BRPI0909736B1 - Método, seu uso e dispositivo para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto - Google Patents

Método, seu uso e dispositivo para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto Download PDF

Info

Publication number
BRPI0909736B1
BRPI0909736B1 BRPI0909736-8A BRPI0909736A BRPI0909736B1 BR PI0909736 B1 BRPI0909736 B1 BR PI0909736B1 BR PI0909736 A BRPI0909736 A BR PI0909736A BR PI0909736 B1 BRPI0909736 B1 BR PI0909736B1
Authority
BR
Brazil
Prior art keywords
carbide
nanoparticles
fact
precursor
dispersion
Prior art date
Application number
BRPI0909736-8A
Other languages
English (en)
Inventor
Marcus Kennedy
Michael Zinnabold
Marc-Manuel Matz
Original Assignee
Federal-Mogul Burscheid Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal-Mogul Burscheid Gmbh filed Critical Federal-Mogul Burscheid Gmbh
Publication of BRPI0909736A2 publication Critical patent/BRPI0909736A2/pt
Publication of BRPI0909736B1 publication Critical patent/BRPI0909736B1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49274Piston ring or piston packing making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

método e dispositivo para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto a presente invenção refere-se a um método para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto compreendendo produzir um objeto por meio de um método de pulverização térmica, em que, a jusante da câmara de combustão, o fluxo de gás é fornecido por meio de um gás transportador com pelo menos um precursor que reage no fluxo de gás para formar um carboneto, ou nanopartículas de carboneto são fornecidas por meio de um gerador de nanopartículas externo que está submetido a uma carga térmica. ele permite a produção de um objeto endurecido por dispersão tal como, por exemplo, um componente para um motor de combustão interna, por exemplo, um anel de pistão. o método é executado por meio de um dispositivo de pulverização térmica que, a jusante da câmara de combustão, além de pelo menos uma linha para fornecer um pó de pulverização térmica, compreende adicionalmente pelo menos uma linha para fornecer um precursor por meio de um gás transportador.

