. It is believed that the silicon tetrafluoride may be the active fluorinating agent obtained from the fluosilicate and thus acts to initiate and enhance the fluorination reaction of the ilmenite ore. Typically, the fluorination reaction may be carried out under a partial pressure of from .1 to 5 psig, preferably at least about 1 to about 70 psig, e.g. 30 psig of silicon tetrafluoride. The upper pressure limit will be dictated by the economics of carrying out high pressure reactions.
The fluorinated ore may be cooled and then ground prior to the recovery of the soluble titanium by leaching the ground mixture of the fluorinated ore and the residue of the fluorinating agent by contacting under agitation with the leaching solution. The iron which is present in the ore in the form of ferrous fluoride may be removed from the fluorinated ore by oxidation and hydrolysis of the oxidation product. For example, during leaching, the ground fluorinated ore may be heated in the presence o~ air to a temperature of from 50 to 95C in order to oxidize the ferrous fluoride to the ferric state. However, oxidation may take place during leaching as noted or can be carried out prior to leaching. Preferably, oxidation and leaching are carried out simultaneously so that the leaching solution assists by hydrolyzing the oxidized iron to an insolùble ferric hydroxide.

: . , .
, . ~
,~

~2:~LS5~

Leaching of the fluorinated ore may be carried out in an aqueous solution which may beneficially contain a strong acid such as hydrochloric or sulfuric acid. The pH of said leaching solution is preferably at least about 0.1, preferably from about 2.0 to about 5Ø When an aqueous acid leaching solution is utilized, the above described removal of iron may be eliminated and the iron can remain in soiution after the separation of the fluorides of titanium as described below.
The leaching may take place at a temperature of at least 25C, preferably from 60 to 95C. The leaching is carried out for a time sufficient to recover as much of the soluble fluorides of titanium as economically possible. ~Typically, leaching is carried out for about 1 to 3 hours with the ratio of leaching solution to the fluorinated ore varying from 15:1 to 5:1, e.g., 10:1 on a volume to weight basis.
It has baen found that the recovery of the fluorides of titanium is enhanced by leaching with an aqueous hydrogen fluoride solution. While there is no theoretical reason for this improvement, it has been found that the solutions of from 1 to 10%, by weight, HF, extract the soluble fluorides of titanium, at a faster rate than the other leaching solutions including hydro-chloric and sulfuric acid solutions. For example, the hydrogen fluoride solutions may extract up to 100% of the titanium originally present in the ore while corresponding solutions of HCl and sulfuric acid may obtain only 70% of such titanium over the same ~ime period. Higher concentrations of HF are operable, but are more corrosive and require difficult handling procedures.
The leaching solution may be filtered to remove oxidized iron as the ferric hydroxide. The filtrate will comprise soluble fluorides of titanium, for example in the preferred embodiment K2TiF6 or Na2TiF6. In addition, various other soluble fluorides may be present in the filtrate such as fluoride salt of ~ -~

~2~5S43 the corresponding alkaline fluosilicate, such as sodium fluoride or potassium fluoride. It has been surprisingly found that it is easy to separate the fluorides of titanium from certain other soluble fluorides since solubility characteristics are such that the fluorides of titanium precipitate as the temperature of the solution is lowered while other fluorides such as sodium fluoride are more soluble in lower temperature solutions. Thus, the solution may be evaporated to concentrate soluble fluorides and then the temperature decreased until the fluorides of titanium crystallize. The crystals of the fluorides of titanium may be separated and dried at a temperature of from 50 to 150C to remove excess water.
If desirable, the fluorides of titanium may be crystallized from an acidic iron containing solution substantially without contamination thereof.
The dried crystals of the fluorides of titanium may be reduced in a reducing zone wherein they are preferably contacted, in a molten state, with a molten zinc-aluminum alloy. The alloy may comprise from 1:99 to 20:80 parts of Al to Zn. The molten salt and the alloy are mutually immiscible, and therefore agitation must be provided in such reducing zone to assure intimate contact. The reduciion will take place at a temperature of at least 650C to 1000C preferably from 700C to 900C. The time of contacting of said molten alloy and molten salt will be varied to assure that the titanium present in ~he salt is converted into a titanium-zinc alloy. The aluminum prasent in the aluminum-zinc alloy during the course of the reduction is converted into the corresponding fluoride and may be isolated, when sodium fluosilicate is used as the fluorinating agent, as the pseudo cryolite described above. After the agitation is ceased~ the reduced mixture separates with the molten salt rising to the top wherein it may be decanted from such mixture. Alternatively, the molten titanium zinc alloy may be separated from the bottom of the vessel and _ g _ '." . ' '':-" ' ..

