BE898425A - Appareil à vortex pour séparer et éliminer un gaz d'un liquide, et installation en comportant l'application. - Google Patents

Appareil à vortex pour séparer et éliminer un gaz d'un liquide, et installation en comportant l'application. Download PDF

Info

Publication number
BE898425A
BE898425A BE0/212021A BE212021A BE898425A BE 898425 A BE898425 A BE 898425A BE 0/212021 A BE0/212021 A BE 0/212021A BE 212021 A BE212021 A BE 212021A BE 898425 A BE898425 A BE 898425A
Authority
BE
Belgium
Prior art keywords
liquid
chamber
air
gas
inlet
Prior art date
Application number
BE0/212021A
Other languages
English (en)
Inventor
R Hull
J A Lane
Original Assignee
Amtrol Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amtrol Inc filed Critical Amtrol Inc
Publication of BE898425A publication Critical patent/BE898425A/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/04Devices, e.g. valves, for venting or aerating enclosures for venting only
    • F16K24/042Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float
    • F16K24/048Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float a transmission element, e.g. arm, being interposed between the float and the valve element, the transmission element following a non-translational, e.g. pivoting or rocking, movement when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/18Safety or protection arrangements; Arrangements for preventing malfunction for removing contaminants, e.g. for degassing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

Cet appareil comprend un corps vertical (102) séparé par une cloison horizontale en deux chambres supérieure et inférieure (104,106) communiquant par un trou (110). Une tubulure d'entrée (118) dans la chambre inférieure comporte un diffuseur (122) formant des angles horizontal et vertical respectivement avec l'axe horizontal de la tubulure d'entrée. Une tubulure de sortie (120) a un axe horizontal parallèle à celui de la tubulure d'entrée,ces deux axes étant perpendiculaires à celui du corps. La tubulure de sortie comporte une branche verticale s'étendant vers le bas dans la chambre inférieure (106). L'appareil comprend à sa partie supérieure un dispositif à flotteur et soupape de purge de la chambre supérieure (104)

Description


   <Desc/Clms Page number 1> 
 



  La société dite : AMTROL INC., une société constituée et existant conformément aux lois de l'Etat de Rhode Island, USA. 



  BREVET D'INVENTION Appareil à vortex pour séparer et éliminer un gaz d'un liquide, et installation en comportant l'application. 



  Revendication de la priorité de la demande de brevet déposée aux Etat-Unis d'Amérique le 21 janvier 1983 sous le n  460 056 aux noms de Robert HULL et Joseph A. LANE. 

 <Desc/Clms Page number 2> 

 



   La présente invention est relative à un appareil pour extraire un gaz d'un liquide en circulation. Elle concerne un appareil à vortex pour séparer et éliminer un gaz d'un liquide, pour extraire un gaz présent (c'est à dire entrainé ou dissout) dans le liquide d'un système à circulation forcée de liquide. 



   Un but de l'invention est de réaliser un système de circulation à écoulement forcé de liquide qui comporte un dispositif perfectionné pour extraire un gaz du liquide. Un autre but de l'invention est de fournir un dispositif pour séparer efficacement un gaz tel que de l'air d'un liquide tel que de l'eau, à des frais bien inférieurs à ceux des dispositifs et des procédés de la technique an-   térieure.   



   L'invention a encore pour but de réaliser un appareil perfectionné à vortex pour séparer, éliminer   et extraireun   gaz présent, c'est à dire entrainé ou dissout, dans le liquide d'un système à circulation forcée de liquide, qui puisse être utilisé pour remplacer les séparateurs d'air bien plus grands de la technique antérieure et qui soient plus petits, comparés à ceux-ci, ce qui constitue un avantage décisif pour l'installation dans des espaces limités ou bas de plafond, qui soit plus léger c'est à dire plus facile à soutenir au moyen de la tuyauterie, qui soit moins cher (prix unitaire), et qui entraine des frais de montage plus faibles, c'est à dire deux liaisons seulement avec la tuyauterie. 



   Un autre but encore de l'invention est de fournir un système de circulation à écoulement forcé de liquide qui comporte un dispositif perfectionné pour extraire le gaz du liquide. L'invention a enfin pour but de fournir un appareil à vortex pour séparer et éliminer un gaz d'un liquide, qui soit conçu pour assurer au liquide un mouvement tangentiel à l'intérieur de la partie de séparation, et 

 <Desc/Clms Page number 3> 

 dans lequel les tubulures d'entrée et de sortie du liquide sont disposées sur le même axe. 



   L'invention a pour objet un appareil à vortex pour séparer et éliminer un gaz d'un liquide, qui est adapté pour être relié dans un système fermé à circulation de liquide comportant des conduites d'alimentation et de retour comprenant une pompe de circulation branchée dans ce système pour faire circuler le liquide dans celui-ci. L'appareil à vortex pour séparer et éliminer un gaz d'un liquide comprend un corps principal vertical comportant une chambre supérieure et une chambre inférieure. Ces chambres supérieure et inférieure sont séparées par une cloison horizontale qui présente un orifice d'évacuation de gaz en son centre. Suivant un mode de réalisation préféré, il est prévu un orifice d'entrée ayant un axe horizontal qui coupe de façon générale perpendiculairement l'axe vertical du corps principal vertical.

   L'entrée comporte un diffuseur qui est venu de matière et qui est disposé immédiatement à l'intérieur de la chambre inférieure. Le diffuseur est fixé suivant un angle horizontal à l'intérieur du premier quadrant de la chambre inférieure et formant un angle vertical par rapport à l'axe horizontal de l'entrée. Il est prévu un orifice de sortie qui présente un axe horizontal qui est dans son ensemble aligné sur l'axe horizontal de l'entrée et qui coupe d'une façon générale perpendiculairement l'axe vertical du corps principal vertical.

   La sortie comporte une branche verticale de tuyau qui est disposée à l'intérieur de la chambre inférieure de façon que la partie inférieure de cette branche soit disposée dans la partie basse de la chambre inférieure et que l'axe vertical de la partie inférieure de la branche verticale du tuyau soit alignée sur l'axe vertical du corps principal vertical. Lorsque l'appareil de séparation et d'élimination fonctionne, le liquide   pénètre   par l'entrée, est diri- 

 <Desc/Clms Page number 4> 

 gé dans la chambre inférieure et sort par la branche vertical du tuyau et la sortie.

   L'angle horizontal et l'angle vertical ont des valeurs suffisantes par rapport à l'axe vertical de la sortie pour forcer l'eau tangentiellement contre la paroi de la chambre inférieure et vers le bas dans celle-ci, respectivement, afin de former un vortex d'eau seulement dans la chambre inférieure, grâce à quoi le gaz présent dans le liquide est libéré sous la forme de bulles. L'extrémité inférieure de la branche verticale du tuyau est située au-dessous du niveau auquel se forment les bulles ou auquel les bulles de gaz entrainées dans le liquide sont transportées par le vortex. La cloison horizontale de séparation est disposée dans le corps principal vertical à un niveau voulu pour empêcher le mouvement tangentiel du fluide dans la chambre inférieure d'interférer avec le passage des bulles de gaz montant dans la chambre supérieure.

   La chambre supérieure contient un dispositif d'élimination de l'air. Les bulles de gaz montent dans la chambre supérieure et sont purgées dans l'atmosphère au moyen du dispositif de mise à l'atmosphère ou d'élimination. En fonctionnement le liquide est présent dans les deux chambres, inférieure et supérieure. 



   Suivant un autre mode de réalisation préféré de l'invention, l'appareil à vortex de séparation et d'élimination d'un gaz d'un liquide comprend un corps principal vertical qui comporte une chambre supérieure et une chambre inférieure. Les chambres supérieure et inférieure sont séparées par une cloison horizontale qui présente en son centre un orifice d'évacuation de gaz. Il comporte une entrée ayant un axe longitudinal qui est dans son ensemble perpendiculaire à l'axe vertical du corps principal. L'entrée comporte une courte branche d'un tuyau qui est reliée à la partie supérieure de la chambre inférieure, et une sortie. La sortie a un axe longitudinal qui est dans son 

 <Desc/Clms Page number 5> 

 ensemble perpendiculaire à l'axe vertical du corps principal et est dans son ensemble parallèle à l'axe longitudinal de l'entrée.

   La sortie est disposée dans la partie inférieure de la chambre inférieure. Un orifice d'élimination ou de purge est situé dans la chambre supérieure. Lorsque le dispositif de séparation et d'élimination est en fonctionnement, du liquide   pénètre   dans l'entrée et sort par la sortie. L'écoulement du liquide dans la chambre inférieure produit un vortex au moyen duquel du gaz présent dans le liquide est libéré sous la forme de bulles. La sortie du liquide est située au-dessous du niveau auquel les bulles se forment et/ou auquel les bulles de gaz entrainées dans le liquide sont transportées en descendant par le vortex. Les bulles de gaz montent dans la chambre supérieure et sont purgées dans l'atmosphère au moyen du dispositif d'élimination d'air. 



   Les systèmes à circulation de liquide peuvent présenter un gaz ou des gaz présents dans le liquide. Le gaz, par exemple de l'air, peut être entrainé (c'est à dire sous forme de bulles) dans le liquide, par exemple de l'eau, ou il peut être dissout (par exemple en solution ou sous forme de couche laminaire) dans le liquide, par exemple l'eau. L'invention couvre l'extraction des gaz entrainés, dissouts ou présents, du liquide. 



   L'appareil à vortex pour la séparation et l'élimination du gaz d'un liquide est de préférence utilisé pour séparer de l'eau de l'air dissout ou entrainé, dans un système à circulation d'eau chaude ou d'eau glacée. Par exemple, le dispositif séparateur de l'invention est un dispositif séparateur tangentiel en ligne ou décalé qui utilise une forme de vortex d'air pour produire une âme plus légère de bulles d'air et d'eau dans la chambre inférieure. La vitesse réduite permet à l'air de monter à la partie supérieure du corps principal pour être purgé. 

 <Desc/Clms Page number 6> 

 



  L'eau portant l'air est chassée sous pression (présente une vitesse d'écoulement) par l'entrée, d'une façon qui astreint le mélange air-eau à se déplacer en spirale à l'intérieur de la chambre inférieure de l'appareil de séparation pour effectuer la séparation de l'air de l'eau sous l'action de la force centrifuge et par flottabilité. 



   Dans le mode de réalisation tangentiel, l'axe vertical de la branche courte de l'entrée forme un angle prédéterminé fixé par rapport à l'axe vertical de l'entrée afin d'assurer que le courant d'eau entrant est tangentiel à la paroi de la chambre inférieure, ce qui assure la génération d'un vortex. L'eau entrante doit frapper la paroi de la chambre inférieure dans le premier quadrant (nordouest) du plan horizontal formé par l'intersection de l' axe horizontal de l'entrée et d'un axe horizontal perpendiculaire à celui-ci, le point d'intersection se trouvant sur l'axe vertical de la chambre principale. L'air séparé sort par une ouverture dans la partie supérieure du séparateur. L'eau sort du tuyau de sortie du séparateur. 



   De préférence la cloison horizontale de séparation présente une forme concave en direction de la chambre supérieure. La cloison horizontale de séparation peut être plate ou avoir toute autre forme qui s'incline vers le haut à partir de sa périphérie externe jusqu'à son trou central. Par exemple, la cloison horizontale de séparation peut présenter la forme d'un tronc de cône vertical dont la partie tronquée est formée par le trou central. 



  La périphérie externe de la cloison de séparation horizontale ne doit pas s'étendre vers l'intérieur en formant un angle au-dessous de l'horizontale (900) car autrement de l'air pourrait ainsi se trouver   emprisonnée. dans   la chambre inférieure. 



