ZA200209833B - Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides. - Google Patents

Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides. Download PDF

Info

Publication number
ZA200209833B
ZA200209833B ZA200209833A ZA200209833A ZA200209833B ZA 200209833 B ZA200209833 B ZA 200209833B ZA 200209833 A ZA200209833 A ZA 200209833A ZA 200209833 A ZA200209833 A ZA 200209833A ZA 200209833 B ZA200209833 B ZA 200209833B
Authority
ZA
South Africa
Prior art keywords
oligonucleotide
sequence
alteration
seq
plant
Prior art date
Application number
ZA200209833A
Inventor
Eric B Kmiec
Howard B Gamper
Michael C Rice
Jungsup Kim
Original Assignee
Univ Delaware
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Delaware filed Critical Univ Delaware
Publication of ZA200209833B publication Critical patent/ZA200209833B/en

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

TARGETED CHROMOSOMAL GENOMIC ALTERATIONS IN PLANTS
USING MODIFIED SINGLE STRANDED OLIGONUCLEOTIDES
Field Of The Invention
The technical field of the invention is oligonucleotide-directed repair or alteration of plant genetic information using novel chemically modified oligonucleotides.
Background Of The Invention
A number of methods have been developed specifically to alter the genomic information of plants. These methods generally include the use of vectors such as, for example, T-DNA, carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. See, for example, United States Patent 4,459,355 which describes a method for transforming plants with a DNA vector and United States Patent 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such fransgene-containing vectors adds one or more exogenous copies of a gene in a usually random fashion at one or more integration sites of the plant's genome at some variable frequency. The introduced gene may be foreign or may be derived from the host plant. Any gene which was originally present in the genome, which may be, for example, a normal allelic variant, mutated, defective, and/or functional copy of the introduced gene, is retained in the genome of the host plant.
These methods of gene alteration are problematic in that complications which can compromise the vigor, productivity, yield, etc. of the plant may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. The random . nature of this insertion and/or the use of exogenous promoters can also cause the timing, location or strength of expression of the introduced transgene to be inappropriate or unpredictable. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of - the recipient, including, for example, T-DNA ends or other vector remnants, exogenous control sequences required to allow production of the transgene protein, which control sequences may be a exogenous or native to the host plant and/or the transgene, and reporter genes or resistance markers.
Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. In addition, concerns have been raised with consumption, especially by humans, of plants containing such exogenous genetic material. } 5 More recently, simpler systems involving poly- or oligo- nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for ‘mutation or repair of plant, animal or fungal genomes. See, for example, WO 99/07865 and U.S. Patent 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene alteration, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result reduces the utility of such a molecule in methods designed for targeted gene alteration.
Alternatively, other oligo- or poly- nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide.
Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Patent 5,422,251. The utility of these oligonucleotides for directing targeted gene alteration is compromised by a high frequency of nonspecific base changes. : In more recent work, the domain for altering a genome is linked or tethered to the triplex . forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., Nature Biotechnology 17: 989-93 (1999). Such i 30 chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.
Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., Gene Ther. 3:859-867 . (1996). Similar efforts to target genes by homologous recombination in plants using large fragments of
DNA had some success. See Kempin et al., Nature 389:802-803 (1997). However, the efficiency and reproducibility of the published homologous recombination approach in plants has severely limited the widespread use of this method.
Earlier experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide rather than larger fragments of DNA, wherein the oligonucleotide had no functional domains other than a region of complementary sequence to the target.
See Campbell et al., New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.
Oligonucleotides designed for use in the targeted alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.
Artificial chromosomes can be useful for the screening purposes identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.
Yeast artificial chromosomes (YACs) allow large segments of genomic DNA to be cloned and modified (Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, etal, Nat.
Genet, 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol.
Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Sched, et al., . Cell, 86:71-82 (1996)). Other vectors also have been developed for the cloning of large segments of genomic DNA, including cosmids, and bacteriophage P1 (Sternberg et al., Proc. Natl. Acad. Sci. U.S.A, : 5 87:103-107 (1990)). YACs have certain advantages over these alternative large capacity cloning vectors (Burke et al., Science, 236:806-812 (1987). The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert size for a YAC.
An alternative to YACs are cloning systems based on the E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) (Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); loannou et al., Nat. Genet, 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)). BACs are based on the E. coli fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. The PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis (Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979)). In addition, BACs have been developed for transformation of plants with high- molecular weight DNA using the T-DNA system (Hamilton, Gene 24:107-116 (1997); Frary & Hamilton,
Transgenic Res. 10: 121-132 (2001)).
A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.
Summary Of The Invention
Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast system and a plant system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating plants with desired phenotypes, including, for example, environmental stress tolerance, improved nutritional value, herbicide resistance, disease resistance, modified oil production, modified starch production, and altered floral morphology including selective sterility. As described herein,
oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded
DNAin cells. The target genomic DNA can be nuclear chromosomal DNA as well as plastid or . mitochondrial chromosomal DNA. The target DNA can also be a transgene present in the plant cell, : including; for example, a previously introduced T-DNA. For screening purposes, the target plant DNA can ‘5 also be extrachromosomal DNA present in plant or non-plant cells in various forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLAC), as well as episomal DNA, including episornal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing plant DNA can be obtained from a variety of sources, including, e.g., the Arabidopsis Biological Resource Center (ABRC) at the Ohio State University, and the
Rice Genome Research Program at the MAFF DNA bank in Ibaraki, Japan. The target DNA may be transcriptionally silent or active. In a preferred embodiment, the target DNA to be altered is the non- transcribed strand of a genomic DNA duplex. In a more preferred embodiment, the target DNA to be altered is the non-transcribed strand of a transcribed gene of a genomic DNA duplex.
The low efficiency of targeted gene alteration obtained using unmodified DNA - oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., J. Am. Chem. Soc., 120:13252-3), we have found that itis not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene alteration oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothioate linkages or 2'-0-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2'-0O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See, for example, copending applications United States application no. 60/208,538, United States application no. 60/244,989, United
States application no. 09/818,875 international application no. PCT/US01/09761 and Gamper et al.,
Nucleic Acids Research 28: 4332-4339 (2000), the disclosures of which are incorporated herein in their entirety by reference. We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., “locked nucleic acids” or "LNAS", xylo- * US 2003/0051270 which incorporates the disclosures of 60/208538 and 60/244989 * WO 01/73002
Amended Sheet — 2004-08-20
LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748;
Wengel, WO 00/66604; and Jakobsen & Koshkin, WO 01/25478 also allow specific targeted alteration of genetic information.
The assay allows for determining the optimum length of the oligonucleotide, optimum . 5 sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2'-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different plants or strains, or testing cells derived from different plants or strains, or plant cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, + several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian and plant cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.
Detailed Description Of The Invention
The present invention provides oligonucleotides having chemically modified, nuclease . resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identification and use in targeted alteration of plant genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration,
including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (‘knockout’) a particufar protein activity. For example, gene } alterations that knockout a particular protein activity can be obtained using oligonucleotides designed to convert a codon in the coding region of the protein to a stop codon, thus prematurely terminating translation of the protein. Oligonucleotides that introduce stop codons in the open-reading-frame of the protein are one embodiment of the invention. Generally, oligonucleotides that introduce stop codons early in the open-reading-frame of the protein are preferred. If the open-reading-frame contains more than one methionine, oligonucleotides that introduce stop codons after the second methionine are preferred. Additionally, if the gene exhibits alternative splice sites, oligonucleotides that introduce stop codons in exons after the alternative splice site are preferred. The following table provides examples of codons that can be converted to stop codons by altering a single oligonucleotide. A skilled artisan could + readily identify other codons that can be converted to stop codons by altering one, two or three of the base pairs in a given codon. Similarly, a skilled artisan could readily identify codons that can be converted to stop codons by a frameshift mutations that inserts or deletes one or two base pairs in the open-reading-frame. [tis also understood that more than one stop codon can be generated in a single open-reading-frame and that these stop codons can be adjacent in the sequence or separated by intervening codons. Where more than one stop codon is introduced info a single open-reading-frame, such alterations can be generated by a single or multiple oligonucleotides and can be generated simultaneously or by sequential mutagenesis of the target nucleic acid. :
GGA (glycine), AGA (arginine), CGA (arginine), TTA (leucine), TGA
TCA (serine), TGT (cysteine), TGG (tryptophan), TGC (cysteine)
AAG (lysine), GAG (glutamate), CAG (glutamine), TTG (leucine),
TCG (serine), TGG (tryptophan), TAT (cysteine), TAC (tyrosine) i TCA (serine), TAT (cysteine), TAC (tyrosine) *The amino acid encoded by the original codon is shown in parentheses and the base targeted for : alteration to convert the codon to the corresponding stop codon is underlined and in bold
The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA- . DNA double hairpin oligonucleotides, antisense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligo- nucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.
We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3' terminal region, are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in US Patent 5,565,350. Preferred oligonucleotides of the invention have at least two modified bases on at least one of the termini, preferably the 3' terminus of the oligonucleotide. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cells of different types including, for example, plant cells, fungal cells including S. cerevisiae, Ustillago maydis, Candida albicans, and mammalian cells. Particularly preferred are cells and cell extracts derived from plants including, for example, experimental model plants such as Chlamydomonas reinhardtii, Physcomitrella patens, and
Arabidopsis thaliana in addition to crop plants such as cauliflower (Brassica oleracea), artichoke (Cynara scolymus), fruits such as apples (Malus, e.g. domesticus), mangoes (Mangifera, e.g. indica), banana (Musa, e.g. acuminata), berries (such as currant, Ribes, e.g. rubrum), kiwifruit (Actinidia, e.g. chinensis), grapes (Vitis, e.g. vinifera), bell peppers (Capsicum, e.g. annuum), cherries (such as the sweet cherry, . Prunus, e.g. avium), cucumber (Cucumis, e.g. sativus), melons (Cucumis, e.g. melo), nuts (such as walnut, Juglans, e.q. regia; peanut, Arachis hypogeae), orange (Citrus, e.g. maxima), peach (Prunus, e.g. persica), pear (Pyra, e.g. communis), plum (Prunus, e.g. domestica), strawberry (Fragana, e.g. moschata or vesca), tomato (Lycopersicon, e.g. esculentum); leaves and forage, such as alfalfa (Medicago, €.9. ’ "sativa or truncatula), cabbage (e.g. Brassica oleracea), endive (Cichoreum, e.g. endivia), leek (Allium, e.g. porrum), lettuce (Lactuca, e.g. sativa), spinach (Spinacia, e.g. oleraceae), tobacco (Nicotiana, e.g. tabacum); roots, such as arrowroot (Maranfa, e.g. arundinacea), beet (Befa, e.g. vulgaris), carrot a. (Daucus, e.g. carota), cassava (Manihot, e.g. esculenta), turnip (Brassica, e.g. rapa), radish (Raphanus, e.g. sativus), yam (Dioscorea, e.g. esculenta), sweet potato (lpomoea batatas); seeds, including oilseeds,
such as beans (Phaseolus, e.g. vulgaris), pea (Pisum, e.g. sativum), soybean (Glycine, e.g. max), cowpea (Vigna unguiculata), mothbean (Vigna aconitifolia), wheat (Triticum, e.g. aestivum), sorghum (Sorghum e.g. bicolor), barley (Hordeum, e.g. vulgare), corn (Zea, e.g. mays), rice (Oryza, e.g. Sativa), rapeseed (Brassica napus), millet (Panicum sp.), sunflower (Helianthus annuus), oats (Avena sativa), chickpea (Cicer, e.g. arietinum); tubers, such as kohirabi (Brassica, e.g. oleraceae), potato (Solanum, e.g. tuberosum) and the like; fiber and wood plants, such as flax (Linum e.g. usitatissimum), cotton (Gossypium e.g. hirsutum), pine (Pinus sp.), oak (Quercus sp.), eucalyptus (Eucalyptus sp.), and the like and ornamental plants such as turfgrass (Lolium, e.g. rigidum), petunia (Petunia, e.g. x hybrida), hyacinth (Hyacinthus orientalis), carnation (Dianthus e.g. caryophyllus), delphinium (Delphinium, e.q. ajacis), Job's tears (Coix lacryma-jobi), snapdragon (Antirrhinum majus), poppy (Papaver, e.g. nudicaule), lilac (Syringa, e.g. vulgaris), hydrangea (Hydrangea e.g. macrophylla), roses (including Gallicas, Albas,
Damasks, Damask Perpetuals, Centifolias, Chinas, Teas and Hybrid Teas) and ornamental goldenrods (e.g. Solidago spp.). Such plant cells can then be used to regenerate whole plants according to methods described herein or any method known in the art. The DNA domain of the oligonucleotides is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration event(s). On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally atleast 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.