s~

passed to the reducing zone. Reduction must take place under inert conditions because of titanium metal's propensity to pick up oxygen and nitrogen. Suitably, an argon atmosphere is present during the reduction step. A suitable vessel for carrying out the aforementioned reduction, as well as any of the various high temperature operations described herein may be graphite.
It has been found that, during the reduction step, it is necessary that both the salt and alloy phase be maintained above the liquidous temperature to avoid solids formation which would be abrasive to both the agitator and the reactor.
It is desirable to have as much titanium reduced into the molten zinc alloy as possible to minimize the amount of zinc to be distilled in the subsequent distillation step. At atmospheric pressure, the titanium-zinc alloy boils at approximately 915C. At that temperature only 15% titanium can be dissolved into the zinc before solids begin forming. However, if the reactor is placed under elevated pressure ~about 1.5 atmospheres), then the molten zinc-alloy boils at 950C and approximately 2-5% titanium can be dissolved in zinc before the onset of solids formation.
To allow margin of safety, the reactor may be operated at 2 atmosph-eres which will allow a temperature of slightly over 1000C before the mixture boils and 25% by weight of titanium can be dissolved in tha solution without solids formation. This results in a significant reduction in the amount of zinc to be distilled from the titanium in the subsequent step. It should be noted that if the pressure is increased still more in the hope of further increasing the titanium solubility two problems occur.
The first problem is the solubility does not increase rapidly with temperatures beyond 950C and secondly, there is a substantial increase in `.: - 10 -:~ " ' .
.:~ - : . ': : `

~SS43 contamination by carbon from the reactor wall. The degree of carbon contamination is severe above 1100C.
Other methods of reducing the fluorides of titanium to the metal are known in the art and although, less preferred, may be utilized in place of the zinc-aluminum alloy. Examples of other prior art methods of reducing the fluorides of titanium to titanium metal ore are described above.
The argon atmosphere or other inert atmosphere may be also utilized during the subsequent separation of the titanium from the titanium-zinc alloy. The molten titanium-zinc alloy will be passed to a distillation zone wherein the zinc may be distilled off at a temperature of from about 800C to 1000C to leave behind a titanium sponge. Alternatively the zinc may be distilled from the zinc-titanium alloy under a vacuum and at somewhat lower temperatures.
The titanium sponge may be sintered to reduce its surface area. After sintering and cooling the sponge is passified by exposure to dilute 2 to give a thin (monomolecular) protective coat-ing of titanium oxide thereon before the sponge is exposed to a non-inert atmosphere. The zinc will be recovered and recycled for use in subsequent reducing steps.
The invention will now be further described, by way of example only, with reference to the accompanying drawing which is a flow diagram illustrating a preferred process of the present invention.
38,000 lbs. of ilmenite having a composition of 31.6%
titanium and 35% iron is ground to a particle size of 100 mesh in grinding zone 10. The ground ilmenite is then blended with 70,735 lbs. of sodium fluosilicate in blending zone 11. The blended -,: .: :
~. :.. . :: . - , : ~ ' ` : "

~5~43 mixture is passed into calcining zone 12 wherein it is heated to a temperature of from 750 to 850C, in the presence of one atmosphere of SiF4, for a time of about 6 hours whereby the titanium oxides present in the ilmenite are converted to fluorides of titanium and the silicon fluorides present in the fluosilicate are converted to sillcon dioxide. The titanium is converted to a pro-duct having the general formula - lla :
~ -., '" ' . : : . : ~

,.

Na2TiF6 in accordance with the following reaction.

Na2SiF6 + 2/3 FeO-TiO2 --~ 2/3 Na2TiF6 + 2/3FeF2 + 2/3 NaF + SiO2 This reaction also shows that the iron present in the ilmenite is converted to ferrous fluoride. The fluorinated mixture is then ground in grinding zone 13 and leached with an aqueous hydrofluoric acid solution containing 2.5% by weight hydrofluoric acid at a ratio of 10 lbs. of solution/
lb reactant. The leaching is carried out under oxidizing conditions, for example, air may be contacted with the mixture during leaching to assist in oxidizing the ferrous ions present in the leaching solution to ferric ions which precipitate from the leaching solution to a pH of about 7. The solution may be ~djusted to that pH if necessary by addition of a suitable base, e.g.
NaOH etc. During the leaching the silicon dioxide reaction product of the fluorination will also be precipitated. The separation of the iron and silicon dioxide are evident from the following equations which describ~ the leaching step.

