AU2017261509B2 - Regulating method for an electric heater and the associated heater - Google Patents

Regulating method for an electric heater and the associated heater Download PDF

Info

Publication number
AU2017261509B2
AU2017261509B2 AU2017261509A AU2017261509A AU2017261509B2 AU 2017261509 B2 AU2017261509 B2 AU 2017261509B2 AU 2017261509 A AU2017261509 A AU 2017261509A AU 2017261509 A AU2017261509 A AU 2017261509A AU 2017261509 B2 AU2017261509 B2 AU 2017261509B2
Authority
AU
Australia
Prior art keywords
temperature
blowing device
air flow
heating element
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2017261509A
Other versions
AU2017261509A1 (en
Inventor
Cedric Hemmer
Jean Louis Morard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muller et Cie SA
Original Assignee
Muller et Cie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muller et Cie SA filed Critical Muller et Cie SA
Publication of AU2017261509A1 publication Critical patent/AU2017261509A1/en
Application granted granted Critical
Publication of AU2017261509B2 publication Critical patent/AU2017261509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/022Air heaters with forced circulation using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/176Improving or maintaining comfort of users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/208Temperature of the air after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/265Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/345Control of fans, e.g. on-off control
    • F24H15/35Control of the speed of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2064Arrangement or mounting of control or safety devices for air heaters
    • F24H9/2071Arrangement or mounting of control or safety devices for air heaters using electrical energy supply
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0275Heating of spaces, e.g. rooms, wardrobes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/128Preventing overheating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Central Heating Systems (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Regulating method for an electric heater and the associated heater The present invention relates to a control method for regulating a heating apparatus (10), comprising: an envelope (14, 16); an electric heating element (12, 22); an inertial element (14) and a temperature sensor (42); wherein the control method comprises a first and a second mode of operation which are respectively associated with a first temperature (T 1) and a second temperature (Tc). The heater further comprises a device for blowing an air flow (21) towards the electric heating element and/or towards the inertial element. The method comprises the following steps: - command (100) to change from the first to the second mode of operation; then - increasing (102) the heating and starting (104) the blowing; then - stopping (106) the blowing if the outside temperature (T) reaches a predetermined value equal to T1 + a(Tc - T 1), such that 0 < a5 s1. Figure 1 23 32 31 43 12 14 28 25 26- 17 III.. 22 21 42 30 32 232 FIG22