According to certain embodiments, one or both of the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone (including LNA derivatives and analogs) modifications, or 2'-O-methyl base analogs, or any combination of these modifications.
Oligonucleotides comprising 2'-O-methyl or LNA analogs are a mixed DNA/RNA polymer. The oligonucleotides of the invention are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2-0-methyl modifications. This result indicates that specific chemical . interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using - 30 modifications other than LNA (including LNA derivatives or analogs), phosphorothioate linkages, or 2'-O- methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted. : In the examples, oligonucleotides of defined sequence are provided for alteration of genes in particular plants. Provided the teachings of the instant application, one of skill in the art could readily design oligonucleotides to introduce analogous alterations in homologous genes from any plant.
Furthermore, in the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. in some embodiments, longer nucleic acids of up to 240 bases which comprise the sequences disclosed herein may be used. Moreover, the aligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for alteration of particular plant genes contain phosphorothioate linkages, 2-O-methy!f analog or LNA (including LNA derivatives and analogs) or any combination of these modifications just as the assay oligonucleotides do.
The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs (including LNA derivatives and analogs), phosphorothioate linkages or 2"
O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance. : The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2'-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligo- nucleotide useful for altering target DNA may be determined empirically by comparing the alteration : 5 efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal position(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.
Increasing the number of phosphorothioate linkages, LNAs or 2'-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide.
Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, itis believed that the terminal modifications impart nuclease resistance to the oligonucleo- tide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications. oo Efficiency of conversion is defined herein as the percentage of recovered substrate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated ‘ linkages, oligonucleotides that are fully substituted with 2'-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin
C30 oligonucleotide such as disclosed in US Patent 5,565,350.
In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene . alteration.
The oligonucleotides of the invention as optimized for the purpose of targeted alteration : 5 of genetic material, including gene knockout or repair, are different in structure from antisense oligo- nucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides. :
Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene alteration activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in
U.S. Patent 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide-dependant gene conversion systems.
Although the lack of these functional domains was expected to decrease the efficiency of an alteration in ‘ a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric
C30 RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence : alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly, molecules containing at least 3 2'-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of : phosphorothioate linkages.
The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.
Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self- dimerization may result in reduced efficiency of alteration of genetic information. Checking for self- dimerization tendency can be accomplished manually or, preferably, using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, 1A 52241) (http://www. idtdna.com); this program is available for use on the world wide web at http://www. idtdna.com/program/oligoanalyzer/ oligoanalyzer.asp.
For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self- dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as "bad". Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, WI 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect. html).
If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the "repair" nucleotide can improve gene correction frequency.
Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligonucleotide sequence.” in a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.
The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. Thereis a frequency distribution such that the closer the target bases are to each other in the central DNA domain. within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.
The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone.
Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjection and other methods known in the art to facilitate cellular uptake. For plant cells, biolistic or particle bombardment methods are typically used. According to certain preferred embodiments of the present invention, isolated plant cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. ‘Alternatively, plant target DNA may be modified in vitro or in another cell type, including for example, yeast or bacterial cells and then introduced into a plant cell as, for example, a T-DNA. Plant cells thus modified may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct ’ administration of the modified, single-stranded oligonucleotides of the invention to a subject.
The single-stranded, modified oligonucleotides of the present invention have numerous
C30 applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants with improved fraits by rationally changing the sequence of selected genes in isolated cells and using these modified cells to regenerate whole plants having the altered gene. See, e.g., U.S. Patent 6,046,380 and
U.S. Patent 5,905,185 incorporated herein by reference. Such plants produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell- + free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of piants having particular modified or inactivated genes. Altered plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used to infroduce molecular markers, including, for example, SNPs,
RFLPs, AFLPs and CAPs.
The purified oligonucleotide compositions may be formulated in accordance with routine procedures depending on the target. For example, purified oligonucleotide can be used directly in a standard reaction mixture to introduce alterations into targeted DNA in vitro or where cells are the target as a composition adapted for bathing cells in culture or for microinjection into cells in culture. The purified oligonucleotide compositions may also be provided on coated microbeads for biolistic delivery into plant cells. Where necessary, the composition may also include a solubilizing agent. Generally, the ingredients 'will be supplied either separately or mixed together in single-use form, for example, as a dry, lyophilized powder or water-free concentrate. In general, dosage required for efficient targeted gene alteration will range from about 0.001 to 50,000 g/kg target tissue, preferably between 1 to 250 pg/kg, and most preferably at a concentration of between 30 and 60 micromolar.
For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium ) acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of
DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve
28-12-2001 01939797 efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein. For biolistic delivery, microbeads are generally coated with resuspended : oligonucleotides, which range of oligonucleotide to microbead concentration can be similarly adjusted to improve efficiency as determined using one of the assay methods described herein, starting with about 0.05 to 1 microgram of oligonucleotide to 25 microgram of 1.0 micrometer gold beads or similar microcarrier.
Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an additional reagent or article of manufacture. The additional reagent or article of manufacture may comprise a delivery mechanism, cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention. Altematively, the @® invention includes a kit comprising an isogenic set of cells in which each cell in the kit comprises a different altered amino acid for a target protein encoded by a targeted altered gene within the cell produced according to the methods of the invention.
Brief Description Of The Drawings
Figure 1. Flow diagram for the generation of modified single-stranded oligonucleotides.
The upper strands of chimeric oligonucleotides | and Il are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2'-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kan® in the HUH7 cell-free extract are presented in parenthesis. HUH? cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G ® residue mismatched to the complementary sequence of the kan® gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2'-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2'-O-methyl RNA -’ residues and the carat indicates the mismatched base site (G). Figure 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left; SEQ ID NO: . 2673) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments (right; SEQ ID NO: 2674). Figure 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide (SEQ 1D NO: 2673) is used. In Figure 1(D), the Kan. mutant sequence corresponds to SEQ ID NO; 2675 and SEQ ID NO: 2676; the Kan converted sequence corresponds to SEQ ID NO: 2677 and SEQ ID NO: 2678; the mutant sequence in the sequence trace
AMENDED SHEET
= N = - -— EEE EP ———— — 28-12-2001 01939797 -16A- corresponds to SEQ ID NO: 2679 and the converted sequences in the sequence trace correspond to
SEQ ID NO: 2680.
Figure 2. Genetic readout system for correction of a point mutation in plasmid pK*m4021. A mutant kanamycin gene harbored in plasmid pK*m4021 is the target for correction by oligonucleotides.
AMENDED SHEET
28-12-2001 01939797
The mutant Gis converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in E.coli (DH10B) after electroporation leading to the genetic readout and colony counts. The wild type sequence corresponds to SEQ ID NO: 2681.
Figure 3: Target plasmid and sequence correction of a frameshift mutation by chimeric : and single-stranded oligonucleotides. (A) Plasmid pT*A208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 35/256; the yellow highlight indicates the position of frameshift repair. The wild type sequence corresponds to SEQ ID NO: 2682, the mutant sequence corresponds to SEQ ID NO: 2683 and the converted sequence corresponds to SEQ ID NO: 2684. The . [ control sequence in the sequence trace corresponds to SEQ ID NO: 2685 and the 3S/25A sequence in the sequence trace corresponds to SEQ ID NO: 2686.
Figure 4. DNA sequences of representative kan’ colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution.
Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues. The sequences in the sequence traces have been assigned numbers as follows: 3S/25G, 65/25G and 8S/25G correspond to SEQ 1D NO: 2687, 108/25G corresponds to SEQ ID NO: 2688, 25S/25G on the lower left corresponds to SEQ ID NO:
J 2689 and 25S/25G on the lower right corresponds to SEQ ID NO: 2690.
Figure 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo()FIAsH plasmid (shown in Figure 9) into HeLa cells.
Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must . bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while “uncorrected” cells remain colorless.
AMENDED SHEET
28-12-2001 01939797 -17A -
Figure 6. Z-series imaging of corrected cells. Serial cross-sections of the Hela cell represented in Figure 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell. ’ Figure 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. In Figure 7A, the sequence of the normal allele corresponds to SEQ ID NO: 2691, the sequence of the target/existing mutation corresponds to SEQ ID
NO: 2692 and the sequence of the desired alteration corresponds to SEQ ID NO: 2693. (B) Plasmid
C pAURHYG(rep)GFP contains a _
AMENDED SHEET
28-12-2001 01939797 base substitution mutation introducing a G at nucleotide 137, at codon 48, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid } conservative replacement of G with C, restoring gene function. In Figure 7B, the sequence of the normal allele correspond to SEQ ID NO: 2691, the sequence of the target/existing mutation corresponds to SEQ . ID NO: 2694 and the sequence of the desired alteration comresponds to SEQ ID NO: 2693.
Figure 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined. In Figure 8, the sequence of
HygE3T/25 corresponds to SEQ ID NO: 2695, the sequence of HygE3T/74 corresponds to SEQ ID NO:
C 269, the sequence of HygE3T/74a corresponds to SEQ ID NO: 2697, the sequence of HygGG/Rev corresponds to SEQ ID NO: 2698 and the sequence of Kan70T corresponds to SEQ ID NO: 2699.
Figure 9. pAURNeo(-)FIAsH plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence. In
Figure 9, the sequence of the Neo/kan target mutant corresponds to SEQ ID NO: 2675 and SEQ ID NO: 2676, the converted sequence corresponds to SEQ ID NO: 2677 and SEQ ID NO: 2678 and the FIAsH peptide sequence corresponds to SEQ ID NO: 2700.
Figure 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the
PAURHYg(x)eGFP construct shown in Figure 7, except the promoter is the inducible GAL1 promoter.
This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose. ® Figure 11. pBI-HygeGFP plasmid. This plasmid is a construct based on the plasmids pBI101, pBl 101.2, pBI101.3 or pBI 121 available from Clontech in which HygeGFP replaces the beta- glucuronidase gene of the Clontech plasmids. The different Clontech plasmids vary by a reading frame shift relative to the polylinker, or the presence of the Cauliflower mosaic virus promoter.
The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.
