AU2003269785B2 - Iron-based powder composition including a silane lubricant - Google Patents

Iron-based powder composition including a silane lubricant Download PDF

Info

Publication number
AU2003269785B2
AU2003269785B2 AU2003269785A AU2003269785A AU2003269785B2 AU 2003269785 B2 AU2003269785 B2 AU 2003269785B2 AU 2003269785 A AU2003269785 A AU 2003269785A AU 2003269785 A AU2003269785 A AU 2003269785A AU 2003269785 B2 AU2003269785 B2 AU 2003269785B2
Authority
AU
Australia
Prior art keywords
silane
composition according
iron
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2003269785A
Other versions
AU2003269785A1 (en
Inventor
Mikhail Kejzelman
Per Knutsson
Paul Skoglund
Hilmar Vidarsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoganas AB
Original Assignee
Hoganas AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoganas AB filed Critical Hoganas AB
Publication of AU2003269785A1 publication Critical patent/AU2003269785A1/en
Application granted granted Critical
Publication of AU2003269785B2 publication Critical patent/AU2003269785B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Lubricants (AREA)

Abstract

The invention concerns a powder composition including an iron or iron based powder and a lubricating amount of an alkylalkoxy or polyetheralkoxy silane, wherein the alkyl or polyether group has between 8 and 30 carbon atoms and the alkoxi group includes 1-3 carbon atoms.

