BRPI0410234B1 - método para tratar um poço - Google Patents

método para tratar um poço Download PDF

Info

Publication number
BRPI0410234B1
BRPI0410234B1 BRPI0410234A BRPI0410234A BRPI0410234B1 BR PI0410234 B1 BRPI0410234 B1 BR PI0410234B1 BR PI0410234 A BRPI0410234 A BR PI0410234A BR PI0410234 A BRPI0410234 A BR PI0410234A BR PI0410234 B1 BRPI0410234 B1 BR PI0410234B1
Authority
BR
Brazil
Prior art keywords
fibers
fluid
cement
circulation
pumped
Prior art date
Application number
BRPI0410234A
Other languages
English (en)
Inventor
Benoit Vidick
Erik Nelson
Raafat Abbas
Roger Keese
Trevor Munk
Original Assignee
Prad Res & Dev Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prad Res & Dev Nv filed Critical Prad Res & Dev Nv
Publication of BRPI0410234A publication Critical patent/BRPI0410234A/pt
Publication of BRPI0410234B1 publication Critical patent/BRPI0410234B1/pt

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/003Means for stopping loss of drilling fluid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/16Clay-containing compositions characterised by the inorganic compounds other than clay
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/18Clay-containing compositions characterised by the organic compounds
    • C09K8/22Synthetic organic compounds
    • C09K8/24Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/18Bridging agents, i.e. particles for temporarily filling the pores of a formation; Graded salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Sealing Material Composition (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Processing Of Solid Wastes (AREA)
  • Filtering Materials (AREA)

Abstract

"método de tratar um poço". um método de prevenir ou tratar perdas de circulação durante a perfuração de um poço, que compreende a adição, numa concentração da ordem das 0,5 a 6 libras por barril, de fibras dispersíveis na água, que tenham um comprimento de cerca de 10 a 25 mm de por exemplo vidro ou fibras polímeras para um fluido de base aquosa, bombeado, que contém partículas só e que tem um diâmetro equivalente a menos de 300<109>. o fluido de base com partículas sólidas pode ser o fluido de perfuração ou um tampão de cimento de pequeno volume, especialmente bombeado para remediar as perdas de circulação.