Description

23 32 31 43
12 14 28 25
26- 17 III..
22 21
42 30
32
232
FIG22
Regulating method for an electric heater and the associated heater
The present invention relates to a method of regulating a heater. The heater may be of the type comprising: an envelope defining an interior space and a space outside the apparatus; an electric heating element designed to convert electrical energy into heat and located in the interior space; an inertial element made of a material with thermal inertia, able to store the heat emitted by the electric heating element and to restore the heat to air outside the apparatus; a sensor of a temperature of the outside air; wherein the control method comprises a first mode of operation of the apparatus for maintaining the outside air at a first temperature T1, and a second mode of operation of the apparatus for maintaining the outside air at a second temperature Tc that is higher than the first temperature. In such a heating apparatus, referred to as a thermal inertia apparatus, the heat of the heating element is transferred to the outside air by the inertial element. Thus, the outside temperature variations are attenuated compared to direct transfer, and which thus improves the comfort of the users. The regulation methods of electric heaters generally provide for an "economy mode" and a "comfort mode", each aimed at keeping the outside air at a different temperature. The economy mode, which corresponds to the lowest temperature, is generally adopted in the absence of users. When switching to comfort mode, the heating element is supplied with electricity to raise the temperature of the room. In such a case, the presence of an inertial element slows the rise in temperature compared with direct heat transfer between the heating element and the air. One solution to accelerate the temperature rise is to increase the maximum heating power of the apparatus. This solution is nevertheless expensive in energy. In this context, there is a need for a heater offering a rapid rise in temperature without significantly increasing the energy cost. In one aspect of the present invention, there is provided a method of regulating a heating apparatus, wherein the apparatus comprises: - an envelope defining an interior space and an outer space to the apparatus; - an electric heating element adapted to convert electrical energy into heat and located in the interior space;
- an inertial element made of a material with thermal inertia, capable of storing the heat emitted by the electric heating element and of returning the heat to air outside the apparatus; - a sensor for a temperature (T) of the outside air; wherein the control method comprises a first mode of operation of the apparatus for maintaining the outside air at a first temperature (T1) and a second mode of operation of the apparatus for maintaining outside air at a second temperature (Tc) that is greater than the first temperature; wherein the heating apparatus further comprises a blowing device, designed to direct an air flow towards the electric heating element and/or the inertial element, wherein the air flow is in communication with the outside air; and wherein the method comprises the following steps: - as the apparatus is in the first mode of operation and the blowing device is at a standstill, reception of a command to change to the second mode of operation; then - increasing the electrical energy supplied to the heating element, and starting of the blowing device; then - stopping of the blowing device if the temperature (T) of the outside air reaches a first predetermined value (T3) equal to T1 + a(Tc - T1), such that 0 < a5 1. In a further aspect, there is provided a heating apparatus comprising: - an envelope defining an interior space and an outer space to the heater; - an electric heating element designed to convert electrical energy into heat and located in the interior space; - an inertial element made of a material with thermal inertia and capable of storing the heat emitted by the electric heating element and of returning the heat to air outside the apparatus; - a sensor for a temperature (T) of the outside air; - a blowing device, designed to direct an air flow towards the electric heating element and/or to the inertial element, and the air flow is in communication with the outside air; wherein the heating apparatus is provided with means for implementing a control method as described above.
According to other advantageous aspects of the invention, the method may comprise one or more of the following characteristics, taken separately or in any technically feasible combination: - a lies between 70% and 99%, more preferably between 80% and 95%; - when switching on the blowing device, the device operates according to a first air flow rate di; then, when the outside air temperature reaches a second predetermined value equal to T1 + p(Tc - T1), where 0 < P < a, the blowing device operates according to a second air flow rate d 2 such that 0 < d 2 < di; - the first air flow is substantially constant while the second air flow decreases over time; - a first period is measured between a first instant of start-up of the blowing device and a second instant when the temperature of the outside air reaches the second predetermined value; then, from the second instant, an air flow of the blower device