Description

WO 2004/037467 PCT/SE2003/001632 IRON-BASED POWDER FIELD OF THIE INVENTION The present invention relates to new metal powder compositions useful within the powder metallurgical industry. The invention also concerns a method for the preparation of high density metal components by using these compositions.
There are several advantages by using powder metallurgical methods for producing structural parts compared with conventional matching processes of full dense steel. Thus, the energy consumption is much lower and the material utilisation is much higher. Another important factor in favour of the powder metallurgical route is that components with net shape or near net shape can be produced directly after the sintering process without costly shaping processes, such as turning, milling, boring or grinding. However, normally a full dense steel material has superior mechanical properties compared with PM components. This is mainly due to the occurrence of porosity in the PM components. Therefore, the strive has been to increase the density of PM components in order to reach values as close as possible to the density value of a full dense steel.
Among the methods used in order to reach higher density of PM components the powder forging process has the advantage that full dense components may be obtained. The process is however costly and is utilised mainly for mass production of heavier components, such as connection rods. Full dense materials can also be obtained by elevated pressures at high temperatures, such as in hot isostatic pressing, HIP, but also this method is costly.
By using warm compaction, a process where the compaction is performed at an elevated temperature, typically at 120 to 250 the density can be increased with about 0,2 g/cm 3 which results in a considerable improvement of the mechanical properties. A disadvantage is however that the warm compaction method involves additional investment and processing. Other processes, such as double pressing, double sintering, sintering at elevated temperatures etc, may further increase the density. Also these methods will add further production costs hence reducing the overall cost effectiveness.
2 I In order to expand the market for powder metallurgical components and utilise the Sadvantages with the powder metallurgical technique there is thus a need for a simple, O less expensive method of achieving high density compacts with improved mechanical Sproperties.
Summary Of The Invention Itn It has now unexpectedly been found that high density components can be obtained by 00 using high compaction pressures in combination with a new type of powder NO compositions.
Cc According to the present invention, there is provided a powder composition for the preparation of compacted and sintered parts having high density including an iron or iron based powder wherein less than about 5% of the powder particles have a size below pm and a lubricating amount of an alkylalkoxy or polyetheralkoxy silane, wherein the alkyl group of the alkylalkoxy silane and the polyether chain of the polyetheralkoxy silane include between 8 and 30 carbon atoms, and the alkoxy group includes 1-3 carbon atoms.
The present invention also provides a powder composition for the preparation of compacted and sintered parts having high density including an iron or iron based powder and a lubricating amount of an alkylalkoxy or polyetheralkoxy silane, wherein the alkyl group of the alkyl-alkoxy silane and the polyether chain of the polyetheralkoxy silane include between 8 and 30 carbon atoms and the alkoxy group includes 1-3 carbon atoms.
The present invention further provides a process for the preparation of high density green compacts including the following steps: providing an iron-based powder composition according to the invention; optionally mixing said composition with graphite and other additives; uniaxially compacting the powder in a die at a compaction pressure of at least about 900 MPa; and ejecting the green body.
M:\r1na\738375lSped pages-30 11 06 doc IND Accordingly, in one aspect of the invention, distinguishing features of the compositions Sare that less than about 5% of the particles of the iron or iron-based powder have a size O below 45 mrn and that the compositions include a lubricating amount of an alkylalkoxy Sor polyetheralkoxy silane. The present invention also includes a method of preparing green and optionally sintered compacts from these compositions. This method comprises the steps of providing the compositions, optionally mixing said composition tn with graphite and other additives such as alloying elements, machinability improving 00 agents etc; uniaxially compacting the composition in a die at high pressure and ejecting NO the green body, which may subsequently be sintered.
C SAnother aspect of the invention concerns compositions with this type of silanes in combination with iron or iron based powders irrespective of particle size, i.e. in combination with powders conventionally used. Also in this case quite high densities may be obtained.
Detailed Description of the Invention The term "high density" is intended to mean compacts having a density of about at least 7.3 g/cm 3 "High density" is not an absolute value. A typical achievable density according to the state of the art for single pressed, single sintered components is about 7.1 g/cm 3 By using warm compaction an increase of about 0.2 g/cm 3 may be reached.
In this context the term "high density" is intended to mean compacts having a density of about 7.35-7.65 g/cm 3 and above, depending of type and amount of additives used, and type of iron-based powder used. Components having lower densities can of course also be produced but are believed to be of less interest.
The iron-based powder according to the present invention includes pure iron powder, such as water or gas atomised iron powder, sponge iron powders, reduced iron powder; partially diffusion-alloyed steel powder; and completely alloyed steel powder. The partially diffusion M UJna7383M5Sped paqes30.l .0.doc WO 2004/037467 PCTiSE2003/001632 alloyed steel powder is preferably a steel powder alloyed partially with one or more of Cu, Ni, Mo,. The completely alloyed steel powder is preferably a steel powder alloyed with Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S and B. Also stainless steel powders are of interest.
As regards the particle shape it is preferred that the particles have an irregular form as is obtained by water atomisation. Also sponge iron powders have irregularly shaped particles and may be of interest.
One feature of the invention is that the powder used have coarse particles i.e. the powder is essentially without fine particles. The term "essentially without fine particles" is intended to mean that less than about 5 of the iron or iron-based powder particles have size below pm as measured by the method described in SS-EN 24 497. So far the most interesting results have been achieved with powders essentially consisting of particles above about 106 gm and particularly above about 212 m. The term "essentially consisting" is intended to mean that at least 40 preferably at least 60 of the particles have a particle size above 106 and 212 pm, respectively. So far the best results have been obtained with powders having an average particle size above about 212 pm and only less than 5 below 212 gm. The maximum particle size may be about 2 mm. The particle size distribution for iron-based powders used at PM manufacturing is normally distributed with a gaussian distribution with a average particle diameter in the region of 30 to 100 pmun and about 10-30 less than 45 pm. Iron based powders essentially free from fine particles may be obtained by removing the finer fractions of the powder or by manufacturing a powder having the desired particle size distribution.