AMENDED SHEET
28-12-2001 01939797 -18A -
EXAMPLE 1
Assay Method For Base Alteration
And Preferred Oligonucleotide Selection ) In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see Figure 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pk’m4021 (Figure 2) or the tetracycline gene of pT°A208 (Figure 3). All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in Figures 1C and
Figure 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored ® when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(-)FIAsH (Figure 9), bearing the kan® gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferasea
AMENDED SHEET
28-12-2001 01939797 (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIASH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, WI). The resulting construct replicates in S. cerevisiae at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FlAsH fusion product (after alteration) or the truncated Neo-/FiAsH product (before . alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy.
Additional constructs can be made to test additional gene alteration events or for specific use in different expression systems. For example, altemative comparable plant plasmids or integration vectors such as, e.g. those based on T-DNA, can be constructed for stable expression in plant cells according to ® the disclosures herein. Such constructs would use a plant specific promoter such as, e.g., cauliflower mosaic virus 35S promoter, to replace the promoters directing expression of the neo, hyg or aureobasidinA resistance gene disclosed herein, including for example, in Figures 7B, 9 and 10 herein.
Moreover, the green fluorescent protein (GFP) sequence used herein may be modified to increase expression in plant cells such as Arabidopsis and the other plants disclosed herein as described in
Haseloff et al., Proc. Natl. Acad. Sci. 94(6): 2122-7 (1997), Rouwendal et al. Plant Mol. Biol. 33(6): 989-99 (1997) and Hu et al. FEBS Lett. 369(2-3): 331-4 (1995). Codon usage for optimal expression of GFP in plants results from increasing the frequency of codons with a C or a G in the third position from 32 to about 60%. Specific constructs are disclosed and can be used as follows with such plant specific alterations.
We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg{A)eGFP, ® pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T137=3G replacement, (A) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHYGeGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations info the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis
PCR protocol. First, we generate overlapping 5' and a 3' amplicons surrounding the mutation site by . PCR for each of the point mutation sites. A 215 bp 5' amplicon for the (rep), (A) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5'-AATACGACTCACTATAGG-3" SEQ ID NO: : 2701) to primer Hygrepr (5'GACCTATGCACGCCCTCC-3'; SEQ ID NO: 2702), HygAr (5-
GACTATCCACGCCCTCC-3'; SEQ ID NO: 2703), or Hyginsr (5-GACATTATCCACGCCCTCC-34 SEQ ID
NO: 2704), respectively. We generate a 300bp 3' amplicon for the (rep), (A) or (ins) by polymerization from oligonucleotide primers Hygrepf (5-CTGGGATAGGTCCTGCGG-3'; SEQ ID NO: 2705), HygAf
AMENDED SHEET
28-12-2001 01939797 (5'-CGTGGATAGTCCTGCGG-3'; SEQ ID NO: 2706), Hyginsf (5-CGTGGATAATGTCCTGCGG-3'; SEQ
ID NO: 2707), respectively to primer HygEGFPr (5-AAATCACGCCATGTAGTG-3'"; SEQ ID NO: 2708).
We mix 20 ng of each of the resultant 5' and 3' overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the Kpnl and Rr! . restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with cycles of denaturing at 94°C for 10 seconds, annealing at 55°C for 20 seconds and elongation at 68°C for 1 minute. We digest 10 pg of vector pHYGeGFP and 5 jg of the resulting fragments for each mutation with Kpnl and Rsril (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHYGeGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the
C plasmid using a Qiagen maxiprep kit.
Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in
Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 pg/ml per A, unit of single-stranded or hairpin oligomer). HUH? cells are grown in DMEM, 10% FBS, 2mM glutamine, 0.5% pen/strep. The E.coli strain, DH10B, is obtained from Life Technologies (Gaithersburg, MD); DH10B cells contain a mutation in the RECA gene (recA).
Cell-free extracts. Although this portion of this example is directed to mammalian systems, similar extracts from plants can be prepared as disclosed elsewhere in this application and used ® as disclosed in this example. We prepare cell-free extracts from HUH? cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C1271 (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and Hela (human cervical carcinoma). We harvest approximately 2x10° cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCI; 1.5 mM MgCl; 1 mM DTT) with 250 mM sucrose.
We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the : cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000xg. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage.
AMENDED SHEET
--
We then immediately aliquote and freeze the supernatant at-80°C. We determine the protein concentration in the extract by the Bradford assay. } : We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, S. cerevisiae (yeast), Ustilago maydis, and Candida albicans. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30°C. We then centrifuge the cultures at 5000xg, resuspend the pellets in a 10% sucrose, 50 mM Tris, ImM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton
X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000xg for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000xg for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at -80°C. We determine the protein concentration of the extract by the Bradford assay.
Reaction mixtures of 50 yl are used, consisting of 10-30 pg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 pig chimeric double-hairpin oligonucleotide or 0.55 ug single-stranded molecule (35/25G or 6S/25G, see Figure 1), and 1 pg of plasmid DNA (see Figures 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl,, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30°C for 45 min.
The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chioroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4°C for 30 min., is washed with 70% ethanol, resuspended in 50 pl H,0, and is stored at-20°C. 5 pl of plasmid from the resuspension (~100 ng) was transfected in 20 ul of DH10B cells by electroporation (400 V, 300 uF, 4 kQ) in a Cell-Porator apparatus (Life Technologies). After electro- poration, cells are transferred to a 14 mi Falcon snap-cap tube with 2 ml SOC and shaken at 37°C for 1 h.
Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 pg/ml kanamycin and the cell suspension is shaken for a further 2 h at 37°C. Cells are then spun down at 3750 x g and the pellet is resuspended in 500 ui SOC. 200 wi is added undiluted to each of two kanamycin (50 pg/ml) agar plates and 200 pi of a 10° dilution is added to an ampicillin (100 g/m) plate. After overnight 37°C incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10° to correct for the amp dilution.
The following procedure can also be used. 5 pl of resuspended reaction mixtures (total volume 50 pl) are used to transform 20 yl aliquots of electro-competent DH10B bacteria using a : Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 mi SOC at 37°C for 1 hour at which time 50 ug/ml kanamycin or 12 ug/ml tetracycline is added for an additional 3 hours. : 5 Prior fo plating, the bacteria are pelleted and resuspended in 200 u1 of SOC. 100 pl aliquots are plated onto kan or tet agar plates and 100 pl of a 10 dilution of the cultures are concurrently plated on agar plates containing 100 g/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads.
Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200- 500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).
Chimeric single-stranded oligonucleotides. In Figure 1 the upper strands of chimeric oligonucleotides | and Il are separated into pathways resulting in the generation of single-stranded oligo- nucleotides that contain (Figure 1A) 2'-O-methyl RNA nucleotides or (Figure 1B) phosphorothioate linkages. Fold changes in repair activity for correction of kan® in the HUH? cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kan® gene.
Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kan® system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 inthe terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and Figure 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules 1X and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.
The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct lil represents the "RNA-containing" strand of chimera | and, as shown in Table 1 and Figure 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair.
At equal levels of modification, however, 25-mers with 2'-0O-methyl ribonucleotides were less effective > 5 gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide.
Repair of the kanamycin mutation requires a G=#C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in Figure 4, colonies generated through the action of the single-stranded molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see Figure 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.
In Figure 1, the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2-0-methyt RNA nucleotides (R) are at each end of the examplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested.
Hence oligo 125/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2'-O-methyl RNA residues and the carat indicates the mismatched base site (G).
Correction of a mutant kanamycin gene in cultured mammalian cefls. Although this portion of this example is directed to cultured mammalian cells, comparable methods may be used using ’ cultured plant cells or protoplasts of those cells from the plant species disclosed herein. The experiments are performed using different eukaryotic cells including plant and mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). Hela cells are grown at 37°C and 5% CO, in a humidified incubator to a density of 2 x 10° cells/ml in an 8 chamber slide (Lab-Tek). After replacing the
28-12-2001 01939797 regular DMEM with Optimem, the cells are co-transfected with 10 pg of plasmid pAURNeo(-)FIAsH and pg of modified single-stranded oligonucleotide (35/25G) that is previously complexed with 10 ug lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37°C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kan® gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a
C-C-R-E-C-C sequence (SEQ ID NO: 2717) in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FIAsH system, Aurora Biosciences Corporation). @® Following a 60 min incubation at room temperature with the ligand (FIAsH-EDT?2), cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in
Example 2 with a variety of mammalian cells, including, for example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with
PG12 cells (rat pheochromocytoma) and ES cells (human embryonic stem cells).
Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell- free extract from human liver cells (HUH?) to catalyze repair of the point mutation in plasmid pkan®m4021 (see Figure 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (Figure 3) in the tet ® gene contained in plasmid pTetA208. Table 4 illustrates data from repair of the pkanm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kan" or tet’ and fold increases (single strand versus double hairpin) are presented for kan" in
Table 1.
Figure 5A is a confocal picture of Hel.a cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleo- } tide containing 3 phosphorothioate linkages at each end (3S/25G). Figure 5B represents a "Z-series" of
Hela cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is "inside the cells".
Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion
AMENDED SHEET activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some . cases, the relative frequency of repair by the. novel oligonucleotides of the invention is elevated approximately 3-4-fold in certain embodiments when compared to frequencies directed by chimeric RNA-
DNA double hairpin oligonucleotides.
This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in E.coli grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pK®m4021 contains a mutation (T=3G) at residue 4021 rendering it unable to confer antibiotic resistance in E.coli. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of plasmid contamination skewing the colony counts, the directed correction is from G=#C rather than G=$T (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of E.coli, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison. * The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S.
Patent 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kan® mutation, gene repair is observed (I in Figure 1A). Chimera li (Figure 1B) differs partly from chimera l in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kan® mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.
Frame shift mutations are repaired. By using plasmid pT°A208, described in Figure 1(C) and Figure 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is
28-12-2001 01939797 used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. Figure 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tefracycline resistant colonies appear.
The colony count increases with the amount of oligonucleotide used up to a point beyond which the count } falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used.
Figure 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair 9 nucleotide deletions.
Comparison of phosphorothioate oligonucleotides to 2'-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, X| (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2'-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.
Oligonucleotides can target multiple nucleotide alterations within the same template.
The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pK’m4021 and the following single-stranded oligonucleotides ® modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TICGATAAGCCTATGCTGACCCGTG (SEQ ID NO: 2709) corrects the original mutation present in the kanamycin resistance gene of pK’m4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC (SEQ ID NO: 2710) with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3' end. Oligo2 directs correction of the mutation in pK'm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).
We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pK"M4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5'-
AMENDED SHEET
28-12-2001 01939797
TTGTGCCCAGTCGTATCCGAATAGC-3' (SEQ ID NO: 2711); a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5'-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTA
GCCGAATAGCCTCTCCACCCAAGCGGCCGGAGA-3 (SEQ ID NO: 2712); and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5-GCTGACAGCCGGAACACGG
CGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAATAGCCT-3' (SEQ ID NO: 2713).
The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.
We assay correction of the original mutation in pK*m4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Qligo3 are silent with respect to the ® kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp5091 which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to determine whether the additional, silent alteration has also been introduced. The resulls of an analysis are presented below: oigoiesmen | Oigo2(omen
Cuero |» | 7
Cloneswihasngesiechanged | 0 | 2 ® Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).
Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract or extracts made from other plant cells disclosed herein. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM KCI;
AMENDED SHEET
1.5 mM MgCl,; 10 mM DTT; and 10% [v/v] glycerol). Some plant cell-free extracts also include about 1% (wiv) PVP. We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000 x g for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by : 5 Bradford assay. We dispense 100 ig (protein) aliquots of the extracts which we freeze in a dry ice- ethanol! bath and store at -80°C.
We describe experiments using two sources here: a dicot (canola) and a monocot (banana, Musa acuminata cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used.