Description

MÉTODO PARA TRATAR UM POÇO Área da Invenção A presente invenção está relacionada com os métodos de impedir ou de combater os problemas de circulação encontrados durante a perfuração de poços como: poços de petróleo, de gás, geotérmicos, ou outros do gênero.
Fundamento da invenção As perdas de circulação definem—se como a perda total ou parcial dos fluidos de perfuração no cimento, em zonas altamente permeáveis, formações cavernosas e fraturas naturais ou induzidas durante a perfuração ou operações de cimentação. Entre as consequências das perdas da circulação podem incluir-se : - Erupção devido à queda do nivel do fluido no poço (perda na altura de elevação hidrostática); - Tubo de perfuração preso, devido à deficiente remoção de cascalhos oriundos da perfuração;
Mau isolamento de zona devido a cimentação insuficiente; - Custo acrescido, devido a perda de fluidos de perfuração ou cimento, acréscimo no tempo de sondagem e operações remediadoras de cimentação;
Danos na formação, devido a perdas para a zona de produção; e -Perda do poço. A gravidade das perdas da circulação pode variar de mínima (< 10 bbl(l,5m3/h) a grave (perda total de fluidos, incapaz de manter o poço cheio ou obter retorno à superfície).
Um modo de lidar com as perdas de circulação é acrescentar ao fluido materiais ("Materiais de perdas de circulação ou "MPCs") que ligam em ponte ou bloqueiam a infiltração para dentro da formação. Os MPCs geralmente englobam-se em 4 tipos principais: -Granular (por exemplo, conchas de fósseis do solo, plásticos ou calcário); -Lamelar-(por exemplo, celofane lamelar); -Fibroso-(por exemplo, serradura, feno, fibras de vidro);e -Partículas absorventes de fluido encapsulado.
Os MPCs podem variar em tamanho de 200 mesh a H de polegada e são regra geral usados em concentrações de 8-120 lb/bbl, de acordo com a gravidade das perdas.
Os tampões de cimento, que muitas vezes integram MPCs, situados ao nível das perdas de circulação, também têm sido utilizados para lidar com estes problemas durante a perfuração. Os cimentos de baixa densidade, incluindo cimentos-espuma, têm sido considerados como particularmente úteis. Em regra, têm-se considerado que o uso de MPCs em misturas de cimento, só é eficiente para perdas menores ou parciais. Para situações de perda total, o cimento-espuma é a única solução eficiente. OS MPCs mais comuns, usados em misturas de cimento, têm sido: materiais granulosos, tais como o Gilsonite, o carvão esmagado ou conchas de fósseis do solo Tentou-se o material celofane lamelar mas surgiram problemas ao juntar a mistura a cargas mais pesadas. Os materiais fibrosos são raramente utilizados em misturas de cimento devido aos problemas em tamponar o equipamento de cimentação. Um sistema com utilização de fibras que foi proposto está descrito na EP 1284248 e consiste no uso de vidro ou fibras poliméricas numa lama de cimento de baixa densidade, que contém materiais sólidos em bandas discretas, do tamanho de partículas.
Outros sistemas gelificantes ou viscosos que não . contêm cimento Portland, também foram utilizados como tampões. Exemplos destes, são agentes gelificantes como os silicatos, com um ativador adequado. Esses tampões também podem conter materiais de ligação em ponte tais como carbonato de cálcio do solo, com partículas de tamanho entre 8 pm a 254 pm e em concentrações de mais de 10 lb(4,5 kg)/bbl. Outros sistemas gelificantes incluem cimento Sorel (óxido de magnésio, cloreto de magnésio e água).
Foram também propostos certos sistemas de misturas no fundo de poço. Destes fazem parte, tampões de bentonita de óleo diesel em lama (BOD-L) e sistemas gelificantes de polisacaridas encapsuladas em emulsões que são quebradas pelas forças de cisalhamento no fundo do poço {ver EP 0738310). Um desenvolvimento deste sistema posterior combina o sistema gelificante com o cimento (ver WO 00/75481).
Mais pormenores de problemas de perda de circulação e possiveis soluções podem encontrar-se em Baret, Daccord and Yearwood, cimentação de Poços, capitulo 6 "cimento/Interações das formações", 6-1 a 6-17. E objeto da presente invenção disponibilizar técnicas que podem ser utilizadas durante a perfuração, para reduzir problemas associados com as perdas de circulação.
Sintese da Invenção No seu sentido mais lato, a presente invenção engloba o tratamento de um poço com um fluido de base aquosa, a que são acrescidas partículas sólidas com um diâmetro equivalente de menos de 300 pm e fibras dispersáveis na água, com um comprimento entre cerca de 10 e 25 mm, a uma concentração de entre 0,5 e 6 libras por barril de fluido.
Sem querer ficar limitados par uma teoria, parece que as fibras dispersáveis na água favorecem a formação de um aglomerado endurecido, formando uma rede ao longo da parede do poço que, com as pequenas partículas só facilmente funciona coma tampão. O fluido da invenção pode ser a próprio fluido de perfuração e neste caso, as pequenas particulas sólidas são constituídas por exemplo por materiais pesados, adicionados para aumentar o peso do fluido de perfuração, que incluem por exemplo barita(sulfato de bário), hematita(óxido do ferro), ilmenita(óxido do titânio de ferro), siderita(carbonato de ferro), galena( sulfureto de xumbo), tetraóxido do magnésio e ou óxido de zinco. As partículas pesadas tem em media um tamanho na ordem dos 20 aos 200 μιη-isto é, uma ordem do magnitude de cerca de 100 a 1000 vezes menor do que as fibras dispersáveis na água. Regra geral as quantidades de material pesado usadas são na ordem dos 0,2 a 2, mais usualmente 0,25 a 1,5 kg por litro.
De acordo com uma aplicação concreta da invenção as fibras dispersáveis na água, são fibras de vidro que no geral tem 10 a 15 mm de comprimento e 20 microns de diâmetro. De preferência são feitas de fibras resistentes a álcali, cortadas, que sendo produtos prontamente disponíveis como fibras de substituição de asbesto tem um sistema de tamanhos dispersáveis na água. Quanta maior é a comprimento da fibra, melhor é a capacidade de formar uma estrutura tipo teia. No entanto, até o momento provou-se que é impossível bombear as fibras de vidro com mais de 15 mm, com o equipamento de mistura padrão disponível numa plataforma. As concentrações são em média de cerca de 1 a cerca de 3 libras por barril de fluido, embora em casos particularmente graves possam ser necessárias concentrações mais elevadas(neste caso, é mais provável que a fluido seja bombeado como um tampão de cimento de volume relativamente pequeno) .
As fibras são de modo geral adicionadas no equipamento de mistura da superfície, usado para misturar a fluido de perfuração. As concentrações típicas para as fibras são l-51b/bbls. Outros MPCs tais como diferentes materiais fibrosos, cortados em pequenos pedacinhos e partículas do tamanho de grânulos, também podem ser adicionados em concentrações semelhantes.