The influence of particle size distribution and the influence of particle shape on the compaction properties and properties of the compacted body have been subjected to intense studies.
Thus the US patent 5,594,186 reveals a method of producing PM components with a density higher than 95 of theoretical density by utilising substantially linear, acicular metal particles having a triangular cross section. Powders having coarse particles are also used for the manufacture of soft magnetic components as disclosed in e.g. the US patents 6 309 748 and 4190441.
A critical feature according to the invention in order to obtain the high density products is the type and amount of lubricant. It has thus been found that a specific type of lubricants which has previously not been used in connection with metal powders give very promising results.
WO 2004/037467 PCT/SE2003/001632 These lubricants belongs to the group of alkylalkoxy or polyether silanes and more specifically alkylalkoxy or polyether silanes wherein at least one substituent on the Si atom is an alkyl group having at least 8 carbon atoms, wherein the alkyl group may be interrupted by one or more O atoms. The compounds wherein the alkyl group includes one or more oxygen atoms used according to the present invention are called polyether silans The chain length of the alkyl or polyether group is an important feature of the silanes used according to the present invention and have an influence on the lubricating properties of the silane. So far it has been found that the most interesting results are obtained with alkyl or polyether chains having between 8 and 30, preferably between 10 and 24 carbon atoms. Preferably the silane is selected form the group consisting of octyl-tri-metoxy silane, hexadecyl-tri-metoxy silane and polyethyleneether-trimetoxy silane with 10 ethyleneether groups.
In this context it may be mentioned that the US patents 5766304, 5989304, 6139600, 6235076 and 6451082 disclose that very small amounts, i.e. 0.05 or less by weight of the total composition to be compacted, of organoalkoxysilanes may be used as surface treating agents for iron or iron-based powder in combination with lubricating agents. In the four first US patents the following silane compounds are tested: y-methacryloxypropyl trimethoxy silane, 7-glycidoxypropyl trimethoxy silane, N-beta.(aminoethyl) y- trimethoxy silane, methyl trimethoxy silane, fenyl trimethoxy silane and diphenyl dimethoxy silane) In the US patent 6451082 the compounds triphenylmethoxysilane, diphenyldimethoxysilane, phenyltrimethoxysilane, isobutyltrimethoxysilane, and methyltriethoxysilane have been used. The type of organosilanes with lubricating effect used according to the present invention are thus neither mentioned nor tested.
The organosilane with lubricating effect used according to the present invention is preferably used in such a way that it is dissolved or dispersed in a suitable solvent, e.g. an organic solvent, such as acetone or ethanol. The obtained solution or dispersion is subsequently added to the iron based powder during mixing and optionally heating. The solvent is finally evaporated optionally in vacuum.
According to a preferred embodiment of the invention and contrary to common practise in powder metallurgy, where conventional PM lubricants are used in the iron powder mix, or where a lubricant is used in combination with binder and/or surface treatments, such as described in US patents referred to above, the iron or iron based powder must not be mixed WO 2004/037467 PCTSE2003/001632 with a separate (conventional) lubricant before it is transferred to the die. Nor is it necessary to use external lubrication (die wall lubrication) where the walls of the die are provided with a lubricant before the compaction is performed. The invention however does not exclude the possibility of, when it is of interest ,to utilise conventional internal lubrication (in an amount up to 0.5 by weight), external lubrication or a combination of both.
For some applications it may be necessary to add minor amounts of graphite to the powder mixture to be compacted. Thus graphite in amounts between 0.1 1.0, preferably 0.2 and most preferably 0.3-0.8 by weight of the total mixture to be compacted should be added before the compaction.
Other additives which may be added to the iron-based powder before compaction such as alloying elements comprising Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S and B machinability enhancing compounds, hard phase material and flow agents.
The term "at high compaction pressure" is intended to mean at pressures of about at least 800 MPa. More interesting results are obtained with higher pressures such as pressures above 900, preferably above 1000, more preferably above 1100 MTPa. Conventional compaction at high pressures, i.e. pressures above about 800 MPa with conventionally used powders including finer particles, are generally considered unsuitable due to the high forces required in order to eject the compacts from the die, the accompanying high wear of the die and the fact that the surfaces of the components tend to be less shiny or deteriorated. By using the powders according to the present invention it has unexpectedly been found that the ejection force is reduced at high pressures, about 1000 MPa, and that components having acceptable or even perfect surfaces may be obtained.
The compaction may be performed with standard equipment, which means that the new method may be performed without expensive investments. The compaction is performed uniaxially and preferably in a single step at ambient or elevated temperature. Alternatively the compaction may be performed with the aid of a percussion machine (Model HYP 35-4 from Hydropulsor) as described in patent publication WO 02/38315.
The sintering may be performed at the temperatures normally used within the PM field, e.g. at low temperature such as 1100-1 140'C or higher temperatures such as 1200-1300 0 C and in WO 2004/037467 PCT/SE2003/001632 conventionally used atmospheres or vacuum.
Other treatments of the green or sintered component may as well be applied, such as green machining, case hardening: surface densification, steam treatment.
In brief the advantages obtained by using the method according to the present invention are that high density green compacts can be cost effectively produced. The new method also permits production of higher components which are difficult to produce by using the conventional technique. Additionally standard compaction equipment can be used for producing high density compacts having acceptable or even perfect surface finish.