Tables are attached hereto.
: Table I
Gene repair activity is directed by single-stranded oligonucleotides.
Oligonucleotide Plasmid Extract (ug) kan’ colopies Fold increase
I pK°m4021 10 300
I 20 418 1.0x 1 10 537 il 20 748 1.78x m 10 3 m 20 5 0.01x
Iv 10 112
Iv 20 96 0.22x \'% 10 217
AY 20 342 0.81x
VI 10 6
A 20 39 0.093x vi 10 0 vi 20 0 0x via 10 3 vi 20 5 0.01x
IX 10 936
IX 20 1295 3.09x
X 10 1140
X 20 1588 3.7x
Xi 10 480
XI 20 681 1.6x
Xn 10 18
XI 20 25 0.059x
Xm 10 0
Xm 20 4 0.009x . 20 0 :
I - 1
Plasmid pK'm4021 (1pg), the indicated oligonucleotide (1.5 ug chimeric oligonucleotide or 0.55 pg single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 pug of HUH? cell-free extract were incubated 45 min at 37°C. Isolated plasmid DNA was electroporated into E. coli (strain DH10B) and the number of kar’ - colonies counted. The data represent the number of kanamycin resistant colonies per 10° ampicillin resistant colonies generated from the same reaction and is the average of three experiments (standard deviation usually less than +/- 15%). Fold increase is defined relative to 418 kan’ colonies (second reaction) and in all reactions was calculated using the 20pug sample.
Table II
Modified single-stranded oligomers are not dependent on MSH2 or MSHS3 for optimal gene repair activity.
A. Oligonucleotide Plasmid Extract "colonies
IX (358/25G) HUH7 637
X (6S/25G) HUH7 836
X MEF2™ 781
X MEF2™ 676
IX MEF3™ 582
X MEF3™ 530 © IX MEF™ 332
X MEF" 497 . MEF2™ 10 - MEF3™ 5 oo MEF 14
Chimeric oligonucleotide (1.5 ug) or modified single-stranded oligonucleotide (0.55 pg) was incubated with 1g of plasmid pK'm4021 and 20ug of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (27) or MSH3 (3*) deleted.
MEF" indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 10° ampicillin resistant colonies.
Table III
Frameshift mutation repair is directed by single-stranded oligonucleotides
Oligonucleotide Plasmid Extract tet” colonies
Tet IX (38/25A;0.5 ug) - pT*A208 (lpg) - 0 - 20pg 0
Tet IX (0.5 pg) 48 :
Tet IX (1.5 pg) 130
Tet IX (2.0 pg) 68
Tet I (chimera; 1.5 pg) 48
Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. :
The extract used for these experiments came from HUH? cells. The data represent the number of tetracycline resistant colonies per 10° ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. TetIisa chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pT*A208. These oligonucleotides are equivalent to structures I and IX in Figure 2.
Table IV
Plant cell-free. extracts support gene repair by single-stranded oligonucleotides
Oligonucleotide Plasmid Extract kan’ colonies
II (chimera) pK°m4021 30g Canola 337
IX (38/25G) Canola 763
X (65/25G) Canola 882 1 : Musa 203
IX Musa - 343
X Musa 746 - Canola 0 - Musa 0
IX - Canola 0
X - Musa 0
Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin- sensitive gene as previously described in (18). Chimeric oligonucleotide IT (1.5 pg) and modified single-stranded oligonucleotides IX and X (0.55ug) were used to correct pKSth4021. Total number of kan" colonies are present per 107 ampicillin resistant colonies and represent an average of four independent experiments.
: § 2=S%sn i: - OO rem gg
PE 5: : 5 § & ; g § 2 2 2 3 y _ 2 g ny § 3
BEE EE. il a KO. £ : ig ; 855 ig E—— Fig a 2 15 = 8 & a 8
Pd pea. 233 ~ Nn 0] t 4 s2<388 35 § 3 223354 2
EXAMPLE 2
Yeast Cell Targeting Assay Method for Base
Alteration and Preferred Oligonucleotide Selection
In this example, single-stranded oligonucleotides with modified backbones and double- * 5 hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (Figure 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (Figure 7) and pAURHYG(A)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.
We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(A)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137=2G replacement, (A) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, CA). We digest 10 ug pAUR123 vector DNA, as well as, 10 ug of each pHyg(x)EGFP construct with Kpnl and Sali (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by
Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.
We use this system to assay the ability of five oligonucleotides (shown in Figure 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74- base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, ' designated HygE3T/74a, is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated
Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence.
Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-0-methylated modified oligonucleotide may be used as a control. Alternatively, oligonucleotides containing one, two, three, four, five, six, eight, ten or more LNA modifications on at least one of the two termini (and preferrably the 3' terminus) may be used in different embodiments.
Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, double- hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MAT ar at low copy number under aureobasidin selection.
Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30°C until the OD, was between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4°C at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4°C at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4°C at 5000 rpm for 5 minutes and resuspend the cells in 120 pi 1M sorbitol. To transform efectrocompetent cells with plasmids or oligonucleotides, we mix 40 ul of cells with 5 pg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes.
We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene
Pulser apparatus at 1.5 kV, 25 pF, 200 Q for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30°C with shaking at 300 rpm for 6 hours. We then spread 200 pil of this culture on selective plates containing 300 pg/ml hygromycin and spread 200 pi of a 10° dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or and incubate at 30°C for 3 days to allow individual yeast colonies to grow. We then : count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 10° aureobasidinA resistant colonies.
Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in Figure 8 to correct a frameshift mutation in vivo using LSY678 yeast cells
28-12-2001 01939797 containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, ® there are too many hygromycin resistant colonies to count.
We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5-CTCGTGCTTTCAGCT
TCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTAC-3' (SEQ ID
NO: 2714); a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5
CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACAGCTGCGCCGATG
GTTTCTAC-3' (SEQ ID NO: 2715); and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTA
AATAGCTGCGCCGACGGTTTCTAC (SEQ ID NO: 2716). The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are ® modified in the same ways as the other oligonucleotides of the invention.
Oligonucleotides targeting the sense strand direct gene correction more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74cx, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence : facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 Hg, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74x and HygE3T/74).
AMENDED SHEET
Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74ax relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution : mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in
Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation "5 more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in Figure 10.
Optimization of oligonucleotide concentration. To determine the optimal concentration of - oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of
Hyg3T/74x to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction.
However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74ax to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 ug. As shown in
Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.
Tables are attached hereto.
Table 6
Correction of an insertion mutation in pAURHYG(ins)GFP by HygGG/Rev, HygE3T/25 and HygE3T/74 . Oligonucleotide Tested | Colonies on Colonies on Correction
Hygromycin Aureobasidin (/10°) | Efficiency
HygGG Rey
HyGEST/74
Kan?OT HE
Table 7
An oligonucleotide targeting the sense strand of the target sequence corrects more efficiently.
Amount of Oligonucleotide (ug) Colonies per hygromycin plate ww meer
EET YT
167 (5.8) 367 (15%) * The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.
Table 8
Correction of a base substitution mutation is more efficient than correction of a frame shift mutation. ; = ET
Table 9
Optimization of oligonucleotide concentration in electroporated yeast cells.
Amount (Mg) Colonies on Colonies on Correction efficiency aa Fee Fe i]
II ECR DT 2 1
Example 3
Cultured Cell Manipulation
Although disclosure in this example is directed to use of stem cells or human blood cells and microinjection, the microinjection procedures may also be used with cultured plant cells or protoplasts using any plant species, including those disclosed herein. Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, CA). Lin"CD38" cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, CA). Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection.
S Medium contains Iscoves’ Modified Dulbecco’s Medium without phenol red (IMDM) with 100 pg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 ug/ml bovine pancreatic insulin, 1 mg/m! human transferrin, and IMDM; Stem Cell Technologies), 40 pg/ml low-density lipoprotein (LDL;
Sigma, St. Louis, MO), 50 mM HEPEs buffer and 50 uM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, fit-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, NJ). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing. 35 mm dishes are coated overnight at 4° C with 50 pg/ml Fibronectin (FN) fragment Ch- 296 (Retronectin; TaKaRa Biomedicals, Panvera, Madison, W) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C prior to microinjection. After incubation, cloning rings are removed and 2 mi of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 um to 0.3 um outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C and injected using an electronically interfaced Eppendorf
Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
For in vitro erythropoiesis from Lin"CD38" cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks.
Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (B") to sickle T (B°) mutation in the B-globin gene or can be altered using any of the oligonucleotides of } the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of : the invention can be used to correct a defect or to modify genomes within those cells.
Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids,
liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.
Biolistic delivery of oligonucleotide into plant cells may be accomplished according to the following method. One milliliter of packed cell volume of plant cell suspensions are subcultured onto plates containing solid medium [with Murashige and Skoog salts from Gibco/BRL, 500 mg/liter Mes, 1 mglliter thiamin, 100 mg/liter myo-inositol, 180 mg/liter KH2PO4, 2.21 mglliter 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/liter sucrose (pH 5.7) and having 8 g/liter agar-agar from Sigma added before autoclaving]. By using a helium-driven particle gun such as that from BioRad and following manufacturers directions, oligonucleotides may be introduced to cells after precipitation onto 1 micrometer or comparable gold microcarriers (Bio-Rad). To precipitate onto microcarriers, 35 microliters of a particle suspension (60 mg of microcarriers per mi of 100% ethanol) is transferred to a 1.5 ml microcentrifuge tube, which is agitated on a vortex mixer. Then 40 microliter of resuspended oligonucleotide (60 ng/microliter water) is added; then 75 microliter of ice-cold 2.5 M CaCl2 is added; then 75 microliter of ice- cold 0.1 M spermidine is added. The tube is mixed vigorously or a vortex mixer for 10 min at room temperature. The particles are allowed to settle for 10 min and are centrifuged at 11,750 g for 30 sec.
The supernatant is removed and the particles are resuspended in 50 microliter of 100% ethanol. An aliquot of 10 microliter of the resuspended particles are applied to each macro-projectile which is used to bombard each plate once at 900 psi (1 psi = 6.89 kPa) with a gap distance (distance from power source to macroprojectile) of 1 cm and a target distance (distance from microprojectile launch site to target material) of 10 cm.
An alternative method of delivery can be used as follows. Cultured cells are suspended in liquid
N6 medium and then plated on a VWR Scientific glass fiber filter. About 0.4 microgram of oligonucleotide are precipitated with 15 microliter of 2.5 mM CaCI2 and 5 microliter of 0.1 M spermidine onto 25 microgram of 1.0 micrometer gold particles. Microprojectile bombardment is performed by using a Bio-
Rad PDS-1000 He particle delivery system or comparable machine following manufacturers instructions.
Alterations in oligonucleotide concentrations can be employed to determine the optimum concentration of oligonucleotide according to the procedures described herein for any particular oligonucleotide of the invention. : Alternatively, the oligonucleotide of the invention may be delivered to a plant cell by electroporation of a protoplast derived from a plant part. The protoplasts may be formed by enzymatic treatment of a plant part, particularly a leaf, according to techniques such as those in Gallois et al.,
Methods in Molecular Biology 55: 89-107 by Humana Press. Such conditions for electroporation use about 3 x 10° protoplasts in a total volume of about 0.3 ml with a concentration of oligonucleotide of between 0.6 to 4 microgram per ml.
EXAMPLE 4
Plant Cells
The oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst : natural cultivars, the oligonucleotides of the invention can be used to produce "knock out" mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gin can be modified at a specific site to TAA; a AAG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon . Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.