FeF2 + H20 + 1/2 02----~1/2 Fe203 ~ + 2HF
Na2TiF6 + 2/3 NaF + SiO ~ Na2TiF6 (solution) + 2/3 Naf + SiO2 ~
The ferric oxide and insoluble SiO2 is removed from said grinding and leaching zone and may be dried and recovered as a mixture of silicon dioxide and ferric oxide in zone 14. The solution after filtration of the ferric oxide is ~assed to a crystallizing and drying zone 15 wherein about 740,000 lbs. of water i5 removed by heat and/or vacuum and the dewatered solution is~ cool~ed to a temperature of about 4C to crystallize sodium fluotitanate. The crystallized fluotitanate is filtered and may then be passed into a reducing zone 16 wherein 46,906 lbs. of fluotitanate is contacted under an inert atmosphere at a temperature of about 805C with 45,688 lbs. of a 10/90, by weight, molten alloy ~: , . ............. -. .
:. . .

'' .'. `

;5'~3 of aluminum and zinc. The fluotitanate is added, with agitation to the molten alloy over a 2 hour time period, whereby the molten salt and molten alloy solution are intimately contacted, i.e. by forming a dispersion of the molten salt and the molten alloy. The reaction is instantaneous, thereore7 after such 2 hour period of addition the titanium has been converted to a zinc titanium alloy and the aluminum has been converted to an aluminum fluoride.
The titanium-zinc alloy is removed from the bottom of reducing zone 16 and passed into distillation zone 17 wherein zinc is distilled off at a temperature of at least 800C and at a vacuum of about 10-5 torr. The distilled zinc is recycled back to reduction zone 16 for subsequent reuse. Titanium metal is recovered from distillation zone 17 as a sponge 18. The molten salt mixture which is a mixture of sodium and aluminum fluoride, i.e. a pseudo cryolite, is recovered from the top of reduction zone 16 and sent to recovery zone ~19).
Alternatively, the recrystallized sodium fluotitanate from zone 15 may be passed into a precipitation-filtration zone 20 wherein the solution is contacted with an aqueous sodium hydroxide solution to convert the soluble titanium to the titanium oxide form. The titanium oxide precipitates from the solution and is recovered in zone 21. Approximately 334 lbs. of NaOH per pound of soluble titanium is required to precipitate the titanium dioxide. The filtrate from zone 20 containing soluble fluorides is contacted with calcium oxide in precipitation-filtration zone 22 to precipitate calcium fluoride~
which may be recovered at zone 23. The sodium fluoride-containing solution from zone 22 may be passed into zone 24 wherein it may be contacted with a 23% solution of ~l2SiF6 to precipitate sodium fluosilicate which after drying in zone 25, may be recycled to zone 11 for further fluorination use.
The following are working examples illustrating the instant invention. There is no intention that the claims of this invention be bound - ~, . ": ., . : ' , .. , ~:

~2~5S~3 to such working examples.

General Procedure for Fluorinating Ore ComRrising Titanium Oxide and Recovering the Rësulting Fluorides o~ Titanium Ilmenite ore concentrates of about 100 mesh particle size are blended with sodium fluosilicate salt ~and in certain examples powdered iron oxide and/
or carbon3 to form a homogeneous mixture. The proportions of the ingredients consist of 102 parts of ore, 244 parts of sodium fluosilicate, l54 parts of ferric oxide and 12 parts carbon). The mixture is compacted into pellets or briquets one inch in diameter by about one inch thick, and then heated in a furnace to temperatures ranging from 650C to 850C. The specific temperature is maintained for an extended time interval usually from one to six hours.
The material after cooling is removed from the furnace and ground to about 60 mesh particle size. The ground material is leached with water ~hich may contain approximately 0.6 to 1.3 moles of a mineral acid preferably hydrochloric or hydrofluoric acid at 96C for two hours. The volume of the leaching solution employed is approximately ten times the weight of the ground material.
After separation of solids the solution is heated until two-thirds of its volume is evaporated. When cooled to room temperature a crop of white crystals of sodium fluotitanate is obtained, separated and then dried at 110-120C in a conventional oven.
The following examples lists the specific parameters for reaction of ilmenite ore and sodium fluosilicate and improvements derived by use of iron oxide and carbon for recovery of titanium from the ore.

102 parts of ilmenite ore concentrates with a nominal particle size of -100 mesh + 200 mesh and containing 46.9 weight percent titanium and 14.5 wt. % Fe were mixed with 244.5 parts of sodium fluosllicate salt and formed into briquets or pellets. The briquets were heated in a furnace to ' ' :

. ~

` ` ~Zl~;543 750C for six hours. After cooling the briquets were removed from the furnace and ground to about 60 mesh particle size. The ground mass is leached with a 5 volume percent mineral acid solution, preferably hydrochloric or hydrofluoric acid at 96C for ~wo hours. The volume of acid solution was approximately ten times the weight of solid material employed. After separation of the ore gangue the solution contains the soluble titanium salts. 47.5 wt. % of the titanium contained in the ore concentrates was extracted.