Examples of products, which suitably can be manufactured by the new method, high performance structural parts such as connecting rods, cam lobes, gears and other structural components subjected to high loads. By using stainless steel powders flanges are of special interest.
As a main object of the present invention is to achieve high density products the silanes having lubricating effect have been described particularly in connection with coarse powders. It has however also been found that these silanes may also be used in combination with powder including higher amounts of fine particles i.e. the type of powders which are conventionally used in the PM industry today. Example 4 below illustrates the effect of the silanes according to the present invention on both conventional powders and coarse powders. As can be seen very high densities are obtained also with a conventional powder including higher amounts of fine particles. Compositions including iron or iron-based powders with the usual particle size distributions and the silanes according to the present invention may be of special interest for certain applications and are also within the scope of the invention.
The invention is further illustrated by the following examples.
Example 1 Iron-based powder composition prepared from AstaloyMo which is a prelloyed iron based powder alloyed with 1.5 by weight of molybdenum available from Hoganis AB, Sweden, and where particles less than 212 jim had been eliminated was mixed with 0.1 and 0.15 respectively, of hexadecyl trimethoxy silane. The mixing process was performed as follows: WO 2004/037467 PCT/SE2003/001632 hexadecyl trimethoxy silane was diluted in ethanol to a 20 solution, by weight, and the solution was stirred during 60 minutes. An amount of this solution corresponding to 0.1 and 0.15 by weight, respectively, was added during mixing to the iron based powder mixtures, which had previously been heated to 75 "C in the mixer. An intensive mixing was carried out in the same mixer during 3 minutes followed by mixing at a lower speed during 30 minutes and during vacuum in order to evaporate the solvent. The obtained mixture was sieved with a 500 u m sieve.
Rings with an inner diameter of 35 mm and an outer diameter of 14 mm and a height of mm were uniaxially compacted in a single step at different compaction pressures. As can be seem from figure 1-1 green densities of 7.67 g/cm 3 were obtained at a pressure of 1100 MPa for both compositions. The total energy needed for ejection is somewhat lower for the compacts prepared from the composition with 0.15 of silane than for ejection of the compacts prepared from the powder which had been treated with 0.1 by weight of silane, see figure 1-2.
Example 2 The same powder and the same procedure as in Example 1 was used except that the powder was mixed with 0.2 by weight of hexadecyl trimethoxy silane. Two compositions were prepared, one with. 0.2 by weight of graphite and the other with 0.6 by weight of graphite. The green density and the green strength were measured.
As can be seen from figure 2-2 a green density above 7.65 g/cm 3 was obtained for a green component containing 0.2 graphite compacted at 1200 MPa. For a green component containing 0.6 graphite a green density of 7.58 g/cm3 was obtained.
Figure 2-1 shows that the green strength increases with increasing compaction pressure and that the green strength is high enough to allow handling of the green components.
Example 3 This example shows the effect of the eliminating different fractions of the iron based powder.
four different iron based powder compositions were tested. Three of the iron based powder compositions contained Astaloy Mo including 0.2 hexadecyl trimethoxy silane and the mixing procedure in example 1 was used. The first composition contained Astaloy Mo coarser WO 2004/037467 PCT/SE2003/001632 than 45 m, the second composition contained Astaloy Mo coarser than 106 gim and the third composition contained Astaloy Mo coarser than 212 pm. The fourth composition contained Astaloy Mo having particles coarser than 212gLm. The particles of this composition were mixed with 0.1 by weight of hexadecyl trimethoxysilane. Further, all compositions contained 0.2 of graphite. All compositions were uniaxially compacted in a single step in a die forming rings with an outer diameter of 35 mm, inner diameter of 14 mm and a height of mm.
Figure 3-1 shows that the green densities increased and the ejection forces decreased with increasing particles sizes.
Figure 3-2 shows that the ejection forces decrease when the amount of silane is increased from 0.1 to 0.2 by weight.
Example 4 This example demonstrates the effect of the chain length of the alkyl or polyether group, the particle size distribution and the added amount off silanes on the lubricating properties at ejection after compaction with high pressures. Two kinds of powder were used, namely a standard 100 mesh iron- based powder, Astaloy 85 Mo with about 20 of the particles less than 45 Ium powder) and a powder having the same chemical composition without fine particles and a weight average particle size of about 212 Lm, (C-powder).
Five different kinds of silanes were used according to table a) A Methyl-tri-methoxy silane B Propyl-tri-metoxy silane C Octyl-tri-metoxy silane D Hexadecyl-tri-metoxy silane E Polyethyleneether-trimetoxy silane with 10 ethylene ether groups Different content of silanes were added to the iron- based powder and the obtained mixtures were compacted at 1100 MPa in a uniaxial press movement into slugs with a diameter of mm and a height of 12 mm. During ejection the dynamic ejection force was measured and after ejection green surface finish were evaluated and density were measured as shown in table.
Powder Powder Powder Powder Powder Powder Powder Powder Powder Powder C C C C S C S CS S Silane 0,03% 0,05% 0,1% 0,2% 0,2% 0,3% 0,3% 0,4% 0,4% E Seizure 62 kN 39 kN 39 kN 65kW 33 kN 38 kN OK OK OK OK OK OK 7,67 7,66 7,67 7,61 7,66 7,63 g/cm 3 g/CM 3 g/cm 3 g/CM 3 g/CM 3 g/cm 3 D 48 kN 46 kN 47 kN 36 kN 34 kN 29 kN OK OK OK OK OK OK 7,65 7,66 7,63 7,64 7,62 7,56 g/cm 3 g/Cni 3 g/CM 3 g/CM 3 g/cnQ g/cm 3 C Seizure 37 kN 66 kN 97 kN* OK OK OK 7,60 7,60 7,53 g/cm 3 g/cm 3 g/CM 3 B Seizure A Seizure unstable value (OK fine/satisfactory surface finish; seizure seized component surface with scoring marks) WO 2004/037467 PCT/SE2003/001632 As can be seen from the table a chain length of at least 8 atoms in the alkylene chain is needed in order to successfully eject the component for an added amount of silanes of 0,05- Added amounts above 0,5 is believed to be of less interest as the density of the green component while be negatively influenced. The table also shows that when the silane content is less than 0,05 ejection without damaging the component and the surface of the die is not possible for silanes with a chain length of 30 atoms.
From the table below it can also be concluded that also powder with a standard particle size distribution can be compacted to high densities of 7.60 g/cm 3 and above, and successfully ejected, provided the amount of added silane is less than 0.5 and the length of the above alkylene or poly ethylenether chain is above 8 atoms.