For introduction of a T-DNA, including the T-DNA in the plasmid of Figure 11, into a plant cell, Agrobacterium tumefaciens is used. These techniques are routine standard techniques known in the art. For example, one method follows. We transform A. tumefaciens is transformed by electroporation (using a BioRad Gene Pulser"). Competent A. tumefaciens is prepared using a method similar to that of preparing competent E. coli by suspending a freshly grown culture three times in ice-cold water and a final resuspension in 10% glycerol. Electroporation conditions are a 0.2 cm gap cuvette at a setting of 25
WF, 200 Q and 2.5 kV.
A. tumefaciens containing a plasmid with a T-DNA is then used to introduce the T-DNA into a plant cell using routine standard techniques known in the art. For example, we transform )
Arabidopsis by vacuum infiltration or by dipping flowers in an Agrobacterium solution containing a surfactant, e.g. L-77. Seeds are then collected, grown and screened for presence of the T-DNA. ) Alternatively, Agrobacterium can be used to transform callus tissue and the callus tissue can then be . used to regenerate transformed plants.
All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and } modifications may be made thereto without departing from the spirit or scope of the appended claims.
Notes on the tables presented below: oo
Each of the following tables presents, for the specified gene, a plurality of mutations that are known to confer a relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the genome according to the present invention.
The left-most column identifies each alteration or mutation and the phenotype that the alteration/mutation confers.
For most entries, the mutation/alteration is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. : The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Terminator codons are shown as "TERM". At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.
The middie column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the genome or in cloned DNA including DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.
All oligonucleotides are presented, per convention, in the 5' to 3' orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.
The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair/altering nucleotide. The second oligonucleotide, its reverse complement, ) targets the opposite strand of the DNA duplex for repair/alteration. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair/alteration nucleotide. The : fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.
The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.
Example 5
Engineering herbicide resistant plants
Chemical weed control is an important tool of modern agriculture and many herbicides have been developed for this purpose. Their use has resulted in substantial increases in the yields of many crops, including, for example, maize, soybeans, and cotton. Thus while the use of fertilizers and new high-yielding crop varieties have contributed greatly to the “green revolution," chemical weed control has also been at the forefront of technological achievement.
Herbicides having broad-spectrum activity are particularly useful because they obviate the need for multiple herbicides targeting different classes of weeds. The problem with such herbicides is that they typically also affect crops which are exposed fo the herbicide. One way to overcome this is to generate plants which are resistant to one or more broad-spectrum herbicides. Such herbicide-tolerant plants may reduce the need for tillage to control weeds, thereby effectively reducing soil erosion and can reduce the quantity and number of different herbicides applied in the field.
Common herbicides used, for example, include those that inhibit the enzyme 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS), for example N-phosphonomethyi-glycine (e.g. glyphosate), those that inhibit acetolactate synthase (ALS) activity, for example the sulfonylureas and related herbicides, and those that inhibit dihydropteroate synthase, for example methyl[(4-amino- phenyl)sulfonyljcarbamate (e.g. Asulam). Herbicide-tolerant plants can be produced by several methods, including, for example, introducing into the genome of the plant the ability to degrade the herbicide, the capacity to produce a higher level of the targeted enzyme, and/or expressing an herbicide-tolerant allele of the enzyme.
The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes that confer herbicide resistance.
28-12-2001 01939797
Table 10
Genome-Alfering Oligos Conferring Glyphosate Resistance
Phenotype, Gene, . Plant & Targeted .
Alteration Altering Oligos 0:
Clyphosate Resistance | AAGCGTCGGAGATTGTACTTCAACCCATTAGAGAAATCTCCGGTC
EPSPS TTATTAAGCTTCCTGCCTCCAAGTCTCTATCAAATCGGATCCTGC
Arabidopsis thaliana TTCTCGCTGCTCTGTCTGAGGTATATATCAC
Gly97Ala GTGATATATACCTCAGACAGAGCAGCGAGAAGCAGGATCCGATT 2
GGC-GCC TGATAGAGACTTGGAGGCAGGAAGCTTAATAAGACCGGAGATTT
CTCTAATGGGTTGAAGTACAATCTCCGACGCTT
® GCTTCCTGCCTCCAAGT
ACTTGGAGGCAGGAAGC slyphosate Resistance [AAGCTTCAGAGATTGTGCT T1CAACCAATCAGAGAAATCTCGGGT 5
EPSPS TCATTAAGCTACCCGCATCCAAATCTCTCTCCAATCGGATCCTCC
Brassica napus TTCTTGCCGCTCTATCTGAGGTACATATACT
Gly93Ala AGTATATGTACCTCAGATAGAGCGGCAAGAAGGAGGATCCGATT
GGA-GCA GGAGAGAGATTTGGATGCGGGTAGCTTAATGAGACCCGAGATTT
CTCTGATTGGTTGAAGCACAATCTCTGAAGCTT
GCTACCCGCATCCAAAT
ATTTGGATGCGGGTAGC | 8
Glyphosate Resistance | AGCCCAACGAGATTGTGCTGCAACCCATCAAAGATATATCAGGC
EPSPS 1 ACTGTTAAATTGCCTGCTTCTAAATCCCTTTCCAATCGTATTCTCC
Nicotiana tabacum TTCTTGCTGCCCTTTCTAAGGGAAGGACTGT
Gly9bAla ACAGTCCTTCCCTTAGAAAGGGCAGCAAGAAGGAGAATACGATT 10
GGT-GCT GGAAAGGGATTTAGAAGCAGGCAATTTAACAGTGCCTGATATATC ® TTTGATGGGTTGCAGCACAATCTCGTTGGGCT
ATTGCCTGCTTCTAAAT
ATTTAGAAGCAGGCAAT
Glyphosate Resistance | ATTGTTTCCTTGGTACGAAATGTCCTCCTGITCGAATIGTCAGCA 3
EPSPS 2 AGGGAGGCCTTCCCGCAGGGAAGGTAAAGCTCTCTGGATCAATT
Nicotiana tabacum AGCAGCCAGTACTTGACTGCTCTGCTTATGGC
Gly62Ala GCCATAAGCAGAGCAGTCAAGTACTGGCTGCTAATTGATCCAGA 14
GGA-GCA GAGCTTTACCTTCCCTGCGGGAAGGCCTCCCTTGCTGACAATTC
GAACAGGAGGACATTTCGTACCAAGGAAACAAT
CCTTCCCGCAGGGAAGG
CCTTCCCTGCGGGAAGG yphosate Resistance | ATTGTTTCCTTGGCACTGACTGCCCACCTGTTCGTGTCAATGGAA 17 : EPSPS TCGGAGGGCTACCTGCTGGCAAGGTCAAGCTGTCTGGCTCCATC
Zea mays AGCAGTCAGTACTTGAGTGCCTTGCTGATGGC
Gly168Ala GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAGCCAGA | 18
GGT-GCT CAGCTTGACCTTGCCAGCAGGTAGCCCTCCGATTCCATTGACAC
GAACAGGTGGGCAGTCAGTGCCAAGGAAACAAT
1112/01 01:47 pm
AMENDED SHEET 3137.009 — [NY]793559.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted . . : Alteration Altering Oligos
GCTACCTGCTGGCAAGG
CCTTGCCAGCAGGTAGC
Glyphosate Resistance [ACTGTTTCCTTGGCACTGAATGCCCACCTGTTCGTGTCAAGGGA 2
EPSPS ATTGGAGGACTTCCTGCTGGCAAGGTTAAGCTCTCTGGTTCCAT
Oryza sativa CAGCAGTCAGTACTTGAGTGCCTTGCTGATGGC
Gly115Ala GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAACCAGA | 22
GGT-GCT GAGCTTAACCTTGCCAGCAGGAAGTCCTCCAATTCCCTTGACAC
GAACAGGTGGGCATTCAGTGCCAAGGAAACAGT
ACTTCCTGCTGGCAAGG
® CCTTGCCAGCAGGAAGT yphosate Resistance | AGCCTTCTGAGATAGTGTTGCAACCCATTAAAGAGATTTCAGGCA 5
EPSPS CTGTTAAATTGCCTGCCTCTAAATCATTATCTAATAGAATTCTCCT
Petunia x hybrida TCTTGCTGCCTTATCTGAAGGAACAACTGT
Gly93Ala ACAGTTGTTCCTTCAGATAAGGCAGCAAGAAGGAGAATTCTATTA | 26
GGC-GCC GATAATGATTTAGAGGCAGGCAATTTAACAGTGCCTGAAATCTCT
TTAATGGGTTGCAACACTATCTCAGAAGGCT
ATTGCCTGCCTCTAAAT
ATTTAGAGGCAGGCAAT
[Glyphosate Resistance | AACCCCATGAGATTGTGCTAGNACCCATCAAAGATATATCTGGTA | 29
EPSPS CTGTTAAATTACCCGCTTCGAAATCCCTTTCCAATCGTATTCTCCT :
Lycopersicon TCTTGCTGCCCTTTCTGAGGGAAGGACTGT esculentum ACAGTCCTTCCCTCAGAAAGGGCAGCAAGAAGGAGAATACGATT 30
Gly97Ala GGAAAGGGATTTCGAAGCGGGTAATTTAACAGTACCAGATATATC
GGT-GCT TTTGATGGGTNCTAGCACAATCTCATGGGGTT ® ATTACCCGCTTCGAAAT
ATTTCGAAGCGGGTAAT
Glyphosate Resistance [ATTGTTTCCTTGGCACTGACTGCCCA TTCGKATCAACGGCA 33
EPSPS TTGGAGGGCTACCTGCTGGCAAGGTTAAGCTGTCTGGTTCCATC
Lolium rigidum AGCAGCCAATACTTGAGTTCCTTGCTGATGGC
Gly107Ala GCCATCAGCAAGGAACTCAAGTATTGGCTGCTGATGGAACCAGA 34
GGT-GCT CAGCTTAACCTTGCCAGCAGGTAGCCCTCCAATGCCGTTGATCG
AACAGGTGGGCAGTCAGTGCCAAGGAAACAAT
GCTACCTGCTGGCAAGG
CCTTGCCAGCAGGTAGC
14112/01 61:47 pm
AMENDED SHEET 3137.000 — [NY}793559.1
28-12-2001 01939797
Table 11
Genome-Altering Oligos Conferring Imidazolinone and Sulfonylurea Herbicide Resistance
Phenotype, Gene, . Plant & Targeted . . | Alteration Altering Oligos
Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA | 37
Resistance ATCACAGGACAAGTCICTCGTCGTATGATTGGTACAGATGCGTTT
ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT
Arabidopsis thaliana | AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC | 38
Pro197Ser CAATCATACGACGAGAGACTTGTCCTGTGATTGCTACAAGAGGAA
CCT-TCT CACTATCTAACAACGCATCGGCTAATCCGCT ® GACAAGTCICTCGTCGT
ACGACGAGAGACTTGTC ulfonylurea AGCGGATIAGCCGATGCG TAGATAGTGTTCCTCTIGTAGCA :
Resistance ATCACAGGACAAGTCCAGCGTCGTATGATTGGTACAGATGCGTTT
ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT
Arabidopsis thaliana | AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC | 42
Pro197GIn CAATCATACGACGCTGGACTTGTCCTGTGATTGCTACAAGAGGAA
CCT-CAG CACTATCTAACAACGCATCGGCTAATCCGCT
ACAAGTCCAGCGTCGTC
TACGACGCTGGACTTGT ulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTICCICTTGTAGCA
Resistance ATCACAGGACAAGTCCAACGTCGTATGATTGGTACAGATGCGTTT
ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT
Arabidopsis thaliana | AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC | 46 ® Pro197Gin CAATCATACGACGTTGGACTTGTCCTGTGATTGCTACAAGAGGAA
CCT-CAA CACTATCTAACAACGCATCGGCTAATCCGCT
ACAAGTCCAACGTCGTA
TACGACGTIGGACTTGT
Imidazolinone GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT | 49
Resistance TGCCGATGATCCCGAACGGTGGCACTTTCAACGATGTCATAACGG
ALS AAGGAGATGGCCGGATTAAATACTGAGAGAT
Arabidopsis thaliana | ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT | 50
Ser653Asn TGAAAGTGCCACCGTTCGGGATCATCGGCAACACATGTTCTTGGT
AGT-AAC GCGGACAAATCACATCCAACAGGTAAGGTC
GATCCCGAACGGTGGCA
TGCCACCGTTCGGGATC
1112/01 01:47 pm
AMENDED SHEET $137,009 — NYI7E3558.1
Fs 12-2001 01939797
Phenotype, Gene,
Plant & Targeted . : : . Alteration Altering Oligos
Imidazolinone ACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATG ;
Resistance TGCCGATGATCCCGAATGGTGGCACTTTCAACGATGTCATAACGG
ALS AAGGAGATGGCCGGATTAAATACTGAGAGAT
Arabidopsis thaliana | ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT | 54
Ser653Asn TGAAAGTGCCACCATTCGGGATCATCGGCAACACATGTTCTTGGT
AGT-AAT GCGGACAAATCACATCCAACAGGTAAGGTC
GATCCCGAATGGTGGCA
TGCCACCATTCGGGATC | 56
Suffonylurea TCOGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTICGC | 57 ® Resistance CATCACGGGCCAGGTCTCCCGCCGCATGATCGGCACCGACGCCT
ALS TCCAGGAGACGCCCATAGTCGAGGTCACCCGCT
Oryza sativa AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG
Pro174Ser CCGATCATGCGGCGGGAGACCTGGCCCGTGATGGCGACCATCG
CCC-TCC GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA
GCCAGGTCICCCGCCGC
GCGGCGGGAGACCTGGC EN
Sulfonylurea C 5CT GACGCGCTGCTCGACTCCGTCCCGATGGTCGC 61
Resistance ATCACGGGCCAGGTCCAACGCCGCATGATCGGCACCGACGCCTT
ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC
Oryza sativa GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT | 62
Pro171GIn GCCGATCATGCGGCGTTIGGACCTGGCCCGTGATGGCGACCATCG
CCC-CAA GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG
CCAGGTCCAACGCCGCA
® TGCGGCGITGGACCTGG | 64
Sulfonylurea CGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC | 65
Resistance ATCACGGGCCAGGTCCAGCGCCGCATGATCGGCACCGACGCCTT
ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC
Oryza sativa GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT
Pro171GIn GCCGATCATGCGGCGCTGGACCTGGCCCGTGATGGCGACCATCG
CCC-CAG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG
CCAGGTCCAGCGCCGCA
TGCGGCGCTGGACCTGG | 8 "25 Imidazolinone GGCCATACTTIGT TGGATATCATCGTCCCGCACCAGGAGCATGTGC
Resistance TGCCTATGATCCCAAATGGGGGCGCATTCAAGGACATGATCCTGG
ALS ATGGTGATGGCAGGACTGTGTATTAATCTAT
Oryza sativa ATAGATTAATACACAGTCCTGCCATCACCATCCAGGATCATGTCCT | 70 le627Asn TGAATGCGCCCCCATTTGGGATCATAGGCAGCACATGCTCCTGGT
ATT-AAT GCGGGACGATGATATCCAACAAGTATGGCC
GATCCCAAATGGGGGCG
11/12/01 vA)
AMENDED SHEET S131.009 — INYIFE35
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted .
Alteration Altering Ofigos
I I uffonylurea TCCGCGGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCG 73
Resistance CATCACGGGACAGGTGICGCGACGCATGATTGGCACCGACGCCT
ALS TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT
Zea mays AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGGT 74
Pro165Ser GCCAATCATGCGTCGCGACACCTGTCCCGTGATGGCGACCATGG
CCG-TCG GGACGGAATCGAGCAGCGCGTCGGCGAGCGCGGA
GACAGGTGICGCGACGC
GCGTCGCGACACCTGTC
® ulfonylurea [CCGCGCTCBCCGACGCBCTGCTCGATICCGTCCCCATGGTCGE 77
Resistance ATCACGGGACAGGTGCAGCGACGCATGATTGGCACCGACGCCTT
ALS CCAGGAGACGCCCATCGTCGAGGTCACCCGCTC
Zea mays GAGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGG 78
Pro165GIn TGCCAATCATGCGTCGCTGCACCTGTCCCGTGATGGCGACCATG
CCG-CAG GGGACGGAATCGAGCAGCGCGTCGGCGAGCGCGE
ACAGGTGCAGCGACGCA
TGCGTCGCTIGCACCTGT | 80
Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT
Resistance TGCCTATGATCCCTAATGGTGGGGCTTTCAAGGATATGATCCTGG
ALS ATGGTGATGGCAGGACTGTGTACTGATCTAA
Zea mays TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT | 82
Ser621Asn TGAAAGCCCCACCATTAGGGATCATAGGCAACACATGCTCCTGGT
AGT-AAT GTGGGACGATTATATCCAAGAGGTACGGCC ® GATCCCTAATGGTGGGG
CCCCACCATTAGGGATC | 84
Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT | 85
Resistance TGCCTATGATCCCTAACGGTGGGGCTTTCAAGGATATGATCCTGG
ALS ATGGTGATGGCAGGACTGTGTACTGATCTAA
Zea mays TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT
Ser621Asn TGAAAGCCCCACCGTTAGGGATCATAGGCAACACATGCTCCTGGT
AGT-AAC GTGGGACGATTATATCCAAGAGGTACGGCC
GATCCCTAACGGTGGGG
CCCCACCGTTAGGGATC
Sulfonylurea TCCGCGLTCGCCGACGCCCTCCTCGACTCCATCCCCATGGTGGC
Resistance CATCACGGGGCAGGTCTCGCGCCGCATGATCGGCACGGACGCCT
ALS TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT
Lolium multiflorum AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCATG
Pro167Ser CCGATCATGCGGCGCGAGACCTGCCCCGTGATGGCCACCATGG
CCG-TCG GGATGGAGTCGAGGAGGGCGTCGGCGAGCGCGGA 14/12/01 01:47 pm
AMEN DED SHEET . 3137.009 — [NY]793559.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted .
Alteration Altering Oligos
GGCAGGTCICGCGCCGC
: GCGGCGCGAGACCTGCC
Sufonylurea ~~ J CCGCGCTCGCCGACGLCC ICC ICGACTCOAICCCCATGGIGGCE | 03
Resistance ATCACGGGGCAGGTCCAGCGCCGCATGATCGGCACGGACGCCTT
ALS CCAGGAGACGCCCATCGTCGAGGTCACCCBCTC
Lolium muttiflorum GAGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCGT| 94
Pro167GIn GCCGATCATGCGGCGCTGGACCTGCCCCGTGATGGCCACCATGG
CCG-CAG GGATGGAGTCGAGGAGGGCCTCGGCCAGCGCGG
GCAGGTCCAGCGCCGCA | 95 9 TGCGGCGCTGGACCTAE % [Imidazolinone |CTGGGCCATACTTGITGGATATCATCGTGCGTCACCAGGAGCATG | 97
Resistance TGCTGCCTATGATCCCTAACGGTGGTGCTTTCAAGGACATTATCA
ALS TGGAAGGTGATGGCAGGATTTCGTATTAAAC
Lolium multiflorum GTTTAATACGAAATCCTGCCATCACCTTCCATGATAATGTCCTTGA
Ser623Asn AAGCACCACCGTTAGGGATCATAGGCAGCACATGCTCCTGGTGA
AGC-AAC GGGACGATGATATCCAACAAGTATGGCCCAG
GATCCCTAACGGTGGTG El
CACCACCGTTAGGGATC
Sulfonylurea ~~ | TCCGCGCTCGCCGACGCTCTCCTCGACTCCATCOCCATGGTCGC 01
Resistarice CATCACGGGCCAGGTCTCACGCCGCATGATCGGCACGGACGCGT
ALS TCCAGGAGACGCCCATAGTGGAGGTCACGCGCT
Hordeum vulgare AGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGTG | 102
PS Pro68Ser CCGATCATGCGGCGTGAGACCTGGCCCGTGATGGCGACCATGG
CCA-TCA GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGGA
GCCAGGTCTCACGCCGC
GCGGCGTGAGACCTGGC
Sulfonylurea _ CCGCGCTCGCCGACGCTCTCCTCGACTCCATCGCCATGGICGCC | 105
Resistance ATCACGGGCCAGGTCCAACGCCGCATGATCGGCACGGACGCGTT
ALS CCAGGAGACGCCCATAGTGGAGGTCACGCGCTC
Hordeum vulgare GAGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGT | 106
Pro68GIn GCCGATCATGCGGCGTIGGACCTGGCCCGTGATGGCGACCATGG
CCA-CAA GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGG
CCAGGTCCAACGCCGCA
TGCGGCGTTGGACCTGG
1112/01 01:47 pm
AME NDED SHEET 13137.009 — (NY}793559.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted .
Alteration Altering Oligos
Imidazolinone CCCAGGG ACCTGCTGGATATCATTGICCCGCATCAGGAGC :
Resistance ACGTGCTGCCTATGATCCCAAACGGTGGTGCTTTCAAGGACATGA
ALS TCATGGAGGGTGATGGCAGGACCTCGTACTGA
Hordeum vulgare TCAGTACGAGGTCCTGCCATCACCCTCCATGATCATGTCCTTGAA 110
Ser524Asn AGCACCACCGITTGGGATCATAGGCAGCACGTGCTCCTGATGCG
AGC-AAC GGACAATGATATCCAGCAGGTACGGCCCTGGG
GATCCCAAACGGTGGTG
CACCACCGTITTGGGATC
Sulfonylurea AGIGGTCICGCTGATGCAATGCTCGATAGTATCCCICTCGTGGCG | 113 ® Resistance ATCACTGGTCAAGTCICTCGTCGGATGATCGGTACCGATGCTTTC
ALS CAGGAAACTCCAATTGTTGAGGTAACAAGGT
Gossypium hirsutum | ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC 114
Pro186Ser CGATCATCCGACGAGAGACTTGACCAGTGATCGCCACGAGAGGG
CCT-TCT ATACTATCGAGCATTGCATCAGCGAGACCACT
GTCAAGTCICTCGTCGG
CCGACGAGAGACTTGAC
Sulfonylurea GTGGTCTOGCTGATGCAATGC TCGATAGTATCCCTCTCGTGGCGA 7
Resistance TCACTGGTCAAGTCCAACGTCGGATGATCGGTACCGATGCTTTCC
ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC
Gossypium hirsutum | GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA | 118
Pro186Gin CCGATCATCCGACGITGGACTTGACCAGTGATCGCCACGAGAGG
CCT-CAA GATACTATCGAGCATTGCATCAGCGAGACCAC
TCAAGTCCAACGTCGGA
® TCCGACGTTGGACTTGA ulfonylurea TGGICTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTIGGCGA | 121
Resistance TCACTGGTCAAGTCCAGCGTCGGATGATCGGTACCGATGCTTTCC
ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC
Gossypium hirsutum | GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA | 122
Pro186GIn CCGATCATCCGACGCTGGACTTGACCAGTGATCGCCACGAGAGG
CCT-CAG GATACTATCGAGCATTGCATCAGCGAGACCAC
TCAAGTCCAGCGTCGGA
TCCGACGCTGGACTTGA
Imidazolinone GACCTTACTIGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT | 125
Resistance GCCTATGATCCCCAATGGAGGCGCTTTCAAAGATGTGATCACAGA
ALS GGGTGATGGAAGAACACAATATTGACCTCA
Gossypium hirsutum | TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT | 126
Ser642Asn TGAAAGCGCCTCCATTGGGGATCATAGGCAGGACATGTTCTTGAT
AGT-AAT GTGGGACAATCACATCCAACAAGTAAGGTC
GATCCCCAATGGAGGCG
1142/01 01:47 pm
AMENDED SHEET 13137.009 — (NY]793559.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted . .
Alteration Altering Oligos ulfonylurea TCIGGICTTGOTGATGCACT TCTTGACTCAGTCCCICTTGICGCCA | 129
Resistance TTACTGGGCAAGTTTCCCGGCGTATGATTGGTACTGATGCTTTTCA
ALS AGAGACTCCAATTGTTGAGGTAACTCGAT
Amaranthus ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC | 130 retroflexus AATCATACGCCGGGAAACTTGCCCAGTAATGGCGACAAGAGGGA
Pro192Ser CTGAGTCAAGAAGTGCATCAGCAAGACCAGA
CCC-TCC GGCAAGTTICCCGGCGT ® ACGCCGGGAAACTTGCC
Sulfonylurea CIGGICTTGCTGATGCACTICTTGACTCAGTCCCTCTTGTCGCCAT| 133
Resistance TACTGGGCAAGTTCAACGGCGTATGATTGGTACTGATGCTTTTCA
ALS AGAGACTCCAATTGTTGAGGTAACTCGATC
Amaranthus GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC| 134 retroflexus CAATCATACGCCGITGAACTTGCCCAGTAATGGCGACAAGAGGGA
Pro192Gin CTGAGTCAAGAAGTGCATCAGCAAGACCAG
CCC-CAA GCAAGTTCAACGGCGTA
TACGCCGTTGAACTTGC
Suffonylurea | CTGGTCTTGGIGATGCACT TGTTGACTCAGICCCTCTTGTCGCCAT | 137
Resistance TACTGGGCAAGTTCAGCGGCGTATGATTGGTACTGATGCTTTTCA
ALS AGAGACTCCAATTGTTGAGGTAACTCGATC
Amaranthus GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC| 138 retroflexus CAATCATACGCCGCTGAACTTGCCCAGTAATGGCGACAAGAGGG é Pro192Gin ACTGAGTCAAGAAGTGCATCAGCAAGACCAG
CCC-CAG GCAAGTTCAGCGGCGTA
TACGCCGCTGAACTTGC
Imidazolinone GACCGTATCTG ATGTAATCGTACCACATCAGGAGCATGTGC | 141
Resistance TGCCTATGATCCCTAACGGTGCCGCCTTCAAGGACACCATAACAG
ALS AGGGTGATGGAAGAAGGGCTTATTAGTTGGT
Amaranthus ACCAACTAATAAGCCCTTCTTCCATCACCCTCTGTTATGGTGTCCT | 142 retroflexus TGAAGGCGGCACCGTTAGGGATCATAGGCAGCACATGCTCCTGA
Ser652Asn TGTGGTACGATTACATCCAGCAGATACGGTC
AGC-AAC GATCCCTAACGGTGCCG
CGGCACCGITAGGGATC
1412/01 01:47 pm
AMENDED SHEET 13137.009 — (NY}793559.1
28-12-2001 01939797
Phenotype, Gene, scan!
Plant & Targeted . .
Alteration Altering Oligos ulfonylurea AGCGGCCTCGC TGACGCGCTACTGGATAGCGTCCCCATIGTIGC A5
Resistance TATAACAGGTCAAGTGICACGTAGGATGATAGGTACTGATGCTTTT
ALS 1 CAGGAAACTCCTATTGTTGAGGTAACTAGAT
Nicotiana tabacum | ATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTACC | 146
Pro194Ser TATCATCCTACGTGACACTTGACCTGTTATAGCAACAATGGGGAC
CCA-TCA GCTATCCAGTAGCGCGTCAGCGAGGCCGCT
GTCAAGTGTCACGTAGG
CCTACGTGACACTTGAC
Sulfonylurea GCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGC 149 ® Resistance ATAACAGGTCAAGTGCAACGTAGGATGATAGGTACTGATGCTTTT
ALS 1 CAGGAAACTCCTATTGTTGAGGTAACTAGATC
Nicotiana tabacum | GATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTAC | 150
Pro194GIn CTATCATCCTACGTIGCACTTGACCTGTTATAGCAACAATGGGGA
CCA-CAA CGCTATCCAGTAGCGCGTCAGCGAGGCCGC
TCAAGTGCAACGTAGGA
TCCTACGTTGCACTTGA midazoinone | GGCCATACTIGT TGGATGTGATTGTACCTCATCAGGAACATGITIT | 153
Resistance ACCTATGATTCCCAATGGCGGAGCTTTCAAAGATGTGATCACAGA
ALS 1 GGGTGACGGGAGAAGTTCCTATTGAGTTTG
Nicotiana tabacum | CAAACTCAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT | 154
Ser650Asn TGAAAGCTCCGCCATTGGGAATCATAGGTAAAACATGTTCCTGAT
AGT-AAT GAGGTACAATCACATCCAACAAGTATGGCC
GATTCCCAATGGCGGAG
® CTCCGCCATTGGGAATC ulfonylurea AGTGGOC TCGCGGACGCCCTACTGGATAGCGTCCCCATIG] 151
Resistance TATAACCGGTCAAGTGTCACGTAGGATGATCGGTACTGATGCTTT
ALS 2 TCAGGAAACTCCGATTGTTGAGGTAACTAGAT
Nicotiana tabacum | ATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTACC | 158
Pro191Ser GATCATCCTACGTGACACTTGACCGGTTATAGCAACAATGGGGAC
CCA-TCA GCTATCCAGTAGGGCGTCCGCGAGGCCACT
GTCAAGTGTCACGTAGG
CCTACGTGACACTTGAC uffonylurea GIGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGCT
Resistance ATAACCGGTCAAGTGCAACGTAGGATGATCGGTACTGATGCTTTT : ALS 2 CAGGAAACTCCGATTGTTGAGGTAACTAGATC
Nicotiana tabacum GATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTAC | 162
Pro191Gin CGATCATCCTACGTTGCACTTGACCGGTTATAGCAACAATGGGGA
CCA-CAA CGCTATCCAGTAGGGCGTCCGCGAGGCCAC
TCAAGTGCAACGTAGGA
11/12/01 01:47 pm
AMENDED SHEET 137.009 — PTE38581
28-12-2001 01939797 -h5.
Phenotype, Gene, scan
Plant & Targeted , .
Alteration Altering Oligos
I LC BC midazolinone CATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTICT 2
Resistance ACCTATGATTCCCAATGGCGGGGCTTTCAAAGATGTGATCACAGA
ALS 2 GGGTGACGGGAGAAGTTCCTATTGACTTTG
Nicotiana tabacum CAAAGTCAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT | 166
Ser647Asn TGAAAGCCCCGCCATTGGGAATCATAGGTAGAACATGTTCCTGAT
AGT-AAT GAGGTACAATCACATCCAACAAGTATGGCC
GATTCCCAATGGCGGGG
CCCCGCCATTGGGAATC
@ Sulfonylurea AGTGGTCTTGCTGATGCTTTATTAGACAGIGITCCAATGGTTGGTA
Resistance TTACTGGTCAAGTTICCAGGAGAATGATTGGAACAGATGCGTTTC
ALS AAGAAACCCCTATTGTTGAGGTAACACGTT
Xanthium spp. AACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTCC | 170
Pro175Ser AATCATTCTCCTGGAAACTTGACCAGTAATAGCAACCATTGGAACA ccc-TcC CTGTCTAATAAAGCATCAGCAAGACCACT
GTCAAGTTTCCAGGAGA
TCTCCTGGAAACTTGAC
Suffonylurea GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT
Resistance TACTGGTCAAGTTCAAAGGAGAATGATTGGAACAGATGCGTTTCA
ALS AGAAACCCCTATTGTTGAGGTAACACGTTC
Xanthium spp. GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC| 174
Pro175Gin : CAATCATTCTCCTITGAACTTGACCAGTAATAGCAACCATTGGAAC
CCC-CAA ACTGTCTAATAAAGCATCAGCAAGACCAC ® TCAAGTTCAAAGGAGAA
TTCTCCTITGAACTTGA
Sulfonylurea GIGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT 77
Resistance TACTGGTCAAGTTCAGAGGAGAATGATTGGAACAGATGCGTTTCA
ALS AGAAACCCCTATTGTTGAGGTAACACGTTC
Xanthium spp. GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC| 178
Pro175GIn CAATCATTCTCCTCTGAACTTGACCAGTAATAGCAACCATTGGAAC
CCC-CAG ACTGTCTAATAAAGCATCAGCAAGACCAC
TCAAGTTCAGAGGAGAA
: TTCTCCTCTGAACTTGA imidazolinone GGGCCTTACTIGTTGGATGTGATCGTGCCCCATCAAGAACATGIG | 18 : Resistance TTGCCCATGATCCCGAATGGTGGAGGTTTCATGGATGTGATCACC
ALS GAAGGCGACGGCAGAATGAAATATTGAGCTT
Xanthium spp. AAGCTCAATATTTCATTCTGCCGTCGCCTTCGGTGATCACATCCAT | 182
Alab31Asn GAAACCTCCACCATTCGGGATCATGGGCAACACATGTTCTTGATG
GCT-AAT GGGCACGATCACATCCAACAAGTAAGGCCC 1112/01 01:47 pm
AM EN DED S HEET 03137.009 — [NY)793559.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted . .
Alteration Altering Oligos
RRR rp——
TGATCCCGAATGGTGGA
TCCACCATTCGGGATCA
Suffonylurea ~ [TCCGGGITIGCTGATGCT CGATTCCGTTCCACTGGTGGC 18
Resistance ATCACGGGGCAGGTGICGCGGCGAATGATTGGGACGGATGCTTT
ALS TCAGGAGACTCCTATTGTTGAGGTAACACGGT
Bassia scoparia ACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTCC 186
Pro189Ser CAATCATTCGCCGCGACACCTGCCCCGTGATCGCCACCAGTGGA
CCG-TCG ACGGAATCGAGCAAAGCATCAGCAAACCCGGA
GGCAGGTGICGCGGCGA
® TCGCCGCGACACCTGRC
Sulfonylurea CGGGTTTGCTGATGCITTGCTCGATICGCGTTCCACTGGTGGCGA 7]
Resistance TCACGGGGCAGGTGCAGCGGCGAATGATTGGGACGGATGCTTTT
ALS CAGGAGACTCCTATTGTTGAGGTAACACGGTC
Bassia scoparia GACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTC | 190
Pro189GIn CCAATCATTCGCCGCTIGCACCTGCCCCGTGATCGCCACCAGTGG
CCG-CAG AACGGAATCGAGCAAAGCATCAGCAAACCCGG
GCAGGTGCAGCGGCGAA
TTCGCCGCTGCACCTGC
Imidazolinone GACCTTACCTGCTTGATGTGATTGTACCTCATCAGGAGCAIGTGC | 193
Resistance TGCCTATGATTCCTAATGGTGCAGCCTTCAAGGATATCATTAACGA
ALS AGGTGATGGAAGAACAAGTTATTGATGTTC
Bassia scoparia GAACATCAATAACTTGTTCTTCCATCACCTTCGTTAATGATATCCTT | 194
Ser649Asn GAAGGCTGCACCATTAGGAATCATAGGCAGCACATGCTCCTGATG ® AGT-AAT AGGTACAATCACATCAAGCAGGTAAGGTC
GATTCCTAATGGTGCAG
CTGCACCATTAGGAATC ulfonylurea AG AGCAGACGCGATGCTTGACAGIGITCCICTIGTCGE 97
Resistance ATTACAGGACAGGTCTCTCGCCGGATGATCGGTACTGACGCCTTC
ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGT
Brassica napus ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC | 198
Pro182Ser CGATCATCCGGCGAGAGACCTGTCCTGTAATGGCGACAAGAGGA
CCT-TCT ACACTGTCAAGCATCGCGTCTGCTAACCCGCT : GACAGGTCICTCGCCGG
CCGGCGAGAGACCTGTC
1/12/01 01:47 pm
AMENDED SHEET 317.008 — (NVI7S35a 1
28-12-2001 01939797 —
Phenotype, Gene,
Plant & Targeted . .