   L'appareil à vortex de séparation et d'élimination du gaz d'un liquide suivant l'invention présente une 

 <Desc/Clms Page number 7> 

 construction différente des séparateurs à vortex de la technique antérieure et assure une séparation du gaz plus efficace. La branche descendante du tuyau de sortie est située au-dessous du point auquel des bulles de gaz se forment dans le vortex. 



   L'appareil à vortex de séparation et d'élimination de l'air utilise une purge intermittente automatique (de préférence) d'un dispositif de purge et d'élimination d'air qui est monté sur sa partie supérieure et constitue une partie solidaire du corps du séparateur, et qui comporte des tuyaux alignés et des chambres supérieure et inférieure. 



   En fonctionnement, dans le premier mode de réalisation décrit, le liquide entre dans la chambre inférieure du séparateur à vortex par un orifice qui est incliné afin de diriger le courant suivant une configuration circulaire autour de la périphérie afin d'engendrer un vortex au centre. L'angle formé par l'orifice est tel qu'il dirige le courant dans le premier quadrant de la chambre inférieure à partir du   diametre   correspondant. Lorsque l'air entrainé dans le liquide   pénètre   dans la chambre inférieure, le liquide plus lourd est forcé vers la périphérie externe et un vortex est formé dans le milieu, consistant en l'air existant entrainé. En raison de la faible vitesse dans la chambre, l'air peut passer par gravitation dans la chambre supérieure par l'intermédiaire d'un trou prévu dans la cloison de séparation.

   La hauteur de cette cloison audessus de l'axe de liaison doit être maintenue à une distance minimale afin d'empêcher un effet de balayage de se produire en raison du mouvement circulaire désiré dans la chambre inférieure. Pour empêcher un   mouvement.. circulaire   dans la chambre supérieure, la circonférence externe de la cloison doit être fermée. Lorsque l'air s'accumule-dans la chambre supérieure un flotteur descend en chassant l'air 

 <Desc/Clms Page number 8> 

 de la chambre. Dans la chambre inférieure, le vortex en cône s'étend vers le bas presque jusqu'à l'extrémité du tube immergé. L'écoulement efficace maximum par rapport à la hauteur entre l'axe de liaison et l'ouverture du tube immergé est critique. Un écoulement supérieur au maximum recommandé permettrait à une partie de l'air de s'échapper dans le système.

   Avec l'écoulement maximal ou au-dessous de celui-ci le liquide seulement retourne dans le système. 



   Les autres modes de réalisation décrits réalisent également un effet de vortex. 



   L'état actuel de la technique nécessite que l'appareil de séparation et d'élimination soit conçu avec les raccords décalés sur la périphérie externe afin d'obtenir des vitesses tangentielles. Certains des modes de réalisation de l'invention comportent des raccords alignés. Par exemple un orifice formant un angle approprié pour provoquer un mouvement tangentiel sur la paroi cylindrique du corps a été incorporé en tant que caractéristique du raccord d'entrée. 



   Un tube immergé peut être joint hermétiquement au raccord de sortie. La hauteur entre l'axe du raccord et la partie inférieure du tube immergé est commandée par la vitesse maximale, la dimension de l'orifice et le diametre de la chambre. 



   De préférence, le séparateur présente des dimensions voulues pour un écoulement de 15, 14 à 30,28 litres par minute. Une modification de la forme pour des écoulements supérieurs nécessite de changer un ou plusieurs des facteurs suivants : (1) la dimension des raccords d'entrée et de sortie ; (2) la dimension de l'orifice ; (3) le diamètre de la chambre ; 

 <Desc/Clms Page number 9> 

 (4) la distance entre l'axe du raccord et la partie inférieure du tube immergé. 



   L'invention concerne un système de circulation à écoulement forcé de liquide pour extraire un gaz du liquide en utilisant l'appareil perfectionné à vortex suivant l'invention pour la séparation et l'élimination d'un gaz d'un liquide. Il s'agit normalement d'un système à circulation fermé. Le système comprend un réseau de circulation d'un liquide et des moyens pour forcer le liquide à s'écouler à travers le circuit. Un conduit de dérivation est de préférence prévu autour de la région du circuit de circulation dans laquelle se produit la plus faible solubilité du gaz dans le liquide. Dans un autre mode de réalisation le conduit de dérivation peut être disposé autour de, ou dans la, région dans laquelle existe une faible pression du liquide (mais non pas la plus faible pression du liquide) dans le système de circulation.

   L'appareil perfectionné à vortex pour la séparation et l'élimination du gaz d'un liquide est disposé dans le conduit de dérivation Le séparateur à vortex sépare le gaz du liquide, et le dispositif de purge et d'élimination d'air chasse le gaz du circuit de circulation de façon continue ou intermittente. L'invention assure des avantages économiques et des réductions de frais considérables sur les systèmes de la technique antérieure. La corrosion provoquée par l'oxygène dans les systèmes à eau est virtuellement supprimée. On peut utiliser un petit appareil de séparation d'air au lieu des séparateurs d'air normalement très grands. La dimension plus petite constitue un avantage décisif pour l'installation dans des espaces limités ou bas de plafond. 



  Le dispositif suivant l'invention pèse moins lourd que les dispositifs de la technique antérieure, de sorte qu'il est plus facile de le soutenir au moyen de la tuyauterie, avec des frais moins élevés (prix unitaire), et il peut être 

 <Desc/Clms Page number 10> 

 monté à des frais moindres, du fait qu'il nécessite seulement deux raccords avec la tuyauterie. 



   Le gaz peut être entrainé ou dissout dans le liquide, et/ou peut être présent dans celui-ci sous la forme de bulles de gaz. Dans des systèmes à eau chaude ou glacée, après les périodes de démarrage ou de remplissage, l'air est le plus souvent présent dans l'eau sous forme dissoute. 



   Le système de circulation suivant l'invention tire pleinement avantage du processus physique du comportement de l'air dans l'eau (ou autre gaz ou liquide) comme indiqué par la loi de Henry. Cette loi peut être exprimée 
 EMI10.1 
 de la façon suivante : 
 EMI10.2 
 p-p X H 
 EMI10.3 
 dans laquelle PT la pression totale, = HPv est la pression de vapeur,
H est la constante de la loi de Henry,
X est la quantité maximale de gaz retenue en solution. 



   Le système de circulation suivant l'invention prend avantage de deux implications importantes de cette loi. Tout d'abord, le point de solubilité la plus faible, c'est à dire la valeur la plus faible de X constitue le point optimum pour placer le dispositif de séparation et d'élimination de l'air. En second lieu, tous les autres points de la tuyauterie contiennent par définition de l'eau dans laquelle la valeur de X est plus élevée, c'est à dire que l'eau dissout tout air supplémentaire dans la tuyauterie. L'eau en circulation agit à la façon d'une   'éponge" pour   adsorber tout l'air en des points quelconques de la tuyauterie et le transporter en solution jusqu'au point de plus faible solubilité, où il est finalement libéré et mis à l'atmosphère. 

 <Desc/Clms Page number 11> 

 



   Habituellement, le point de faible solubilité, où la valeur de X est la plus grande. est situé au point de plus faible pression et de température la plus élevée. 



  L'effet de la température est gouverné par la variation de P et de   H,   qui varient tous deux avec la température de telle sorte que X diminue avec une augmentation de la température. Cependant, sur une base pratique, l'effet de la pression est prédominant. 



   Le système de circulation de l'invention comprend un système de tuyauteries fermé dans lequel le circuit de circulation est un circuit à eau froide ou à eau chaude, les moyens forçant l'écoulement sont constitués par une pompe, l'entrée et la sortie du conduit de dérivation, espacées, sont reliées avant la sortie de la pompe et après l'entrée de celle-ci respectivement, et l'appareil perfectionné suivant l'invention, à vortex, pour la séparation et l'élimination d'un gaz d'un liquide est disposé dans le conduit de dérivation. Cet agencement est utilisé lorsque la plus faible solubilité du gaz se produit dans la tuyauterie, dans ce cas, juste avant l'entrée de la pompe. 



   Le système de circulation suivant l'invention comprend également un système hydraulique fermé dans lequel le circuit est un circuit d'eau froide ou chaude, au moins un radiateur (ou dispositif d'échange thermique utilisant de l'eau) est prévu dans le circuit de circulation, des moyens de chauffage de l'eau sont prévus dans le circuit avant le ou les radiateurs, et les moyens forçant l'écoulement sont constitués par une pompe. L'entrée et la sortie du conduit de dérivation qui sont espacées communiquent avec le circuit avant l'entrée du radiateur et après la sortie de celui-ci respectivement. Le dispositif de séparation et d'élimination suivant l'invention est disposé dans le conduit de dérivation.

   Ceci constitue l'agencement préféré lorsque lepoint de solubilité la plus faible se 

 <Desc/Clms Page number 12> 

 trouve à un radiateur, par exemple dans un système à eau chaude. 



   Le système de circulation peut être par exemple un système à eau chaude ou un système à eau froide de refroidissement. 



   Le liquide utilisé dans le système suivant l'invention est normalement de   l'eau,   mais il peut être constitué par d'autres liquides tels que l'éthylène glycol. 



  Le gaz présent dans le liquide traité par le système suivant l'invention est normalement de l'air, mais peut être d'autres gaz, tels que l'oxygène, l'azote, le méthane, l'anhydride carbonique et la vapeur d'eau. 



   Le système perfectionné suivant l'invention est efficace pour séparer le gaz du liquide en circulation avec un minimum de frais. Les systèmes connus jusqu'à présent utilisaient des séparateurs d'air corresppondant à la dimension totale de la tuyauterie, comme décrit dans U.   S. - A NO   3.276. 188, et non pas nécessairement disposés à l'emplacement voulu sur la conduite principale, c'est à dire le point de plus faible solubilité. Par conséquent le système perfectionné consistant à utiliser un procédé de dérivation, à l'emplacement convenable, assure à la fois une extraction plus efficace du gaz et des frais moins élevés. Par exemple une dimension totale de la tuyauterie pour la circulation du fluide à la pompe de 20 cm. nécessitait avec les procédés antérieurs un séparateur de dimension correspondante.

   Grâce à l'invention un séparateur d'une dimension correspondant à un tuyau de 2,5 cm. serait suffisant et assurerait l'extraction améliorée de l'air. 



   L'appareil à vortex de séparation et d'élimination du gaz d'un liquide et le système global suivant l'invention assurent des avantages économiques et des réductions de frais considérables par rapport aux systèmes de la technique antérieure. La corrosion provoquée par l'oxy- 

 <Desc/Clms Page number 13> 

 gène dans les systèmes à eau est virtuellement supprimée. 



  Enfin on peut utiliser un petit appareil de séparation et d'élimination de l'air à la place des séparateurs d'air normalement très grands. 



   D'autres caractéristiques et avantages de l'invention apparaitront au cours de la description qui va suivre faite en se référant aux dessins annexés donnés uniquement à titre d'exemples et dans lesquels : les Fig. la et   Ib   constituent ensemble la Fig. l, qui est une vue latérale en section de l'un des modes de réalisation préférés de l'appareil à vortex de séparation et d'élimination de l'air de l'eau suivant l'invention, la Fig. la montrant la chambre inférieure de la Fig. l, et la Fig. lb montrant la chambre supérieure, avec la soupape de purge à membrane en position de fermeture ; la Fig. 2 est une vue de dessus en section suivant la ligne 2-2 de la Fig. l de l'appareil représenté à la Fig. l ; la Fig. 3 est une vue en coupe de la tubulure d'entrée suivant la ligne 3-3 de la Fig. 2 ;

   la Fig. 4 est une vue en élévation de dessus de l'appareil représenté à la Fig. l, le dispositif d'élimination de l'air étant supprimé ; la Fig. 5 est une vue en section du dispositif de purge d'air représenté à la Fig. l, avec la soupape de purge à membrane en position d'ouverture ; la Fig. 6 est une vue en section à plus grande échelle de la soupape de purge à membrane du dispositif de la Fig. l, montrant la soupape en position de fermeture ; la Fig. 7 est une vue en section à plus grande échelle de la soupape de la Fig. 6 montrant cette soupape en position d'ouverture ; la Fig. 8 est une vue en section à plus grande échelle de la fixation de l'axe de la soupape pilote du 

 <Desc/Clms Page number 14> 

 dispositif de la Fig. l ;

   la Fig. 9 est un schéma d'un mode de réalisation préféré de l'agencement en dérivation suivant l'invention utilisant l'appareil à vortex de séparation et d'élimination représenté à la Fig. l ; la Fig. lO est un autre schéma de l'agencement en dérivation sur un'radiateur ; la Fig. ll est un schéma de l'agencement suivant l'invention utilisant l'appareil de la Fig. l, en dérivation d'une pompe ; la Fig. 12 montre le trajet de l'eau dans l'appareil à vortex de la Fig. l ; la Fig. 13 est une vue latérale en section de la partie de séparation d'air d'un autre mode de réalisation de l'appareil suivant l'invention ; la Fig. 14 est une vue de dessus en section de l'appareil représenté à la Fig. 13, suivant la ligne 14-14 de celle-ci ; la Fig. 15 est une vue de dessus de l'appareil représenté à la Fig. 13, la partie de séparation de l'air étant supprimée ;

   la Fig. 16 est une vue latérale en section d'une version de la chambre supérieure de l'appareil à vortex suivant l'invention pour la séparation et l'élimination de l'air de l'eau. 



   On a représenté à la Fig. l un appareil lOO à vortex pour séparer et éliminer l'air de l'eau, cette Fig. montrant son fonctionnement. L'appareil lOO comprend une enveloppe 102 qui est dans son ensemble cylindrique, qui est divisée en une chambre supérieure 104 et une chambre inférieure 106 au moyen d'une cloison 108. La   Fig. l   est divisée en une Fig. la, qui montre la chambre inférieure 106 de l'appareil 100, et en une Fig. lb qui montre la chambre supérieure 104. En se référant à la Fig. lb, l'air s'échappe 

 <Desc/Clms Page number 15> 

 de la chambre inférieure 106 à travers un trou central 110 prévu dans la cloison de séparation 108 et passe dans la chambre supérieure 104.

   L'air qui s'échappe est recueilli et/ou retenu dans la partie supérieure de la chambre supérieure 104 jusqu'à ce qu'il soit mis à l'atmosphère de fa- çon continue ou intermittente par un dispositif 200 d'élimination de l'air qui est monté dans la chambre supérieure 104, avec une partie du mécanisme de ce dispositif s'étendant au-dessus de la périphérie supérieure 112 de cette chambre. Les détails de fonctionnement du dispositif 200 seront décrits de façon   plus'détaillée   dans la suite. 



   En se référant à la Fig. la, un court conduit inférieur 114 est prévu dans le fond 116 de l'appareil 100 et est normalement fermé ou bouché du fait qu'il sert principalement à la vidange de la chambre inférieure 106. 



  Le conduit inférieur 114 est habituellement fileté intérieurement afin de recevoir un bouchon fileté. 



   Une tubulure d'entrée 118 est alignée avec une tubulure de sortie 120, c'est à dire qu'elles sont alignées horizontalement sur le même axe horizontal qui coupe perpendiculairement l'axe vertical ou longitudinal de l'enveloppe cylindrique 102. L'eau contenant de l'air dissout ou entrainé pénètre par la tubulure d'entrée 118 et continue suivant un coude à travers un diffuseur 122 venu de matière, dans la chambre inférieure 106. L'entrée 118 et le diffuseur 122 forment un L (conduit) déformé ayant un grand angle. L'axe longitudinal du diffuseur 122 venu de matière (court conduit 124) est disposé suivant un angle de 300 par rapport à une perpendiculaire à l'axe horizontal de l'entrée 118 (ou 600 par rapport à l'axe horizontal de l'entrée 118 FIg. 2).

   Le courant d'eau sous, pression qui sort du diffuseur 122 est tangent à la paroi interne de la chambre inférieure 106, et frappe cette paroi dans le premier quadrant de la chambre   inférieure-106.   Les chiffres 

 <Desc/Clms Page number 16> 

 I à IV à la Fig. 2 désignant les quatre quadrants, I étant le premier quadrant. Pour répéter, en fonctionnement, le liquide pénètre dans la chambre inférieure 106 par un orifice ou diffuseur d'entrée 122 qui est coudé pour diriger le courant suivant un dessin circulaire autour de la périphérie, engendrant un vortex au centre. L'angle de l'orifice d'entrée est tel qu'il fait dévier le courant dans le premier quadrant de la chambre inférieure 106.

   L'axe longitudinal du conduit 124 forme également un angle de   l50   au-dessous de l'axe horizontal de l'entrée 118 afin de diriger le circuit ou vortex du courant d'eau entrant dans une direction descendante (Fig. la et 3). Des bulles d'air sont présentes et constituent de l'air entrainé dans l'eau en circulation, ou des bulles d'air forment de l'air dissout dans cette eau. Les bulles d'air se rassemblent dans la zone de basse pression du vortex et montent jusqu'à la partie supérieure pour être recueillies et extraites. Un courant d'eau d'environ 0, 15 à 0,30 m/s est préféré du fait qu'il est le meilleur pour permettre aux bulles d'air de se séparer et de monter. Lorsque le courant d'eau à travers l'appareil 100 augmente, on obtient de bons pourcentages d'efficacité de l'extraction de l'air avec un débit d'écoulement de l'eau d'environ 1, 8 m/s.

   Le mouvement de l'eau doit être laminaire à l'entrée dans l'appareil lOO, et pour cette raison il est préférable d'utiliser une longueur minimale de tuyau rectiligne équivalente à lO fois le   diametre   du tuyau pour l'arrivée à l'entrée 118. Du côté de la sortie, une longueur minimale égale à 5 diametres est préférable après la tubulure de sortie 120. 



   L'écoulement de l'eau en vortex dans la chambre inférieure 106 est représentée à la Fig. 12. 



   La tubulure de sortie 120 comporte une branche verticale 126 d'un tuyau formant un L. La branche verticale 126 du tuyau est disposée à l'intérieur de la partie infé- 

 <Desc/Clms Page number 17> 

 rieure de la chambre 106 de telle sorte que l'axe vertical de la partie inférieure de la branche verticale 126 du tuyau soit située au-dessous de l'extrémité inférieure du vortex d'eau. Dans la chambre inférieure 106, le vortex conique s'étend vers le bas presque jusqu'à l'extrémité de la branche immergée 126. L'écoulement maximum efficace par rapport à la hauteur entre la partie supérieure de l'enveloppe   102   et l'ouverture de la branche verticale 126 est critique. Un écoulement supérieur au maximum recommandé permettrait à une partie de l'air de s'échapper dans le système de circulation.

   Avec l'écoulement maximum ou audessous de celui-ci seul le liquide retourne dans le système de circulation. A l'orifice 120 de sortie l'eau est en grande partie dépourvue d'air dissout ou entrainé. 



   Lorsque l'air entrainé dans le liquide pénètre dans la chambre inférieure 106, le liquide plus lourd est forcé vers la périphérie externe et un vortex est formé au centre et consiste en bulles d'air. Du fait de la faible vitesse dans la chambre, l'air peut monter dans la partie supérieure de la chambre supérieure 104, à travers le trou 110 de la cloison 108. Aucun mouvement circulaire n'est souhaité dans la chambre supérieure 104 et dans ce but la circonférence externe de la cloison 108 doit être fermée de façon étanche. Lorsque l'air s'accumule dans la chambre supérieure 104 au-dessus du niveau 128 de l'eau dans celle-ci, l'air est chassé de cette chambre au moyen du dispositif d'élimination. 



   L'air se trouvant en contact direct avec l'eau est absorbé et transporté à travers le système sous forme dissoute (en solution). La liaison par l'air et l'accumulation de bulles d'air dans les tuyauteries-provoquent du bruit et un fonctionnement inefficace. L'oxygène provoque de la corrosion dans le système, et la présence d'air dans celui-ci est la cause d'un gaspillage d'énergie en ce qui 

 <Desc/Clms Page number 18> 

 concerne la pompe. 



   Pour que l'appareil 100 à vortex pour la séparation et l'élimination de l'air d'un liquide fournisse sa capacité maximale de séparation d'air, on maintient un écoulement de 15, 14 à 30,28   1/min.,   la tubulure d'entrée 118 ayant un   diametre   d'ouverture de 1, 9 à 2,5 cm et la tubulure de sortie 120 ayant un   diametre   d'ouverture de 1, 9 à 2,5 cm, le trou 110 ayant un   diametre   de 1, 9 cm, l'extrémité inférieure de la branche 126 étant espacée de 1, 9 cm du fond de la chambre inférieure 106, cette dernière ayant un   diametre   de 9,88 cm, la distance depuis l'axe horizontal de la tubulure d'entrée 18 jusqu'à l'extrémité de la branche 126 étant de 1, 74 cm,

   la distance entre la partie supérieure de la cloison 108 et la partie supérieure de l'appareil 100 de séparation et d'élimination étant de 12, 85 cm, et la hauteur depuis l'intérieur du fond de la chambre inférieure 106 à la partie supérieure du dispositif de séparation et d'élimination 100 étant de 28,9 cm. 



   En se référant à la Fig. lb, la partie supérieure de l'enveloppe cylindrique 102 fait partie du dispositif 200 d'élimination de l'air. Le boitier 210 est relié à la périphérie 112 de l'enveloppe 102 le long de la ligne de séparation 212 au moyen de vis 213 ou analogue. L'intérieur de la chambre supérieure 104 délimite une chambre de pression qui communique avec le système d'eau à travers le trou 110 ménagé dansla cloison horizontale 108. 



  Une tige-guide 224 de flotteur est montée coulissante dans un alésage vertical central à travers le flotteur 226 afin de guider le trajet de déplacement du flotteur. Il est évident que l'on peut utiliser tout autre procédé de fixation de la tige de guidage 224 du flotteur au boîtier 210 sans sortir du cadre de l'invention. La tige 224 de guidage du flotteur s'étend à travers un trou central 226 de celui-ci, de telle sorte que le flotteur puisse se dépla- 

 <Desc/Clms Page number 19> 

 cer verticalement par rapport à la tige de guidage. Comme représenté à la Fig. l, la surface inférieure du flotteur 226 est de forme concave.

   Le flotteur 226 peut être réalisé creux en métal, ou encore il peut être réalisé en une matière plastique mousse ou en tout autre matériau qui flotte sur l'eau et ne soit pas affecté par la température de l'eau utilisée dans le système. Un bras 230 est articulé sur un ensemble de siège 242 qui sera décrit dans la suite, au moyen d'un axe d'articulation 236 et il est articulé par son extrémité opposée sur une biellette 232. Le bras 230 porte une partie 230b en U avec une broche 264 s'étendant entre, les deux branches de cette partie en U. 



  La partie supérieure de la tige 224 s'étend à travers le passage formé par les deux parties 230b en U. La partie supérieure de la tige 224 de guidage du flotteur s'étend à travers le passage formé par les deux parties 230b de l'U et la broche 264. La tête 266 de la tige 224 de guidage du flotteur présente la forme d'un tronc de cône inversé. En conséquence le flotteur 226 est libre de flotter en montant et en descendant et légèrement dans une direction latérale, dans les limites évidentes du dispositif représenté. Ceci permet au dispositif de corriger rapidement les variations de la pression de ligne de l'eau sans être exposé à des crachottements indésirables de l'eau ou à des passages à travers le dispositif. La biellette 232 est à son tour articulée sur la tige 234 de soupape pilote, comme représenté en détails à la Fig. 8.

   La biellette 232 comporte une partie 232a en U qui s'étend de part et d'autre de la tige 234, avec une goupille 237 s'étendant à travers les deux parties de l'U et à travers la tige 234 de soupape pilote. Il est évident que l'on peut utiliser d'autres moyens pour articuler la biellette 232 sur la tigeguide de soupape sans sortir du cadre de l'invention. La biellette 230 comporte une partie 230a formant butée et 

 <Desc/Clms Page number 20> 

 s'étendant sur un côté, qui entre en contact avec la partie supérieure 210 du boitier pour procurer une limite supérieure au déplacement du flotteur, et en conséquence une limite à la fermeture de la soupape pilote comme représenté à la Fig. 6. La position basse du flotteur est réglée par un écrou 235 qui est fixé sur la partie inférieure filetée de la tige de guidage 224. 



   L'ensemble de soupape à membrane est représenté en détails aux Fig. 6 et 7. La partie supérieure 210 du boitier comporte un bossage 300 en saillie délimitant une cavité dans laquelle est disposé un dispositif 240 de soupape de purge à membrane. Le dispositif 240 comprend un ensemble de siège 242 qui est retenu de façon étanche en position dans la cavité par une bague élastique 244, par une bague circulaire 246 et par un goujon 248 inséré à travers la paroi de la partie supérieure 210. Un organe de retenue 250, comprenant des éléments 250a, 250b, qui sont vissés sur l'ensemble de siège 242 et servent à retenir la membrane 252 en position comme représenté avec une partie d'obturation 252e de la membrane 252 en contact d'étanchéité avec le siège annulaire 242a de soupape.

   Les raisons impératives et l'avantage de ce contact d'étanchéité dans la soupape sous sa forme montée seront décrits dans la suite. 



   La membrane 252 de la soupape est réalisée en une matière plastique qui peut résister au contact avec le le fluide à haute ou basse température dans le système à eau. La membrane 252 comporte une partie centrale 252a ayant une ouverture centrale à travers laquelle s'étend la tige-guide 234 de soupape pilote. La partie centrale 252a présente également une pluralité d'ouvertures radiales 252b qui s'étendent d'une partie agrandie 252c formant une chambre dans la partie centrale. La fonction des ouvertures radiales 252b et de la partie agrandie 252c 

 <Desc/Clms Page number 21> 

 seront décrites dans la suite. La partie centrale 252a s'étend vers le haut et en contact d'étanchéité avec la partie annulaire 252b pendante de l'organe de retenue 250. 



   Une partie relativement mince 252d de liaison relie la partie centrale 252a à la partie mobile d'obturation 252e qui entre en contact d'étanchéité avec le siège annulaire 242a. La partie de liaison 252d permet à la partie d'obturation 252e de se déplacer en s'éloignant du siège 242a pour ouvrir la soupape par des moyens qui vont être décrits dans la suite. 



   La partie d'obturation 252e de la soupape 252 est maintenue contre le siège 242a par l'action de la pression de l'air dans une chambre arrière 256. L'air pénètre dans la chambre 256 depuis la chambre de pression 104 à travers une série de rainures 258 longitudinales ou en spirale ménagées dans la tige 234 de la soupape pilote. Ainsi, lorsqu'elle se trouve dans la position représentée à la Fig. 6, la tige 234 de soupape permet à l'air de passer de la chambre supérieure 104, à travers l'ouverture centrale de la partie centrale 252a, dans la chambre   252c.   L'air traverse les ouvertures radiales 252b, la partie pendante 250b et la chambre 256.

   Du fait que les pressions de l'air sont approximativement égales dans les chambres 104 et 256, la soupape à membrane est maintenue en position de fermeture en raison de la surface efficace plus grande de la membrane 252 dirigée vers la chambre 256. Ainsi, indépendamment de la pression de l'air dans les chambres, la membrane 252 reste en position de fermeture aussi longtemps que la tige 234 de soupape pilote se trouve dans sa position basse. 



   Lorsque le volume de l'air dans la chambre supérieure 104 augmente, il force l'eau à sortir de la chambre, faisant ainsi descendre le flotteur 226. En raison de la tringlerie de liaison du flotteur 226 avec la soupape pilo- 

 <Desc/Clms Page number 22> 

 te 234, cette dernière se déplace vers le haut lorsque le flotteur se déplace vers le bas. Lorsque le flotteur 226 atteint une position prédéterminée, une partie de plus grand   diametre   de la tige 234 vient en contact avec la partie intermédiaire de la portion centrale 252a, coupant ainsi La communication entre la chambre 252c (et en conséquence avec la chambre 256) et la chambre supérieure 104. 



  Lorsque le flotteur descend dans une autre position prédéterminée, une partie 234a de   diametre   réduit de la tige 234 de la soupape pilote permet la communication entre la chambre 252c (et par conséquent la chambre 256) et l'ouverture de purge 260, mettant ainsi à l'atmosphère l'air se trouvant dans la chambre 256. Du fait que la pression de l'air dans la chambre supérieure 104 est alors supérieure à celle régnant dans la chambre 256, la partie d'obturation 252e est déplacée vers le haut pour ouvrir la soupape. De l'air s'échappe alors du dispositif de mise de l'air à l'atmosphère, à travers les ouvertures radiales 242b, autour de l'ensemble de siège 242 et à travers l'orifice 260 de mise à l'atmosphère.

   L'air peut ainsi être mis directement à l'atmosphère par l'ouverture 260, ou encore un tuyau peut être relié de façon à diriger l'air vers un point plus approprié pour le mettre à l'atmosphère. 



   Lorsque le volume de l'air dans la chambre supérieure 104 diminue, le niveau de l'eau commence à augmenter, amenant le flotteur 226 à monter et la tige 234 de la soupape pilote à descendre. La tige 234 atteint tout d'abord une position dans laquelle elle coupe la communication entre l'ouverture 260 de mise à l'atmosphère et la chambre   252c.   De plus, une augmentation du niveau de l'eau fait descendre la tige de soupape pilote dans une position dans laquelle elle permet de nouveau à l'air de passer de la chambre supérieure 104 dans la chambre 256. La descente de la tige 234 dans sa position de fermeture est rendue plus posi- 

 <Desc/Clms Page number 23> 

 tive par un ressort spirale 262 qui assiste la force de flottaison exercée par le flotteur 226.

   La force du ressort 262 doit évidemment être choisie de façon à ne pas empêcher le flotteur 226 de descendre lorsque le niveau de l'eau descend dans la chambre supérieure 104. Lorsque la pression dans la chambre 256 devient à peu près égale à celle régnant dans la chambre supérieure 104, elle déplace la partie 252e d'obturation contre le siège 242a en raison de la différence des surfaces efficaces, et arrête ainsi l'action de mise à l'atmosphère. 



   Comme on l'a décrit, la surface d'étanchéité 252e de la membrane 252 est initialement en contact d'étancheité avec le siège annulaire 242a lorsque la soupape se trouve montée, c'est à dire qu'elle n'est pas reliée à un système à eau en fonctionnement. L'importance et l'avantage de ceci peuventêtre décritsen examinant ce qui arriverait si cet état initial de fermeture n'existait pas. Lors du remplissage initial du système, le niveau de l'eau dans celui-ci et ensuite dans la chambre supérieure 104 augmente. Si cependant la surface d'étanchéité 252e n'était pas en contact avec le siège 242a, de l'air s'échapperait à travers l'orifice 260 de sortie et aucune pression ne se développerait dans le système.

   Du fait que comme on l'a décrit ici, le fonctionnement de la soupape de mise à l'atmosphère est commandé seulement par la pression du système, l'orifice de purge resterait ouvert. L'eau remplirait ensuite la chambre supérieure 104 et s'échapperait à travers l'orifice 260. La nécessité que la surface d'étanchéité 252e se trouve initialement en contact avec le siège 242a est ainsi démontrée. 



   La partie d'obturation 252e se trouvant initialement en contact avec le siège 242a, il en résulte une fonction de soupape qui présente un avantage notable. On rencontre fréquemment des pressions négatives dans lessystèmes 

 <Desc/Clms Page number 24> 

 à eau-pendant le refroidissement   de.   ceux-ci. Dans de   t3lls ùo i iitions   de pression réduite dans le système, la soupape ne s'ouvre pas. Une pression réduite dans le système (inférieure à la pression atmosphérique) permet à une petite quantité d'air d'être aspirée dans la chambre supérieure 104, faisant ainsi descendre le flotteur. Le flotteur se trouvant alors dans une telle position de flottaison, la tige de soupape pilote se trouve en position pour exposer la chambre 256 à l'atmosphère.

   Cette pression est plus haute que la pression sur l'autre face de la membrane souple, et force ainsi la surface d'obturation 252e contre le siège 242a en empêchant tout air supplémentaire d'être aspiré dans le système. 



   Le dispositif 200 d'élimination d'air utilise la pression interne de l'air à la fois pour ouvrir et fermer la soupape à membrane. 



   La soupape pilote et le dispositif 200 d'élimination d'air sont tels que la pression de l'air dans le boitier agit sur les faces avant et arrière de la membrane, cependant la soupape à membrane est maintenue dans une position de fermeture en raison de la surface efficace plus grande sur la face arrière, c'est à dire la face dirigée à l'opposé du carter. Lorsque le volume d'air se développe et fait baisser le niveau de l'eau dans le carter, le flotteur qui est relié mécaniquement à la soupape pilote astreint cette soupape sollicitée par un ressort à modifier sa position et à relier la face arrière de la membrane à l'atmosphère. La pression agissant sur la face avant de la membrane la force alors à s'ouvrir afin de laisser également échapper dans l'atmosphère l'air dans le boitier.

   Lorsque le niveau de l'eau monte, le ressort de rappel et le flotteur ramènent la soupape pilote dans sa position initiale dans laquelle elle se ferme et cette soupape dirige alors la pression d'air du système 

 <Desc/Clms Page number 25> 

 vers la face arrière de la membrane. En raison de la surface efficace plus grande, la pression de l'air ferme la membrane de la soupape de mise à l'atmosphère. 



   En se référant à la Fig. 9, un système 400 de chauffage à eau chaude comprend une pompe 404, une chaudière 408 et un radiateur 412. Une conduite 416 d'alimentation relie la sortie de la chaudière 408 à l'entrée du radiateur 412. Une vanne 420 est disposée dans la conduite 416 juste avant le radiateur 412. Une conduite 460 de relie la sortie du radiateur 412 à l'entrée de la pompe 404. Une vanne 424 est disposée dans la conduite 460 juste avant la pompe 404. Une conduite 428 relie la sortie de la pompe 404 à la chaudière 408. Une conduite 432 de dérivation peut être utilisée pour détourner la totalité ou une partie de l'eau en contournant la chaudière 408 au moyen d'une vanne 436 à trois voies. Une vanne 444 est disposée dans la conduite 432 au voisinage de la conduite 416.

   Une vanne 464 est disposée dans la conduite 416 après la chaudière 408 mais avant l'intersection avec la conduite 432. 



   La pompe 404 peut au choix être disposée dans la conduite 416 entre la chaudière 408 et le radiateur 412, normalement au-delà de l'intersection des conduites 416 et de la conduite 432 de dérivation. 



   Une région de basse pression (c'est à dire de faible charge) existe normalement dans le système 400, dans le radiateur 412 et les portions de conduites 416 et 460 au voisinage du radiateur 412. Il en est particulièrement ainsi si le radiateur se trouve à une hauteur considérable au-dessus de la chaudière précitée 408 (et de la pompe 404). Une telle région de basse pression peut être la région de pression la plus basse dans le système 400 si le radiateur 404 est disposé à un ou plusieurs étages au-dessus de la chaudière 408 (et de la pompe 404). 



  Comme représenté à la Fig. 9, une conduite 440 de dériva- 

 <Desc/Clms Page number 26> 

 tion est disposée de façon à contourner le radiateur 412 (et la vanne 420) avec son entrée reliée à la conduite 416 et sa sortie reliée à la conduite 460. Le dispositif 100 à vortex de séparation et d'élimination de l'air de l'eau est disposé dans la conduite 440 de dérivation. Une vanne 452 est disposée dans une conduite 440 après le dispositif 100. 



   Pour être le plus efficace, le dispositif 100 à vortex pour l'élimination de l'air de l'eau doit être disposé à un niveau plus élevé que le radiateur 412. Un avantage résultant de la disposition du séparateur d'air en dérivation autour du radiateur 412 consiste en ce que lorsque l'écoulement à travers le radiateur 412 est fermé au moyen de la vanne 420, l'écoulement peut se poursuivre à travers la conduite de dérivation 440 avec une séparation continue de l'air de l'eau en circulation. En choisissant une zône de basse pression pour placer le dispositif 100, on obtient une séparation efficace de tout air de l'eau en circulation et l'air séparé est éliminé de façon continue ou intermittente.

   Lorsque l'écoulement peut s'effectuer à travers le radiateur 412, une partie de l'eau doit également pouvoir s'écouler à travers la conduite de dérivation 440 afin de maintenir une séparation et une élimination constantes de l'air. La dérivation doit toujours fonctionner avec un faible débit de dérivation. 



   Le dispositif de soupape à membrane pour l'évacuation de l'air décrit dans le brevet U. S.-A NO 4.299. 248 peut être utilisé pour constituer la partie d'élimination et de mise à l'atmosphère de l'air du dispositif à vortex selon l'invention pour la séparation et l'élimination de l'air de l'eau. On peut utiliser n'importe quel, autre dispositif d'élimination de l'air (continue ou intermittente) pourvu qu'il puisse être incorporé dans le dispositif 100 à vortex. Un dispositif préféré pour l'élimination de l'air 

 <Desc/Clms Page number 27> 

 est représenté aux dessins. 



   II peut être prévu plus d'un seul radiateur 404 (en parallèle ou en série) dans le système de chauffage, mais un seul est représenté à la Fig. 7 aux fins d'illustration. 



   Une conception appropriée d'un système de tuyauteries dépourvu d'air comprend deux principes fondamentaux : (a) suppression de la source prédominante d'air en utilisant un réservoir du type à membrane. 



   (b) la prévision d'un ensemble fiable pour la séparation et l'élimination de l'air, à l'emplacement approprié pour extraire l'air résiduel. 



   L'emplacement approprié pour l'ensemble de séparation et d'élimination de l'air est de préférence toujours situé au"point de plus faible solubilité"de l'air dans l'eau. Un seul ensemble est nécessaire par système, pour autant qu'il soit disposé à l'emplacement approprié. 



  On peut si on le désire utiliser plus d'un seul dispositif, par exemple un dispositif par région principale de tuyauteries. S'il est prévu plusieurs colonnes montantes dans un batiment, il conviendra de choisir la colonne montante qui soit la plus éloignée de la pompe, du fait que celleci se trouve à l'emplacement où la pression, et de ce fait la solubilité, est la plus basse. 



   Un point important qui doit être conservé présent à l'esprit est que l'eau agit comme agent de transport de l'air en solution. Si des bulles d'air existent en un point quelconque autre qu'au"point de plus faible so- 
 EMI27.1 
 lubilité", ces bulles seront alors absorbées par l'eau. 



  L'eau qui a libéré son air au"point de plus faible solu-   bilité"enabsorberan'importeoùdans   la tuyauterie, du fait que par définition il existe une solubilité plus grande en tous les autres points. L'air ainsi absorbé est transporté 

 <Desc/Clms Page number 28> 

 dissout jusqu'au point d'élimination de l'air où il est extrait du système. 



   Le point de plus faible solubilité est celui où l'on rencontre la température la plus élevée et la pression la plus basse. Du fait qu'habituellement la température a un effet moindre que la pression, la question se trouve simplement réduite à trouver le point auquel la pression est la plus faible. Le choix est réduit à deux : savoir la partie supérieure ou la partie inférieure du sys-   tème, à   l'aspiration de la pompe. 



   Du fait que l'effet produit par la pompe au point le plus élevé (la plus grande hauteur) du système est habituellement d'environ la moitié de sa charge, il s'ensuit que la pression à la partie supérieure sera plus faible que la pression à la partie inférieure si la moitié de la charge de la pompe est inférieure à la hauteur du point haut. Cet impératif peut être résumé comme suit : (a) si la charge de la pompe est supérieure au double de l'élévation maximale, le dispositif de séparation et d'élimination de l'air est situé à la partie inférieure. 



   (b) Si la charge de la pompe est inférieure au double de l'élévation maximale, le dispositif de séparation et d'élimination de l'air est disposé à la partie supérieure. 



   Pour illustrer le procédé ci-dessus, on peut utiliser un système à circulation fermée d'eau chaude qui comporte une pompe, un réservoir du type à membrane, trois radiateurs montés en parallèle et une chaudière de chauffage de l'eau. Egalement dans un but d'illustration, on utilise une pompe ayant une capacité de 1.135, 5 litres/ minute à une hauteur de 12 metres et on a une élévation maximale de 9 metres jusqu'au radiateur supérieur. Si la charge de la pompe est inférieure au double de l'élévation, 

 <Desc/Clms Page number 29> 

 le dispositif de séparation et d'élimination de l'air est alors disposé à la partie supérieure du système.

   Au dessin, la charge de 12 metres est i nférieure au double de l'élévation maximale de 9 metres, de sorte que le dispositif de séparation et d'élimination de l'air peut être disposé à la partie supérieure (c'est à dire sur une dérivation contournant le radiateur supérieur). Ceci montre comment décider entre un montage haut et un montage bas du dispositif de séparation et d'élimination de l'air. 



   Il faut très peu de temps (moins d'une heure) pour extraire la plus grande partie de l'air d'un système de chauffage à eau chaude (fermé). Le montage haut de la Fig. 10 assure un écoulement continu avec un faible débit. 



  L'écoulement continu est important pour assurer qu'un système est dépourvu d'air. A chaque fois que la (ou les) pompe fonctionne, l'eau qui circule à travers la tuyauterie balaie tout air ayant été admis dans celles-ci, et l'enmène jusqu'au dispositif de la Fig. 6. L'air est alors libéré et le système est purgé. 



   En se référant à la Fig. 10, la pompe et la chaudière ne sont pas représentées. Une conduite d'alimentation 500 relie la sortie de la chaudière à l'entrée du radiateur 504. Une vanne 508 est disposée dans la conduite 500 juste avant (ou juste après) le radiateur 504. La vanne 508 est habituellement du type automatique qui module l'écoulement dans le radiateur (échangeur thermique) 504 en réponse aux impératifs du conditionnement du volume. 



  Une conduite de retour 512 relie la sortie du radiateur 504 à l'entrée de la pompe. Une zône de faible pression existe normalement dans le système 516 au niveau du radiateur 504 et des parties des conduites 500 et 512 voisines de ce radiateur. Il en est particulièrement ainsi si le radiateur 504 se trouve à une hauteur considérable au-dessus de la chaudière et de la pompe. Une telle zône de fai- 

 <Desc/Clms Page number 30> 

 blé pression peut être la zone de plus basse pression dans la tuyauterie si le radiateur 504 est situé à un étage ou à plusieurs étages au-dessus de la pompe. 



   Comme représenté à la Fig. 10, une conduite 520 de dérivation est disposée de façon à contourner le radiateur 504 (et la vanne 508) avec son entrée reliée à la conduite d'alimentation 500 et sa sortie reliée à la conduite de retour 512. Un dispositif 100 à vortex pour la séparation et l'élimination de l'air de l'eau est monté dans la conduite de dérivation 520. Une vanne 528 est disposée dans la conduite 520 avant le dispositif 100 à vortex. Une vanne 532 est disposée dans la conduite 520 après le dispositif 100 à vortex. Un manometre 536 est monté dans la conduite 520 entre la vanne 528 et le dispositif 100. 



  La vanne 528, en amont du dispositif 100, est partiellement fermée de manière que la pression au dispositif 100 de séparation et d'élimination soit voisine de la pression régnant dans la conduite 512 de retour. Cet arrangement assure également un écoulement continu même s'il est prévu une vanne de commande dans la conduite d'entrée, telle que la vanne 508. Le débit nécessaire est faible ; il agit comme purge en dérivation, mais est suffisant pour extraire l'air du système. En plus d'agir comme des limiteurs, les vannes sont nécessaires pour assurer une isolation dans le cas où un entretien est nécessaire. 



   La Fig. ll montre un agencement similaire d'un dispositif à la partie inférieure du système, c'est à dire à la pompe. La chaudière et le radiateur ne sont pas représentés. Une conduite de retour 600 est reliée à l'entrée d'une pompe 604. Une conduite 608 est reliée à la sortie de la pompe 604. Une conduite 612 de dérivation est montée de façon à contourner la pompe 604. Un dispositif 100 à vortex de séparation et d'élimination de l'air de l'eau est disposé dans la conduite de dérivation 612. Une vanne 620 

 <Desc/Clms Page number 31> 

 est disposée dans la conduite 612 avant le dispositif lOO. 



  Une vanne 624 est disposée dans la conduite 612 après le dispositif lOO. Un manometre 628 est disposé dans la conduite 612 entre la vanne 620 et le dispositif 100. Si on utilise la solution de la purge en dérivation, le dispositif lOO à vortex pour la séparation et l'élimination de l'air de l'eau peut être très petit, même si la dimension de la conduite peut être très grande. Avec la vanne 620 partiellement fermée, la pression du dispositif de séparation est proche de la pression d'aspiration de la pompe. 



  On remarquera que l'on parvient à une réduction considérable des frais du fait qu'un petit dispositif séparateur remplace un séparateur normalement plus coûteux correspondant à la dimension totale de la conduite. 



   Une raison fondamentale pour laquelle cette solution en dérivation fonctionne est que l'on traite seulement de l'air résiduel, ce qui n'est possible que si on utilise un réservoir dilatable à membrane. 



   Avec des réservoirs à compression du type sans membrane, des quantités élevées d'air peuvent être engendrées par l'eau saturée dans le réservoir, et si cet air n'est pas immédiatement extrait il peut venir se loger dans les points les plus hauts de la tuyauterie. Avec des réservoirs du type à membrane il reste seulement de l'air résiduel et celui-ci est transporté par l'eau jusqu'au point approprié. 



   L'oxygène dissout se combine avec les surfaces métalliques pour former des oxydes, ce qui est un inconvénient de l'air dissout dans l'eau. La liaison des ensembles terminaux par l'air, et l'accumulation de bulles d'air dans les tuyauteries provoquent des bruits et un fonctionnement inefficace. La cavitation de l'air provoque une perte du rendement de la pompe. L'invention élimine dans une mesure considérable ou réduit ces problèmes. En outre, 

 <Desc/Clms Page number 32> 

 principalement, l'invention élimine la corrosion provoquée par l'oxygène dans le système, ce qui constitue un avantage économique extrêmement important par rapport aux systèmes antérieurs.

   L'invention présente plusieurs avantages par rapport aux séparateurs antérieurs d'air de l'eau et aux systèmes à circulation par écoulement forcé de liquide, qui assurent des avantages économiques très importants ainsi que des économies. 



   Dans l'exemple de la Fig. 13, on a représenté le mode de fonctionnement d'un dispositif 700 à vortex pour la séparation et l'élimination de l'air de l'eau. Le dispositif 700 comprend une enveloppe qui dans son ensemble est de forme cylindrique et qui est divisée en une chambre supérieure 704 et une chambre inférieure 706 au moyen d'une cloison 708. La cloison 708 présente une forme concave et comporte un trou central 710. En fonctionnement, de l'eau se trouve dans la chambre supérieure 704 et dans la chambre inférieure 706. L'air s'échappe de la chambre inférieure 706 à travers le trou central 710 de la cloison 708, dans la chambre supérieure 704.

   L'air qui s'échappe est recueilli et/ou retenu dans la partie supérieure de la chambre supérieure 704 jusqu'à ce qu'il soit mis à l'atmosphère de façon continue ou intermittente par un dispositif 200   d'élimination d 'ai-rqui   est monté dans la chambre supérieure 704, une partie du mécanisme de celui-ci s'étendant au-dessus de la périphérie 712. En ce qui concerne les détails de fonctionnement du dispositif d'élimination 200 on se reportera à ce qui précède. 



   Un court conduit 714 est formé dans le fond 716 du séparateur 700 et est normalement fermé ou bouché du fait qu'il sert principalement à la vidange de la chambre inférieure 706. Le conduit 714 est habituellement fileté intérieurement afin de recevoir un bouchon fileté. 



   Une tubulure d'entrée 718 est disposée alignée 

 <Desc/Clms Page number 33> 

 avec une tubulure de sortie 720, c'est à dire que ces tubulures s'étendent parallèlement à un même axe horizontal qui coupe perpendiculairement l'axe vertical, ou longitudinal, de l'enveloppe cylindrique 702. L'eau contenant de l'air dissout ou entrainé pénètre par la tubulure d'entrée 718. Le courant d'eau sous pression sortant de la tubulure d'entrée 718 balaie circulairement la paroi interne de la chambre inférieure 708, engendrant un vortex au centre de cette chambre. Des bulles d'air sont présentes sous forme d'air entrainé dans l'eau en circulation ou des bulles d'air se forment à partir de l'air dissout dans l'eau qui circule. Les bulles d'air se rassemblent dans la zone de basse pression du vortex et montent à la partie supérieure pour être recueillies et extraites.

   Un écoulement d'eau d'environ 0,15 à environ 0,30 cm/s est préférable du fait qu'il permet le mieux aux bulles d'air de se former et de monter. Lorsque l'écoulement de l'eau augmente à travers le dispositif 700, on obtient de bons pourcentages d'efficacité de l'extraction de l'air jusqu'à un débit d'eau d'environ 1, 8   metres/seconde.   Le mouvement de l'eau doit être laminaire à l'entrée du dispositif 700, et pour cette raison il est préférable d'utiliser une longueur minimale rectiligne de tuyaux parvenant à la tubulure d'entrée 718 qui corresponde à 10 diametres de tuyau. Du côté aval il est préférable d'utiliser à la suite de la tubulure de sortie 720 une longueur minimum égale à 5 diametres du tuyau. 



   Le vortex de forme conique s'étend vers le bas dans la chambre 706 presque jusqu'à la partie supérieure de la tubulure de sortie 720. La sortie 720 doit à tout instant être au-dessous de la partie inférieure du vortex. 



  Un écoulement supérieur au maximum recommandé permettrait à une partie de l'air de   su-échapper   dans le système de circulation. Avec un écoulement égal ou inférieur à l'é- 

 <Desc/Clms Page number 34> 

 coulement maximum, seul le liquide retourne dans le système de circulation. La tubulure 720 de sortie de l'eau est dans sa majeure partie dépourvue d'air dissout ou entrainé. 



   Lorsque l'air entrainé dans le liquide pénètre dans la chambre inférieure 706, le liquide plus lourd est forcé vers la périphérie externe et un vortex se forme dans la partie centrale de la chambre, consistant en bulles d'air. En raison de la faible vitesse dans la chambre, l'air peut graviter et monter dans la partie supérieure de la chambre supérieure 704 à travers le trou 710 de la cloison 708. Aucun mouvement circulaire n'est souhaitable dans la chambre supérieure 704 et dans ce but la périphérie externe de la cloison 708 doit être fermée. Lorsque l'air s'accumule dans la chambre supérieure 704 au-dessus du niveau de l'eau dans celle-ci, l'air est évacué de cette chambre au moyen du dispositif d'élimination de l'air. En variante, les tubulures d'entrée 718 et de sortie 720 peuvent être décalées au lieu d'être alignées comme représenté à la Fig. 14.

   L'invention concerne d'une façon générale un ensemble comprenant en combinaison un séparateur gaz-eau à vortex et un éliminateur de gaz. 



   En ce référant à la Fig. 16, la périphérie 112 qui constituait une partie solidaire de l'enveloppe 102 est remplacée par une couronne 280 qui est soudée comme représenté en 282 sur la partie supérieure de l'enveloppe 102. La cloison horizontale 108 est fixée dans l'enveloppe 102 en étant attachée à l'extrémité inférieure d'une pièce rapportée cylindrique qui est étroitement ajustée dans la partie supérieure de l'enveloppe 102.

Claims (15)

  1. REVENDICATIONS 1-Appareil à vortex pour séparer et éliminer un gaz d'un liquide, adapté pour être relié dans un système fermé à circulation de liquide comprenant des conduites d'alimentation et de retour et une pompe de circulation reliée à ces conduites pour faire circuler le liquide dans ledit système de circulation, caractérisé en ce qu'il comprend un corps principal vertical (102, 702) ayant une chambre supérieure (104, 704) et une chambre inférieure (106, 706), ladite chambre supérieure et ladite chambre inférieure étant séparées par une cloison horizontale (108, 708) présentant un trou central (110, 710) d'évacuation de gaz, une tubulure d'entrée (118, 718) ayant un axe horizontal qui coupe perpendiculairement l'axe vertical dudit corps vertical (102, 702), ladite tubulure d'entrée (118) ayant un diffuseur (122)
    venu de matière disposé immédiatement à l'intérieur de ladite chambre inférieure (106), ce diffuseur (122) étant fixé de façon à former un angle horizontal et un angle vertical par rapport audit axe horizontal de la tubulure d'entrée (118), une tubulure de sortie (120, 720) ayant un axe horizontal qui est dans son ensemble aligné sur ledit axe horizontal de ladite tubulure d'entrée et qui coupe dans l'ensemble perpendiculairement ledit axe vertical du corps principal vertical, ladite tubulure de sortie (120) ayant une branche verticale (126) disposée à l'intérieur de.
    la chambre inférieure (106) de façon que sa portion inférieure soit disposée dans la partie inférieure de la chambre inférieure (106) et que l'axe vertical de ladite portion inférieure de ladite branche verticale (126) soit dans son ensemble aligné sur ledit axe vertical du corps principal vertical (l02r, et un dispositif (200) d'élimination de l'air qui est disposé dans ladite chambre supérieure (104, 704), de manière que lorsque l'appareil de séparation et d'élimination.
    est en fonc- <Desc/Clms Page number 36> EMI36.1 tionnement, le liquide pénétrant dans ladite tubulure d'entrée (118) soit dirigé dans ladite chambre inférieure (106) et sorte par ladite branche verticale (126) et ladite tubulure de sortie (120), ledit angle horizontal et ladite branche verticale (126) et ladite tubulure de sortie (120), ledit angle horizontal et ledit angle vertical ayant des valeurs suffisantes par rapport à l'axe vertical de la tubulure de sortie pour forcer l'eau tangentiellement contre la paroi de ladite chambre inférieure (106) et vers le bas dans cette chambre respectivement afin de former un vortex d'eau dans ladite chambre inférieure, grâce à quoi le gaz contenu dans ledit liquide est libéré sous la forme de bulles, le liquide étant présent en service dans ladite chambre supérieure (104) et ladite chambre inférieure (106),
    l'extrémité inférieure de ladite branche verticale (126) étant située plus bas que le point où se forment les bulles et/ou les bulles de gaz entrainées dans ledit liquide sont transportées vers le bas par ledit vortex, ladite cloison (108, 708) étant disposée dans ledit corps principal vertical (102, 702) à un niveau approprié pour empêcher le mouvement tangentiel du fluide dans ladite chambre inférieure (106, 706) de gêner le passage des bulles de gaz montant dans ladite chambre supérieure (104, 704), les bulles de gaz montant dans ladite chambre supérieure étant purgées dans l'atmosphère au moyen du dispositif (200) d'élimination de l'air monté dans ladite chambre.
  2. 2-Appareil suivant la revendication 1, caractérisé en ce que ladite cloison horizontale (108, 708) présente une forme concave dont la concavité est dirigée vers ladite chambre inférieure (106, 706), le diffuseur (122) de ladite tubulure d'entrée (118) étant. suivant un angle horizontal d'environ 300 par rapport audit axe horizontal de la tubulure d'entrée et suivant un angle vertical d'environ 150 par rapport audit axe horizontal de <Desc/Clms Page number 37> ladite tubulure d'entrée, le gaz étant de l'air et le liquide étant de l'eau.
  3. 3-Appareil suivant la revendication 1, caractérisé en ce que le dispositif (200) d'élimination de l'air pour purger automatiquement le gaz emprisonné provenant d'un système à circulation de liquide comprend une soupape à membrane (240) actionnée par une soupape pilote (234) et comprenant un ensemble de siège (242) ayant un siège rigide (242a) dirigé vers le haut présentant une ouverture centrale qui communique avec l'intérieur de ladite chambre supérieure (104, 704), une membrane souple (252) actionnée par une soupape pilote et présentant une surface d'obturation (252e) qui est dirigée vers le bas et en contact d'étanchéité contre ledit siège rigide (242a), ladite membrane (252) ayant un trou central, une chambre (256) située au-dessus de ladite membrane souple, du côté de celle-ci qui est opposé à ladite surface d'étanchéité (252e),
    ladite chambre (256) communiquant : avec ladite ouverture centrale de la membrane, un organe de retenue (250) pour positionner et retenir ladite membrane souple dans ledit ensemble de soupape (240) de telle sorte que ladite surface d'étanchéité sur ladite membrane souple soit en contact avec le siège rigide (242a), ledit organe de retenue ayant une ouverture centrale alignée avec ladite ouverture centrale de la membrane et communiquant avec celle-ci, et une tige de soupape pilote (234) montée coulissante dans ladite ouverture centrale de membrane, au moins un passage formé dans la partie inférieure de ladite tige de soupape pilote (234), ce passage inférieur permettant la communication entre ladite cavité de la chambre supérieure (104, 704) et ladite ouverture centrale de l*,
    membrane lorsque celle-ci est en contact d'étanchéité avec le siège et ne se trouvant pas dans ladite position de communication lorsque ledit passage inférieur s'est déplacé entièrement <Desc/Clms Page number 38> dans ladite ouverture centrale de la membrane ou lorsque ledit contact d'étanchéité n'existe pas, ladite tige de soupape pilote (234) permettant la communication entre ladite chambre et ladite sortie d'air lorsque ledit contact d'étanchéité n'existe pas, au moins un passage ou une indentation dans la partie supérieure de ladite tige de soupape pilote (234), ce passage ou cette indentation permettant la communication entre ladite chambre et ladite sortie d'air lorsque ladite membrane n'est plus dans la position de fermeture, ladite soupape (240) à membrane actionnée par la soupape pilote ouvrant et fermant sélectivement ladite sortie d'air,
    la pression de l'air dans ladite chambre supérieure (104, 704) étant utilisée pour ouvrir et fermer ladite soupape à membrane (240), et un flotteur (226) disposé dans ladite chambre supérieure (104, 704) et en liaison d'entrainement avec ladite tige de soupape pilote (234), ce flotteur montant et descendant lorsque le niveau de l'eau dans ladite chambre supérieure monte et descend de manière que lorsque le flotteur atteint une première position basse prédéterminée ladite tige de soupape pilote ne permette plus la communication entre ladite chambre (256) et la chambre supérieure (104, 704), lorsque ledit flotteur atteint une seconde position basse prédéterminée ladite tige de soupape pilote provoque l'ouverture de la soupape à membrane et purge l'air à travers ladite sortie d'air,
    par l'intermédiaire d'un passage à partir de ladite ouverture centrale du siège rigide (232a) jusqu'à la sortie d'air, ledit passage supérieur ou indentation dans la partie supérieure de ladite tige de soupape pilote (234) se trouvant dans une position qui permet la communication entre ladite chambre et l'orifice de sortie d'air, et lorsque ledit flotteur (226) atteint une position haute prédéterminée, ladite tige de soupape pilote astreigne ladite soupape à membrane à se fermer en permettant le <Desc/Clms Page number 39> passage d'air provenant de ladite enveloppe dans la chambre située au-dessus de la soupape à membrane, qui revient dans ladite position de fermeture, ladite soupape à membrane étant en contact de fermeture avec ledit siège à chaque fois que le flotteur (226)
    se trouve dans sa position haute de fermeture ou que la pression de l'air dans ladite chambre est égale ou supérieure à la pression de l'air dans ladite cavité.
  4. 4-Appareil suivant la revendication 3, caractérisé en ce qu'il comprend des moyens de guidage (224) pour guider le flotteur (226) suivant un trajet qui est à peu près rectiligne, ladite soupape pilote permettant le passage de l'air depuis ladite chambre supérieure (104, 704) jusqu'à une chambre située d'un côté de ladite soupape à membrane afin de fermer celle-ci lorsque ledit flotteur atteint une position haute prédéterminée, le passage dans ladite tige de soupape pilote (234) étant constitué par une fente, ladite soupape pilote mettant ladite chambre à l'atmosphère lorsque le flotteur atteint une position basse prédéterminée, permettant ainsi à l'air intérieur sous pression dans ladite chambre supérieure (104, 704) d'ouvrir ladite soupape à membrane.
  5. 5-Appareil suivant la revendication 3, caractérisé en ce que la membrane (240) dé la soupape est fixée entre un organe de retenue et un ensemble de siège (242) ayant un siège (242a) avec lequel ladite membrane entre en contact lorsqu'elle se trouve en position de fermeture.
  6. 6-Appareil à vortex pour séparer et éliminer un gaz d'un liquide, qui est adapté pour être relié dans un système fermé à circulation de liquide comportant des conduites d'alimentation et de retour, comprenant une pompe de circulation reliée à ces conduites pour faire circuler un liquide dans ledit système, caractérisé en ce qu'il comprend un corps principal vertical (702) ayant <Desc/Clms Page number 40> une chambre supérieure (704) et une chambre inférieure (706), lesdites chambres supérieure et inférieure étant séparées par une cloison horizontale (708) présentant un trou central (710) d'évacuation de gaz, une tubulure d'entrée (718) ayant un axe longitudinal qui est dans l'ensemble perpendiculaire à l'axe vertical dudit corps principal vertical, ladite tubulure d'entrée comportant une courte branche de tube ou diffuseur (122)
    relié à la partie supérieure de la chambre inférieure (706), une tubulure de sortie (720) ayant un axe longitudinal qui est dans l'ensemble perpendiculaire à l'axe vertical du corps principal, et est dans l'ensemble parallèle à l'axe longitudinal de la tubulure d'entrée (718), ladite tubulure de sortie (720) étant située dans la partie inférieure de ladite chambre inférieure (706) et un dispositif (200) d'élimination de l'air qui est disposé dans ladite chambre supérieure (704) lorsque l'appareil est en fonctionnement, le liquide pénétrant dans ladite tubulure d'entrée (718) et sortant par ladite tubulure de sortie (720), l'écoulement du liquide dans la chambre inférieure produisant un vortex au moyen duquel un gaz se trouvant dans ledit liquide est libéré sous la forme de bulles, ladite tubulure de sortie (720)
    étant située au-dessous du point auquel se forment lesdites bulles et/ou les bulles de gaz entrainées dans le liquide sont transportées par le vortex, lesdites bulles de gaz montant dans ladite chambre supérieure (704) ert étant purgées dans l'atmosphère au moyen du dispositif (200) d'élimination de l'air.
  7. 7-Appareil suivant la revendication 6, caractérisé en ce que ladite cloison séparatrice (108, 708) présente une forme concave dont la concavité es. dirigée vers la chambre inférieure (106,706), le gaz étant de l'air et le liquide étant de l'eau.
  8. 8-Appareil à vortex pour séparer et éliminer <Desc/Clms Page number 41> un gaz d'un liquide, adapté pour être relié dans un système fermé à circulation de liquide comportant des conduites d'alimentation et de retour et comprenant des moyens de circulation reliés dans lesdites conduites pour faire circuler le liquide dans ledit système, caractérisé en ce qu'il comprend un corps principal vertical (702) comportant une chambre supérieure (704) et une chambre inférieure (706), lesdites chambres supérieure et inférieure étant séparées par une cloison horizontale (708) présentant un trou central (710) d'évacuation de gaz, une tubulure d'entrée (718) ayant un axe longitudinal qui est dans l'ensemble perpendiculaire à l'axe vertical dudit corps principal, ladite tubulure d'entrée ayant une courte branche de tuyau (122)
    formant diffuseur reliée à la partie supérieure de la chambre inférieure (706), une tubulure de sortie (720) ayant un axe longitudinal qui est dans l'ensemble perpendiculaire à l'axe vertical du corps principal, est dans l'ensemble parallèle à l'axe longitudinal de la tubulure d'entrée (718) et est situé qur le côté opposé de ladite chambre inférieure (706) par rapport à ladite tubulure d'entrée (718), ladite tubulure de sortie (720) étant située dans la partie inférieure de ladite chambre inférieure (706), et un dispositif (200) d'élimination de l'air qui est monté dans ladite chambre supérieure (704), de sorte que lorsque l'appareil est en service, le liquide pénètre dans ladite tubulure d'entrée et sorte par ladite tubulure de sortie,
    l'écoulement du liquide dans la chambre inférieure produisant un vortex au moyen duquel du gaz présent dans ledit liquide est libéré sous la forme de bulles, ladite tubulure de sortie de liquide étant située au-dessous du point auquel se forment lesdites bulles et/ou auquel les bulles de gaz entrainées dans le liquide sont transportées par ledit vortex, les bulles de gaz montant dans ladite chambre supérieure (704) et étant évacuées dans <Desc/Clms Page number 42> l'atmosphère au moyen du dispositif (200) d'élimination de l'air.
  9. 9-Appareil suivant la revendication 8, caractérisé en ce que ladite cloison (708) de séparation présente une forme concave dont la concavité est dirigée vers la chambre inférieure (706), ledit gaz étant de l'air et le liquide étant de l'eau.
  10. 10-Système perfectionné à circulation forcée de liquide caractérisé en ce qu'il comprend des moyens (404, 604) de circulation pour forcer le liquide à s'écouler dans le système, une conduite de dérivation (432,520, 612) contournant la zone dans laquelle se produit la plus faible solubilité du gaz dans le liquide dans ledit système, et un appareil à vortex pour séparer et éliminer un gaz d'un liquide1disposé dans ladite conduite de dérivation, de telle sorte que ledit appareil à vortex pour séparer et éliminer le gaz d'un liquide sépare le gaz dudit liquide et évacue ce gaz dudit système à circulation.
  11. 11-Système suivant la revendication 10, caractérisé en ce que le liquide est de l'eau, ledit système de circulation étant un système à tuyauterie d'eau chaude, lesdits moyens forçant l'écoulement étant constitués par une pompe (404,604) et l'entrée et la sortie de ladite conduite de dérivation étant espacées et reliées avant l'entrée de ladite pompe et après la sortie de ladite pompe respectivement, la zone dans laquelle se produit la plus faible solubilité du gaz dans le système de tuyauterie étant située entre l'entrée de la pompe et l'entrée de ladite conduite de dérivation
  12. 12-Système suivant la revendication 12, caractérisé en ce que le liquide est de l'eau, le système de dérivation étant un système à tuyauterie d'eau chaude, au moins un échangeur thermique (412, 504) étant monté dans le système, une chaudière (408)
    étant montée dans le système <Desc/Clms Page number 43> avant ledit échangeur thermique (412, 504), lesdits moyens pour forcer l'écoulement étant une pompe (404,604) et l'entrée et la sortie de ladite conduite de dérivation étant espacées et reliées dans le système avant l'entrée dudit échangeur thermique, où se produit la plus faible solubilité du gaz dans le système de tuyauterie, et après la sortie dudit échangeur thermique, respectivement.
  13. 13-Système suivant la revendication 10, caractérisé en ce que le liquide est de l'eau, le système de circulation est un système à tuyauterie d'eau de refroidissement, lesdits moyens pour forcer l'écoulement étant une pompe (404,604) et l'entrée et la sortie de ladite conduite de dérivation (432,520, 612) étant espacées et reliées dans le système avant la sortie de ladite pompe et après l'entrée de ladite pompe respectivement, la zône dans laquelle se produit la plus faible solubilité de gaz dans le système de tuyauterie étant située entre ladite entrée de la pompe et ladite entrée de la conduite de dérivation.
  14. 14-Système suivant la revendication 10, caractérisé en ce que le liquide est de l'eau, le système de circulation est un système de tuyauterie d'eau de refroidissement, au moins un échangeur thermique (412, 504) étant prévu dans le système de circulation, des moyens de refroidissement de l'eau étant prévus dans le système de circulation avant ledit échangeur thermique, lesdits moyens pour forcer la circulation étant une pompe (404,604), et l'entrée et la sortie de ladite conduite de dérivation étant espacées et reliées dans le système avant l'entrée dudit échangeur thermique, où se produit la plus faible solubilité du gaz dans le système, et après la. sortie dudit échangeur thermique, respectivement.
  15. 15-Système suivant la revendication 10, carac- <Desc/Clms Page number 44> térisé en ce que la température du liquide dans le système de circulation varie, le système comportant en conséquence un dispositif de commande de pression qui est constitué par un réservoir à dilatation du type à membrane.
BE0/212021A 1983-01-21 1983-12-09 Appareil à vortex pour séparer et éliminer un gaz d'un liquide, et installation en comportant l'application. BE898425A (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/460,056 US4475932A (en) 1983-01-21 1983-01-21 Gas-liquid vortex separator-eliminator

Publications (1)

Publication Number Publication Date
BE898425A true BE898425A (fr) 1984-03-30

Family

ID=23827245

Family Applications (1)

Application Number Title Priority Date Filing Date
BE0/212021A BE898425A (fr) 1983-01-21 1983-12-09 Appareil à vortex pour séparer et éliminer un gaz d'un liquide, et installation en comportant l'application.

Country Status (9)

Country Link
US (1) US4475932A (fr)
JP (1) JPS59139903A (fr)
BE (1) BE898425A (fr)
CA (1) CA1216802A (fr)
DE (1) DE3345161A1 (fr)
FR (2) FR2539650B1 (fr)
GB (1) GB2133718B (fr)
IT (1) IT1170296B (fr)
NL (1) NL8303873A (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592368A (en) * 1983-10-11 1986-06-03 Biochem International Inc. Gas analyzer protection system
US4579568A (en) * 1983-10-11 1986-04-01 Biochem International Inc. Gas analyzer separator
DE3635713A1 (de) * 1986-10-21 1988-04-28 Voith Gmbh J M Verfahren zur entschaeumung
US4940473A (en) * 1989-06-16 1990-07-10 Benham Roger A Cyclone solids separator and de-gasifier
US4997464A (en) * 1990-03-23 1991-03-05 Kopf Henry B Deaeration apparatus
US5441482A (en) * 1994-05-11 1995-08-15 The Regents Of The University Of Minnesota Jet driven surgical suction device and method of using
DE19748662A1 (de) * 1996-11-08 1998-05-14 Zexel Corp Flüssigkeitsbehälter
DE19650406A1 (de) 1996-12-05 1998-06-18 Kevin Business Corp Blutabsaugvorrichtung
DE19650407A1 (de) * 1996-12-05 1998-06-10 Kevin Business Corp Blut-Gas-Trennverfahren und -Trennvorrichtung
DE19719555A1 (de) 1997-05-09 1998-11-12 Kevin Business Corp Verfahren und Vorrichtung zum Ausscheiden von Gas aus gashaltigem Blut
US8439999B2 (en) 2010-10-04 2013-05-14 David A. Simpson Device for capturing gas from a produced water stream
CN103620283B (zh) * 2011-03-14 2016-04-27 A.R.I.流体控制附件有限公司 自动气体净化阀
JP5638486B2 (ja) * 2011-08-09 2014-12-10 三井海洋開発株式会社 気泡リフトシステム、及び、気泡リフト方法
US8597402B2 (en) 2011-09-23 2013-12-03 David A. Simpson and Janet K. Simpson Device for capturing gas from a produced water stream
WO2013116695A1 (fr) 2012-02-02 2013-08-08 Semco, Llc Module de pompe à balancier refroidi, système et procédé associés
DE202015104021U1 (de) * 2015-07-31 2016-11-03 I.C.B. Innovations-Center-Bad GmbH & Co. KG Vorrichtung zum Entlüften einer Rohrleitungsanlage
JP2022554328A (ja) 2019-10-31 2022-12-28 モット・コーポレーション 慣性分離及び多孔質媒体抽出を組み込んだ二相分離器デバイス
CA3151866A1 (fr) 2021-03-12 2022-09-12 Semco Llc Systeme de poutre climatique multizone et methode avec un module de pompe

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735622A (en) * 1956-02-21 Pintarell
US1568413A (en) * 1923-04-30 1926-01-05 David D Peebles Separator
CH120745A (de) * 1926-06-03 1927-07-01 Sulzer Ag Warmwasserheizung mit Umwälzpumpe.
US1737680A (en) * 1927-09-01 1929-12-03 Condit Electrical Mfg Corp Gas and liquid separator
US1775362A (en) * 1927-09-03 1930-09-09 Marcus R T De Separator
US1734507A (en) * 1928-10-23 1929-11-05 Lester L Westling Gas and liquid separator
US1952475A (en) * 1931-05-18 1934-03-27 Bell & Gossett Co Water circulation control device
US2061605A (en) * 1934-10-01 1936-11-24 Penberthy Injector Co Heat control system
GB461802A (en) * 1935-09-06 1937-02-24 Junkers Flugzeug Und Motoren W Improvements in and relating to apparatus for separating gas and vapour from flowing liquids, especially the liquids of cooling systems of internal combustion engines, compressors and the like
CH188822A (de) * 1936-01-22 1937-01-31 Sulzer Ag Heizungsanlage.
US2323525A (en) * 1938-04-29 1943-07-06 Glenn L Martin Co Feeding of fuel to engines
US2276136A (en) * 1939-07-07 1942-03-10 William J Woolley Air relief device
US2590754A (en) * 1943-08-30 1952-03-25 Clayton Manufacturing Co Deaerating apparatus
US2434596A (en) * 1944-04-15 1948-01-13 Modine Mfg Co Air eliminator
FR930163A (fr) * 1946-07-02 1948-01-19 Dégazeur
US2578568A (en) * 1947-11-01 1951-12-11 Albert C Mayer Gas-liquid separator
US2713973A (en) * 1951-06-20 1955-07-26 Taco Heaters Inc Heating systems
US2710664A (en) * 1952-05-15 1955-06-14 Joseph J Blackmore Water deaeration
US2790606A (en) * 1953-09-04 1957-04-30 Warren Webster & Co Method for expelling air from a closed hot water system
NL94822C (fr) * 1954-04-26
US2762451A (en) * 1954-05-25 1956-09-11 Dalph C Mcneil Blow-down separator
US2786546A (en) * 1954-06-07 1957-03-26 California Research Corp Apparatus for liquid-vapor separation
GB796886A (en) * 1955-01-20 1958-06-18 Walter Jordan Gas separator for fuel decanting installations
US2849016A (en) * 1955-04-20 1958-08-26 Oil Capital Valve Company Air eliminator valve
US2913068A (en) * 1957-09-24 1959-11-17 Chicago Stainless Equipment Air eliminator
US3080119A (en) * 1961-01-23 1963-03-05 Gen Fittings Company Expansion tank and air removal unit
US3202356A (en) * 1962-12-28 1965-08-24 Itt Hot water heating systems having auxiliary pressurizing means
DE1205253B (de) * 1963-02-12 1965-11-18 Ragnar Arvid Andersson Selbsttaetige Entlueftungsvorrichtung fuer Wassersammelheizungsanlagen
US3271933A (en) * 1963-10-31 1966-09-13 Internat Telephone & Telegraph Gas separation pump for liquid circulating systems
US3276188A (en) * 1964-02-28 1966-10-04 Itt Heating or cooling systems and air separating devices therefor
US3276187A (en) * 1965-07-09 1966-10-04 Itt Gas separation pump for liquid circulating systems
US3428966A (en) * 1966-06-23 1969-02-25 Adolf Schoepe Ball cock float
US3429333A (en) * 1966-06-23 1969-02-25 Adolf Schoepe Ball cock
US3495803A (en) * 1966-06-23 1970-02-17 Adolf Schoepe Valve for controlling the flow of fluid in ball cock and the like
US3319913A (en) * 1966-06-23 1967-05-16 Schoepe Adolf Refill hose mounting clip
US3359708A (en) * 1966-07-15 1967-12-26 Neptune Meter Co Gas and liquid separating apparatus
FR1591992A (fr) * 1968-11-18 1970-05-04
US3576199A (en) * 1969-03-28 1971-04-27 Adolf Schoepe Anticorrosion ball cock fluid flow control assembly
DE1931918C3 (de) * 1969-06-24 1979-07-05 Daimler-Benz Ag, 7000 Stuttgart Vorrichtung zum Entlüften der Kühlflüssigkeit einer Brennkraftmaschine
DE6948644U (de) * 1969-12-16 1970-04-16 Sasserath & Co Kg H Syr-gasabscheider-kombination
US3626574A (en) * 1970-02-19 1971-12-14 Adolf Schoepe Automatic assembly mechanism for ball cock guide and float subassembly
US3624893A (en) * 1970-02-19 1971-12-07 Adolf Schoepe Method of finally assembling ball cock guide and float subassembly
JPS5716285B2 (fr) * 1972-04-04 1982-04-03
US3812655A (en) * 1973-01-23 1974-05-28 D Bennett Gas-liquid separator
JPS5523083B2 (fr) * 1973-10-10 1980-06-20
US3996027A (en) * 1974-10-31 1976-12-07 Baxter Laboratories, Inc. Swirling flow bubble trap
US3992172A (en) * 1975-03-06 1976-11-16 Foster Wheeler Energy Corporation Separator arrangement for start-up system
DE2620380C3 (de) * 1976-05-08 1979-11-29 Philips Patentverwaltung Gmbh, 2000 Hamburg Entlüftungseinrichtung für flüssigkeitsgefüllte Leitungssysteme
US4053291A (en) * 1976-08-18 1977-10-11 The United States Of America As Represented By The Secretary Of The Air Force Cylindrical deaerator
DE2706542C2 (de) * 1977-02-14 1982-11-18 Mannesmann AG, 4000 Düsseldorf Entlüftungseinrichtung für eine Anlage zum Speisen einer Düse mit Öl
US4093428A (en) * 1977-04-12 1978-06-06 The United States Of America As Represented By The Secretary Of The Navy Gas/liquid separator
US4282016A (en) * 1979-02-01 1981-08-04 Technical Development Co. Gas and failure particle separator system
US4299248A (en) * 1979-03-13 1981-11-10 Amtrol Inc. Diaphragm valve air vent device for water systems
AU536655B2 (en) * 1979-04-11 1984-05-17 British Petroleum Company Limited, The m

Also Published As

Publication number Publication date
GB2133718B (en) 1986-07-30
GB8328712D0 (en) 1983-11-30
IT8324474A0 (it) 1983-12-30
JPS59139903A (ja) 1984-08-11
DE3345161A1 (de) 1984-07-26
GB2133718A (en) 1984-08-01
FR2539650A1 (fr) 1984-07-27
CA1216802A (fr) 1987-01-20
FR2541138B1 (fr) 1990-03-23
FR2539650B1 (fr) 1990-03-30
NL8303873A (nl) 1984-08-16
FR2541138A1 (fr) 1984-08-24
IT1170296B (it) 1987-06-03
US4475932A (en) 1984-10-09

Similar Documents

Publication Publication Date Title
BE898425A (fr) Appareil à vortex pour séparer et éliminer un gaz d&#39;un liquide, et installation en comportant l&#39;application.
CA1210665A (fr) Disjoncteur a vidage automatique pour de canalisations hydrauliques
CA2159097C (fr) Systeme de regulation d&#39;air pour reservoir hydropneumatique
FR2479870A1 (fr) Dispositif et procede pour separer un gaz d&#39;une suspension de fibres
EP2756252B1 (fr) Dispositif de transport de chaleur à pompage capillaire
FR2479402A1 (fr) Dispositif de purge d&#39;air de systemes de canalisations
EP0798469B1 (fr) Dispositif d&#39;alimentation en eau sous pression de la source d&#39;eau d&#39;un injecteur à vapeur
FR2736009A1 (fr) Ensemble a module a pompe et cuve de reserve de carburant
EP0095397B1 (fr) Système pour empêcher l&#39;entraînement de liquides au nez de torche
EP0162441A2 (fr) Séparateur de mélanges par centrifugation
FR2652610A1 (fr) Procede de pompage de melange liquide gaz dans un puits d&#39;extraction petrolier et dispositif de mise en óoeuvre du procede.
EP0820067A1 (fr) Système de décharge de vapeur à condenseur interne
EP2883013B1 (fr) Absorbeur a echangeur a plaque spiralee avec alimentation fluidique homogene
FR2774729A1 (fr) Systeme de pompage de liquide
WO2020074795A1 (fr) Dispositif de séparation de liquide et de gaz et appareil thermodynamique equipé d&#39;un tel dispositif
FR2621083A1 (fr) Pompe immergee de prelevement de liquide dans une conduite, notamment une conduite de rejet en eau profonde d&#39;eaux de refroidissement de centrale nucleaire
WO2023174682A1 (fr) Dispositif de degazage d&#39;hydrogene liquide
FR2721989A1 (fr) Dispositif anti-belier pour un reseau de circulation d&#39;un liquide
EP0363282B1 (fr) Utilisation d&#39;une buse présentant un profil convergent-divergent dans un dispositif de débourrage de coupe-racines
FR2485363A1 (fr) Dispositif pour regenerer l&#39;echangeur d&#39;ions d&#39;une machine a laver la vaisselle
EP0648523B1 (fr) Dispositif et procédé de dégazage pour circuit hydraulique
BE502799A (fr)
FR2556788A1 (fr) Perfectionnement aux installations du type pompe a vide alimentee par un liquide de refrigeration sous pression constante
BE389821A (fr)
FR2739170A1 (fr) Reservoir hydropneumatique anti-belier avec dispositif d&#39;admission et de regulation d&#39;air, procede d&#39;admission d&#39;air

Legal Events

Date Code Title Description
RE Patent lapsed

Owner name: AMTROL INC.

Effective date: 19901231