Claims (15)

  1. 3. Composition according to claim 1 or 2 wherein the silane is selected from the group consisting of octyl-tri-metoxy silane, hexadecyl-tri-metoxy silane, polyethyleneethertrimetoxy silane with 10 ethylene ether groups.
  2. 4. Composition according to any one of the claims 1-3, wherein the alkoxy silane is present in an amount of 0.05-0.5% by weight.
  3. 5. Composition according to any one of the claims 1-3, wherein the alkoxy silane is present in an amount of between 0.1-0.4% by weight.
  4. 6. Composition according to any one of the claims 1-3, wherein the alkoxy silane is present in an amount of between 0.15-0.3%, by weight.
  5. 7. Composition according to any one of the claims 1-6, wherein at least 40% of the iron or iron-based powder consists of particles having a particle size above about 106 gim.
  6. 8. Composition according to any one of the claims 1-6, wherein at least 60% of iron or iron-based powder consists of particles having a particle size above about 106 jim. M:U~na738375lSpeo page.30 11 06 doc S9. Composition according to any one of the claims 1-8, wherein at least 40% of the Siron-based powder consists of particles having a particle size above about 212 p.m. Composition according to any one of the claims 1-8, wherein at least 60% of the iron-based powder consists of particles having a particle size above about 212 pm. t) 11. Composition according to any one of the claims 1-10 further including up to 1% 00 by weight of graphite. 0\ 0 10 12. Composition according to any one of the preceding claims further including Oalloying elements in an amount up to 10% by weight.
  7. 13. Composition according to claim 8 wherein the alloying elements are selected from the group consisting of Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S and B.
  8. 14. Process for the preparation of high density green compacts including the following steps: providing an iron-based powder composition according to any one of the claims 1-13; optionally mixing said composition with graphite and other additives; uniaxially compacting the powder in a die at a compaction pressure of at least about 800 MPa; and ejecting the green body.
  9. 15. Powder composition for the preparation of compacted and sintered parts having high density including an iron or iron based powder and a lubricating amount of an alkylalkoxy or polyetheralkoxy silane, wherein the alkyl group of the alkyl-alkoxy silane and the polyether chain of the polyetheralkoxy silane include between 8 and carbon atoms and the alkoxy group includes 1-3 carbon atoms.
  10. 16. Composition according to claim 15 wherein the alkyl group or polyether chain of the alkylalkoxy or polyetheralkoxy silane has between 10 and 24 carbon atoms. MA tnak738375\Sea pages-30. 1.06 doc IO 17. Composition according to 'laim 15 or 16 wherein the silane is selected from the Sgroup consisting of octyl-tri-metoxy silane, hexadecyl-tri-metoxy silane, 0 polyethyleneethertrimetoxy silane with 10 ethylene ether groups.
  11. 18. Composition according to any one of the claims 15-17, wherein the alkoxy silane is present in an amount of 0.05%-0.5% by weight. n00 oO r- 19. Composition according to any one of the claims 15-17, wherein the alkoxy N0 silane is present in an amount of between 0.1-0.4% by weight. (m Composition according to any one of the claims 15-17, wherein the alkoxy silane is present in an amount of between 0.15-0.3% by weight.
  12. 21. Composition according to any one of the claims 15-20 further including up to 1% by weight of graphite.
  13. 22. Composition according to any one of the claims 15-21 further including up to by weight of alloying elements.
  14. 23. Composition according to claim 22 wherein the alloying elements are selected from the group consisting of Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S and B.
  15. 24. Powder composition including an iron or iron based powder and a lubricating amount of an alkylalkoxy or polyetheralkoxy silane, substantially as herein described with reference to any one of the Examples. Process for the preparation of high density green compacts, substantially as herein described with reference to any one of the Examples. M:Una7383MSped paeS-30. I I.0.dc
AU2003269785A 2002-10-22 2003-10-22 Iron-based powder composition including a silane lubricant Ceased AU2003269785B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0203133A SE0203133D0 (en) 2002-10-22 2002-10-22 Iron-based powder
SE0203133-4 2002-10-22
PCT/SE2003/001632 WO2004037467A1 (en) 2002-10-22 2003-10-22 Iron-based powder composition including a silane lubricant