De acordo com outra aplicação concreta da presente invenção, as fibras são fibras poliméricas, tais como fibras novolóides disponíveis, por exemplo em comprimentos que vão de cerca de 18 a cerca de 22mm e em diâmetros de cerca de 21mm, com um conteúdo de água de 35-45% (ver a patente norte americana 5.782.300 para descrição mais pormenorizada das fibras adequadas).
Como mencionado anteriormente, o fluido de tratamento da presente invenção pode ser o fluido que se usa normalmente para perfurar a poco, ou fluidos especialmente misturados com a finalidade de combater os problemas de perdas de circulação, possivelmente na forma de um pequeno tampão de cimento de volume limitado. Neste Ultimo caso, a fluido ainda conterá sólidos de pequeno tamanho tipicamente semelhantes aos que se encontram normalmente em fluidos de perfuração Numa aplicação concreta o referido pequeno tampão de cimento pode ser um espaçador.
Uma forma particularmente preferida de tampão, inclui fibras e um cimento como o micro-cimento, opcionalmente com adição de um material que faz ligação em ponte, como o carbonato de cá ou as partículas de tamanho granular. Esse pequeno tampão de cimento pode ter 80% de carbonato de cálcio e 20% de microcimento e ainda fibras. Também pode conter polímeros.
Embora esses pequenos tampões de cimento possam ser bombeados continuamente, pode ser preferível misturar e bombear um volume que não volte até a superficie, mas seja apenas suficiente para alcançar a zona de perdas de circulação, evitando assim o tamponamento do equipamento de superficie.
Outra perspectiva da invenção implica o uso de fibras em misturas de cimento. Nesta perspectiva, uma mistura de cimento de baixa densidade com componentes sólidos em bandas discretas do tamanho de partículas e contendo fibras, é preparada e bombeada para dentro do poço juntamente com o ar pressurizado, de modo a formar uma mistura de cimento-espuma de muito baixa densidade, que é colocado junto a zona de perdas de circulação.
Breve descrição dos desenhos A presente invenção vai agora ser descrita por meio de exemplos e com referência a Figura 1 que a acompanha, que mostra uma visão esquemática de um sistema de abastecimento de cimentos-espuma de baixa densidade, com fibras, para os problemas de perdas de circulação.
Descrição pormenorizada A presente invenção é aplicável a vários tipos de fluidos de perfuração tanto à base de água como à base de óleo, conforme se mostra nas tabelas abaixo: OS dois exemplos seguintes ilustram o uso de materiais fibrosos para resolver os problemas de perdas de circulação, de acordo com a invenção.
Exemplo 1 Um poço perfurado a uma profundidade vertical de 2700m encontrou uma zona de graves perdas de circulação. 0 poço estava a ser perfurado com lama de perfuração Gelchem com as seguintes propriedades: Viscosidade: 77 PV/YP: 19/15 Resistência do gel: 6/16 Perda de água: 8,2 pH: 10 Cl: 900 Ca: 35 Densidade 1.100 kg/m3 Viscosidade Plástica: 55-65 cp No inicio do procedimento, de acordo com a invenção ) 13 sacos (~295,1 kg) de fibras de vidro com o diâmetro de 20 micron e o comprimento de 10-14 mm, dispersiveis na água, foram adicionados a lama básica e bombeados para dentro do poço. A estes, seguiram-se mais 8 sacos (~181,6 kg) bombeados dentro da lama, após o que se verificou retorno à superfície {ou seja, a quantidade do lama que voltou à superficie igualou a quantidade bombeada para dentro do poço). No total, 727 kg de fibras foram bombeadas em 110 m3 de lama do perfuração (GelChem) .
Exemplo 2 Um poco perfurado a uma profundidade vertical do 630m encontrou uma zona de graves perdas de circulação. Na perfuração do poco estava a ser usada tubagem enrolada com lama de perfuração GelChem com densidade do 1050kg/m3 e uma viscosidade plástica de 55-65 cP. Inicialmente os tampões de cimento LC de carbonato de cálcio ou serradura foram bombeadas sem efeito. O tratamento foi feito em 5 estágios: 1. Cinco sacos (-113,5kg) de fibras de vidro dipersíveis em água, com o diâmetro de 20 micron e comprimento de 10-14mm, foram adicionadas a 12 m3 da lama e bombeados através da tubagem. 2. Seis sacos (-136,2kg) de fibras foram adicionados a 12m3 da lama e e bombeados através da tubagem. 3. Sete sacos (-158,9kg) de fibras foram misturadas com a lama e bombeados através do espaço anular (circulação reversa) 4. Doze sacos (-272,4kg) de fibras foram misturados com a lama, bombeados através do espaço anular (circulação reversa), após o que foi observado o retorno à superfície, na tubagem. 5. Oito sacos (~181,6kg) de fibras foram misturados com a lama e bombeados através do espaço anular ( circulação reversa) em consequência do que toda a circulação foi observada.
No total foram bombeados 8 63 kg de fibras em 70m3 de lama. A Figura 1 mostra um sistema em que as fibras podem ser usadas com uma mistura de cimento-espuma de baixa densidade, para resolver problemas de perdas de circulação. Os cimentos de baixa densidade adequados, são descritos na WO 01/09056 (CJSSN 10/049.198, incorporada aqui por referência). O modo como essas misturas podem ser espumadas ê descrito na WO 00/50357 {(USSN 09/914.33 1, (aqui incorporada por referência). As misturas de cimento de baixa densidade que contêm fibras estão descritas na WO 03/0 14040 (aqui incorporada por referência).
No sistema mostrado na figura 1, uma mistura a base de cimento é preparada num camião de mistura 10. Para aplicações de misturas batch (a granel), esta mistura é bombeada por meio de um camião de mistura 12, para um misturador a granel, no qual se adicionam também fibras point. O combinado de cimento e lamas, misturados a granel, é então bombeado do misturador 14 por meio de outro camião de bombeamento 16. Para uma mistura continua, a primeira unidade de bombeamento 12 e o misturador a granel 14 não são necessários e as fibras (e quaisquer outros aditivos) são adicionadas diretamente na unidade de bombeamento 16. O produto da unidade de mistura 16 é dirigido para um gerador de espuma 22, por meio de uma váivula de controle 20 com uma fonte estabilizadora de espuma 18 e uma fonte de nitrogênio 24 ligadas a elas. A mistura espumosa é bombeada do gerador 22 para a cabeça do poço 26, descendo o poço normalmente. Como é usual, há também uma linha derivada 28 e meios de obstrução para os fossos de infiltração 30. É de toda a conveniência, que possam fazer-se numerosas variações desde que permaneça dentro do âmbito da invenção. As fibras, por exemplo, podem ser combinadas com outras MPCs e usadas em vários tipos de lamas. Os MPCs podem ser na forma de sistemas gelificantes tais como sistemas que contêm cimento (por exemplo carbonato de cálcio e microcimento ou a mistura espumosa descrita acima.) as fibras podem ser bombeadas como um simples tampão de cimento ou uma série de tampões de cimento ou basicamente de modo continuo, até que a circulação fique restabelecida. As fibras podem ser bombeadas através do tubo de perfuração, brocas de perfuração ou outro equipamento do fundo do poço, ou através de tubagem enrolada via espaço anular. - REIVINDICAÇÕES -

