AT520637B1 - METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP - Google Patents

METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP Download PDF

Info

Publication number
AT520637B1
AT520637B1 ATA50665/2018A AT506652018A AT520637B1 AT 520637 B1 AT520637 B1 AT 520637B1 AT 506652018 A AT506652018 A AT 506652018A AT 520637 B1 AT520637 B1 AT 520637B1
Authority
AT
Austria
Prior art keywords
metal strip
metal
strip
coated
laser
Prior art date
Application number
ATA50665/2018A
Other languages
German (de)
Other versions
AT520637A4 (en
Inventor
Tomaz Lavric Dr
Hannes Santer Mag
Original Assignee
Andritz Ag Maschf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andritz Ag Maschf filed Critical Andritz Ag Maschf
Priority to ATA50665/2018A priority Critical patent/AT520637B1/en
Application granted granted Critical
Publication of AT520637A4 publication Critical patent/AT520637A4/en
Publication of AT520637B1 publication Critical patent/AT520637B1/en
Priority to PCT/EP2019/068251 priority patent/WO2020025259A1/en
Priority to TW108125797A priority patent/TW202014533A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0042Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0619Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams with spots located on opposed surfaces of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/04Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area from a small area, e.g. a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/16Bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Den Gegenstand dieser Erfindung bildet ein Verfahren zur Behandlung eines Metallbandes (1). Dabei wird das Metallband (1) in einem Ofen (2) wärmebehandelt und nachfolgend in einer Beschichtungsanlage (3) beschichtet. Erfindungsgemäß werden nach der Wärmebehandlung und vor der Beschichtung Oberflächenoxide am Metallband (1) mit Hilfe eines Lasers (5) entfernt.The subject of this invention is a method for treating a metal strip (1). In this case, the metal strip (1) is heat-treated in an oven (2) and subsequently coated in a coating installation (3). According to the invention, surface oxides on the metal strip (1) are removed by means of a laser (5) after the heat treatment and before the coating.

Description

PatentamtPatent Office

Beschreibungdescription

VERFAHREN ZUR VERBESSERUNG DER BESCHICHTBARKEIT EINES METALLBANDES [0001] Den Gegenstand dieser Erfindung bildet ein Verfahren zur Behandlung eines Metallbandes. Dabei wird das Metallband in einem Ofen wärmebehandelt und nachfolgend in einer Beschichtungsanlage beschichtet.METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP The subject of this invention is a method for treating a metallic strip. The metal strip is heat-treated in an oven and then coated in a coating system.

[0002] Hochfeste Stahlsorten wie Dualphasenstahl (DP-Stahl), Mehrphasenstahl, Complexphasenstahl (CP-Stahl), AHSS (Advanced High Strength Steels) oder UHSS (Ultra High Strength Steels) kombinieren eine hohe Festigkeit mit optimierter Umformbarkeit. Diese Stähle finden vor allem als Bleche im Automobilbau Anwendung. So ermöglichen sie bei verschiedenen Strukturverstärkungen und Crashbauteilen ein reduziertes Gewicht sowie größere Freiheiten im Design.High-strength steel grades such as dual-phase steel (DP steel), multi-phase steel, complex-phase steel (CP steel), AHSS (Advanced High Strength Steels) or UHSS (Ultra High Strength Steels) combine high strength with optimized formability. These steels are mainly used as sheet metal in the automotive industry. They enable a reduced weight and greater freedom in design for various structural reinforcements and crash components.

[0003] Als Dualphasenstahl (DP-Stahl) werden alle Stähle bezeichnet, deren Gefüge aus einer ferritischen (weichen) Matrix besteht, in die eine überwiegend martensitische (festigkeitssteigernde) Zweitphase inselförmig an den Korngrenzen eingelagert ist. Dieses Gefüge hat eine relativ niedrige und somit für den Umformprozess günstige Streckgrenze sowie hohe Zugfestigkeit. Diese Eigenschaften sind für komplexe Tiefziehteile von Vorteil.As dual-phase steel (DP steel) all steels are referred to, the structure of which consists of a ferritic (soft) matrix, in which a predominantly martensitic (strength-increasing) second phase is island-shaped at the grain boundaries. This structure has a relatively low yield strength, which is favorable for the forming process, and high tensile strength. These properties are advantageous for complex deep-drawn parts.

[0004] Advanced High Strength Steel (Deutsch etwa: weiterentwickelter hochfester Stahl) bezeichnet moderne hochfeste Stahlsorten, die zu den Kaltarbeitsstählen gehören. Sie werden im Handel auch Kohlenstoffstahl, Karbonstahl, C-Stahl und AHS-Stahl genannt.Advanced High Strength Steel (German for example: advanced high-strength steel) refers to modern high-strength steel grades that belong to the cold work steels. They are also called carbon steel, carbon steel, carbon steel and AHS steel in the trade.