Description

Relatório Descritivo da Patente de Invenção para MÉTODO, SEU USO E DISPOSITIVO PARA PRODUZIR UM OBJETO ENDURECIDO POR DISPERSÃO QUE CONTÉM NANOPARTÍCULAS DE CARBONETO.
[001] A presente invenção se refere a um método e a um dispositivo para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto. Além disso, a presente invenção diz respeito a um objeto endurecido por dispersão que é produzido com o método de acordo com a invenção tal como, por exemplo, um componente para um motor de combustão interna, preferivelmente um anel de pistão.
[002] Para anéis de pistão, tais como os anéis de motores de combustão interna com pistões de movimento alternado, uma alta resistência ao desgaste deve ser assegurada porque de outro modo, isto é, no caso de uma baixa resistência ao desgaste, o revestimento se torna mais fino. Assim, a espessura de parede do anel de pistão diminui, o efeito de vedação piora, vazamento de gás e consumo de óleo aumentam e o desempenho do motor pode piorar. Por causa de um anel de pistão que está sujeito a abrasão, a folga entre parede de cilindro e pistão aumenta continuamente, de maneira que é mais fácil para os gases de combustão escapar ao passar pelo anel de pistão (assim chamado de vazamento de compressão) reduzindo assim a eficiência do motor. Além disso, por causa de uma folga aumentada, a película de óleo remanescente que não é extinguida se torna mais grossa de maneira que mais óleo por unidade de tempo pode ser perdido e, assim, o consumo de óleo é aumentado.
[003] Atualmente, no campo de pulverização térmica de anéis de pistão, preferivelmente materiais à base de molibdênio são usados por meio do método de pulverização por plasma. Entretanto, a taxa de desgaste do mesmo em motores altamente carregados é muito alta.
Petição 870180146175, de 30/10/2018, pág. 7/19
2/6 [004] A tecnologia de pulverização térmica de oxicombustível de alta velocidade (HVOF) oferece a possibilidade para depositar partículas com uma baixa influência térmica e uma alta energia cinética sobre o substrato de uma tal maneira que camadas densas com alta aderência são geradas. Além disto, para assegurar uma resistência ao desgaste melhorada em maiores cargas, mais recentemente partículas de carbonetos de metal tais como, por exemplo, WC ou Cr3C2 são usadas, as quais não podem ser pulverizadas por meio de um método de pulverização por plasma porque elas se decompõem nas altas temperaturas de plasma de até 20.000Ό ou formam fases m uito quebradiças tais como, por exemplo, W2C. As ditas partículas fornecem de fato uma maior resistência ao desgaste; entretanto, elas têm desvantagens por causa de suas propriedades físicas que são diferentes com relação ao substrato, tais como menor coeficiente de expansão térmica e menor condutividade térmica, e diferentes propriedades mecânicas tais como menor ductilidade, isto é, maior fragilidade e menor tenacidade à fratura. Estas desvantagens têm um impacto durante a operação de motor, em particular na faixa de atrito incorporado ou lubrificação insuficiente. Durante estes estados, a energia térmica que é induzida adicionalmente durante 0 atrito resulta em um processo de afrouxamento no qual a camada de anel de pistão não pode seguir a expansão do substrato por causa do coeficiente de expansão térmica muito diferente e assim uma rede de fissuras é gerada. Este efeito resulta no final em uma ruptura depois de repetidas cargas. Além disso, os carbonetos de metal são usualmente introduzidos em uma matriz metálica tal como, por exemplo, uma liga de NiCr, em que somente um umedecimento da superfície de liga acontece, mas nenhum travamento metalúrgico é obtido. Assim, a aderência dos carbonetos de metal tais como WC ou Cr3C2, os quais fornecem uma alta resistência ao desgaste como áreas de material duro, é limitada.