varies according to a predetermined model form that is designed to decrease the air flow between the values di and 0 over a second period calculated as a function of the first period; - P lies between 50% and 90%, more preferably between 60% and 70%; - when the electrical energy supplied to the heating element increases, electric power is supplied to the heating element; then, if the temperature of the outside air reaches a third predetermined value equal to Ti + y (Tc - T), where 0 < y < a, the supplied electric power decreases; - the heater further comprises a presence detector near the apparatus; wherein the method further comprises: a step of stopping the blowing device (20) when a presence is detected; and a step of restarting the blowing device when no presence is detected, and if the temperature of the outside air is lower than the first predetermined value. According to other advantageous aspects of the invention, the heating apparatus may comprise one or more of the following characteristics, taken separately or in any technically feasible combination: - the inertial element forms a front panel included in the envelope of the apparatus, wherein the front panel has an internal face facing towards the interior of the apparatus, and wherein the electric heating element is in contact with the internal face;
- the inertial element is formed of a material capable of emitting infrared radiation under the effect of an increase in its temperature; - the blowing device comprises at least one fan, preferably at least two fans, located in the interior space. The invention will be better understood on reading the description which follows and that is given solely by way of a non-limiting example with reference to the drawings, wherein: Fig. 1 shows a schematic sectional view of a heater according to one embodiment of the invention; Fig. 2 shows a schematic view of a device for regulating the heater of Fig. 1; Fig. 3 shows a method according to one embodiment of the invention in the form of a flow chart; and Fig. 4 graphically represents temperature and power variations as a function of time for the heating apparatus of Fig. 1. Fig. 1 shows schematically and in section, a heating apparatus 10 according to one embodiment of the invention. Preferably, the apparatus 10 is a domestic heater or radiator. In the following description, the heating apparatus 10 is considered to be installed in a room of a residential building. The heating apparatus 10 comprises, in particular, a main electric heating element 12 and an inertial element 14 forming a front panel of the heating apparatus 10. The heating apparatus 10 further comprises a rear bodywork 16, assembled with the front panel 14 to form an envelope of the heating apparatus 10. The envelope defines an interior space 17 and an outer space 18 ofthe apparatus.
In the rest of the description, the terms "interior" and "exterior" refer respectively to the interior space 17 and exterior space 18 of the apparatus 10. The outer space 18 is considered to be limited to the room in which the device 10 is installed. The apparatus 10 further comprises a blowing device 20. In the embodiment of Fig. 1, the apparatus 10 further comprises a secondary electric heating element 22. The blowing device 20 and the secondary heating electric element 22 are arranged in the interior space 17. The apparatus 10 also comprises an electronic device 23 for regulating the electrical supply of the heating elements 12, 22 and the blowing device 20. The front panel 14 is able to store the heat emitted by the heating elements 12, 22 and to restore the heat to air outside the apparatus 10. The front panel 14 is preferably made of a thermal inertia material, particularly of the glass, stone or metal type, such as cast iron. Preferably, the material of the front panel 14 is also emissive, i.e. able to emit infrared radiation under the effect of an increase in temperature. In the embodiment of Fig. 1, the front panel 14 has a substantially planar shape, arranged vertically in an operating position of the apparatus 10. According to the variant, the front panel 14 has a curved or angular shape. The front panel 14 comprises a front face 25 and a rear face 26, respectively oriented towards the outside and towards the inside of the apparatus 10. The main electric heating element 12 is an electrical resistance, in thermal contact with the rear face 26 of the front panel 14. In the embodiment of Fig. 1, the electrical resistance 12 is screen-printed on a plastic film 28, while the plastic film is stuck on the rear face 26 of the front panel. According to an alternative embodiment (not shown), the electrical resistance is formed by a heating cable applied to the rear face 26 of the front panel. The rear bodywork 16 is, for example, made of metal and comprises means (not shown) for attachment to a vertical wall. The rear bodywork 16 further comprises lower openings 30 and upper openings 31 for a substantially vertical air flow in the interior space 17. The blowing device 20 is preferably located in the lower part of the apparatus 10, in particular near the lower openings 30 of the rear bodywork 16. The blowing device 20 preferably comprises at least one fan, and more preferably two fans, arranged, for example on either side of a vertical median plane of the apparatus 10. The blowing