102 parts of ilmenite ore concentrates with a nominal particle size of -100 + 200 mesh containing 46.9 wt. % titaniwn and 14.5 wt.% iron were mixed with 244.5 parts of sodium fluosilicate salt and 12 parts of carbon powder. The admixture formed into briquets or pellets were heated (calcined) in a furnace to 750C for six hours. After cooling the briquets were crushed and ground to pass a 60 mesh sieve. The ground material was leached with a 5 volume percent mineral acid at 95C for two hours. After separation of the insoluble gangue material the~solution containing the soluble titanium salts indicated that 85.9% of the titanium in the ore had been extracted. This represented an increase of 38.4% of extractable titanium due to use of carbon in the calcining step.

102 parts of ore concentrates with a nominal particle size of -100 200 mech containing 46.9 wt.% titanium and 14.5 wt.% iron were mixed with 244.5 parts of sodium fluosilicate, 12 parts of carbon powder, and 54 parts of ferric oxide powder. The admixture formed into briquets or pellets and heated (calcined) in a furnace to 750C for 6 hours. After cooling the briquets were crushed and ground to pass a 60 mesh sieve and then leached at 96C with 5 volume percent mineral acid ~HF) solution for two hours. The solution after :
-- --'~

-: ' ``: ' ~ `, ~Z~LS543 separation of the insoluble gan~ue materials contained soluble fluotitanate salts indicative of 89.2% of the titanium present in the ore. Hence the addition of iron oxide prior to calcining the admixture resulted in an additional improvement of extractable titanium of 3.3 wt. % over calcining the admixture which contained carbon.

Comparable improvements of extractable titanium were obtained by calcining the ore utilized above at temperatures of 850C as opposed to calcining at 650C and 750C. These results are shown in the following Table 1:

Table 1 Calcine Admixture Parts Calcine Percent --- Temp Time Extractable Test No Ore Na SiF Carbon Fe O C` Hrs. Ti TOC-13 102 214.5 -- -- 650 6.0 17.1 TOC-14 102 244.5 12.0 -- 650 6.0 42.7 TOC-20 102 244.5 12.0 54 650 6.0 58.9 TOC-5 102 244.5 -- -- 750 6.0 47.5 TOC-10 102 244.5 12.0 -- 750 6.0 85.9 TOC-18 102 244.5 12.0 54 750 6.0 89.2 TOC-7 102 244.5 -- -- 850 6.0 68.4 TOC-ll 102 244.5 12.0 -- 850 6.0 89.6 TOC-l9 102 244.5 12.0 54 850 6.0 98.4 These results clearly show that the addition of carbon and/or iron to ilmenite prior to fluorination results in a greater recovery of titanium. Note the ore utilized above has b~en defined as a substantially "iron free" ilmenite (less than about 14% by weight iron~ for the purposes of this specification.
However, in ilmenites comprising greater than 14%, by weight iron, carbon without the addition of additional iron, should provide adequate recovery of . - 16 -... . . . .
. , :, ,, - . :
.; '~ ~ , . .
. ~''. ' ~ ' .

titanium after fluorination.

One hundred parts of ilmenite ore containing 26.4 wt.% titanium and 36 wt.% iron were mixed with 244.5 parts of sodium fluosilicate and the admixture formed into briquets or pellets. The briquets were heated to 750C
for six hours in a furnace. After cooling the briquets were crushed and ground to pass a 60 mesh sieve and then leached with an aqueous solution of 5 volume percent mineral acid (HCl) at 96C for two hours. The volume of acid solution employed was ten times the weight of ground calcine. After separation of the insoluble ore gangue the amount of soluble titanium salts in the solution was indicative of 92.3 wt.% of the titanium in the ore. This compares to extractable titanium of 47.5% when ore containing only 14.5 wt.% iron had been employed, thus demonstrating the unexpected improvement found in adding iron to substantially iron-free ilmenite ores prior to fluorinating.

One hundred parts of ilmenite ore containing 26.4 wt.% titanium and 36.4 wt.% iron were admixed with 244.5 parts of sodium fluosilicate salt and 12 parts of carbon powder and formed into briquets. The briquets were calcined in a furnace at 750C for six hours. After cooling the briquets were cooled, pulverized and leached with a ten fold volume of 5 volume percent mineral acid at 96C for two hours. A~ter separation of the insoluble gangue material the quantity of soluble titanium in solution represented 98.7% of the titanium in the ore. The use of carbon in the calcine admixture resulted in improving the extractable titanium by about 6.4% over 92.3 wt. % when no carbon was used. The following Table 2 of test results shbw that carbon improved recovery of titanium from ores containing high iron contents, i.e., the ore described in Example 6.