[0005] Damit diese hochfesten Stähle ausreichend gegen Korrosion geschützt sind, werden sie beschichtet. Beispielsweise werden sie in einem Metallbad mit einer Zinkschicht oder einer Zinklegierung überzogen. In neueren Verfahren werden diese Bänder auch im Vakuum mit einer Metallschicht bedampft (Jet Vapor Deposition (JVD)). Vor der Beschichtung werden diese Stähle, die in der Regel kaltgewalzt sind, zur Gefügeänderung einer Wärmebehandlung unterzogen, vorzugsweise in einem Glühofen.So that these high-strength steels are adequately protected against corrosion, they are coated. For example, they are coated with a zinc layer or a zinc alloy in a metal bath. In newer processes, these tapes are also vacuum-coated with a metal layer (Jet Vapor Deposition (JVD)). Before coating, these steels, which are generally cold-rolled, are subjected to a heat treatment to change their structure, preferably in an annealing furnace.

[0006] Diese hochfesten Stähle enthalten in der Regel einen hohen Anteil an Legierungselementen wie Silizium (Si), Mangan (Mn) oder Aluminium (AI), teilweise auch Chrom (Cr) oder Phosphor (P). Einige dieser Spezialstähle können auch Molybdän (Mo), Niob (Nb), Titan (Ti) oder Bor (B) enthalten.These high-strength steels usually contain a high proportion of alloying elements such as silicon (Si), manganese (Mn) or aluminum (AI), sometimes also chromium (Cr) or phosphorus (P). Some of these special steels can also contain molybdenum (Mo), niobium (Nb), titanium (Ti) or boron (B).

[0007] Diese Legierungselemente bilden während der Wärmebehandlung Oberflächenoxide wie SiO2, MnO2, MnSiO3, Mn2SiO4, AI2O3, Cr2O3 etc. an der Bandoberfläche aus. Die Dicke dieser Oxidschicht ist sehr dünn und liegt in der Regel im Nanometerbereich (200 bis 500 nm). Diese Oxidschichten sind daher im Vergleich zu herkömmlichen Zunderschichten (Eisenoxid), die im Bereich von 7 bis 10 μm liegt, erheblich dünner.These alloying elements form surface oxides such as SiO 2 , MnO 2 , MnSiO 3 , Mn 2 SiO 4 , Al 2 O 3 , Cr 2 O 3 etc. during the heat treatment on the strip surface. The thickness of this oxide layer is very thin and is usually in the nanometer range (200 to 500 nm). These oxide layers are therefore considerably thinner than conventional scale layers (iron oxide), which are in the range of 7 to 10 μm.

[0008] Trotzdem wirken sich diese Metalloxide an der Bandoberfläche sehr negativ auf die Beschichtbarkeit der Metallbänder aus. Durch die Metalloxide wird beispielsweise die Benetzbarkeit für Zink erheblich reduziert, sodass es bei der Feuerverzinkung zu Problemen kommen kann.Nevertheless, these metal oxides on the strip surface have a very negative effect on the coatability of the metal strips. The metal oxides, for example, significantly reduce the wettability for zinc, which can lead to problems with hot-dip galvanizing.

[0009] Im Stand der Technik gibt es bereits mehrere Ansätze, die die Bildung dieser Metalloxide an der Bandoberfläche verhindern sollen, beispielsweise durch eine stark reduzierende Atmosphäre im Glühofen. Jedoch führen bereits kleinste Sauerstoff- bzw. Wassermengen zur Bildung dieser Oxide.In the prior art, there are already several approaches that are intended to prevent the formation of these metal oxides on the strip surface, for example by a strongly reducing atmosphere in the annealing furnace. However, even the smallest amounts of oxygen or water lead to the formation of these oxides.

[0010] Die EP 1 829 983 B1 versucht das Problem mit einem Ofen mit einer nicht-oxidierenden Zone, einer oxidierenden Zone und einer reduzierenden Zone zu lösen, wobei das Luft Brennstoff-Verhältnis in der direkt befeuerten Zone bestimmten Vorgaben genügen muss.[0010] EP 1 829 983 B1 tries to solve the problem with a furnace with a non-oxidizing zone, an oxidizing zone and a reducing zone, the air-fuel ratio in the directly fired zone having to meet certain requirements.

[0011] Bei einem anderen Lösungsansatz wird das geglühte Metallband gebeizt, sodass die Oxide der Legierungselemente durch die Säure entfernt werden. Danach muss jedoch das Metallband wieder erneut erwärmt werden, um die passende Temperatur fürs Zinkbad aufzuweisen. Dieser Prozess ist daher aufwändig und teuer, außerdem lassen sich die Oxide derIn another approach, the annealed metal strip is pickled so that the oxides of the alloying elements are removed by the acid. After that, however, the metal strip must be reheated again to have the right temperature for the zinc bath. This process is therefore complex and expensive, and the oxides of the

1/101.10

AT 520 637 B1 2019-06-15 österreichischesAT 520 637 B1 2019-06-15 Austrian

PatentamtPatent Office

Legierungselemente in der Regel schwerer entfernen als Eisenoxid.Alloy elements are generally more difficult to remove than iron oxide.