device 20 is designed to direct an air flow 21 towards the electrical resistance 12 and to the front panel 14. The flow of air is, for example, oriented obliquely, from the bottom to the top. The secondary heating element 22 is preferably a convection heating element. The secondary heating element 22 comprises, for example, an electrical resistance embedded in a cast iron, ceramic or aluminum heater. The heating body is, for example, fixed to the rear bodywork 16. One considers a ratio between the maximum powers Pmax and Pmax2 of the power supply of the electric heating elements, respectively the main element 12 and the secondary element 22. Preferably, the ratio lies between 1 and 4. The electronic control device 23 is shown schematically in Fig. 2. The electronic control device 23 comprises, in particular, a control unit 32 situated at the upper part of the apparatus 10. The control unit 32 comprises, for example, a microprocessor 33, a program memory 34 and at least one communication bus 36. The control unit 32 also comprises a man/machine interface 40, of the screen/keyboard type, enabling a user to select parameters of the control method, such as a set temperature To of the apparatus 10. The electronic control device 23 also comprises a temperature sensor 42 located in the lower part of the apparatus 10 and connected to the control box 32. The sensor 42 makes it possible to measure a temperature T of the air outside the apparatus 10. Optionally, the electronic control device 23 further comprises a presence detector 43 that is able to detect a presence in the vicinity of the apparatus 10. This is, for example, an optical detector, especially an infrared, or an acoustic detector. The electronic control device 23 is able to supply electrically the electrical resistances of the heating elements 12, 22, as well as the blowing device 20. More specifically, the program memory 34 contains a program 44 controlling the power supply of the heating elements 12, 22, as a function of the outside temperature T measured by the sensor 42, and with the set temperature To set at the interface 40. In the case where the apparatus 10 includes a secondary heating element 22, the main heating element 12 is preferably a priority in the program 44. In other words, as long as the power supply of the resistance 12 is lower than the maximum power Pmax1, the resistance of the secondary heating element 22 is not supplied with electricity. Moreover, the program 44 provides a first mode of operation of the apparatus 10, the economy mode. The economy mode is intended to maintain the outside temperature T at a first value T 1 . Preferably, T 1 is equal to T. - AT, wherein T, is the setpoint temperature adjustable at the interface 40, while AT is a predefined interval in the program memory 34. The program 44 further provides a second mode of operation of the apparatus 10, the comfort mode. The comfort mode is intended to maintain the outside temperature T at a second value T 2 that is greater than the first value T 1. In the remainder of the description, T 2 is considered to be equal to the set temperature T. Preferably, in the economic mode as in the comfort mode, the blowing device 20 is by default at a standstill. In other words, the operation of the apparatus 10 is primarily based on radiation, i.e. the infrared emission by the front panel 14, and on the natural convection, or the heat transfer of the heating elements 12, 22 to the air without blowing. When switching from the economy mode to the comfort mode, the program 44 executes the steps of a method according to one embodiment of the invention, as described below. The method is represented by a logic diagram in Fig. 3. Since the apparatus 10 is in economy mode, a first step of the method is the reception 100 by the program 44 of a comfort mode command. This command is, for example, generated by time programming the apparatus 10. Alternatively, the command to change to comfort mode is generated by the detection of a presence by the detector 43. The command to pass to comfort mode leads to the supply 102 of power to the heating elements 12, 22, or to an increase in the power supplied compared to the economy mode. Preferably, upon reception of the command to pass to comfort mode, each of the heating elements is supplied its maximum power, respectively Pmax1 and Pmax2. In a substantially simultaneous manner, the program 44 triggers the operation of the blowing device 20, or the fans, corresponding to a first air flow d1 . Preferably, d 1 is equal to or close to a maximum air flow rate of the blowing device. The blowing device 20 thus directs an air flow 21 towards the resistance 12 and to the front panel 14, wherein the air flow is directed from the bottom upwards. In other words, outside air enters the interior space 17 through the lower openings 30 of the rear bodywork 16. The air is heated by contact with the resistance 12 and/or the front panel 14 and then comes out in the outer space 18 through the upper openings 31. Preferably, the interior space 17 is small enough for the air flow 21 to be heated also by the secondary heating element 22.
The outside air is thus heated by forced convection within the apparatus 10, which accelerates the rise of the temperature T with respect to a radiation/natural convection operation. The blowing device 20 is then stopped 106 when the temperature T of the outside air, measured by the sensor 42, reaches a third value T3 defined as a function of the set temperature Tc. T 3 is, for example, calculated according to a predefined formula in the program memory 34, such that T3 = T 1 + a(AT), where 0 < a s 1. In other words, the blowing device 20 stops when the temperature of the outside air has reached, or is at least sufficiently close to, the set temperature T. Preferably, the value a lies between 70% and 99%, more preferably between 80% and 95%. According to a first variant of the method, represented by the arrow 108 in Fig. 3, the air flow of the blowing device 20 remains substantially constant until the step of stopping 106. The graph of Fig. 4 shows the variation of the outside temperature T as a function of time, for a heater 10 as described above, during a process according to the first variant above. The curve 50 represents a first so-called "dynamic" case, corresponding to a value a equal to 95%. The curve 52 represents a second case corresponding to a value a equal to 65%. The curve 54 represents a third reference case, called "static". In the "static" case, the blowing device 20 is not used, while the other steps of the above method are retained. The origin of the time axis corresponds to the command to change from economy mode to comfort mode. In the example shown in Figure 4, Te = 19 0C; AT = 3.5 °C; while the total electrical power of the apparatus 10, corresponding to Pmax1 + Pmax2, is 1000 W. It is found that in the "dynamic" case, the temperature of 18.8 °C (i.e. To - 5% AT) is reached after 35 minutes, compared with 48 minutes in the "static" case. The time saving 56 with respect to the rise in temperature, related to the use of a blowing device, is therefore about 27%. In the case of the curve 52, from the stopping of the blowing device 20, it is found that the rise in temperature slows down sharply. In fact, the inertial material of the front panel 14, previously cooled by the air flow 21, absorbs most of the heat emitted by the resistance 12. From the stopping of the blowing device 20, the curve 52 thus approximates the curve 54 ("static" case).
In order to optimize both the heating comfort and the noise nuisance associated with the blowing device 20, a second variant of the method provides for a gradual decrease in the air flow rate until the blowing device is stopped. According to this second variant, represented by the arrow 110 in Fig. 3, the step 104 corresponds to a first operating phase of the blowing device 20 according to the first airflow d 1. The temperature T increases until a fourth value T 4 defined as a function of the set temperature To is reached. T 4 is, for example, calculated according to a predefined formula in the program memory 34, such that T 4 = T 1 + P(AT), where 0 < P < a. Preferentially, the p value lies between 50% and 90%, more preferably between 60% and 70%. The program 44 then passes to a second phase 112 of operation of the blowing device 20 in a second air flow d2 where 0 < d 2 < d1 . The temperature T continues to increase until it reaches the value T 3 , which leads to the total stoppage of the blowing device 20. The reduction of the air flow makes it possible to limit the noise of the blowing device 20 when a certain level of heating comfort is already ensured in the room. According to a first embodiment, the second air flow rate d 2 is constant over the period of the second phase 112, wherein, for example, d 2/d 1 = 30%. According to a second embodiment, d 2 decreases during the second phase 112, up to the step of stopping 106 the blowing device 20. The decrease of d 2 during the second phase 112 is effected according to a predetermined model form, stored in the program memory 34. It is, for example, an incremental decrease, or a continuous decrease, in particular linear. According to a first alternative of the second embodiment, a period T2 of decrease at the rate d 2 between the values d 1 and 0 is predefined in the program memory 34, based on experimental data. It is, however, difficult to set the period T2 before the installation of the apparatus 10, because the rate of rise in temperature depends on several parameters external to the apparatus. Such parameters include, in particular, the size of the installation piece, as well as the thermal characteristics of the building. Thus, if the period T2 is chosen too short, the blowing device 20 stops before the temperature T has reached the third value T 3 . If the period T2 is chosen too long, the noise nuisance related to the operation of the blowing device 20 is not optimized.
In addition, according to a second alternative of the second embodiment, the period T2 of decrease at the rate d 2 between the values d 1 and 0 is calculated as a function of a period T1 of the first phase 104. An example is considered where 3= 63% and a = 95%. The period T 1 of the first phase 104 is measured between an instant to of operating the blowing device and a time t, when the temperature T reaches the fourth value T 4. Then, starting from said instant 1t