~. .

, ~SSg3 Calcine Temp. Time Test No. Ore Na SiF Carbon -C hrs. Ti~ Recovery %
~ 2---6 TOC-21 100 244.5 -- 750 6.0 92.3 TOC-44 100 244.5 12.0 750 6.0 98,7 TOC-24 100 244.5 12.0 650 6.0 42.7 TOC-23 100 244.5 -- 850 6.0 98.5 Reduction of the Recovered Sodiumfluotitanates and - Recovery of Titanium 188 parts of sodium fluotitanate salts as obtained as previously indicated is placed in a graphite crucible along with a zinc~aluminum alloy consisting of 29 parts aluminum and 995 parts of zinc metal. [This represents a molar ratio of 4 to 3 aluminum to titanium in accordance with the reaction ~see below)].
3 Na2TiF6 + 4 Al--~3 Ti ~ 3(Na24/AlF6) pseudo cryolite The crucible and contents are placed in an appropriate furnace and the furnace sealed. A purge of argon gas is used to remove air from furnace and provide an inert~gas at atmosphere. The mixture is heated to about 500G then a graphite stirrer is inserted~into the molten mixture.
Heating is continued along with stirring of the mixture until the temperature reaches about 620C. The temperature is ma m tained at 620C for about one hour to ensure complete reaction of the sodium fluotitanate and aluminum metal.
The furnace is turned off and allowed to cool to room temperature and the fused reaction mass removed. The salt portion at the top and the bottom melt portion containing elemental titanium are separated. The titanium metal :
~ . - 18 -~.:' ~ '' ' ` "

' .

~L2155~;~

containing alloy is then placed in a zinc distillation unit and the zinc distilled off at 910C, in the presence of argon, to leave a residue of titanium metal.
The following Table 3 shows the conversion of titanium from the salt, Na2TiF6, to the zinc-titanium metal.

Parts Temp. Time Test No. Na TiF Al Zinc C Hrs. Conversion %

TRX-l 188 29 995 620 1.O 100 Reduction of Fluotitanate under Pressure A 78 lb.charge,of zinc, 16.5 lbs.aluminum, and 100 lbs.of sodium fluotitanate are placed in a graphite reactor maintained under 2 atmospheres of argon pressure. The reactor is then heated to 960C and all ingredients are allowed to melt. A graphite agitator is then lowered into the melt rotated sufficiently rapidly to disperse the salt phase into-the molten alloy phase for 30 minutes. After stirring the metal, the agitator is raised and salt and alloy are poured separately into the cast iron molds still under 2 atmospheres argon pressure. The yield is a metal casting of 78 lbs.of zinc, 21 lbs.titanium and 0.005 lb. aluminum. The salt phase contains 2 lbs. titanium, 16.5 lbs. aluminum, 22 lbs. sodium and 55 lbs. fluorine.
The salt product from the reaction can be further processed with additional aluminum zinc alloy to remove the residual titanium and yield a salt suitable as an ingredient in aluminum electrowinning cells.
The alloy is processed by either vacuum distillation or distilled with a carrier gas to remove zinc and to sinter the titanium into a titanium sponge product.

~ . - 19 -. ~ , ~

:- ,. :
,. ~ .

- ~ ' -` ~Z15S~i3 `COMPOSITION OF VARIOUS-ILMENITES
_ GeorgiaCalifornia Canadian Element wt.% ~t.% wt.%
Ti 46.9 41.8 26.4 Fe 14.5 18.6 36 Si 4.7 6.0 1.7 Zr 2.9 1.4 Nil Al 1.2 1.3 1.2 Mg 0.29 0.48 3.8 ~u 1.3 2.5 0.19 V 0.13 0.13 0.036 Fe/Ti 0.31 0.44 1.36 The results obtained from the various ores, when fluorinated in accordance with the above General Procedures, a~ter leaching wi~h dilute HF
~5 volume percent), are given in Table 5 below:

Titanium % Recovery Ore 650C 750C 800C 850C 950C
Georgia -- 50 -- 83 95 California 41 82 90 90 --Canada 33 100 -- -- --The results again demonstrate the importance of iron for the fluorination reaction. The high iron-containing ore (Canada) shows substantially 100% recovery of titanium at 750C, whlle the lower iron-containing ores only approach 100% recovery at a temperature of at least 900C.

20~-;; , ~ :
::

- ' : :'': ' :

5~3 Improving the Purity of Sodium Fluotitanate To make an acceptably pure titanium metal, the starting materials must be correspondingly free of impurities, particularly phosphorus, iron and silicon. Of these three elements, the most difficult one to control when separating the preferred sodium fluotitanate is the silicon. The reason for this is that one of the products of the reaction is SiO2 which can redissolve in acid solution containing fluoride ion as follows:
SiO2 + 2NaF + 4HF -~ Na2SiF6 + 2H20 Since the Na2SiF6 has limited solubility it will drop out with the titanium salt Na2TiF6 during crystallization. This is shown in Table 6 below, which gives the silicon and iron content of 5 crystallization experiments.

COMPOSITION OP SALTS OF lST CRYSTALLIZATION
ACID LEACHATE
wt.% XRD
Sample No. Ti Fe Si ~ Ti Salt wt.%
TOC-5-2AX 4.72 0.01 31.0Na2TiF6 20.5 TOC-7 22.1 0.02 2.32 6 95.9 TOC-21-2AX22.3 1.76 1.82Na2TiF6 96.8 TOC-23-2AX 23.3 4.22 1.91 Na2TiF6 - 87.4 Na2TiF14 TOC-34-2AX 21.1 1.44 8.08 Na2TiF6 91.6 To determine whether or not it is possible to separate the silicofluorides from the titanofluorides a composite was made of the above .
crystals and redissolved in water. Crystallizations made from these solutions give the results shown in Table 7 below. Obviously, there has been :: - .. :

-,- .
, ,; ;"':

i;54;3 considerable improvement in purity especially relative to silicon.

COMPOSITION OF RECRYSTALLIZED SODIU~I FLUOTITANATE

Ti Fe Si Na2TiF6 Starting Composition 18.7 1.44 8.90 78.44 2nd Crystallization 21.2 0.04 2.4 92.0 3rd Crystallization 22.2 0.04 5.4 94.4 Recrystallization from Mother Liquor 22.1 0.2 0.6 95.9 22.9 0.6 0.3 99.4 Effect of SiF4 Gas Pressure on Recovery by Water Leach _ from llmenite Ores __ 100 parts of ilmenite ore containing 26.4 percent titanium and 36 percent iron ground to pass a 100 mesh sieve were mixed with 244.5 parts of sodium fluosilicate salts and then formed into compact briquets or pellets.
The pellets were heated in a closed evacuated furnace to a temperature of 750C for six hours. The pEessure of the furnace increased to a maximum of 28 inches of mercury total pressure durlng calcination. After cooling the briquets were removedJ crushed and ground to pass a 60 mesh sieve and then leached three successive times at 95C for several hours with 10 fold weight of water. The quantity of titanium extracted by the water leaches represented 52.2% of the titanium present in the ore.
100 parts of ilmenite ore approximately 100 mesh particle size containing 26.4 percent titanium and 36 percent iron were mixed with 244.5 parts of sodium ~luosilicate salts and formed into compacts of briquets or pellets. The briquets were heated`in a closed, evacuated furnace to a . . .:, .

, : . ,, ,- , ~., ,. , ::

g3 temperature of 750C. Silicon tetrafluoride gas was then admitted to the furnace wltil a pressure of 90 min. of Hg ~approximately 30 psig) was attained.
The briquets were maintained at 750C and under 30 psig SiF4 pressure for six hours. After cooling and removal of the residual silicon tetrafluoride gas the briquets were crushed and ground to pass a 60 mesh sieve. The ground material was leached 3 successive times with 10 fold weights of water at 95C for two hour periods each. The amount of titanium extracted by the water leaches, representing 61.2 percent of the titanium present in the ore.
The increase in silicon tetrafluoride gas pressure was responsible for a nine percent increase in titanium recovery.

Parts SiF4 %
- --- Temp. TimePressure Titanium Test No. Ore _ 2siF6 C hrs.mm Hg. Extracted TOC-21 100 24405 750 6.0 28 52.2 TOC-34 100 244.5 750 6.0 90 61.2 Preparation of Rutile TiO by Hydrolysis of Sodium Fluotitanate ~2olution . . .
104 parts sodium fluotitanate salts dissolved in 2 liters of water were added slowly to a one liter solution of sodium hydroxide containing 160 gallons NaOH to 95C over a period of one hour. The resulting solids were separated from the solution and washed with additional water to remove residual sodium fluoride salts. The solids after drying in a conventional oven at 110 to 120C were repulped in one liter of a 5 volume percent hydrochloric acid solution at 90C. for one-half hour. The solids were separated by filtration, washed with 200 ml. of water, then dried in an oven :~: - 23 -', ~' '" ' - : ' -: - , ' ; : -~Z~5543 at llQC for several hours.
Analysis of the solids showed the solids to be titanium dioxide of the rutile crystal modification and containing less than 0.2 percent sodium or fluorine.

Parts Temp.Time C
Test No. Na2 ~ NaOH H20 C hrs.Dried THX-l 104 160 4000 95 1.0100 - 120 Repulped with:
Parts 5 HCl Solution: 1000 for 1/2 hour.
Dried at 110 - 120C for 2 hours.