Claims (17)

1. MÉTODO PARA TRATAR UM POÇO, referido método sendo para impedir ou combater problemas de circulação, o método compreendendo um fluido que é um fluido de perfuração & que contém matérias de perda de circulação, o método sendo caracterizado por compreender o bombeamento de um fluido, incluindo uma base aquosa, partículas sólidas que tem ura diâmetro equivalente de menos de 300 pm e fibras dispersiveis na água, que tenham um comprimento entre 10 e 25mm, a uma concentração entre 0,5 e 6 libras por barril de fluido.
2. MÉTODO, de acordo com a rei vindicaçâo 1, caracterizado por as fibras terem um diâmetro de 20 pm, e por as fibras serem fibras de vidro e terem um comprimento de 10 a 15 mm.
3. MÉTODO, de acordo com a reivindicação 2, caracterizado por as fibras serem adicionadas a uma concentração entre 1 e 3 libras por barril de fluido.
4. MÉTODO, de acordo com a reivindicação 2, caracterizado por as fibras serem fibras poliraeras que tem um comprimento de 18 a 22 ram e um conteúdo de água de 35-45% .
5. MÉTODO, de acordo com a reivindicação 3, caracterizado por as fibras serem fibras de novolóide.
6. MÉTODO, de acordo com a reivindicação 1, caracterizado por as referidas partículas sólidas serem selecionadas da lista que consiste em barica, hematita, ilmenita, carbonato de ferro, galena, tet racxido de manganésio, óxido de zinco, cimento e misturas deles.
7. MÉTODO, de acordo com a reivindicação 2, caracterizado por as referidas partículas sólidas terem um diâmetro de menos de 75 pm,
8. MÉTODO, de acordo com a reivindicação 3, caracterizado por pelo menos 50% das partículas sólidas terem um diâmetro entre 10 e 30 ym.
9. MÉTODO, de acordo com qualquer uma das reivindicações 1 a 8, caracterizado por o fluido ainda compreender materiais adicionais para perdas de circulação.
10. MÉTODO, de acordo com a reivindicação 9, caracterizado por os referidos materiais para perdas de circulação são selecionados do grupo formado por materiais fibrosos, partículas lamelares e granulares.
11. MÉTODO, de acordo com qualquer uma das reivindicações 1 a 10, caracterizado por o fluido ser bombeado como um fluido de perfuração e as fibras dispersivei s na água no contacto com o furo do poço, formando uma teia que contribui para a formação de um aglomerado endurecido, o que reduz a perda do fluido para dentro da formação.
12. MÉTODO, de acordo com qualquer uma das reivindicações 1 a 11, caracterizado por o fluido ser bombeado na forma de um tampão de cimento de volume limitado, para remediar os problemas de perdas de circulação.
13. MÉTODO, de acordo com a reivindicação 12, caracterizado por o fluido do tampão de cimento compreender cimento e um agente de ligação em ponte, como partículas sólidas, que têm um diâmetro· equivalente, de menos de 300 pm.
14. MÉTODO, de acordo com a reivindicação 13, caracterizado por o referido cimento ser um microcimento e o referido agente de ligação em ponte ser constituído por partículas de carbonato de cálcio.
15. MÉTODO, de acordo com a reivindicação 14, caracterizado por a proporção do peso do micro cimento em relação às partículas de carbonato de cálcio ser de 8G:2Q.
16. MÉTODO, de acordo com a reivindicação 12, caracterizado por o referido tampão de cimento ser um espaçador.
17. MÉTODO, de acordo com qualquer uma das reivindicações 1 a 16, caracterizado por o fluido ser espumoso.
BRPI0410234A 2003-05-13 2004-05-10 método para tratar um poço BRPI0410234B1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47017003P 2003-05-13 2003-05-13
PCT/EP2004/005032 WO2004101704A1 (en) 2003-05-13 2004-05-10 Well-treating method to prevent or cure lost-circulation