Petição 870180146175, de 30/10/2018, pág. 8/19
3/6 [005] Para aumentar a resistência de um material, entre outras coisas, um endurecimento por dispersão pode ser executado. As partículas presentes neste caso formam barreiras para movimentos de deslocamento dentro do material durante carga mecânica. Os deslocamentos gerados e presentes durante carregamento não podem cortar através das partículas,de fato eles têm que se destacar entre as partículas. Anéis de deslocamento são formados que, de novo, têm que ser contornados. Quando contornando, é necessária uma entrada de energia maior do que durante corte. A tensão produzida para o percurso do deslocamento aumenta com distância de partícula decrescente e tamanho de partícula decrescente. Portanto, a resistência de material aumenta igualmente.
[006] Um endurecimento por dispersão seria possível ao introduzir carbonetos na forma de nanopartículas. O termo nanopartículas se relaciona aqui com partículas com um tamanho de 1 a 200 nm. A produção de recobrimentos por pulverização térmica nanocristalinos tem sido conseguida somente por meio de nanopartículas aglomeradas. Tais aglomerados de nanopartículas podem alcançar um diâmetro de 0,1 a 100 pm. Somente com tamanhos de partículas maiores que 1 - 2 pm é possível o transporte de partícula sob condições de pressão normal. Por causa do fato de que, para um transporte direcionado em um fluxo de gás, nanopartículas têm que absorver uma quantidade mínima de energia por meio da colisão com as moléculas de gás e que a máxima energia a ser absorvida diminui com tamanho de partícula decrescente, as nanopartículas podem ser transportadas em um modo direcionado somente até um tamanho mínimo. Isto somente seria possível por meio de menores pressões de processo ou por meio de carregar eletricamente as partículas. Em particular, em tamanhos de partículas abaixo de 800 nm, as partículas se comportam como moléculas de gás. Uma camada HVOF nanocristalina assim somente pode ser
Petição 870180146175, de 30/10/2018, pág. 9/19
4/6 produzida se pós aglomerados nanocristalinos estiverem disponíveis. Assim, um reforço de partícula tem que ser executado já dentro do pó. Isto resulta em que o recobrimento gerado contém micropartículas e aglomerados de nanopartículas, mas não nanopartículas distintas finamente dispersadas. Recobrimentos contendo aglomerados de nanopartículas são descritos, por exemplo, na DE 10 2007 018 859 A1, DE 100 57 953 A1, US 5.939.146 A, US 6.723.387 B1 e na US 2004/0131865 A1.
[007] Assim o objetivo é fornecer um método que permita a produção de um objeto endurecido por dispersão, em particular um anel de pistão que contenha nanopartículas de carboneto.
[008] Este objetivo é alcançado de acordo com a invenção por meio de um método que compreende a produção de um objeto por meio de um método de pulverização térmica, em que, a jusante da câmara de combustão, pelo menos um precursor de nanopartículas de carboneto é fornecido para o fluxo de gás por meio de um gás carreador, cujo precursor de nanopartículas reage no fluxo de gás para formar um carboneto. Assim, de acordo com a invenção, acontece um reforço de dispersão por meio de nanopartículas da fase gasosa, em que as nanopartículas são produzidas na fase gasosa e subsequentemente solidificam com partículas microcristalinas de um pó de pulverização e, consequentemente, o transporte adicional dos aglomerados de nanopartículas é assegurado com os parâmetros convencionais. O gás carreador preferivelmente envolve um gás inerte quimicamente. Gases inertes quimicamente compreendem, por exemplo, gases nobres ou nitrogênio. Preferivelmente, nitrogênio é usado.
[009] Como precursor de nanopartículas de carboneto, preferivelmente um halogeneto de metal de transição é usado. Particularmente preferidos são cloretos de metais de transição baratos tais como, por exemplo, WCIe. Também, elementos tais como Si, V, W, ou
Petição 870180146175, de 30/10/2018, pág. 10/19
5IQ titânio podem ser usados que vaporizam em um reator externo e reagem em uma atmosfera contendo C para formar os respectivos carbonetos.
[0010] A energia térmica dentro do dispositivo de pulverização térmica ou de um gerador de nanopartículas externo que esteja submetido a carga térmica (por exemplo, um forno tubular) é utilizada para decompor sistematicamente o material precursor ou material básico e assim obter o material desejado como nanopartícula na fase gasosa. Como método de pulverização térmica, pulverização térmica de oxicombustível de alta velocidade (HVOF) é preferida. O uso de um gerador de nanopartículas externo permite a produção de sistemas de camadas reforçadas com nanopartículas e assim de componentes tais como, por exemplo, um anel de pistão.
[0011] Também, uma reação química do precursor de nanopartículas de carboneto com um gás adicional pode acontecer. Isto pode envolver um gás combustível ou um gás que é acrescentado ao gás carreador. Adequado como fonte de carbono é um hidrocarboneto gasoso, tal como, por exemplo, metano. Como agente redutor, por exemplo, hidrogênio pode ser adicionado. Uma reação exemplar está ilustrada na fórmula 1.
WCI6 + CH4 + H2 WC + 6HCI (1) [0012] Entretanto, também é possível vaporizar metais em um reator externo, por exemplo, volfrâmio, titânio ou vanádio por meio de um arco entre dois eletrodos de carbono, pelo qual WC seria gerado.
[0013] A presente invenção diz respeito adicionalmente a um objeto endurecido por dispersão que contém nanopartículas de carboneto e é produzido de acordo com o método de acordo com a invenção. O dito objeto envolve preferivelmente um componente para um motor de combustão interna, particularmente preferido um anel de pistão.
[0014] Finalmente, a presente invenção diz respeito a um disposiPetição 870180146175, de 30/10/2018, pág. 11/19
6/6 tivo para executar o método de acordo com a invenção. O dito dispositivo envolve um dispositivo de pulverização térmica que, a jusante da câmara de combustão, além de pelo menos uma linha para fornecer um pó de pulverização térmica compreende adicionalmente pelo menos uma linha para fornecer, por meio de um gás carreador, um precursor de nanopartículas de carboneto ou nanopartícula produzida por meio de um reator externo. A linha para fornecer um precursor de nanopartículas de carboneto por meio de um gás carreador preferivelmente é feita de grafite que pode resistir à alta temperatura do jato de pulverização térmica. O dispositivo envolve em particular preferivelmente um dispositivo para pulverização térmica de oxicombustível de alta velocidade (HVOF).
[0015] A figura 1 mostra uma ilustração esquemática para produzir camadas reforçadas com nanopartículas por meio de pulverização térmica e de um gerador de nanopartículas externo. A produção de sistemas de camadas reforçadas com nanopartículas por meio de pulverização térmica HVOF é possível, por exemplo, ao fornecer nanopartículas em um reator externo (1) no qual um material é vaporizado de uma maneira controlada (conforme a figura 1). As nanopartículas geradas deste modo são sinterizadas em um segundo forno (2) no fluxo de gás para configurar especificamente a forma de partícula, e aglomeradas com as micropartículas no fluxo de gás imediatamente antes de as mesmas serem alimentadas para a pistola de pulverização (4). A linha na qual as nanopartículas podem ser transportadas por meio de um gás carreador pode ser conectada de uma maneira simples com a linha na qual as micropartículas são transportadas, por exemplo, por meio de um conector de peça na forma de T. (3) designa um carreador de pó. O substrato obtido está designado por (5).

Claims (15)

1. Método para produzir um objeto endurecido por dispersão, em particular um anel de pistão, o qual contém nanopartículas de carboneto de um tamanho na faixa de 1 a 200 nm, caracterizado pelo fato de que compreende produzir o objeto por meio de um método de pulverização térmica, sendo que o método de pulverização térmica compreende:
(i) fornecer pelo menos um precursor de partícula de carboneto ou nanopartículas produzidas externamente ao fluxo de gás a jusante da câmara de combustão, por meio de um gás carreador, sendo que o pelo menos um precursor de partícula de carboneto ou as nanopartículas produzidas externamente ao fluxo de gás reagem no fluxo de gás para formar um carboneto ou são já fornecidas na forma de carbonetos, e (ii) coagular as nanopartículas de carboneto com partículas microcristalinas de um pó de pulverização no fluxo de gás antes das nanopartículas de carboneto e o pó de pulverização serem transportados para uma pistola de pulverização.
2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o precursor de nanopartículas de carboneto é um halogeneto de metal de transição.
3. Método, de acordo com a reivindicação 2, caracterizado pelo fato de que o precursor de nanopartículas de carboneto é um cloreto de metal de transição.
4. Método, de acordo com a reivindicação 3, caracterizado pelo fato de que o precursor de nanopartículas de carboneto é WCIe.
5. Método, de acordo com qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de que as nanopartículas de carboneto produzidas a partir de um reator externo operado termicamente são alimentadas para dentro da câmara de pulverização.
Petição 870180146175, de 30/10/2018, pág. 13/19
2/3
6. Método, de acordo com qualquer uma das reivindicações 1 a 5, caracterizado pelo fato de que as nanopartículas de carboneto produzidas a partir de um reator externo operado termicamente consistem em SiC, TiC, WC ou VC.
7. Método, de acordo com qualquer uma das reivindicações an1 a 6, caracterizado pelo fato de que o método de pulverização térmica envolve pulverização térmica de oxicombustível de alta velocidade (HVOF).
8. Método, de acordo com qualquer uma das reivindicações 1 a 7, caracterizado pelo fato de que o gás carreador contém um hidrocarboneto, em particular, metano.
9. Método, de acordo com qualquer uma das reivindicações 1 a 8, caracterizado pelo fato de que o gás carreador contém hidrogênio.
10. Uso de um método, como definido em qualquer uma das reivindicações 1 a 9, caracterizado pelo fato de que é para produção de um objeto endurecido por dispersão, que contém nanopartículas de carboneto.
11. Uso, de acordo com a reivindicação 10, caracterizado pelo fato de que o objeto endurecido por dispersão é um componente para um motor de combustão interna.
12. Uso, de acordo com a reivindicação 10, caracterizado pelo fato de que o objeto endurecido por dispersão é um anel de pistão.
13. Dispositivo para executar um método, como definido em qualquer uma das reivindicações 1 a 9, caracterizado pelo fato de que é um dispositivo de pulverização térmica que, a jusante da câmara de combustão, além de pelo menos uma linha para fornecer um pó de pulverização térmica, compreende adicionalmente pelo menos uma linha para fornecer um precursor de nanopartículas de carboneto por
Petição 870180146175, de 30/10/2018, pág. 14/19
3/3 meio de um gás carreador.
14. Dispositivo, de acordo com a reivindicação 13, caracterizado pelo fato de que a dita pelo menos uma linha para fornecer um precursor de nanopartículas de carboneto por meio de um gás carreador consiste em grafite.
15. Dispositivo, de acordo com qualquer uma das reivindicações 13 ou 14, caracterizado pelo fato de que envolve um dispositivo para pulverização térmica de oxicombustível de alta velocidade (HVOF).
BRPI0909736-8A 2008-03-18 2009-01-20 Método, seu uso e dispositivo para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto BRPI0909736B1 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008014800A DE102008014800B3 (de) 2008-03-18 2008-03-18 Verfahren und Vorrichtung zur Herstellung eines dispersionsgehärteten Gegenstandes, der Carbid-Nanopartikel enthält
DE102008014800.8 2008-03-18
PCT/EP2009/000325 WO2009115156A2 (de) 2008-03-18 2009-01-20 Verfahren und vorrichtung zur herstellung eines dispersionsgehärteten gegenstandes der carbid-nanopartikel enthält

Publications (2)

Publication Number Publication Date
BRPI0909736A2 BRPI0909736A2 (pt) 2015-10-06
BRPI0909736B1 true BRPI0909736B1 (pt) 2019-04-02

Family

ID=40404028

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0909736-8A BRPI0909736B1 (pt) 2008-03-18 2009-01-20 Método, seu uso e dispositivo para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto

Country Status (8)

Country Link
US (1) US8484843B2 (pt)
EP (1) EP2252562B1 (pt)
JP (1) JP5552680B2 (pt)
CN (1) CN101977874B (pt)
BR (1) BRPI0909736B1 (pt)
DE (1) DE102008014800B3 (pt)
PT (1) PT2252562T (pt)
WO (1) WO2009115156A2 (pt)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009038013A1 (de) * 2009-08-20 2011-02-24 Behr Gmbh & Co. Kg Verfahren zur Oberflächen-Beschichtung zumindest eines Teils eines Grundkörpers
CN103112854B (zh) * 2013-01-31 2015-04-08 黑龙江大学 一步法合成碳化物/多孔石墨碳纳米复合物的方法
GB2618132A (en) * 2022-04-28 2023-11-01 Airbus Operations Ltd Multi-material joint

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456986A (en) * 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
US5939146A (en) * 1996-12-11 1999-08-17 The Regents Of The University Of California Method for thermal spraying of nanocrystalline coatings and materials for the same
DE19708402C1 (de) 1997-03-01 1998-08-27 Daimler Benz Aerospace Ag Verschleißfeste Schicht für Leichtmetall-Bauteile einer Verbrennungskraftmaschine sowie Verfahren zu deren Herstellung
US6723387B1 (en) * 1999-08-16 2004-04-20 Rutgers University Multimodal structured hardcoatings made from micro-nanocomposite materials
JP2001172756A (ja) * 1999-12-10 2001-06-26 Daido Steel Co Ltd Fe系潤滑被覆層付き摺動部材、Fe系溶射層形成用素材及びFe系潤滑被覆層付き摺動部材の製造方法
JP2001181817A (ja) * 1999-12-22 2001-07-03 Ishikawajima Harima Heavy Ind Co Ltd 溶射方法及び溶射装置
DE10057953A1 (de) * 2000-11-22 2002-06-20 Eduard Kern Keramische Verbundschichten mit verbesserten Eigenschaften
JP4677667B2 (ja) * 2000-12-04 2011-04-27 株式会社Ihi 黒鉛化装置および黒鉛化方法
US7361386B2 (en) * 2002-07-22 2008-04-22 The Regents Of The University Of California Functional coatings for the reduction of oxygen permeation and stress and method of forming the same
KR100500551B1 (ko) * 2002-12-30 2005-07-12 한국기계연구원 저압 기상반응법에 의한 나노 wc계 분말의 제조방법
CN1600820A (zh) * 2003-09-25 2005-03-30 中国科学院金属研究所 一种纳米耐磨涂层用热喷涂粉体的制备及应用
JP2007507604A (ja) * 2003-09-29 2007-03-29 ゼネラル・エレクトリック・カンパニイ ナノ構造化コーティング系、部品及び関連製造方法
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
EP1711642B1 (de) * 2004-01-28 2010-07-07 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Durch thermisches spritzen aufgebrachte eisenhaltige schicht einer gleitfläche, insbesondere für zylinderlaufflächen von motorblöcken
US20060184251A1 (en) * 2005-01-07 2006-08-17 Zongtao Zhang Coated medical devices and methods of making and using
IL175045A0 (en) * 2006-04-20 2006-09-05 Joma Int As A coating formed by thermal spraying and methods for the formation thereof
US8465602B2 (en) * 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
CA2619331A1 (en) * 2007-01-31 2008-07-31 Scientific Valve And Seal, Lp Coatings, their production and use
US8057914B2 (en) * 2007-03-26 2011-11-15 Howmedica Osteonics Corp. Method for fabricating a medical component from a material having a high carbide phase and such medical component
DE102008014945B3 (de) * 2008-03-19 2009-08-20 Federal-Mogul Burscheid Gmbh Verschleissfestes Bauteil
US8206829B2 (en) * 2008-11-10 2012-06-26 Applied Materials, Inc. Plasma resistant coatings for plasma chamber components
US20120114922A1 (en) * 2010-10-19 2012-05-10 Ultramet Rhenium-metal carbide-graphite article and method