Composition of Solids Weight %
Ti Na F X-ray Diffraction 53.0 0.12 <0.1 Rutile modification TiO2 : - 24 -' :,' . ~ : ;
: . .. :
.
. . .

Claims (34)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A process for the preparation of titanium metal from an ilmenite ore comprising titanium oxides and from about 14 to about 36 %, by weight iron which comprises the steps of:
(a) fluorinating said ore by contacting said ore with an alkali metal fluosilicate at a temperature of from about 600° to about 1000°C to form a fluorinated ore and thereby convert the titanium oxides to titanium fluorides, and (b) reducing said titanium fluorides to titanium metal.
2. The process of claim 1 wherein said alkali metal is sodium.
3. The process of claim 1 further comprising recovering said titanium fluorides from said fluorinated ore by leaching with an aqueous solution.
4. The process of claim 1 further comprising providing from about 1 to about 10 % by weight carbon, in said ore.
5. The process of claim 1 wherein said titanium fluorides are reduced by contacting with a zinc-aluminum alloy, in the molten state, at conditions sufficient to yield an immiscible, molten mixture of a titanium-zinc alloy and aluminum fluoride.
6. The process of claim 5 further comprising separating said titanium-zinc alloy from said aluminum fluoride.
7. The process of claim 6 further comprising distilling zinc from said titanium-zinc alloy to recover a titanium sponge.
8. The process of claim 7 comprising distilling zinc from said titanium-zinc alloy in an inert atmosphere.
9. A process for the preparation of titanium metal from an ore wherein titanium is present as an oxide of titanium which comprises (a) fluorinating said ore, in the presence of from about 0.1 to about 70 psig of SiF4, to convert the oxide of titanium to a fluoride of titanium, (b) leaching said fluoride of titanium from said fluorinated ore to provide a solution of said fluoride of titanium, (c) recrystallizing said fluoride of titanium from said solution, (d) reducing said recrystallized fluoride of titanium to titanium metal.
10. The process of claim 9 wherein said SiF4 is present in an amount of from about 1 to about 70 psig.
11. The process of claim 9 wherein said ore is ilmenite.
12. The process of claim 9 wherein said fluorinating comprises heating said ore in the presence of a fluosilicate salt.
13. The process of claim 12 wherein said fluosilicate salt is Na2SiF6.
14. The process of claim 9 wherein said fluorinating is carried out at a temperature of from about 600°C to about 1000°C.
15. The process of claim 9 wherein said ore comprises from about 14 to about 36%, by weight iron, and from about 25 to about 50% by weight, titanium.
16. The process of claim 9 wherein said titanium fluoride is reduced by contacting with a zinc-aluminum alloy, in the molten state, at conditions sufficient to yield an immiscible, molten mixture of a titanium-zinc alloy and aluminum fluoride.
17. The process of claim 16 further comprising separating said titanium-zinc alloy from said aluminum fluoride.
18. The process of claim 16 further comprising distilling zinc from said titanium-zinc alloy to recover a titanium sponge.
19. A process for the preparation of titanium metal from an ilmenite ore comprising titanium oxides and iron oxides which comprises (a) fluorinating said ore by heating to a temperature of from about 600° to about 1000°C, in the presence of a fluosilicate salt to convert said oxides to fluorides of titanium and iron, (b) contacting said fluorinated ore with an aqueous leaching solution to leach said fluorides from the ore and provide an aqueous solution of said fluorides, (c) oxidizing and hydrolyzing said fluoride of iron to an iron hydroxide which is insoluble in said aqueous solution, (d) separating said insoluble iron hydroxide from said aqueous solution to yield a substantially iron-free aqueous solution, (e) recrystallizing said fluoride of titanium from said substantial-ly iron-free aqueous solution, (f) recovering said recrystallized fluoride of titanium, and (g) reducing said recovered fluoride of titanium to convert said recovered fluoride of titanium to titanium metal.
20. The process of claim 19 wherein said fluosilicate salt is Na2SiF6.
21. The process of claim 19 wherein said ore comprises from about 14 to about 36%, by weight iron, and from about 25 to about 50% by weight) titanium.
22. The process of claim 21 wherein said titanium fluoride is reduced by contacting with a zinc-aluminum alloy, in the molten state, at conditions suf-ficient to yield an immiscible, molten mixture of a titanium-zinc alloy and aluminum fluoride.
23. The process of claim 22 further comprising separating said titanium-zinc alloy from said aluminum fluoride.
24. The process of claim 23 further comprising distilling zinc from said titanium-zinc alloy to recover a titanium sponge.
25. The process of claim 24 comprising distilling zinc from said titanium-zinc alloy in an inert atmosphere.
26. The process of claim 19 wherein said aqueous leaching solution com-prises HF.
27. The process of claim 26 wherein said aqueous leaching solution com-prises from about 1 to about 10%, by weight, HF.
28. A process for the preparation of titanium metal from an ore comprising from about 25 to about 50%, by weight, titanium and from about 14 to about 36%, by weight iron, both titanium and iron being present in the form of an oxide, which comprises (a) fluorinating said ore by contacting with an alkali metal fluo-silicate at a temperature of from about 600° to about 1000°C, to yield a fluo-rinated ore including the fluorides of iron and titanium, (b) leaching said fluorides of iron and titanium from said fluorinat-ed ore by contacting said fluorinated ore with an aqueous solution comprising from about 1 to about 10%, by weight, HF, (c) separating an aqueous solution including said fluorides of iron and titanium dissolved therein from said ore, (d) oxidizing and hydrolyzing said fluoride of iron to an iron hydroxide which is insoluble in said separated solution by treating said solu-tion with oxygen, (e) separating said insoluble iron hydroxide from said treated solution to yield a substantially iron-free solution, (f) recrystallizing said fluoride of titanium from said substantially iron-free solution, (g) recovering said recrystallized fluoride of titanium, (h) reducing said recovered fluoride of titanium to titanium metal by contacting said recovered fluoride of titanium with a zinc-aluminum alloy, in the molten state, at conditions sufficient to yield an immiscible, molten mixture of aluminum fluoride and the titanium metal in the form of a titanium-zinc alloy, (i) separating said titanium-zinc alloy from said aluminum fluoride, and (j) distilling zinc, in an inert atmosphere, from said separated titanium-zinc alloy to recover a titanium metal sponge.
29. A process for the preparation of titanium metal from an iron-contact-ing ore comprising titanium oxides and from about 14 % to about 36 %, by weight iron, which comprises the steps of:
(a) admixing said ore with carbon to form an admixture of said ore and carbon, (b) fluorinating said admixture by contacting said admixture with an alkali metal fluosilicate at a temperature of from about 600° to about 1000°C
to form a fluorinated admixture and thereby convert the titanium oxides to titanium fluorides, and (c) reducing said titanium fluorides to titanium metal.
30. The process of claim 29 wherein said alkali metal is sodium.
31. The process of claim 29 further comprising recovering said titanium fluorides from said fluorinated admixture by leaching with an aqueous solution.
32. The process of claim 29 wherein said ore comprises from about 14 to about 36 %, by weight iron.
33. The process of claim 29 comprising providing from about 1 to about 10%, by weight carbon, in said admixture.
34. The process of claim 14 wherein said fluorinating is carried out in a closed furnace.
CA000431232A 1983-06-27 1983-06-27 Process for making titanium metal from titanium ore Expired CA1215543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000431232A CA1215543A (en) 1983-06-27 1983-06-27 Process for making titanium metal from titanium ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000431232A CA1215543A (en) 1983-06-27 1983-06-27 Process for making titanium metal from titanium ore

Publications (1)

Publication Number Publication Date
CA1215543A true CA1215543A (en) 1986-12-23

Family

ID=4125565

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000431232A Expired CA1215543A (en) 1983-06-27 1983-06-27 Process for making titanium metal from titanium ore

Country Status (1)

Country Link
CA (1) CA1215543A (en)

Similar Documents

Publication Publication Date Title
US4390365A (en) Process for making titanium metal from titanium ore
US4468248A (en) Process for making titanium metal from titanium ore
US4359449A (en) Process for making titanium oxide from titanium ore
EP1851349B1 (en) A method of producing titanium
US5482691A (en) Process for the production of intermediates useful in the processing of ilmenite and related minerals
US4985069A (en) Induction slag reduction process for making titanium
US4668286A (en) Process for making zero valent titanium from an alkali metal fluotitanate
WO1985000160A1 (en) Process for making titanium metal from titanium ore
CA1215543A (en) Process for making titanium metal from titanium ore
AU558285B2 (en) Process for making titanium metal from titanium ore
US20230312364A1 (en) Processing of titaniferous ores and minerals
AU1591588A (en) Process for the production of group ivb transition metal-alkali metal-fluoride salts and purification thereof
WO1988009391A1 (en) Process for making zero valent titanium from an alkali metal fluotitanate
NO885057L (en) PROCEDURE FOR THE PREPARATION OF GROUP IVB TRANSITION METAL-ALKALIMETAL FLUORIDE SALTS AND PURIFICATION OF THESE.
JPH0834609A (en) Production of transition metal boride powder

Legal Events

Date Code Title Description
MKEX Expiry