[0012] In einem weiteren Ansatz wird vor der Wärmebehandlung elektrolytisch eine dünne Eisenschicht auf das Metallband aufgebracht (Fe flash layer). Es hat sich gezeigt, dass durch diese aufgebrachte Eisenschicht die Bildung von Mn-, AI- und Si-Oxiden an der Bandoberfläche reduziert wird.In a further approach, a thin iron layer is applied electrolytically to the metal strip before the heat treatment (Fe flash layer). It has been shown that this iron layer reduces the formation of Mn, Al and Si oxides on the strip surface.

[0013] Dies funktioniert jedoch nicht bei allen hochfesten Stählen zufriedenstellend. Es ist auch bekannt, elektrolytisch eine dünne Nickelschicht (Nickel Flash) aufzubringen, die dann zumindest teilweise als Diffusionssperre für die Legierungselemente dient.[0013] However, this does not work satisfactorily with all high-strength steels. It is also known to electrolytically apply a thin layer of nickel (nickel flash), which then at least partially serves as a diffusion barrier for the alloy elements.

[0014] Die EP 2 956 296 B1 beschreibt ein Verfahren bei dem vor der Wärmebehandlung nacheinander zwei Trennschichten auf das Metallband aufgebracht werden, nämlich zuerst eine Kupferschicht und danach eine Eisenschicht. Dieses Verfahren ist jedoch recht aufwendig.[0014] EP 2 956 296 B1 describes a method in which two separating layers are applied in succession to the metal strip before the heat treatment, namely first a copper layer and then an iron layer. However, this process is quite complex.

[0015] Die EP 2 631 319 A1 versucht das Benetzungsproblem beim Feuerverzinken durch die Zugabe einer definierten Menge Aluminium in das Zinkbad und durch genau definierte Temperaturfenster in den Griff zu bekommen.[0015] EP 2 631 319 A1 tries to get a grip on the wetting problem in hot-dip galvanizing by adding a defined amount of aluminum to the zinc bath and by means of precisely defined temperature windows.

[0016] Die US 2013/0288073 A1 offenbart ein Verfahren, bei dem Metalloxide vor der Beschichtung mit Hilfe eines Lasers oder Plasmas entfernt werden.[0016] US 2013/0288073 A1 discloses a method in which metal oxides are removed using a laser or plasma before coating.

[0017] Der Erfindung liegt daher ebenfalls die Aufgabe zugrunde, ein Verfahren bereitzustellen, bei dem wärmebehandelte Metallbänder, die vorzugsweise Legierungselemente wie Si, Mn, und AI enthalten, zuverlässig beschichtet werden können, vorzugsweise handelt es sich dabei um eine metallische Beschichtung, also beispielsweise um eine Zinkschicht oder um eine Aluminiumschicht überzogen werden können. Es kann sich dabei um eine Zinkschicht mit geringem Aluminiumanteil (Galfan), um eine Zinkschicht mit höheren Aluminiumanteil (Galvalume) oder auch um eine Zinkschicht mit Mangan oder mit Al/Si Zusätzen handeln.The invention is therefore also based on the object to provide a method in which heat-treated metal strips, which preferably contain alloy elements such as Si, Mn, and Al, can be coated reliably, preferably it is a metallic coating, for example can be coated around a zinc layer or around an aluminum layer. It can be a zinc layer with a low aluminum content (Galfan), a zinc layer with a higher aluminum content (Galvalume) or a zinc layer with manganese or with Al / Si additives.

[0018] Gelöst wird diese Aufgabe durch ein Verfahren gemäß Patentanspruch 1.[0018] This object is achieved by a method according to claim 1.

[0019] Erfindungsgemäß werden nach der Wärmebehandlung und vor der Beschichtung Oberflächenoxide am Metallband mit Hilfe zumindest eines Lasers entfernt. Durch den Laserstrahl wird die dünne Oxidschicht verdampft bzw. zum Abplatzen gebracht. Dadurch kann die nachfolgende Beschichtung problemlos durchgeführt werden. Es ist zu erwarten, dass die Oxide nicht die gesamte Metallbandoberfläche bedecken, sondern nur bereichsweise, beispielsweise als Spots, vorliegen. Diesbezüglich ist erfindungsgemäß vorgesehen, die Metalloberfläche mit einem Scanner abzutasten und die mit Oxid bedeckten Bereiche zu identifizieren. Die Laserbehandlung erfolgt dann nur in diesen Bereichen.According to the invention, after the heat treatment and before the coating, surface oxides are removed from the metal strip using at least one laser. The thin oxide layer is evaporated or caused to flake off by the laser beam. This enables the subsequent coating to be carried out without any problems. It is to be expected that the oxides do not cover the entire metal strip surface, but are only present in regions, for example as spots. In this regard, it is provided according to the invention to scan the metal surface with a scanner and to identify the areas covered with oxide. The laser treatment then only takes place in these areas.

[0020] Die vorliegende Erfindung eignet sich besonders zur Behandlung von kaltgewalzten wärmebehandelten hochfesten Stahlbändern, die Elemente enthalten, wie beispielsweise Silizium, Mangan oder Aluminium, welche während der Wärmebehandlung an die Oberfläche diffundieren und dort durch den Restsauerstoffgehalt der Ofenatmosphäre diverse Oxide bilden. Diese Oxide sind dann in der normalen reduzierenden Atmosphäre sehr schwer bzw. kaum wegzubringen.The present invention is particularly suitable for the treatment of cold-rolled, heat-treated high-strength steel strips which contain elements, such as silicon, manganese or aluminum, which diffuse to the surface during the heat treatment and form various oxides there due to the residual oxygen content of the furnace atmosphere. These oxides are then very difficult or difficult to remove in the normal reducing atmosphere.

[0021] Gegenwärtige Metallbänder, die von der Beschichungsproblematik durch die Oberflächenoxide besonders betroffen sind, beinhalten folgende Legierungselemente:Current metal strips, which are particularly affected by the coating problems caused by surface oxides, contain the following alloying elements:

[0022] Si: 0,5 - 2,5% [0023] Mn: 0,5 - 2,5% [0024] AI: 0,5- 1,5% [0025] Cr: 0,2 - < 1% [0026] Mo: < 1 % [0027] Zukünftige Stahlsorten können aber auch Silizium-, Mangan- und Aluminiumanteile von bis zu 5% aufweisen. Es gibt auch Spezialstähle mit einem sehr hohen Mangananteil von 30Si: 0.5-2.5% Mn: 0.5-2.5% Al: 0.5-1.5% Cr: 0.2 - <1 %: <1% Future steel grades can also have silicon, manganese and aluminum contents of up to 5%. There are also special steels with a very high manganese content of 30

2/102.10

AT 520 637 B1 2019-06-15 österreichischesAT 520 637 B1 2019-06-15 Austrian

PatentamtPatent Office

50%.50%.

[0028] Es ist auch denkbar, dass es sich bei der Beschichtung um eine Passivierungsschicht als Korrosionsschutz handelt. Diese Passivierungsschichten werden häufig auf Aluminiumbänder oder Aluminiumlegierungen aufgetragen, sie dienen als Korrosionsschutz, verbessern aber auch die Haftbarkeit von Lacken, Klebern und Pulverbeschichtungen. Beispielsweise könnten Oberflächenoxide von Aluminiumbändern nach der Wärmebehandlung und vor der Passivierung mit einem Laser entfernt werden.It is also conceivable that the coating is a passivation layer as corrosion protection. These passivation layers are often applied to aluminum strips or aluminum alloys, they serve as corrosion protection, but also improve the adhesion of paints, adhesives and powder coatings. For example, surface oxides could be removed from aluminum strips after heat treatment and before passivation with a laser.

[0029] Vorzugsweise wird das Metallband kontinuierlich in einem Ofen wärmebehandelt.Preferably the metal strip is continuously heat treated in an oven.

[0030] Dabei ist es günstig, wenn der Ofen einen Heizabschnitt und einen nachfolgenden Kühlabschnitt aufweist und wenn die Oberflächenoxide im Kühlabschnitt entfernt werden. Kontinuierliche Öfen haben häufig am Ende des Kühlabschnittes zwei Bandzugrollen, die für einen entsprechenden Bandzug im Ofen sorgen. Die Laserbehandlung kann vorzugsweise im Bereich dieser Bandzugrollen stattfinden, idealerweise beidseitig, da dort der Bandlauf sehr stabil ist.It is advantageous if the furnace has a heating section and a subsequent cooling section and if the surface oxides in the cooling section are removed. Continuous furnaces often have two strip tension rollers at the end of the cooling section, which ensure a corresponding strip tension in the furnace. The laser treatment can preferably take place in the area of these tape tension rollers, ideally on both sides, since the tape travel is very stable there.

[0031] Es ist vorteilhaft, wenn das Metallband direkt im Anschluss an den Ofen in ein Metallbad, beispielswiese in ein Zinkbad (gegebenenfalls mit Legierungszusätzen wie Aluminium) eintaucht und beschichtet wird.It is advantageous if the metal strip is immersed and coated directly after the furnace in a metal bath, for example in a zinc bath (optionally with alloy additives such as aluminum).

[0032] Es ist aber auch denkbar, dass das Metallband in einer Beschichtungsanlage durch das Ablagern von Metalldampf (Jet Vapor Deposition) beschichtet wird oder auch elektrolytisch beschichtet wird. Die Erfindung setzt nicht voraus, dass das Metallband unmittelbar nach der Wärmebehandlung beschichtet werden muss. Es kann auch eine Zwischenlagerung des Metallbandes erfolgen. Wesentlich ist nur, dass zwischen dem Wärmebehandlungsprozess und dem Beschichtungsprozess eine Oberflächenreinigung mit Hilfe zumindest eines Lasers erfolgt, zur Beseitigung der während der Wärmebehandlung gebildeten Oxide an der Metallbandoberfläche.However, it is also conceivable that the metal strip is coated in a coating system by the deposition of metal vapor (jet vapor deposition) or is also coated electrolytically. The invention does not require that the metal strip must be coated immediately after the heat treatment. The metal strip can also be stored temporarily. It is only essential that between the heat treatment process and the coating process, surface cleaning is carried out with the aid of at least one laser, in order to remove the oxides formed on the metal strip surface during the heat treatment.

[0033] Idealerweise werden durch den oder die Laserstrahlen die Oberflächenoxide auf beiden Bandseiten entfernt.[0033] Ideally, the surface oxides on both sides of the strip are removed by the laser beam or beams.

[0034] Es ist günstig, wenn die entfernten Oberflächenoxide unmittelbar nach deren Loslösung abgesaugt werden. Die Oberflächenoxide können dabei in Dampfform oder als feine Partikel vorliegen.It is advantageous if the removed surface oxides are suctioned off immediately after they have been released. The surface oxides can be in vapor form or as fine particles.

[0035] Im Folgenden werden mehrere Ausführungsbeispiele der Erfindung anhand von Zeichnungen beschrieben.In the following, several embodiments of the invention are described with reference to drawings.

[0036] Die Figuren 1 bis 3 zeigen drei mögliche Ausführungsbeispiele des erfindungsgemäßen Verfahrens in einer Feuerverzinkungslinie.Figures 1 to 3 show three possible embodiments of the method according to the invention in a hot-dip galvanizing line.

[0037] Die Figuren 4 und 5 zeigen zwei Ausführungsbeispiele für eine Anlage, in der das Metallband im Vakuum mit Metalldampf beschichtet wird.Figures 4 and 5 show two exemplary embodiments of a system in which the metal strip is coated with metal vapor in a vacuum.

[0038] Gleiche Bezugszeichen in den Figuren bezeichnen jeweils gleiche Anlagenteile.The same reference numerals in the figures denote the same parts of the system.

[0039] Figur 1 zeigt eine Feuerverzinkungsanlage in der ein Metallband 1 zuerst in einem Ofen 2 kontinuierlich wärmebehandelt und danach in einer Beschichtungsanlage 3 beschichtet wird. Die Wärmebehandlung im Ofen 2 ist notwendig, um das durch den vorangegangenen Kaltwalzschritt walzhart gewordene Metallband 1 wieder weich zu glühen und um dort die gewünschten Eigenschaften des Metallbandes 1 durch entsprechende Glüh- und Kühlzyklen zu definieren. Im Ofen 2 wird das Metallband 1 über diverse Umlenkrollen 10 hindurchgeführt.FIG. 1 shows a hot-dip galvanizing plant in which a metal strip 1 is first heat-treated continuously in an oven 2 and then coated in a coating plant 3. The heat treatment in the furnace 2 is necessary in order to anneal the metal strip 1, which has become hard as a result of the previous cold rolling step, and to define the desired properties of the metal strip 1 by appropriate annealing and cooling cycles. In the furnace 2, the metal strip 1 is passed over various deflection rollers 10.

[0040] Der beheizte Abschnitt 9 des Ofens 2 kann entweder direkt befeuert (DFF, direct fired furnace) oder über Strahlrohre indirekt beheizt (RTF, radiant tube furnace) werden, auch eine Induktionsheizung ist denkbar. In der Regel sind mehrere dieser Heizkonzepte in einem Ofen 2 vereint.The heated section 9 of the furnace 2 can either be fired directly (DFF, direct fired furnace) or indirectly heated via radiant tubes (RTF, radiant tube furnace), and induction heating is also conceivable. As a rule, several of these heating concepts are combined in one oven 2.

[0041] Im Kühlabschnitt 8 des Ofens 2 wird das Metallband 1 beispielsweise mit Wasserstoff gekühlt. Der notwendige Bandzug im Ofen 2 wird durch die beiden Bandzugrollen 6 am EndeIn the cooling section 8 of the furnace 2, the metal strip 1 is cooled, for example, with hydrogen. The necessary strip tension in the furnace 2 is at the end by the two strip tension rollers 6

3/103.10

AT 520 637 B1 2019-06-15 österreichischesAT 520 637 B1 2019-06-15 Austrian

Patentamt des Kühlabschnittes 8 erzeugt. Im Anschluss an den Ofen 2 taucht das Metallband 1 in an sich bekannter Art und Weise über den Rüssel 11 in das Zinkbad 7 ein und wird dort verzinkt.Patent office of the cooling section 8 generated. Following the furnace 2, the metal strip 1 dips into the zinc bath 7 in a manner known per se via the trunk 11 and is galvanized there.

[0042] Im Bereich der beiden Bandzugrollen 6 befinden sich die Laser 5. Die Laserstrahlen sind dabei auf die jeweilige von der Bandzugrolle 6 wegweisende Metallbandoberfläche gerichtet.The lasers 5 are located in the region of the two strip tension rollers 6. The laser beams are directed onto the respective metal strip surface pointing away from the strip tension roller 6.

[0043] Bei den Lasern 5 kann es sich beispielsweise um einen Nd:YAG-, einen CO2- oder um einen Diodenlaser handeln.The lasers 5 can be, for example, an Nd: YAG, a CO 2 or a diode laser.

[0044] Durch die Laser 5 werden die bei der Wärmebehandlung gebildeten Oxide entfernt und durch die Absaugung 13 abgesaugt. Abhängig von der Laserleistung werden die Oxide verdampft oder sie platzen von der Metallbandoberfläche ab.The oxides formed during the heat treatment are removed by the lasers 5 and extracted by the suction 13. Depending on the laser power, the oxides are evaporated or they chip off the metal strip surface.

[0045] Es können hierbei mehrere Laser 5 über die Bandbreite nebeneinander angeordnet sein, damit die gesamte Bandbreite gleichzeitig behandelt werden kann. Es ist auch möglich, dass ein oder mehrere Laserstrahlen die Bandoberfläche zellenförmig abfahren (quer zur Bandlaufrichtung). Die Laser 5 können auch außerhalb des Ofens 2 angeordnet sein, die Laserstrahlen werden dann durch spezielle Lichtwellenleiter oder Spezialglasfenster ins Ofeninnere geleitet.Several lasers 5 can be arranged next to one another over the bandwidth, so that the entire bandwidth can be treated simultaneously. It is also possible for one or more laser beams to scan the strip surface in a cell-like manner (transverse to the strip running direction). The lasers 5 can also be arranged outside the furnace 2, the laser beams are then guided into the furnace interior through special optical waveguides or special glass windows.

[0046] Über Scanner 12 werden die beiden Bandoberflächen kontinuierlich gescannt und so die Oberflächenbereiche identifiziert, auf denen sich die Oxide befinden. Es ist nämlich denkbar, dass die Oxide die Metallbandoberfläche nicht vollflächig bedecken. Die Laserstrahlen werden dann so gesteuert, dass nur die mit Oxid bedeckten Bereiche gereinigt bzw. behandelt werden.The two belt surfaces are continuously scanned via scanner 12 and the surface areas on which the oxides are located are thus identified. It is conceivable that the oxides do not cover the entire surface of the metal strip surface. The laser beams are then controlled so that only the areas covered with oxide are cleaned or treated.

[0047] Natürlich ist es auch denkbar, dass immer die gesamte Bandoberfläche mit dem Laser oder den Lasern behandelt wird.Of course, it is also conceivable that the entire strip surface is always treated with the laser or lasers.

[0048] Fig. 2 zeigt eine ähnliche Anlage wie Figur 1, nur sind hier die Scanner 12, die Laser 5 und die Absaugung 13 im Kühlabschnitt 8 bereits vor den Bandzugrollen 6 angeordnet.Fig. 2 shows a similar system as Figure 1, only here the scanner 12, the laser 5 and the suction 13 in the cooling section 8 are already arranged in front of the tape tension rollers 6.

[0049] In Figur 3 sind die Scanner 12, die Laser 5 und die Absaugung 13 im Rüssel 11 der Beschichtungsanlage 3 angeordnet.In Figure 3, the scanner 12, the laser 5 and the suction 13 are arranged in the trunk 11 of the coating system 3.

[0050] Figur 4 zeigt eine weitere Anlage 4 zur Beschichtung eines Metallbandes 1. Nach der Wärmebehandlung 14 passiert das Metallband 1 zunächst ein Schleusensystem 15 aus mehreren Rollen 16. Hier wird der Druck schrittweise abgebaut, da die Beschichtung im Vakuum bzw. bei Unterdrück durchgeführt wird. Danach erfolgt eine kurze Aufwärmung über Heizelemente 17 und dann die Beschichtung in der Vakuumkammer 18. Bei der Beschichtung wird hier dampfförmiges Zink über Düsen 19 auf das Metallband 1 abgeschieden. Die Beschichtungsmethode ist in Fachkreisen unter dem Begriff „Jet Vapor Deposition“ bekannt. Anschließend wird der Druck über ein zweites Schleusensystem 20 wieder aufgebaut.Figure 4 shows a further system 4 for coating a metal strip 1. After the heat treatment 14, the metal strip 1 first passes through a lock system 15 consisting of several rollers 16. Here, the pressure is gradually reduced, since the coating is carried out in a vacuum or in the case of a vacuum becomes. This is followed by a brief warm-up via heating elements 17 and then coating in the vacuum chamber 18. During the coating process, vaporous zinc is deposited on the metal strip 1 via nozzles 19. The coating method is known in specialist circles under the term “Jet Vapor Deposition”. The pressure is then built up again via a second lock system 20.

[0051] Direkt vor der Beschichtung in der Vakuumkammer 18, d.h. nach der Erwärmung durch die Heizelemente 17, erfolgt die Oxidentfernung mit Hilfe von Lasern 5. In Figur 4 sind die Laserstrahlen und die Absaugung 13 auf die Umlenkrollen 21 gerichtet.Immediately before coating in the vacuum chamber 18, i.e. after heating by the heating elements 17, the oxide is removed with the aid of lasers 5. In FIG. 4, the laser beams and the suction 13 are directed onto the deflection rollers 21.

[0052] In Figur 5 befinden sich die Laser 5 und die Absaugung 13 zwischen den beiden Umlenkrollen 21.In Figure 5, the laser 5 and the suction 13 are between the two pulleys 21st

[0053] Auch hier können die mit Oxid bedeckten Oberflächenbereiche durch einen Scanner 12 identifiziert und die Laser 5 entsprechend gesteuert werden.[0053] Here too, the surface areas covered with oxide can be identified by a scanner 12 and the lasers 5 can be controlled accordingly.

[0054] Die erfindungsgemäße Laserreinigung nach der Wärmebehandlung kann auch vor einer elektrogalvanischen Beschichtungsanlage (EGL) erfolgen.The laser cleaning according to the invention after the heat treatment can also be carried out before an electro-galvanic coating system (EGL).

4/104.10

AT 520 637 B1 2019-06-15 österreichischesAT 520 637 B1 2019-06-15 Austrian

Claims (11)

PatentamtPatent Office Patentansprücheclaims 1. Verfahren zur Behandlung eines Metallbandes (1), wobei das Metallband (1) in einem Ofen (2) wärmebehandelt und nachfolgend in einer Beschichtungsanlage (3,4) beschichtet wird, wobei nach der Wärmebehandlung und vor der Beschichtung Oberflächenoxide am Metallband (1) mit Hilfe zumindest eines Lasers (5) entfernt werden, dadurch gekennzeichnet, dass die Metallbandoberfläche mit einem Scanner (12) abgetastet wird, um so die Bereiche, in denen sich die Oberflächenoxide befinden, zu identifizieren und dass nur diese Bereiche mit dem Laser (5) behandelt werden.1. A method for treating a metal strip (1), the metal strip (1) being heat-treated in an oven (2) and subsequently coated in a coating system (3, 4), surface oxides on the metal strip (1 ) are removed with the aid of at least one laser (5), characterized in that the metal strip surface is scanned with a scanner (12) so as to identify the areas in which the surface oxides are located and that only these areas are identified with the laser ( 5) are treated. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Metallband (1) in der Beschichtungsanlage (3, 4) mit einer metallischen Beschichtung beschichtet wird.2. The method according to claim 1, characterized in that the metal strip (1) in the coating system (3, 4) is coated with a metallic coating. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Metallband (1) kontinuierlich in einem Ofen (2) wärmebehandelt wird.3. The method according to claim 1 or 2, characterized in that the metal strip (1) is continuously heat-treated in an oven (2). 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Ofen (2) einen Heizabschnitt (9) und einen nachfolgenden Kühlabschnitt (8) aufweist und dass die Oberflächenoxide im Kühlabschnitt (8) entfernt werden.4. The method according to claim 3, characterized in that the furnace (2) has a heating section (9) and a subsequent cooling section (8) and that the surface oxides in the cooling section (8) are removed. 5. Verfahren einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass das Metallband (1) direkt im Anschluss an den Ofen (2) in ein Metallbad (7) eintaucht und dort beschichtet wird.5. The method according to claim 3 or 4, characterized in that the metal strip (1) is immersed in a metal bath (7) directly after the furnace (2) and is coated there. 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Metallband (1) im Metallbad (7) verzinkt wird.6. The method according to claim 5, characterized in that the metal strip (1) in the metal bath (7) is galvanized. 7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Metallband (1) in der Beschichtungsanlage (4) durch das Ablagern von Metalldampf beschichtet wird.7. The method according to any one of claims 1 to 4, characterized in that the metal strip (1) in the coating system (4) is coated by the deposition of metal vapor. 8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Metallband (1) in der Beschichtungsanlage elektrolytisch beschichtet wird.8. The method according to any one of claims 1 to 4, characterized in that the metal strip (1) is electrolytically coated in the coating system. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass durch Laser (5) die Oberflächenoxide auf beiden Bandseiten entfernt werden.9. The method according to any one of claims 1 to 8, characterized in that the surface oxides on both sides of the strip are removed by laser (5). 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die entfernten Oberflächenoxide abgesaugt werden.10. The method according to any one of claims 1 to 9, characterized in that the removed surface oxides are suctioned off. 11. Anwendung des Verfahrens gemäß einer der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass damit ein Metallband (1), das auch die Legierungselemente Si, Mn und AI enthält, behandelt wird.11. Application of the method according to any one of claims 1 to 10, characterized in that it is used to treat a metal strip (1) which also contains the alloying elements Si, Mn and Al.
ATA50665/2018A 2018-07-31 2018-07-31 METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP AT520637B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ATA50665/2018A AT520637B1 (en) 2018-07-31 2018-07-31 METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP
PCT/EP2019/068251 WO2020025259A1 (en) 2018-07-31 2019-07-08 Method for improving the coatability of a metal strip
TW108125797A TW202014533A (en) 2018-07-31 2019-07-22 Method for improving the suitability of a metal strip for coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50665/2018A AT520637B1 (en) 2018-07-31 2018-07-31 METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP

Publications (2)

Publication Number Publication Date
AT520637A4 AT520637A4 (en) 2019-06-15
AT520637B1 true AT520637B1 (en) 2019-06-15

Family

ID=66793539

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA50665/2018A AT520637B1 (en) 2018-07-31 2018-07-31 METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP

Country Status (3)

Country Link
AT (1) AT520637B1 (en)
TW (1) TW202014533A (en)
WO (1) WO2020025259A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021119426A1 (en) 2021-07-27 2023-02-02 Bayerische Motoren Werke Aktiengesellschaft Method for producing a press-hardened shaped sheet metal part, press-hardened shaped sheet metal part produced therewith and plant for manufacturing press-hardened shaped sheet metal parts

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021101383A1 (en) * 2021-01-22 2022-07-28 Thyssenkrupp Steel Europe Ag Process for the continuous coating of a strip and coating plant
AT524062B1 (en) * 2021-05-27 2022-02-15 Andritz Tech & Asset Man Gmbh DEVICE AND METHOD FOR HEAT TREATMENT OF A METAL STRIP
CN113787060B (en) * 2021-09-07 2022-11-11 高峰 Steel plate surface treatment device and steel plate surface treatment method
CN114574818B (en) * 2022-03-07 2023-04-25 浙江宇狮包装材料有限公司 Equipment for producing aluminizer by vacuum evaporation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA9711591B (en) * 1996-08-12 1998-08-26 Armco Inc Descaling metal with a laser having a very short pulse width and high average power.
US5948172A (en) * 1996-08-12 1999-09-07 Neiheisel; Gary L. Descaling metal with a laser having a very short pulse width and high average power
JPH11269683A (en) * 1998-03-18 1999-10-05 Armco Inc Method and apparatus for removing oxide from metal surface
US20130288073A1 (en) * 2010-12-27 2013-10-31 Posco Plating Method and Zinc Plating Process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830116B1 (en) * 2001-12-21 2008-05-20 주식회사 포스코 Manufacturing method of galvanized sheet steels with high strength
KR100892815B1 (en) 2004-12-21 2009-04-10 가부시키가이샤 고베 세이코쇼 Method and facility for hot dip zinc plating
US8985050B2 (en) * 2009-11-05 2015-03-24 The Trustees Of Columbia University In The City Of New York Substrate laser oxide removal process followed by electro or immersion plating
KR20120041544A (en) 2010-10-21 2012-05-02 주식회사 포스코 Galvanized steel sheet having excellent coatability, coating adhesion and spot weldability and method for manufacturing the same
WO2014124749A1 (en) 2013-02-12 2014-08-21 Tata Steel Ijmuiden Bv Coated steel suitable for hot-dip galvanising
US11548046B2 (en) * 2016-11-23 2023-01-10 Aperam Method for laser stripping a moving metal product and plant for the execution thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA9711591B (en) * 1996-08-12 1998-08-26 Armco Inc Descaling metal with a laser having a very short pulse width and high average power.
US5948172A (en) * 1996-08-12 1999-09-07 Neiheisel; Gary L. Descaling metal with a laser having a very short pulse width and high average power
JPH11269683A (en) * 1998-03-18 1999-10-05 Armco Inc Method and apparatus for removing oxide from metal surface
US20130288073A1 (en) * 2010-12-27 2013-10-31 Posco Plating Method and Zinc Plating Process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021119426A1 (en) 2021-07-27 2023-02-02 Bayerische Motoren Werke Aktiengesellschaft Method for producing a press-hardened shaped sheet metal part, press-hardened shaped sheet metal part produced therewith and plant for manufacturing press-hardened shaped sheet metal parts

Also Published As

Publication number Publication date
AT520637A4 (en) 2019-06-15
TW202014533A (en) 2020-04-16
WO2020025259A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
AT520637B1 (en) METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP
DE102006039307B3 (en) Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP1660693B1 (en) Method for producing a hardened profile part
EP2235229B9 (en) Method for coating a warm or cold-rolled flat steel product comprising 6 - 30 weight-% mn with a metallic protective layer
DE60006068T2 (en) HOT-DIP GALVANIZED STEEL SHEET WITH EXCELLENT BALANCE BETWEEN STRENGTH AND STRENGTH AND ADHESION BETWEEN STEEL AND COATING
EP2010690B1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
EP2848715B1 (en) Method for producing a steel component with an anti-corrosive metal coating
EP2220259A1 (en) Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor
EP2432910A1 (en) Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
EP3250727B1 (en) Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
DE202004021264U1 (en) Corrosion layer and hardened steel component
WO2011069906A2 (en) Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
EP3877564B1 (en) Hardened component, comprising a steel substrate and an anti-corrosion coating, corresponding component for producing the hardened component, production method, and use
DE102015202642A1 (en) A method of making a product of rolled strip material
EP3749793B1 (en) Method for producing a steel strip with improved bonding of metallic hot-dip coatings
EP3906328B1 (en) Aluminum-based coating for flat steel products for press mold hardening components, and method for producing same
EP3332048B1 (en) Method for producing a zinc-magnesium-galvannealed hot-dip coating and flat steel product provided with such a coating
DE102015113878B4 (en) Process for the thermal treatment of a black plate coated with a conversion layer
EP1743956A2 (en) Method of manufacturing a corrosion protected steel sheet
EP4038215B1 (en) Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom
DE102020204356A1 (en) Hardened sheet metal component, produced by hot forming a flat steel product and process for its production
DE102015122453B4 (en) Process for producing a fine-grained surface layer in a flat steel product and flat steel product with a fine-grained surface layer
EP3947754B1 (en) Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings
DE102020203421A1 (en) Flat steel product with a ZnCu layer system