Publications (2)

Publication Number Publication Date
AU2003269785A1 AU2003269785A1 (en) 2004-05-13
AU2003269785B2 true AU2003269785B2 (en) 2007-01-18

Family

ID=20289348

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003269785A Ceased AU2003269785B2 (en) 2002-10-22 2003-10-22 Iron-based powder composition including a silane lubricant

Country Status (17)

Country Link
EP (1) EP1554070B1 (en)
JP (1) JP4668620B2 (en)
KR (1) KR101064429B1 (en)
CN (1) CN100528416C (en)
AT (1) ATE473823T1 (en)
AU (1) AU2003269785B2 (en)
BR (1) BR0314361B1 (en)
CA (1) CA2497383C (en)
DE (1) DE60333383D1 (en)
ES (1) ES2348522T3 (en)
MX (1) MXPA05004255A (en)
PL (1) PL207923B1 (en)
RU (1) RU2329121C2 (en)
SE (1) SE0203133D0 (en)
TW (1) TWI311507B (en)
WO (1) WO2004037467A1 (en)
ZA (1) ZA200501301B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393498B2 (en) * 2004-04-21 2008-07-01 Hoganas Ab Sintered metal parts and method for the manufacturing thereof
US7384445B2 (en) 2004-04-21 2008-06-10 Höganäs Ab Sintered metal parts and method for the manufacturing thereof
US7604678B2 (en) * 2004-08-12 2009-10-20 Hoeganaes Corporation Powder metallurgical compositions containing organometallic lubricants
CN102896315B (en) * 2012-09-15 2015-04-01 安徽省怀远县尚冠模具科技有限公司 Method for manufacturing top board of die
CN103233166B (en) * 2013-03-30 2015-12-23 安徽省恒宇粉末冶金有限公司 A kind of powder metallurgy toothed segment and preparation method thereof
JP2015183706A (en) * 2014-03-20 2015-10-22 Ntn株式会社 Bearing ring and rolling bearing having bearing ring
GB201409250D0 (en) * 2014-05-23 2014-07-09 H Gan S Ab Publ New product
CN105499591B (en) * 2015-12-24 2018-10-09 河南颍川新材料股份有限公司 A kind of oil paint additive making modified technique
JP6509771B2 (en) * 2016-04-07 2019-05-08 住友電気工業株式会社 Method of manufacturing sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541249A (en) * 1990-12-18 1996-07-30 Hoechst Celanese Corp. Injection moldable ceramic and metallic compositions and method of preparing the same
US6235076B1 (en) * 1997-03-19 2001-05-22 Kawasaki Steel Corporation Iron base powder mixture for powder metallurgy excellent in fluidity and moldability, method of production thereof, and method of production of molded article by using the iron base powder mixture
US20040077448A1 (en) * 2002-09-04 2004-04-22 Nissan Motor Co., Ltd. Hybrid transmission