, defining the beginning of the second phase 112, the air flow d2 of the blowing device decreases according to a predetermined model form, for example linear. The model is configured to change the airflow from d, to 0 over a period T2 calculated as a function of the time T1 previously measured. The program 44 provides, for example, that 1 = T2 . T Other ratios may be defined between the periods T1 and T2 , according to the values of a and S. If the temperature T reaches the third value T3 before the end of the period T2 , the blower 20 is stopped (step 106). Thus, in this example, the second phase 112 is designed to have a maximum period equal to the period T1 of the first phase 104. The example described above is illustrated in Fig. 4 by the curve 58, representing the temperature variation T. This curve 58 is very close to the curve 50 of the "dynamic" case. The example described above thus provides a heating comfort comparable to the "dynamic" case, while reducing the noise nuisance of the blowing device 20 if it is in the room. According to a third alternative of the second embodiment, the program 44 provides for a determination of T2 through self-learning of the apparatus 10. In other words, the period T2 is calculated on the basis of an average of the periods T 1 measured in previous phases of the change from economy mode to comfort mode. In parallel with the operation of the blowing device 20, it is possible to vary the power supply of the heating elements 12, 22 as a function of time, in order to prevent the apparatus 10 from overheating. For example, program 44 provides that step 102 corresponds to a first phase of operation of the heating elements 12, 22, at a first electrical power. Preferably, upon receipt of the command to pass to comfort mode, each of the heating elements is supplied at its maximum power, respectively Pmaxi and Pmax2. The temperature T increases until it reaches a fifth value T5 defined as a function of the set temperature T. For example, T5 is calculated according to a predefined formula in the program memory 34, such that T5 = T1+ y(AT), where 0 < y < a. Preferably, the value y lies between 50% and 90%, more preferably between 60% and 70%. The program 44 then passes to a second phase 114 of operation of the heating elements 12, 22. During this second phase, the total power supplied to the heating elements 12, 22 decreases gradually. Preferably, the power supplied to the main heating element 12 is substantially maintained at Pmai as long as the set temperature T, or even the third value T3 , is not reached. During the second phase 114, it is, therefore, the power supplied to the secondary heating element 22 which gradually decreases. The curves 60 and 62 of Fig. 4 respectively represent the variations of the electric power supplied as a function of time, respectively in the "dynamic" and "static" cases as described above. The electric power supplied is expressed as a percentage of the total power of the apparatus 10. It may be seen that the use of blowing allows curve 60 of the "dynamic" case to decrease earlier than in the "static" case. A space 64 between the curves 60 and 62 illustrates an energy saving for the rise in temperature, linked to the use of a blowing device. This saving of energy is of the order of 6%. Such an energy gain largely offsets the energy consumed by the fans of the blowing device 20. In the "dynamic" case described above, the blowing is maintained at the first rate d1 until the third value T3 of the temperature T is obtained. According to a variant, the blowing device 20 is synchronized with the heating elements . More specifically, the program 44 corresponds to the second variant described above, represented by the arrow 110 in Fig. 3, where T5 = T 4 . Thus, from the moment T reaches the fourth value T 4 , the flow rate of the blower 20 and the power supplied to the secondary heating element 22 decrease together. Preferably, the electronic control device 23 offers the possibility to the user of disabling the execution of the program 44. Thus, the user may overcome the noise associated with the blowing device 20 if he is present in the room. According to one embodiment, in the case where the command to change to comfort mode is not related to the presence detector 43, the program 44 causes the blowing device 20 to stop as the detector 43 detects a presence close to the apparatus 10. Thus, the blowing only works when the room is unoccupied, in order to reduce noise. The method as described above allows faster temperature rise than in the case of devices without a blowing device. Consequently, it is possible to configure an interval AT between the temperatures of the economy and comfort modes, greater than for radiators of the prior art. Preferably, AT is greater than 3.0 °C and more preferably between 3.5 °C and 5.0 °C. Such a method thus allows energy savings in economy mode, without degrading the heating comfort in comfort mode. Similarly, the method described above may be used in the case of a change from a frost-free mode to comfort mode. The frost-free mode is characterized by a lower Thg temperature than the economy mode. For example Thg= Tc- 10 °C.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. It will be apparent to a person skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the present invention should not be limited by any of the above described exemplary embodiments. The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavor to which this specification relates. Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

Claims (12)

1. Method of regulating a heating apparatus, wherein the apparatus comprises: - an envelope defining an interior space and an outer space to the apparatus; - an electric heating element adapted to convert electrical energy into heat and located in the interior space; - an inertial element made of a material with thermal inertia, capable of storing the heat emitted by the electric heating element and of returning the heat to air outside the apparatus; - a sensor for a temperature (T) of the outside air; wherein the control method comprises a first mode of operation of the apparatus for maintaining the outside air at a first temperature (Ti) and a second mode of operation of the apparatus for maintaining outside air at a second temperature (Tc) that is greater than the first temperature; wherein the heating apparatus further comprises a blowing device, designed to direct an air flow towards the electric heating element and/or the inertial element, wherein the air flow is in communication with the outside air; and wherein the method comprises the following steps: - as the apparatus is in the first mode of operation and the blowing device is at a standstill, reception of a command to change to the second mode of operation; then - increasing the electrical energy supplied to the heating element, and starting of the blowing device; then - stopping of the blowing device if the temperature (T) of the outside air reaches a first predetermined value (T 3) equal to T1 + a(Tc - Ti), such that 0 < a5 1.
2. Method according to claim 1, wherein a lies between 70% and 99%, more preferably between 80% and 95%.
3. Method according to claim 1 or claim 2, wherein: - when the blowing device is switched on, the device operates according to a first air flow rate (di); then
- if the outside air temperature reaches a second predetermined value (T 4 ) equal to T 1 + p(Tc - T1), where 0 < P < a, the blowing device operates at a second air flow rate (d 2 ) such that 0 < d 2 < di.
4. Method according to claim 3, wherein the first air flow (d) is substantially constant and the second air flow (d 2) decreases over time.
5. Method according to claim 4, wherein - a first period (Ti) IS measured between a first instant (to) for starting the blowing device and a second instant (ti) when the temperature of the outside air reaches the second predetermined value (T 4 ); then - from the second instant (ti), an air flow of the blowing device varies according to a predetermined model form, and designed to decrease the air flow between the values di and 0 over a second period (T2) calculated as a function of the first period.
6. Method according to one of the claims 3 to 5, wherein P lies between 50% and 90%, more preferably between 60% and 70%.
7. Method according to one of the preceding claims, wherein - during the increase of the electric energy supplied to the heating element, electric power is supplied to the heating element; then - if the outside air temperature reaches a third predetermined value (T5 ) equal to T + y(Tc- T), where 0 < y < a, the electric power supplied decreases.
8. Method according to one of the preceding claims, wherein the heater further comprises a presence detector near the apparatus; wherein the method further comprises: - a step of stopping the blowing device when a presence is detected; and - a step of restarting the blowing device when no presence is detected, and if the temperature (T) of the outside air is less than the first predetermined value (T 3 ).
9. Heating apparatus comprises: - an envelope defining an interior space and an outer space to the heater;
- an electric heating element designed to convert electrical energy into heat and located in the interior space; - an inertial element made of a material with thermal inertia and capable of storing the heat emitted by the electric heating element and of returning the heat to air outside the apparatus; - a sensor for a temperature (T) of the outside air; - a blowing device, designed to direct an air flow towards the electric heating element and/or to the inertial element, and the air flow is in communication with the outside air; wherein the heating apparatus is provided with means for implementing a control method according to one of the preceding claims.
10. Heating apparatus according to claim 9, wherein the inertial element forms a front panel included in the envelope of the apparatus, wherein the front panel has an inner face facing towards the inside of the heating apparatus, and wherein the electric heating element is in contact with the inner face.
11. Heating apparatus according to claim 9 or claim 10, wherein the inertial element is made of a material capable of emitting infrared radiation under the effect of an increase in its temperature.
12. Heating apparatus according to one of the claims 9 to 11, wherein the blowing device comprises at least one fan, preferably at least two fans, located in the interior space.
1/ 2
2/ 2
AU2017261509A 2016-11-22 2017-11-15 Regulating method for an electric heater and the associated heater Active AU2017261509B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1661345A FR3059083B1 (en) 2016-11-22 2016-11-22 METHOD FOR CONTROLLING AN ELECTRICAL HEATING APPARATUS AND ASSOCIATED HEATING APPARATUS
FR1661345 2016-11-22