Publications (2)

Publication Number Publication Date
BRPI0410234A BRPI0410234A (pt) 2006-05-09
BRPI0410234B1 true BRPI0410234B1 (pt) 2016-06-07

Family

ID=33452373

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0410234A BRPI0410234B1 (pt) 2003-05-13 2004-05-10 método para tratar um poço

Country Status (14)

Country Link
US (2) US7331391B2 (pt)
EP (1) EP1622991A1 (pt)
JP (1) JP4842132B2 (pt)
CN (1) CN1788066A (pt)
AU (1) AU2004238982B2 (pt)
BR (1) BRPI0410234B1 (pt)
CA (1) CA2523472C (pt)
EA (1) EA008095B1 (pt)
EC (1) ECSP056217A (pt)
MX (1) MXPA05011606A (pt)
NO (1) NO20054968L (pt)
TN (1) TNSN05285A1 (pt)
UA (1) UA88611C2 (pt)
WO (1) WO2004101704A1 (pt)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0410234B1 (pt) * 2003-05-13 2016-06-07 Prad Res & Dev Nv método para tratar um poço
US7178597B2 (en) 2004-07-02 2007-02-20 Halliburton Energy Services, Inc. Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
BRPI0511288A (pt) * 2004-05-18 2007-12-04 Schlumberger Surenco Sa composição de material compósito do tipo de cimento, e método de completação de um poço
US7537054B2 (en) 2004-07-02 2009-05-26 Halliburton Energy Services, Inc. Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US7174961B2 (en) 2005-03-25 2007-02-13 Halliburton Energy Services, Inc. Methods of cementing using cement compositions comprising basalt fibers
US8137051B2 (en) 2005-05-19 2012-03-20 Schlumberger Technology Corporation System and method for facilitating well construction
US8322424B2 (en) * 2007-04-05 2012-12-04 Schlumberger Technology Corporation Use of a chopper mechanism to add fibers to a well
US20090149354A1 (en) * 2007-12-07 2009-06-11 Bj Services Company Well Treatment Compositions Containing Hydratable Polyvinyl Alcohol and Methods of Using Same
US20090149353A1 (en) * 2007-12-07 2009-06-11 Bj Services Company Polysaccharide Containing Well Treatment Compositions and Methods of Using Same
EP2085447A1 (en) 2007-12-26 2009-08-05 Services Pétroliers Schlumberger Method and composition for curing lost circulation
EP2085449A1 (en) * 2007-12-28 2009-08-05 Services Pétroliers Schlumberger Cement composition comprising mixture of organic and inorganic fibres for curing severe losses especially in the reservoir section
EP2083059A1 (en) 2007-12-28 2009-07-29 Services Pétroliers Schlumberger Cement compositions containing inorganic and organic fibres
US8252729B2 (en) 2008-01-17 2012-08-28 Halliburton Energy Services Inc. High performance drilling fluids with submicron-size particles as the weighting agent
US20090186781A1 (en) * 2008-01-17 2009-07-23 Hallibruton Energy Services, Inc., A Delaware Corporation Drilling fluids comprising sub-micron precipitated barite as a component of the weighting agent and associated methods
US20090321142A1 (en) * 2008-06-25 2009-12-31 Brian Dempsey Well Drilling Method for Prevention of Lost Circulation of Drilling Muds
US8946133B2 (en) 2008-08-18 2015-02-03 Schlumberger Technology Corporation Method and composition for curing lost circulation
EP2196516A1 (en) 2008-12-11 2010-06-16 Services Pétroliers Schlumberger Lost circulation material for drilling fluids
EP2398866B1 (en) * 2009-01-30 2015-03-04 M-I L.L.C. Defluidizing lost circulation pills
US7923413B2 (en) * 2009-05-19 2011-04-12 Schlumberger Technology Corporation Lost circulation material for oilfield use
EP2261458A1 (en) 2009-06-05 2010-12-15 Services Pétroliers Schlumberger Engineered fibres for well treatments
EP2305767A1 (en) * 2009-10-02 2011-04-06 Services Pétroliers Schlumberger Method and compositon to prevent fluid mixing in pipe
EP2305450A1 (en) 2009-10-02 2011-04-06 Services Pétroliers Schlumberger Apparatus and methods for preparing curved fibers
US8360151B2 (en) * 2009-11-20 2013-01-29 Schlumberger Technology Corporation Methods for mitigation of annular pressure buildup in subterranean wells
US9896612B2 (en) 2009-12-24 2018-02-20 Schlumberger Technology Corporation Methods for controlling lost circulation in a subterranean well and materials there for
DK2450416T3 (da) * 2010-10-13 2013-11-25 Schlumberger Technology Bv Stbv Fremgangsmåder og sammensætninger til suspension af fluider i en brøndboring
CN102031942B (zh) * 2010-11-30 2013-08-28 中国石油集团川庆钻探工程有限公司 具有热敏特性的水基重晶石液体堵漏剂的现场施工工艺
EA025062B1 (ru) 2010-12-15 2016-11-30 3М Инновейтив Пропертиз Компани Волокна для контролируемого разложения
EP2518034B1 (en) * 2011-02-11 2015-01-07 Services Pétroliers Schlumberger Use of asphaltite-mineral particles in self-adaptive cement for cementing well bores in subterranean formations
US9045675B2 (en) 2011-02-15 2015-06-02 Schlumberger Technology Corporation Non-aqueous, acid soluble, high-density completion fluids and process
US8530393B2 (en) 2011-04-15 2013-09-10 Halliburton Energy Services, Inc. Methods to characterize fracture plugging efficiency for drilling fluids
NO333089B1 (no) * 2011-07-11 2013-02-25 Elkem As Oljebrønnborevæsker, oljebrønnsementsammensetning og slurry av vektmateriale
JP6113433B2 (ja) * 2011-08-17 2017-04-12 学校法人早稲田大学 地盤掘削用膨潤高吸水性ポリマー安定液組成物及びこれを用いた施工法