Also Published As

Publication number Publication date
EP2252562A2 (de) 2010-11-24
CN101977874A (zh) 2011-02-16
WO2009115156A8 (de) 2009-12-23
PT2252562T (pt) 2016-11-09
US8484843B2 (en) 2013-07-16
JP2011521175A (ja) 2011-07-21
DE102008014800B3 (de) 2009-08-20
WO2009115156A3 (de) 2010-02-18
WO2009115156A2 (de) 2009-09-24
EP2252562B1 (de) 2016-09-14
CN101977874B (zh) 2013-06-12
BRPI0909736A2 (pt) 2015-10-06
JP5552680B2 (ja) 2014-07-16
US20110109048A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
Gan et al. Nanocomposite coatings: thermal spray processing, microstructure and performance
Zhang et al. Ablation resistance of ZrB2–SiC coating prepared by supersonic atmosphere plasma spraying for SiC-coated carbon/carbon composites
Nieto et al. Elevated temperature wear behavior of thermally sprayed WC-Co/nanodiamond composite coatings
BR102013008911A2 (pt) pó de aspersão com um composto à base de ferro superferrítico e também um substrato, em particular um disco de freio com uma camada de aspersão térmica
Lima et al. Assessment of abrasive wear of nanostructured WC-Co and Fe-based coatings applied by HP-HVOF, flame, and wire arc spray
Singla et al. Thermal sprayed CNT reinforced nanocomposite coatings–a review
Li et al. Microstructure, mechanical and tribological properties of plasma-sprayed NiCrAlY-Mo-Ag coatings from conventional and nanostructured powders
Kaewsai et al. Thermal sprayed stainless steel/carbon nanotube composite coatings
Sun et al. A review on the preparation and application of BN composite coatings
Wang et al. Preparation and characterization of YSZ abradable sealing coating through mixed solution precursor plasma spraying
Torabi et al. Ablation behavior of SiC/ZrB2 ultra-high temperature ceramic coatings by solid shielding shrouded plasma spray for high-temperature applications (temperature above 2000° C)
BRPI0909736B1 (pt) Método, seu uso e dispositivo para produzir um objeto endurecido por dispersão que contém nanopartículas de carboneto
Wang et al. Effect of nano‐Al2O3 on the microstructure and properties of NbB2‐NbC composite coatings prepared by plasma spraying
Yang et al. Advanced nanomaterials and coatings by thermal spray: multi-dimensional design of micro-nano thermal spray coatings
Shao et al. Microstructure characterization of in-situ ZrC composite coating with graceful toughness and improved tribological properties prepared by plasma spraying
Wang et al. Addition of molybdenum disulfide solid lubricant to WC-12Ni thermal spray cemented carbide powders through electroless Ni-MoS2 co-deposition
Zhang et al. Ablation resistance of ZrC coating modified by polymer-derived SiHfOC ceramic microspheres at ultrahigh temperature
Wang et al. Oxidation ablation resistance of ZrB2-HfB2-SiC-TaSi2 coating prepared on C/C composite surface
Wang et al. Study on preparation technologies of thermal barrier coatings
Forati et al. Wetting and corrosion characteristics of thermally sprayed copper-graphene nanoplatelet coatings for enhanced dropwise condensation application
Ghosh et al. Nano structured plasma spray coating for wear and high temperature corrosion resistance applications
JP2011521175A5 (pt)
Sun et al. Deposition of WC-Co coatings by a novel high pressure HVOF
Chourasia et al. Evaluation of as deposit HVOF coating for corrosion and sliding wear resistance
Puric et al. Novel plasma generating systems for advanced materials processing

Legal Events

Date Code Title Description
B15K Others concerning applications: alteration of classification

Free format text: PROCEDIMENTO AUTOMATICO DE RECLASSIFICACAO. AS CLASSIFICACOES IPC ANTERIORES ERAM: C04B 35/56; C04B 35/565; C01B 31/30; C01B 31/34; C01B 31/36; C23C 4/10; C23C 4/12; F16J 9/26; B05B 7/20.

Ipc: C04B 35/565 (2006.01), C01B 32/914 (2017.01), C01B

Ipc: C04B 35/565 (2006.01), C01B 32/914 (2017.01), C01B

B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06T Formal requirements before examination [chapter 6.20 patent gazette]

Free format text: O DEPOSITANTE DEVE RESPONDER A EXIGENCIA FORMULADA NESTE PARECER EM ATE 60 (SESSENTA) DIAS, A PARTIR DA DATA DE PUBLICACAO NA RPI, SOB PENA DO ARQUIVAMENTO DO PEDIDO, DE ACORDO COM O ARTIGO 34, INCISO II, DA LPI, POR MEIO DO SERVICO DE CODIGO 206.PUBLIQUE-SE A EXIGENCIA (6.20).

B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 10 (DEZ) ANOS CONTADOS A PARTIR DE 02/04/2019, OBSERVADAS AS CONDICOES LEGAIS. (CO) 10 (DEZ) ANOS CONTADOS A PARTIR DE 02/04/2019, OBSERVADAS AS CONDICOES LEGAIS