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901661A (en) * 1972-04-06 1975-08-26 Toyo Kohan Co Ltd Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
US4190441A (en) * 1978-03-02 1980-02-26 Hoganas Ab Fack Powder intended for powder metallurgical manufacturing of soft magnetic components
US5225459A (en) * 1992-01-31 1993-07-06 Hoeganaes Corporation Method of making an iron/polymer powder composition
GB2315115B (en) * 1996-07-10 2000-05-31 Hitachi Powdered Metals Valve guide
US5892164A (en) * 1997-03-19 1999-04-06 Air Products And Chemicals, Inc. Carbon steel powders and method of manufacturing powder metal components therefrom
JP3509540B2 (en) * 1997-03-19 2004-03-22 Jfeスチール株式会社 Iron-based powder mixture for powder metallurgy excellent in fluidity and moldability, method for producing the same, and method for producing a compact
JP4010098B2 (en) * 2000-01-07 2007-11-21 Jfeスチール株式会社 Iron-based powder mixture for powder metallurgy, method for producing the same, and method for producing a molded body
JP2002212462A (en) * 2001-01-15 2002-07-31 Fuji Shikiso Kk Surface-coated pigment
JP4078512B2 (en) * 2001-04-20 2008-04-23 Jfeスチール株式会社 Highly compressible iron powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541249A (en) * 1990-12-18 1996-07-30 Hoechst Celanese Corp. Injection moldable ceramic and metallic compositions and method of preparing the same
US6235076B1 (en) * 1997-03-19 2001-05-22 Kawasaki Steel Corporation Iron base powder mixture for powder metallurgy excellent in fluidity and moldability, method of production thereof, and method of production of molded article by using the iron base powder mixture
US20040077448A1 (en) * 2002-09-04 2004-04-22 Nissan Motor Co., Ltd. Hybrid transmission

Also Published As

Publication number Publication date
JP2006503982A (en) 2006-02-02
RU2005115465A (en) 2006-01-20
RU2329121C2 (en) 2008-07-20
BR0314361A (en) 2005-07-19
CA2497383C (en) 2012-07-10
CA2497383A1 (en) 2004-05-06
ZA200501301B (en) 2006-10-25
KR101064429B1 (en) 2011-09-14
TW200420372A (en) 2004-10-16
EP1554070B1 (en) 2010-07-14
CN100528416C (en) 2009-08-19
DE60333383D1 (en) 2010-08-26
AU2003269785A1 (en) 2004-05-13
WO2004037467A1 (en) 2004-05-06
JP4668620B2 (en) 2011-04-13
BR0314361B1 (en) 2013-06-04
EP1554070A1 (en) 2005-07-20
ATE473823T1 (en) 2010-07-15
CN1705534A (en) 2005-12-07
ES2348522T3 (en) 2010-12-07
MXPA05004255A (en) 2005-07-05
PL375099A1 (en) 2005-11-14
PL207923B1 (en) 2011-02-28
SE0203133D0 (en) 2002-10-22
KR20050067422A (en) 2005-07-01
TWI311507B (en) 2009-07-01

Similar Documents

Publication Publication Date Title
KR100841162B1 (en) Sintered metal parts and method for the manufacturing thereof
JP2010189769A (en) Method of preparing iron-based component by compaction with elevated pressure
AU2003269785B2 (en) Iron-based powder composition including a silane lubricant
US7662209B2 (en) Iron-based powder
US7585459B2 (en) Method of preparing iron-based components

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired