AT378389B - Verfahren zur herstellung von hydraulisch gebundenen tragschichten bwz. stabilisierten frostbestaendigen bodenschichten und zur bodenverfestigung - Google Patents

Verfahren zur herstellung von hydraulisch gebundenen tragschichten bwz. stabilisierten frostbestaendigen bodenschichten und zur bodenverfestigung

Info

Publication number
AT378389B
AT378389B AT172881A AT172881A AT378389B AT 378389 B AT378389 B AT 378389B AT 172881 A AT172881 A AT 172881A AT 172881 A AT172881 A AT 172881A AT 378389 B AT378389 B AT 378389B
Authority
AT
Austria
Prior art keywords
mass
sep
fly ash
soil
additives
Prior art date
Application number
AT172881A
Other languages
English (en)
Other versions
ATA172881A (de
Original Assignee
Perlmooser Zementwerke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Perlmooser Zementwerke Ag filed Critical Perlmooser Zementwerke Ag
Priority to AT172881A priority Critical patent/AT378389B/de
Publication of ATA172881A publication Critical patent/ATA172881A/de
Application granted granted Critical
Publication of AT378389B publication Critical patent/AT378389B/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Road Paving Structures (AREA)

Description


   <Desc/Clms Page number 1> 
 



   Die Erfindung betrifft ein Verfahren zur Herstellung von hydraulisch gebundenen Tragschichten bzw. stabilisierten, frostbeständigen Bodenschichten und zur Bodenverfestigung, wobei mindestens eine bei der Verbrennung fossiler Brennstoffe insbesondere in Heiz-und/oder kalorischen Kraftwerken, anfallende "Additiv-Flugasche", die eine Anlage zur Abscheidung von Schwefeloxyden aus Verbrennungsgasen mittels Kalziumverbindungen, insbesondere mittels feinkörnigen bzw. staubförmigen Kalkgesteins   (CaCOs-und/oder MgCOo-hältig)   bzw. hochkalkhältiger Gesteinsmehle mit mergeligen, tonigen und/oder silikatischen Anteilen durchlaufen hat und gegebenenfalls übliche 
 EMI1.1 
 und, gegebenenfalls unter Zusatz von Wasser, in den Boden eingearbeitet werden, bzw.

   anstehen- der und/oder zugeführter Boden, dem gegebenenfalls andere Böden, Schotter, Kiese, Sande   od. dgl.   zugesetzt werden, in einer Mischanlage mit der Flugasche und den gegebenenfalls vorhandenen
Zusätzen, Zuschlägen, Bindemitteln od. dgl., vermischt und am Einbauort eingebaut werden, wo- nach eine Verfestigung der so erhaltenen Schichten auf eine jeweils gewünschte Proctor-Dichte erfolgt. 



   Derartige Schichten bzw. Tragschichten dienen insbesondere als Unterlagen für Beläge aller
Art für Wege, Strassen, Plätze, Flug- und Park-, Sportplätze, für Böden von Hallen   od. dgl.   und insbesondere auch zur Verfestigung rutschgefährdeter Böden. Die eingebauten Schichten aus Boden und Bindemittel werden unter Druck,   z. B.   mit einer Strassenwalze auf eine gewünschte Proctor- - Dichte verfestigt. 



   Bisher wurden für die beschriebenen Zwecke zur Herstellung von stabilisierten Bodenschich- ten und als "Unterbau-Binder" insbesondere Zemente oder (hydraulische) Kalke eingesetzt. Dabei hatte Zement neben seinem für die genannten Zwecke relativ hohen Preis den Nachteil, im Boden praktisch keine Trocknungsfunktion auszuüben. Die Stabilisierung mit Zement gelingt insbesondere dann nicht, wenn der zu stabilisierende Boden zu feucht ist. Hat also die Verwendung von Zement zwar den Vorzug, hohe Endfestigkeiten rasch zu erreichen, so weist er den eben beschriebenen
Nachteil der schlechten Trocknungseigenschaften auf. 



   Um diese Nachteile bei der Anwendung von Zement zu vermeiden, wurden als Bindemittel zur Herstellung von Tragschichten vorzugsweise hydraulische Kalke, insbesondere Weisskalke, angewendet. Die Verarbeitung der zu stabilisierenden Bodenschichten erfolgt in gleicher Weise wie oben beschrieben. Kalke vermögen dem Boden Feuchtigkeit zu entziehen. Dieser bei Herstellung der stabilisierten Böden durch Verwendung von Kalk nicht zu unterschätzende Vorteil wird durch den Nachteil einer langsamen Festigkeitsentwicklung erkauft. Auf mit Kalken stabilisierten Schichten können also üblicherweise nicht sofort nach ihrer Herstellung gewünschte Beläge aufgebracht werden. 



   Es wurde nun gefunden, dass die Verwendung bestimmter Flugaschen für die Stabilisierung und Verfestigung von Böden bzw. Bodenschichten die jeweiligen Vorteile von Zementen und Kalken bei diesen Anwendungen zu vereinen imstande ist. 



   Es ist schon lange bekannt, Flugasche, insbesondere Flugasche aus grosstechnischen Verbrennungsanlagen, wie z. B. Heizwerken oder kalorischen Kraftwerken, als puzzolanähnliche Komponente,   z. B.   zusammen mit, vorzugsweise hydraulischen, Bindemitteln, insbesondere Zement, in Baustoffen einzusetzen. 



   In den US-PS   Nr. 4, 050, 258, Nr. 4, 050, 261, Nr. 4, 050, 950   und Nr. 4, 062, 195 sind derartige Massen beschrieben, die als Auffüllmaterial dienen sollen und aus Portlandzement, Flugasche, Zuschlägen und Wasser bestehen. Ebenfalls ist im Bulletin 231,1959, S. 67-81 des Highway Research Board, Washington   D. C.   auf die Verwendung von Flugasche zur Bodenverfestigung hingewiesen. 



   Infolge der wachsenden Forderungen des Umweltschutzes und dabei insbesondere zur Reduktion der bei der Verbrennung von fossilen Brennstoffen geringerer Qualität auftretenden, erhöhten Gehalte der Verbrennungsabgase an Schwefelverbindungen, insbesondere an Schwefeloxyden, vor allem an   Sous,   werden zur Abscheidung dieser Schwefeloxyde aus den Abgasen im steigenden Masse nach verschiedenen Methoden arbeitende Entschwefelungsanlagen den Verbrennungsanlagen nachgeschaltet. 



   Eine heute häufig angewendete, zielführende Methode stellt das Additioverfahren dar, bei welchem in das schwefelhaltige Abgas eine Kalziumverbindung, insbesondere Kalkstein-Mehl, 

 <Desc/Clms Page number 2> 

 eingeblasen wird ; das CaC03 wird im heissen Abgas zumindest teilweise entsäuert, das gebildete   CaO   reagiert insbesondere mit dem S03 des Abgases (zu Kalziumsulfat), teilweise werden die   Schwe-   feloxyde auch von den Teilchen des Kalkstein-Mehls oberflächlich adsorbiert. Daneben laufen ver- schiedene andere Nebenreaktionen zwischen   CaO   und Schwefelverbindungen im Abgas bzw. Rauchgas ; ab. Es ist aber auch möglich, Mehle von dolomitischen Kalken und/oder Dolomiten bzw. hochkalk- hältige Gesteinsmehle mit mergeligen und/oder silikatischen Anteilen, wie z. B. Zementrohmehle, einzublasen. 



   Die bei mit nach dem Additivverfahren arbeitenden Abgas-Entschwefelungseinrichtungen ausge- statteten Verbrennungsanlagen anfallenden Flugaschen zeichnen sich im Vergleich zu aus ) konventionellen Verbrennungsanlagen ohne derartige Entschwefelungsanlagen stammenden Flugaschen insbesondere durch erhöhte Gehalte an Kalziumverbindungen, es seien davon nur beispielhaft   Kalziumoxyd,-sulfat und-carbonat   genannt, sowie durch einen besonderen Kornaufbau aus, was die beiden Produkte nicht ohne weiteres vergleichbar erscheinen lässt. 



   Die Flugaschen aus nach dem Additivverfahren arbeitenden Entschwefelungsanlagen stellen 
 EMI2.1 
 wassergefährdung führen kann. 



   Es hat daher nicht an Versuchen gefehlt, derartige, mit Kalzium- und Schwefelverbindungen   "beladene"Flugaschen   einer technischen Verwertung zuzuführen, die deren Deponierung unnötig macht. 



   So ist in den   Aufsätzen "The   C-E air pollution control   system" von J. R.   Martin et al (1970 Industrial coal conference, University of Kentucky,   S.1-10) und "Study   of the potential for profitable utilization of pulverized coal flyash modified by the addition of limestone-dolomite 
 EMI2.2 
 zu diesem Zweck Additivflugasche zusammen mit Zement einzusetzen, ist nicht erwähnt. 



   Im Aufsatz C. F. Cockwell wird dazu ausgeführt, dass Additivflugasche auch ohne Zusatz von Kalk einsetzbar ist, dass aber in Anbetracht der Vielfalt der verschiedenen Bodentypen vor dem Einsatz der Additivflugasche jeweils eine analytische Optimierung von Fall zu Fall erforder- lich ist. 



   Überraschenderweise wurde nunmehr gefunden, dass Additivflugasche in Kombination mit Ze- ment trotz der weitreichenden Verschiedenheit der zu verfestigenden Böden, die in jedem Fall eine Beeinflussung des Stabilisationsverhaltens ergibt, generell mit guten Ergebnissen zur Herstellung von hydraulisch gebundenen Tragschichten, Bodenschichten bzw. zur Bodenverfestigung einsetzbar ist. Insbesondere werden hohe Festigkeiten und gute Trocknungseigenschaften erzielt. 



   Demgemäss ist das erfindungsgemässe Verfahren vor allem dadurch gekennzeichnet, dass eine Additivflugasche mit einer Feinheit von mindestens 1500   cm2/g   nach Blaine und einem Gehalt von mindestens 10 Masse-%, vorzugsweise mindestens 15 Masse-%, insbesondere mindestens 20 Masse-%, in Kalziumsilikaten, Kalziumaluminaten, ternären Verbindungen, insbesondere Kalziumaluminat-Silikaten, und/oder andern löslichen Kalziumverbindungen gebundenem CaO, bestimmt nach den Analysen-Vorschriften des VÖZ, und einem Gehalt von mindestens 2 Masse-%, vorzugsweise 5 bis 50 Masse-%, insbesondere 10 bis 20 Masse-%, an freiem, ungebundenem CaO, bestimmt nach Schläpfer-Bukowski, zusammen mit Zement als Bindemittel eingesetzt wird, wobei gegebenenfalls die Zumahlstoffe, wie z.

   B. inerte und/oder puzzolanische und/oder latent hydraulische Stoffe und gegebenenfalls die Zusätze, wie beispielsweise Verflüssigungs-, Beschleunigungs-, Hydrophobie-   rungs-und/oder   andere Bindemittel sowie weiters gegebenenfalls die Zuschläge, wie beispielsweise Sand, Kies, Splitt, geblähter Ton, Schiefer oder Perlit, Kunststoffschaum-Teilchen, natürliche oder synthetische, anorganische oder organische Fasern od. dgl., zugegeben werden. 



   Auf Grund der Verschiedenheit der Struktur und der chemischen Reaktionsfähigkeit lag es nicht nahe, Additivflugasche an Stelle von gewöhnlicher Flugasche in Kombination mit Zement einzusetzen. 



   Die Menge der zugegebenen Flugasche aus den Additivverfahren liegt im üblichen Bereich wie bei Zementen und/oder Kalken, vorzugsweise bei etwa 50 bis 300 kg/m3 Mischgut, insbesondere 60 bis 150 kg/m3 Mischgut. 

 <Desc/Clms Page number 3> 

 



   Wie sich zeigte, bringt das neue Verfahren neben der vom Standpunkt des Umweltschutzes zu begrüssenden technologischen Verwertung   von"problematischen"Flugaschen   den grossen Vorteil des ausreichenden Feuchtigkeitsentzuges sowie hohe Festigkeiten der mit den Additivflugaschen versetzten Böden. Infolge der relativ verzögerten Erhärtung kann ein vorerst nur vorverdichteter Boden noch über längere Zeit ohne Schwierigkeiten nachverdichtet werden. Bei der Vorverdichtung wird vorerst für die Trocknung des Bodens Sorge getragen, wonach insbesondere zur Erreichung hoher Tragfähigkeit die Nachverdichtung unter Druck,   z. B.   mit Walzen, erfolgt. 



   Das erfindungsgemässe Verfahren ermöglicht es insbesondere, und darin liegt ein grosser Vorteil, ein umweltbelastendes Material technisch zu verwerten. Dabei ist der meist hohe Gehalt derartiger Flugaschen an Schwefelverbindungen, insbesondere   SOa,   für diese Verwertung insbesondere im Hinblick auf die Festigkeitsentwicklung sogar von Vorteil. 
 EMI3.1 
 durch Vermahlen oder Siebung oder Sichtung der aus der Entschwefelungsanlage kommenden Flug- asche oder durch eine Kombination dieser Vorgänge erreicht. 



   Vorteilhaft wird eine Flugasche entsprechend einem Siebrückstand auf dem Sieb mit der lich- ten Maschenweite 0, 2 mm von weniger als 10 Masse-%, vorzugsweise von weniger als 5 Masse-%, eingesetzt. 



   Für die Homogenität der Schichten kann es auch vorteilhaft sein, wenn eine durch Abtren- nung, insbesondere Siebung oder Sichtung bei einer Korngrösse von   200 gm,   von Grobanteilen und/ oder unverbrannten Anteilen befreite Flugasche eingesetzt wird. 



   Vorteilhaft wird erfindungsgemäss eine Flugasche mit einem Gehalt von mindestens 10 Masse-%, vorzugsweise mindestens 15 Masse-%, insbesondere mindestens 20   Masse-%,   in Kalziumsilikaten,
Kalziumaluminaten, ternären Verbindungen, insbesondere Kalziumaluminat-Silikaten, und/oder andern löslichen Kalziumverbindungen gebundenem CaO, bestimmt nach den Analysen-Vorschriften des VÖZ, sowie mindestens 2 Masse-%, vorzugsweise 5 bis 50 Masse-%, insbesondere 10 bis 20 Mas- se-%, an freiem, ungebundenem CaO, bestimmt nach Schläpfer-Bukowski, eingesetzt. Die Obergren- zen liegen vorteilhaft jeweils bei praktisch 100 bzw. 50 Masse-%. 



   Je nach Feuchtigkeit der zu stabilisierenden Bodenschichten wird der Gehalt an freiem   CaO   in der zum Einsatz kommenden Additivflugasche eingestellt. Dies kann insbesondere durch Variation der Menge des eingeblasenen Kalkmehls bzw. Gesteinsmehls in der Entschwefelungsanlage erfolgen. Verlangen besonders feuchte Böden einen Zusatz von höheren Mengen Kalkmehls bei der Entschwefelung, ist damit gleichzeitig der Vorteil gegeben, dass eine noch bessere Abscheidung des SOg aus den Verbrennungsgasen erreicht wird. 



   Die zum Einsatz kommende Flugasche kann weiters einen Gehalt von mindestens 1 Masse-%, vorzugsweise mindestens 2, 5 Masse-%, insbesondere mindestens 4 Masse-%, Schwefelverbindungen, bestimmt als   Sous,   aufweisen. Eine Obergrenze kann   z. B.   mit 35 Masse-% angegeben werden. 



   Vorteilhaft kann es weiterhin sein, wenn der Flugasche 1 bis 70 Masse-%, vorzugsweise 5 bis 50 Masse-%, insbesondere 10 bis 30 Masse-%, Zemente, natürliche oder künstliche Puzzolane, wie   z. B.   herkömmliche Flugasche oder Trasse, latent hydraulische Stoffe, wie z. B. Hochofenschlacken, Branntkalke, Weisskalkhydrat, hydraulische Kalke, hochhydraulische Kalke, Kalziumsulfat, Gipse, gebrannte Gipse und/oder Anhydrite, zugesetzt werden. Diese Substanzen wirken unter anderem auch als Anreger und können zur Abbinde- und Erhärtungsbeschleunigung beitragen. Auf diese Weise lässt sich eine gewünschte Festigkeitsentwicklung von erfindungsgemäss stabilisierten Böden erreichen. 



   Den Flugaschen können erhärtungsverbessernde Zusatzmittel, wie z. B. Kalziumchlorid, zugesetzt werden. 



   Weiters kann auch vorgesehen werden, dass der Flugasche 1 bis 15 Masse-%, vorzugsweise 1 bis 5 Masse-%, Alkaliverbindungen, insbesondere Karbonate, Bikarbonate, Hydroxyde, Sulfate, Silikate, Aluminate und/oder alkalihältige Abfallprodukte, insbesondere Zementofenflugstaub, zugesetzt werden. 



   Eine weitere Möglichkeit besteht darin, dass die Flugasche mit alkalihältigen, vorzugsweise wässerigen, Lösungen von Alkalikarbonaten und/oder Alkalisulfaten als Anmachwasser vermischt 

 <Desc/Clms Page number 4> 

 wird und dass diese Mischungen dann den Böden zugesetzt werden. 



   Für die Regelung der Konsistenz und Verarbeitbarkeit der mit den zu stabilisierenden Böden zu vermischenden Flugasche-Wasser-Mischungen ist es günstig, wenn der Flugasche verflüssigende und/oder wassereinsparende Mittel und/oder Fliessmittel, wie beispielsweise Melaminharzprodukte, Ligninsulfonate od. dgl., zugesetzt werden. 



   Unter Umständen kann es vorteilhaft sein, der Flugasche treibende, porenbildende Zusätze, wie beispielsweise Aluminiumpulver, und/oder schaumbildende Zusätze, wie z. B. Tenside und/oder
Proteine, zuzusetzen. Es können auf diese Weise stabilisierte Bodenschichten mit hoher Festigkeit bei gleichzeitiger Porosität erzielt werden. 



  Soll eine Hydrophobierung der Böden erreicht werden, kann so vorgegangen werden, dass der Flugasche hydrophobierende Mittel, wie z. B. Schwermetallseifen, Stearate oder Silikone, gege- benenfalls auch Montanwachs und/oder Paraffin, zugefügt werden. 



   Beispiel 1 : Ein Bodengemisch (Kalkstein) wurde mit einem Gemisch aus Flugasche (Additiv- flugasche aus der Rauchgasentschwefelung) und Zement stabilisiert, wobei die Flugasche eine
Feinheit nach Blaine von 3200 cm2/g und einen Gehalt an freiem   CaO   von 16% aufgewiesen hatte. 



   Durch Proctorversuche wurden der optimale Wassergehalt des Boden/Bindemittelgemisches, die Proctordichte und die Zylinderdruckfestigkeit bestimmt. Zum Vergleich wurde ein Versuch mit
Kalkhydrat als Bindemittel durchgeführt. Nachfolgende Tabelle zeigt die Vorteile des Flugasche- - Zement-Gemisches an Hand der damit erzielbaren höheren Druckfestigkeit. 
 EMI4.1 
 
<tb> 
<tb> 



  Tragschichte <SEP> Bindemittelgehalt <SEP> opt. <SEP> Wassergehalt <SEP> Proctor-Zylinderdruckmit <SEP> bezogen <SEP> auf <SEP> (bezogen <SEP> auf <SEP> dichte <SEP> festigkeit
<tb> trockenen <SEP> Boden <SEP> Gesamtmischung) <SEP> nach <SEP> 56 <SEP> d
<tb> Gew.-% <SEP> kg/m'% <SEP> kg/dm"N/mm' <SEP> 
<tb> 95% <SEP> Additivflugasche
<tb> 5% <SEP> PZ <SEP> 275 <SEP> (H) <SEP> 3, <SEP> 3 <SEP> 60 <SEP> 6, <SEP> 0 <SEP> 1, <SEP> 81 <SEP> 2, <SEP> 2 <SEP> 
<tb> Kalkhydrat <SEP> 3, <SEP> 3 <SEP> 60 <SEP> 7, <SEP> 0 <SEP> 1, <SEP> 83 <SEP> 0, <SEP> 8 <SEP> 
<tb> 
 
Beispiel 2 :

   Ein vorwiegend quarzitischer Boden wurde mit einer Bindemittelmischung aus 98, 5% Additivflugasche aus einer Rauchgasentschwefelungsanlage, mit einer Feinheit nach Blaine von 5900 cm2/g, einem Gehalt an Schwefelverbindungen, bestimmt als   S03,   von   3, 5 Masse-%   und einem Gehalt an freiem, ungebundenem   CaO   von 9%, und 1, 5% Zement versetzt und danach im Vergleich zu einem Bindemittel, bestehend nur aus Zement, auf seine Verarbeitungszeit (Liegezeit) überprüft. Zusätzlich wurde die Zylinderdruckfestigkeit nach 90 Tagen berücksichtigt. Nachfolgende Tabelle zeigt, dass beim Einsatz eines Bindemittels aus Flugasche und Zement im Vergleich zu Zement allein bei gleicher Festigkeit weit länger die Möglichkeit bestand, das Gemisch zu verarbeiten. 
 EMI4.2 
 
<tb> 
<tb> 



  Tragschichte <SEP> Bindemittelgehalt <SEP> Verarbeitungs-Zylinderdruckfestigkeit <SEP> 
<tb> mit <SEP> bezogen <SEP> auf <SEP> zeit <SEP> bei <SEP> optimalem <SEP> Wassertrockenen <SEP> Boden <SEP> gehalt <SEP> nach <SEP> 90 <SEP> Tagen
<tb> Gew.-% <SEP> kg/m" <SEP> (h) <SEP> (N/mm2)
<tb> 98, <SEP> 5% <SEP> Additivflug- <SEP> 
<tb> asche <SEP> mit
<tb> 1, <SEP> 5% <SEP> Zement <SEP> 6,3 <SEP> 140 <SEP> 24 <SEP> 6,0
<tb> Zement <SEP> (100%) <SEP> 6, <SEP> 3 <SEP> 140 <SEP> 6 <SEP> 6, <SEP> 3 <SEP> 
<tb> 
 

 <Desc/Clms Page number 5> 

 
Beispiel 3 :

   Es wurde ein stark bindiger Boden, der einen Feuchtigkeitsgehalt von 25% aufge- wiesen hatte, mit einer Mischung aus 80% Additivflugasche aus einer Rauchgasentschwefelungsanla- ge, 10% gemahlener Hochofenschlacke mit einer Feinheit nach Blaine von 3800   cm2 jg   und 10% Port- landzement versetzt und anschliessend die Proctordichte bestimmt. 



  Die Flugasche war durch Sichtung von Grobanteilen   ( >    200   gm)   befreit und wies einen Ge- halt an Schwefelverbindungen von 4, 5 Masse-%, bestimmt als   S03,   und einen Gehalt an ungebun- denem, freiem   CaO   von 15% auf. 



   Beim Vergleichsversuch wurde als Bindemittel ausschliesslich Portlandzement eingesetzt : 
 EMI5.1 
 
<tb> 
<tb> Tragschichte <SEP> Bindemittelgehalt <SEP> bezogen <SEP> Proctordichte
<tb> mit <SEP> auf <SEP> trockenen <SEP> Boden
<tb> Gew.-% <SEP> kg/m"kg/dm"
<tb> 80% <SEP> Additivflugasche
<tb> 10% <SEP> Hochofenschlacke
<tb> 10% <SEP> Zement <SEP> 7,8 <SEP> 180 <SEP> 2, <SEP> 10
<tb> 100% <SEP> Zement <SEP> 7, <SEP> 8 <SEP> 180 <SEP> keine <SEP> Verdichtung
<tb> möglich, <SEP> Wassergehalt <SEP> zu <SEP> hoch
<tb> 
 
Beispiel 4 : Ein quarzitischer Boden wurde mit einem Gemisch aus 75% Additivflugasche und 25% Zement stabilisiert, wobei die Flugasche eine Feinheit von 5600   cm2/g   (nach Blaine), einen Gehalt an Schwefelverbindungen (als S03 bestimmt) von 2, 6 Masse-% und einen Gehalt an freiem   CaO   von 10% aufgewiesen hatte.

   Mangels an Feinanteilen im Boden wurde weiters ein Steinmehl in einer Menge von 5 Masse-% dem Boden zugesetzt. 



   Als Vergleich diente ein Versuch mit Kalkhydrat als Bindemittel. 
 EMI5.2 
 
<tb> 
<tb> <SEP> 



  Tragschichte <SEP> Bindemittelgehalt <SEP> optimaler <SEP> Proctordichte
<tb> mit <SEP> bezogen <SEP> auf <SEP> Wassergehalt
<tb> trockenen <SEP> Boden
<tb> Gew.-% <SEP> kg/m <SEP> % <SEP> kg/dm3
<tb> 75% <SEP> Additivflugasche
<tb> 25% <SEP> PZ <SEP> 275 <SEP> (H) <SEP> 5, <SEP> 0 <SEP> 110 <SEP> 7, <SEP> 5 <SEP> 4, <SEP> 7 <SEP> 
<tb> 100% <SEP> Kalkhydrat <SEP> 5, <SEP> 0 <SEP> 110 <SEP> keine <SEP> Verdichtung <SEP> möglich
<tb> 
 

**WARNUNG** Ende DESC Feld kannt Anfang CLMS uberlappen**.

Claims (1)

  1. PATENTANSPRÜCHE : 1. Verfahren zur Herstellung von hydraulisch gebundenen Tragschichten bzw. stabilisierten, frostbeständigen Bodenschichten und zur Bodenverfestigung, wobei mindestens eine bei der Verbrennung fossiler Brennstoffe insbesondere in Heiz-und/oder kalorischen Kraftwerken, anfallende "Additiv-Flugasche", die eine Anlage zur Abscheidung von Schwefeloxyden aus Verbrennungsgasen mittels Kalziumverbindungen, insbesondere mittels feinkörnigen bzw. staubförmigen Kalkgesteins (CaCOs-und/oder MgCOs-hältig) bzw. hochkalkhältiger Gesteinsmehle mit mergeligen, tonigen <Desc/Clms Page number 6> und/oder silikatischen Anteilen durchlaufen hat und gegebenenfalls übliche Zusätze, Zuschläge, andere Bindemittel od.
    dgl., auf den zu stabilisierenden Boden aufgebracht und, gegebenenfalls unter Zusatz von Wasser, in den Boden eingearbeitet werden, bzw. anstehender und/oder zugeführter Boden, dem gegebenenfalls andere Böden, Schotter, Kiese, Sande od. dgl. zugesetzt werden, in einer Mischanlage mit der Flugasche und den gegebenenfalls vorhandenen Zusätzen, Zuschlägen, Bindemitteln od.
    dgl., vermischt und am Einbauort eingebaut wird, wonach eine Verfestigung der so erhaltenen Schichten auf eine jeweils gewünschte Proctor-Dichte erfolgt, dadurch gekennzeichnet, dass eine Additivflugasche mit einer Feinheit von mindestens 1500 cm/g nach Blaine und einem Gehalt von mindestens 10 Masse-%, vorzugsweise mindestens 15 Masse-%, insbesondere mindestens 20 Masse-%, in Kalziumsilikaten, Kalziumaluminaten, ternären Verbindungen, insbesondere Kalzium-Aluminat-Silikaten, und/oder andern löslichen Kalziumverbindungen gebundenem CaO, bestimmt nach den Analysen-Vorschriften des VÖZ, und einem Gehalt von mindestens 2 Masse-%, vorzugsweise 5 bis 50 Masse-%, insbesondere 10 bis 20 Masse-%, an freiem, ungebundenem CaO, bestimmt nach Schläpfer-Bukowski, zusammen mit Zement als Bindemittel eingesetzt wird,
    wobei gegebenenfalls die Zumahlstoffe, wie z. B. inerte und/oder puzzolanische und/oder latent hydraulische Stoffe und gegebenenfalls die Zusätze, wie beispielsweise Verflüssigungs-, Beschleunigungs-, Hydrophobierungs- und/oder andere Bindemittel sowie weiters gegebenenfalls die Zuschläge, wie. beispielsweise Sand, Kies, Splitt, geblähter Ton, Schiefer oder Perlit, Kunststoffschaumteilcheni natürliche oder synthetische, anorganische oder organische Fasern od. dgl., zugegeben werden. EMI6.1 wobei diese Feinheit gegebenenfalls durch Mahlung erreicht wird.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Additivflugasche entsprechend einem Siebrückstand auf dem Sieb mit der lichten Maschenweite 0, 2 mm von weniger als 10 Masse-%, vorzugsweise von weniger als 5 Masse-%, eingesetzt wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine durch Mahlung oder Abtrennung, insbesondere Siebung oder Sichtung oder eine Kombination dieser Vorgänge bei einer Korngrösse von 200 p. m, von Grobanteilen und/oder unverbrannten Anteilen befreite Additivflugasche eingesetzt wird.
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Additivflugasche mit einem Gehalt von mindestens 1 Masse-%, vorzugsweise mindestens 2,5 Masse-%, insbesondere mindestens 4 Masse-%, Schwefelverbindungen, bestimmt als S03, eingesetzt wird.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass 1 bis 50 Masse-%, vorzugsweise 5 bis 50 Masse-%, insbesondere 10 bis 30 Masse-%, Zemente, natürliche oder EMI6.2 Kalke, Kalziumsulfat, Gipse, gebrannte Gipse und/oder Anhydrite, bezogen auf Additivflugasche, zugesetzt werden.
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass 1 bis 15 Masse-%, vorzugsweise 1 bis 5 Masse-%, Alkaliverbindungen, insbesondere Karbonate, Bikarbonate, Hydroxyde, Sulfate, Silikate, Aluminate und/oder alkalihältige Abfallprodukte, insbesondere Zement- ofenflugstaub, bezogen auf die Additivflugasche, zugesetzt werden.
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass erhärtungsverbessernde Zusatzmittel, wie z. B. Kalziumchlorid, zugesetzt werden.
    9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass verflüssigende und/oder wassereinsparende Mittel und/oder Fliessmittel, wie beispielsweise Melaminharzprodukte, Ligninsulfonate od. dgl., zugesetzt werden.
    10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass hydrophobierende Mittel, wie z. B. Schwermetallseifen, Stearate oder Silikone, zugesetzt werden.
AT172881A 1981-04-15 1981-04-15 Verfahren zur herstellung von hydraulisch gebundenen tragschichten bwz. stabilisierten frostbestaendigen bodenschichten und zur bodenverfestigung AT378389B (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT172881A AT378389B (de) 1981-04-15 1981-04-15 Verfahren zur herstellung von hydraulisch gebundenen tragschichten bwz. stabilisierten frostbestaendigen bodenschichten und zur bodenverfestigung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT172881A AT378389B (de) 1981-04-15 1981-04-15 Verfahren zur herstellung von hydraulisch gebundenen tragschichten bwz. stabilisierten frostbestaendigen bodenschichten und zur bodenverfestigung

Publications (2)

Publication Number Publication Date
ATA172881A ATA172881A (de) 1984-12-15
AT378389B true AT378389B (de) 1985-07-25

Family

ID=3519726

Family Applications (1)

Application Number Title Priority Date Filing Date
AT172881A AT378389B (de) 1981-04-15 1981-04-15 Verfahren zur herstellung von hydraulisch gebundenen tragschichten bwz. stabilisierten frostbestaendigen bodenschichten und zur bodenverfestigung

Country Status (1)

Country Link
AT (1) AT378389B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417881A1 (de) * 1989-08-18 1991-03-20 Terran Research, Inc. Verfahren zur Abdichtung von durchlässigen Lockergesteinen
DE4013801A1 (de) * 1990-04-28 1991-11-07 Keller Grundbau Gmbh Verfahren zum herstellung von bodenkoerpern
AT397263B (de) * 1989-06-15 1994-03-25 Voest Alpine Stahl Verfahren zum abdichten von boden und/oder seitenflächen sowie dichtmaterial zur durchführung dieses verfahrens
DE102006040712A1 (de) * 2006-08-30 2008-03-20 Agn Rohstoffverwertung Gmbh Bodenverfestigungsmittel, Verfahren zur Herstellung des Bodenverfestigungsmittel und dessen Verwendung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT397263B (de) * 1989-06-15 1994-03-25 Voest Alpine Stahl Verfahren zum abdichten von boden und/oder seitenflächen sowie dichtmaterial zur durchführung dieses verfahrens
EP0417881A1 (de) * 1989-08-18 1991-03-20 Terran Research, Inc. Verfahren zur Abdichtung von durchlässigen Lockergesteinen
DE4013801A1 (de) * 1990-04-28 1991-11-07 Keller Grundbau Gmbh Verfahren zum herstellung von bodenkoerpern
DE102006040712A1 (de) * 2006-08-30 2008-03-20 Agn Rohstoffverwertung Gmbh Bodenverfestigungsmittel, Verfahren zur Herstellung des Bodenverfestigungsmittel und dessen Verwendung

Also Published As

Publication number Publication date
ATA172881A (de) 1984-12-15

Similar Documents

Publication Publication Date Title
DE2703908A1 (de) Gemisch fuer tragschichten beim strassenbau und dergleichen
WO2008052753A2 (de) Verfahren zur herstellung leichter gesteinskörnungen, durch diese verfahren erhältliche leichte gesteinskörnungen, und verwendung derselben zur herstellung von baustoffen
DE2721266A1 (de) Gemisch fuer die tragschichten beim strassenbau und dessen herstellung
DE3408702A1 (de) Verfahren und vorrichtung zur coproduktion von zementartigen produkten
EP1663899A1 (de) Verfahren zum herstellen eines hydraulischen bindemittels, eines bauelements, deren verwendung sowie vorrichtung dazu
DE3832771A1 (de) Verfahren zur umformung von abfaellen in einen werkstoff in form von kuegelchen
DE3326599A1 (de) Verfahren und herstellung von leichtbeton-, block- und hohlblocksteinen aus keramisierten abgaengen der steinkohlenaufbereitung
AT378389B (de) Verfahren zur herstellung von hydraulisch gebundenen tragschichten bwz. stabilisierten frostbestaendigen bodenschichten und zur bodenverfestigung
EP0059444A2 (de) Hydraulisch abbindender Formstein, insbesondere für Bauwerke, und Verfahren zu dessen Herstellung
DE19531942A1 (de) Verfahren zur Herstellung von hydraulisch erhärtenden Deponiebaustoffen und -systemen für Deponatverfestigung und -immobilisierung aus Rückständen von Braunkohlenkraftwerken
DE3608920C2 (de)
DE2547908A1 (de) Synthetischer zuschlag fuer betone geringer rohdichte und hoher festigkeit und verfahren zu dessen herstellung
DE102011014346B3 (de) Verfahren zur Herstellung von Bindemitteln
DE3313727A1 (de) Verfahren zur herstellung von damm- und hinterfuellbaustoffen
DE4139644C1 (de)
DD297632A5 (de) Verwendung von wirbelschichtasche in estrichmoertel
WO2022207036A1 (de) Bindemittel für baustoffe, herstellungsverfahren dafür und anlage zur ausführung dieses verfahrens
EP2008983B1 (de) Verfahren zum Herstellen einer Gesteinskörnung und Gesteinskörnung, insbesondere für Baumaterialien
DE10115827C5 (de) Verfahren zur Herstellung von Porenbeton
DE19708907C1 (de) Verfahren zur stofflichen Verwertung von mit organischem Material verunreinigtem Gips und seine Verwendung
DE3718336A1 (de) Verfahren zur verarbeitung der mit den rauchgasen ausgetragenen oder in den filtern anfallenden wirbelschichtasche
AT406741B (de) Verfahren zur verminderung der abgasung von mülldeponien
EP0287050B1 (de) Verfahren zur Verarbeitung der mit den Rauchgasen ausgetragenen oder in den Filtern anfallenden Wirbelschichtasche
DE2458304A1 (de) Mischbinder aus schmelzkammergranulat und seine verwendung
DE663693C (de) Verfahren zur Herstellung von Daemmen und aehnlichen Bauwerken

Legal Events

Date Code Title Description
ELJ Ceased due to non-payment of the annual fee
UEP Publication of translation of european patent specification
REN Ceased due to non-payment of the annual fee