RU2499020C1 (ru) * 2012-03-07 2013-11-20 Общество с ограниченной ответственностью "КОНВИЛ-Сервис" Состав для изоляции заколонных перетоков и высокопроницаемых зон пласта
CA2868977C (en) * 2012-04-27 2016-10-11 Kureha Corporation Polyglycolic acid resin short fibers and well treatment fluid
RU2478769C1 (ru) * 2012-05-16 2013-04-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ бурения скважины
US9296943B2 (en) 2012-05-22 2016-03-29 Schlumberger Technology Corporation Subterranean treatment fluid composition and method of treatment
US10253239B2 (en) 2012-07-02 2019-04-09 M-I L.L.C. Enhanced wellbore strengthening solution
MX2014016006A (es) * 2012-07-02 2015-04-13 Mi Llc Solucion mejorada de refuerzo de pozos solubles en ácido.
US9388333B2 (en) 2012-07-11 2016-07-12 Halliburton Energy Services, Inc. Methods relating to designing wellbore strengthening fluids
US20140209391A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
CN105026515A (zh) * 2013-01-29 2015-11-04 普拉德研究及开发股份有限公司 用于增强纤维桥接的方法
US20140209387A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US20140209390A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US20140209307A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US9322231B2 (en) * 2013-01-29 2016-04-26 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US9777207B2 (en) 2013-01-29 2017-10-03 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US10407988B2 (en) 2013-01-29 2019-09-10 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US9410065B2 (en) 2013-01-29 2016-08-09 Halliburton Energy Services, Inc. Precipitated particles and wellbore fluids and methods relating thereto
US8739872B1 (en) 2013-03-01 2014-06-03 Halliburton Energy Services, Inc. Lost circulation composition for fracture sealing
US9157306B2 (en) * 2013-05-16 2015-10-13 Halliburton Energy Services, Inc. Thermally-activated gellant for an oil or gas treatment fluid
US10066146B2 (en) 2013-06-21 2018-09-04 Halliburton Energy Services, Inc. Wellbore servicing compositions and methods of making and using same
US9796622B2 (en) 2013-09-09 2017-10-24 Saudi Arabian Oil Company Development of high temperature low density cement
NZ728897A (en) * 2014-09-16 2017-09-29 Halliburton Energy Services Inc Lithium-containing calcium aluminate phosphate cement admixtures
RU2562306C1 (ru) * 2014-10-15 2015-09-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ изоляции зоны поглощения при бурении скважины
WO2016076745A1 (en) * 2014-11-13 2016-05-19 Schlumberger Canada Limited Compositions and methods for reducing lost circulation
CN106190071B (zh) * 2016-07-21 2019-12-03 天津中油渤星工程科技有限公司 一种胶囊纤维防漏剂及其应用
JP2019529746A (ja) * 2016-09-12 2019-10-17 アイメリーズ ユーエスエー,インコーポレーテッド 炭酸塩組成物、及びその使用方法
US10144860B1 (en) 2017-07-20 2018-12-04 Saudi Arabian Oil Company Loss circulation compositions (LCM) having portland cement clinker
EP3818245A4 (en) 2018-07-02 2022-04-13 Services Pétroliers Schlumberger CEMENT COMPOSITIONS AND PROCESSES
US10619090B1 (en) 2019-04-15 2020-04-14 Saudi Arabian Oil Company Fracturing fluid compositions having Portland cement clinker and methods of use
CA3143230A1 (en) 2019-06-28 2020-12-30 Schlumberger Canada Limited Cement compositions and methods
US11105180B2 (en) 2019-08-19 2021-08-31 Saudi Arabian Oil Company Plugging formation fractures
US11136849B2 (en) 2019-11-05 2021-10-05 Saudi Arabian Oil Company Dual string fluid management devices for oil and gas applications
US11230904B2 (en) 2019-11-11 2022-01-25 Saudi Arabian Oil Company Setting and unsetting a production packer
WO2021113406A1 (en) 2019-12-04 2021-06-10 Saudi Arabian Oil Company Hybrid stationary loss circulation cake activated in-situ
US11156052B2 (en) 2019-12-30 2021-10-26 Saudi Arabian Oil Company Wellbore tool assembly to open collapsed tubing
CN113122214A (zh) * 2019-12-31 2021-07-16 中国石油天然气股份有限公司 复合调剖剂体系、其注入方法及其应用
US11260351B2 (en) 2020-02-14 2022-03-01 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems
US11253819B2 (en) 2020-05-14 2022-02-22 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes
US11655685B2 (en) 2020-08-10 2023-05-23 Saudi Arabian Oil Company Downhole welding tools and related methods
US11549329B2 (en) 2020-12-22 2023-01-10 Saudi Arabian Oil Company Downhole casing-casing annulus sealant injection
US11828128B2 (en) 2021-01-04 2023-11-28 Saudi Arabian Oil Company Convertible bell nipple for wellbore operations
US11598178B2 (en) 2021-01-08 2023-03-07 Saudi Arabian Oil Company Wellbore mud pit safety system
US11448026B1 (en) 2021-05-03 2022-09-20 Saudi Arabian Oil Company Cable head for a wireline tool
US11859815B2 (en) 2021-05-18 2024-01-02 Saudi Arabian Oil Company Flare control at well sites
US11905791B2 (en) 2021-08-18 2024-02-20 Saudi Arabian Oil Company Float valve for drilling and workover operations
US11913298B2 (en) 2021-10-25 2024-02-27 Saudi Arabian Oil Company Downhole milling system
US11993992B2 (en) 2022-08-29 2024-05-28 Saudi Arabian Oil Company Modified cement retainer with milling assembly

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2610149A (en) * 1949-08-10 1952-09-09 Magnet Cove Barium Corp Method and means of preventing fluid loss through porous walls
US2894906A (en) * 1953-12-23 1959-07-14 Shell Dev Drilling fluid composition for porous formations
US3199591A (en) * 1962-12-07 1965-08-10 Continental Oil Co Subterranean formation fracturing method and composition
US3774683A (en) * 1972-05-23 1973-11-27 Halliburton Co Method for stabilizing bore holes
JPS58109582A (ja) * 1981-12-24 1983-06-29 Japan Metals & Chem Co Ltd 逸水防止剤
US4836940A (en) * 1987-09-14 1989-06-06 American Colloid Company Composition and method of controlling lost circulation from wellbores
US4871395A (en) * 1987-09-17 1989-10-03 Associated Universities, Inc. High temperature lightweight foamed cements
CA2497728C (en) * 1993-04-05 2008-02-19 Roger J. Card Control of particulate flowback in subterranean wells
US5782300A (en) * 1996-11-13 1998-07-21 Schlumberger Technology Corporation Suspension and porous pack for reduction of particles in subterranean well fluids, and method for treating an underground formation
US6152227A (en) * 1997-10-24 2000-11-28 Baroid Technology, Inc. Drilling and cementing through shallow waterflows
US6016879A (en) 1997-10-31 2000-01-25 Burts, Jr.; Boyce D. Lost circulation additive, lost circulation treatment fluid made therefrom, and method of minimizing lost circulation in a subterranean formation
JPH11323322A (ja) * 1998-05-15 1999-11-26 Kunimine Ind Co Ltd 自己分散型成形掘削安定液材並びに掘削安定液の調製方法及び回復方法
US6419019B1 (en) * 1998-11-19 2002-07-16 Schlumberger Technology Corporation Method to remove particulate matter from a wellbore using translocating fibers and/or platelets
US6605570B2 (en) * 2001-03-01 2003-08-12 Schlumberger Technology Corporation Compositions and methods to control fluid loss in surfactant-based wellbore service fluids
ATE404505T1 (de) * 2001-08-06 2008-08-15 Schlumberger Technology Bv Faserverstärkte zementzusammensetzung mit niedriger dichte
US6837309B2 (en) * 2001-09-11 2005-01-04 Schlumberger Technology Corporation Methods and fluid compositions designed to cause tip screenouts
US6702044B2 (en) * 2002-06-13 2004-03-09 Halliburton Energy Services, Inc. Methods of consolidating formations or forming chemical casing or both while drilling
BRPI0410234B1 (pt) * 2003-05-13 2016-06-07 Prad Res & Dev Nv método para tratar um poço
ES2281814T3 (es) * 2003-07-25 2007-10-01 Bp Exploration Operating Company Limited Metodo de perforacion.
EA009859B1 (ru) * 2004-06-03 2008-04-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и устройство для выполнения химической обработки вскрытых геологических пластов