Publications (2)

Publication Number Publication Date
AU2017261509A1 AU2017261509A1 (en) 2018-06-07
AU2017261509B2 true AU2017261509B2 (en) 2022-03-03

Family

ID=58455128

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2017261509A Active AU2017261509B2 (en) 2016-11-22 2017-11-15 Regulating method for an electric heater and the associated heater

Country Status (3)

Country Link
EP (1) EP3324131B1 (en)
AU (1) AU2017261509B2 (en)
FR (1) FR3059083B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083299A1 (en) * 2018-06-28 2020-01-03 Muller Et Cie HEATER TYPE BLOWER RADIATOR
IT201900005786A1 (en) 2019-04-16 2020-10-16 Aertesi Srl METHOD OF CONTROL OF A HEATER
EP3985474A1 (en) 2020-10-13 2022-04-20 Aertesi S.r.l. A control method of a heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1071781A (en) * 1962-08-15 1967-06-14 Alexander Dunn Ltd Thermal storage air heaters
DE29808655U1 (en) * 1998-05-14 1999-09-23 Ewt Elektrogeraete Gmbh & Co K Electric heater
EP1594025A2 (en) * 2004-05-06 2005-11-09 STIEBEL ELTRON GmbH &amp; Co. KG Method and heating device for controlling a temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1071781A (en) * 1962-08-15 1967-06-14 Alexander Dunn Ltd Thermal storage air heaters
DE29808655U1 (en) * 1998-05-14 1999-09-23 Ewt Elektrogeraete Gmbh & Co K Electric heater
EP1594025A2 (en) * 2004-05-06 2005-11-09 STIEBEL ELTRON GmbH &amp; Co. KG Method and heating device for controlling a temperature

Also Published As

Publication number Publication date
FR3059083B1 (en) 2019-01-25
EP3324131A1 (en) 2018-05-23
EP3324131B1 (en) 2019-05-29
FR3059083A1 (en) 2018-05-25
AU2017261509A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
AU2017261509B2 (en) Regulating method for an electric heater and the associated heater
WO2018220830A1 (en) Air conditioner
AU2014200852B2 (en) Baking oven with climate controlled temperature limiter
JP3432022B2 (en) Air conditioner
JP6851575B2 (en) Two-room heating system
JP6653633B2 (en) heater
NZ737372A (en) Regulating method for an electric heater and the associated heater
CN110857806B (en) Control method of air supply device and air supply device using same
JP2550779B2 (en) Electromagnetic induction heating rice cooker
JP2013007215A (en) Double window
JP3548627B2 (en) Air conditioner
CN115185318A (en) Temperature control method, device, medium, controller and bathroom heater
JP6128164B2 (en) Bathroom Dryer
KR102375009B1 (en) Air conditioning system for hybrid automotive vehicles
KR200475153Y1 (en) hot blast heater for industry
JP2013057473A (en) Bathroom heater-dryer
JP3983571B2 (en) Air conditioner
KR102480057B1 (en) Air conditioning system for automotive vehicles
CN110857819A (en) Heating ventilation fan and control method thereof
JP2013061106A (en) Bathroom heating dryer
KR20100012303A (en) Control method of air-conditioner
JP4947199B2 (en) Bathroom air conditioner
JP4428969B2 (en) Heating system
KR20180102932A (en) Electric hot blaster heater
JP2008045812A (en) Heat-storage heater

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)