Also Published As

Publication number Publication date
UA88611C2 (uk) 2009-11-10
AU2004238982A1 (en) 2004-11-25
US8002049B2 (en) 2011-08-23
CA2523472A1 (en) 2004-11-25
EA008095B1 (ru) 2007-02-27
EA200501804A1 (ru) 2006-10-27
ECSP056217A (es) 2006-04-19
TNSN05285A1 (en) 2007-07-10
CA2523472C (en) 2013-01-29
US7331391B2 (en) 2008-02-19
JP4842132B2 (ja) 2011-12-21
BRPI0410234A (pt) 2006-05-09
MXPA05011606A (es) 2006-04-27
US20070056730A1 (en) 2007-03-15
WO2004101704A1 (en) 2004-11-25
NO20054968L (no) 2005-12-13
US20080110627A1 (en) 2008-05-15
NO20054968D0 (no) 2005-10-26
CN1788066A (zh) 2006-06-14
JP2007501319A (ja) 2007-01-25
EP1622991A1 (en) 2006-02-08
AU2004238982B2 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
BRPI0410234B1 (pt) método para tratar um poço
AU2013323777B2 (en) Particulate weighting agents comprising removable coatings and methods of using the same
US9932510B2 (en) Lost-circulation materials of two different types of fibers
CA2918521C (en) Solids free gellable treatment fluids
CA2460954C (en) Dry mix for water based drilling fluid
AU2013404999B2 (en) Wellbore fluid additives of fibrillated fibers
AU2013222778B2 (en) Modified particulate weighting agents and methods of using the same
RU2695198C1 (ru) Соединения с редкоземельными элементами для улучшения характеристик скважинных обрабатывающих композиций
US20050187113A1 (en) High performance water-based mud system
AU2015391021B2 (en) Viscosifiers and filtration control agents for use in high temperature subterranean operations
US4568708A (en) Composition and method for effecting seals in earth boreholes

Legal Events

Date Code Title Description
B07A Application suspended after technical examination (opinion) [chapter 7.1 patent gazette]
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B15K Others concerning applications: alteration of classification

Free format text: A CLASSIFICACAO ANTERIOR ERA: C09K 7/02

Ipc: C09K 8/16 (2006.01), C09K 8/24 (2006.01)

B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 10 (DEZ) ANOS CONTADOS A PARTIR DE 07/06/2016, OBSERVADAS AS CONDICOES LEGAIS.

B21F Lapse acc. art. 78, item iv - on non-payment of the annual fees in time
B24J Lapse because of non-payment of annual fees (definitively: art 78 iv lpi, resolution 113/2013 art. 12)