Alteration Altering Oligos
Sulfonylurea [GCGGGTTAGCAGACGCGATGCTTGACAGIGTTCCTCITGTCGCCAT 207
Resistance TTACAGGACAGGTCCAACGCCGGATGATCGGTACTGACGCCTTC : ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGTC
Brassica napus GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA | 202
Pro182Gin CCGATCATCCGGCGITGGACCTGTCCTGTAATGGCGACAAGAGE
CCT-CAA AACACTGTCAAGCATCGCGTCTGCTAACCCGC
ACAGGTCCAACGCCGGA
Es CC LR
Sulfonylurea GCGGGTTAGCAGACGCGATG ACAGTGTTCCTCITGICGGCA| 205 ® Resistance TTACAGGACAGGTCCAGCGCCGGATGATCGGTACTGACGCCTTC
ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGTC
Brassica napus GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA | 206
Pro182Gin CCGATCATCCGGCGCTGGACCTGTCCTGTAATGGCGACAAGAGG
CCT-CAG AACACTGTCAAGCATCGCGTCTGCTAACCCGC
ACAGGTCCAGCGCCGGA
TOCGRBREIRGRSTST
Imidazolinone | GACCATACCTGTTGGATGIGATATGICCGCACCAAGAACATGIGT 200]
Resistance TACCGATGATCCCAAATGGTGGCACTTTCAAAGATGTAATAACAG
ALS 1 AAGGGGATGGTCGCACTAAGTACTGAGAGAT
Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTTT| 210
Ser638Asn GAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGTG
AGT-AAT CGGACATATCACATCCAACAGGTATGGTC
GATCCCAAATGGTGGCA
® TGCCACCATTTGGGATC
Resistance CATTACAGGACAGGTTCCTCGCCGGATGATCGGTACTGACGCCTT
ALS 2 CCAAGAGACACCAATCGTTGAGGTAACGAGG
Brassica napus CCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTACC | 214
Pro126Ser GATCATCCGGCGAGGAACCTGTCCTGTAATGGCGACAAGAGGAA
CCC-TCC CACTGTCAAGCATCGCGTCTGCTAACCCGCTG
EE NO
CGGCGAGGAACCTGTCC
Suffonylurea AG TTAGCAGACGCGATGCTTGACAGIGTTCCICTIGICGGG I 217
Resistance ATTACAGGACAGGTCACTCGCCGGATGATCGGTACTGACGCCTTC
ALS 2 CAAGAGACACCAATCGTTGAGGTAACGAGGT
Brassica napus ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC | 218
Pro126GIn CGATCATCCGGCGAGTGACCTGTCCTGTAATGGCGACAAGAGGA
CCC-CAG ACACTGTCAAGCATCGCGTCTGCTAACCCGCT
GACAGGTCACTCGCCGG
1112/01 01.47 pm
AMENDED SHEET THT 008 — NI7Saess.
2-2001 01Ys59/9/
Phenotype, Gene,
Plant & Targeted . . SEQID
Eid Altering Oligos NO: midazolinone GACCATACCTGTTGGA ATATGICCGCACCAAGAACATGIGT | 2
Resistance TACCGATGATCCCAAATGGTGGCACTTTCAAAGATGTAATAACAG
ALS 2 AAGGGGATGGTCGCACTAAGTACTGAGAGAT
Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTTT| 222
Ser582Asn GAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGTG
AGT-AAT CGGACATATCACATCCAACAGGTATGGTC
GATCCCAAATGGTGGCA
TGCCACCATTTGGGATC
» Sulfonylurea AGCGGGTIAGCCGACGCGATGCTTGACAGTGTICCICTCGTCGC | 225
Resistance CATCACAGGACAGGTCTCTCGCCGGATGATCGGTACTGACGCGT
ALS 3 TCCAAGAGACGCCAATCGTTGAGGTAACGAGGT
Brassica napus ACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTAC 226 : Pro179Ser CGATCATCCGGCGAGAGACCTGTCCTGTGATGGCGACGAGAGGA
CCT-TCT ACACTGTCAAGCATCGCGTCGGCTAACCCGCT
GACAGGTCTCTCGCCGG
CCGGCGAGAGACCTGTC
Sulfonylurea GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCC 0
Resistance ATCACAGGACAGGTCCAACGCCGGATGATCGGTACTGACGCGTT
ALS 3 CCAAGAGACGCCAATCGTTGAGGTAACGAGGTC
Brassica napus GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA | 230
Pro179GIn CCGATCATCCGGCGITGGACCTGTCCTGTGATGGCGACGAGAGG
CCT-CAA AACACTGTCAAGCATCGCGTCGGCTAACCCGC ® ACAGGTCCAACGCCGGA
TCCGGCGITGGACCTGT uffonylurea G AGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCG 733
Resistance ATCACAGGACAGGTCCAGCGCCGGATGATCGGTACTGACGCGTT
ALS 3 CCAAGAGACGCCAATCGTTGAGGTAACGAGGTC
Brassica napus GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA | 234
Pro179Gin CCGATCATCCGGCGCTGGACCTGTCCTGTGATGGCGACGAGAGG
CCT-CAG AACACTGTCAAGCATCGCGTCGGCTAACCCGC
ACAGGTCCAGCGCCGGA
TCCGGCGCTGGACCTGT
I RN SR
Imidazofinone GACCGTACCTGTTGGATGTCATCTGTCCGCACCAAGAACATGTGT 37
Resistance TACCGATGATCCCAAATGGTGGCACTTTCAAAGATGTAATAACCG
ALS 3 AAGGGGATGGTCGCACTAAGTACTGAGAGAT
Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCGGTTATTACATCTT | 238
Ser635Asn TGAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGT
AGT-AAT GCGGACAGATGACATCCAACAGGTACGGTC . 112/01 01:47 pm
AMENDED SHEET 03137.009 ~ [NY]793559.1
28-12-2001 01939797 : Phenotype, Gene, : scan
Plant & Targeted : :
Alteration Altering Oligos
GATCCCAAATGGTGGCA
: TGCCACCATTTGGGATC
Sulfonylurea TCCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGE | 241
Resistance CATCACGGGCCAGGTCTCCCGCCGCATGATCGGCACCGACGCCT
ALS TCCAGGAGACGCCCATAGTCGAGGTCACCCGCT
Oryza sativa AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG | 242
Pro171Ser CCGATCATGCGGCGGGAGACCTGGCCCGTGATGGCGACCATCG
CCC-TCC GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA
GCCAGGTCTCCCGCCGC
® GCGGCGGGAGACCTGGC
Sulfonylurea CCGCGCTCGCCGACGLGCTGCTCBACTCCGICCCGATGGICGLC | 245
Resistance ATCACGGGCCAGGTCCAACGCCGCATGATCGGCACCGACGCCTT
ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC
Oryza sativa { GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT | 246
Pro171Gin GCCGATCATGCGGCGITGGACCTGGCCCGTGATGGCGACCATCG
CCC-CAA GGACGGAGTCGAGCAGCGCGBTCGGCGAGCGCGG
CCAGGTCCAACGCCGCA
TGCGGCGTIGGACCTGG ulfonylurea CGCTCGCCGACG GCICGACTCCGTCCCGATGGICGCC | 249 ~~" | Resistance ATCACGGGCCAGGTCCAGCGCCGCATGATCGGCACCGACGCCTT |ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGLTC
Oryza sativa GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT | 250
Pro171GIn GCCGATCATGCGGCGCTGGACCTGGCCCGTGATGGCGACCATCS ® CCC-CAG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGEG
CCAGGTCCAGCGCCGCA
TGCGGCGCTGGACCTGG
Imidazolinone CATACTTGTTGGATATCATCGICCCGCACCAGGAGCATGTG 25
Resistance TGCCTATGATCCCAAATGGGGGCGCATTCAAGGACATGATCCTGG
ALS ATGGTGATGGCAGGACTGTGTATTAATCTAT
Oryza sativa ATAGATTAATACACAGTCCTGCCATCACCATCCAGGATCATGTCCT | 254
Ser627Asn TGAATGCGCCCCCATTTGGGATCATAGGCAGCACATGCTCCTGGT
AGT-AAT GCGGGACGATGATATCCAACAAGTATGGCC
GATCCCAAATGGGGGCG
CGCCCCCATTTGGGATC
: 11/42/01 01.47 pm
AMENDED SHEET J3437.009 — NYIP3559
28-12-2001 01939797
Phenotype, Gene, : scan
Plant & Targeted . .
Alteration Altering Oligos
Sulfonylurea — GCTCGCAGACGCGTTGCTCGACTCCGICCCCATGGTC 257
Resistance CATCACGGGACAGGTGICGCGACGCATGATTGGCACCGACGCCT : ALS TTCAGGAGACGCCCATCGTCGAGGTCACCCGCT
Zea mays AGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGTG | 258
Pro165Ser CCAATCATGCGTCGCGACACCTGTCCCGTGATGGCGACCATGGG
CCG-TCG GACGGAGTCGAGCAACGCGTCTGCGAGCGCAGA
GACAGGTGTCGCGACGC
GCGTCGCGACACCTGTC
Sulfonylurea GCGC AGACGCGTTGCTCGACTCCGICCCCATGGICGCE | 261 ® Resistance ATCACGGGACAGGTGCAGCGACGCATGATTGGCACCGACGCCTT
ALS TCAGGAGACGCCCATCGTCGAGGTCACCCGCTC
Zea mays GAGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGT | 262
Pro165GIn GCCAATCATGCGTCGCIGCACCTGTCCCGTGATGGCGACCATGG
CCG-CAG GGACGGAGTCGAGCAACGCGTCTGCGAGCGCAG
ACAGGTGCAGCGACGCA
TGCGTCGCTGCACCTGT
Imdazolinone CCGTACCTCTTGGATATAATCGICCCGCACCAGGAGCATGTGT | 266
Resistance TGCCTATGATCCCTAATGGTGGGGCTTTCAAGGATATGATCCTGG
ALS ATGGTGATGGCAGGACTGTGTATTGATCCGT
Zea mays ACGGATCAATACACAGTCCTGCCATCACCATCCAGGATCATATCC | 266
Ser621Asn TTGAAAGCCCCACCATTAGGGATCATAGGCAACACATGCTCCTGG
AGT-AAT TGCGGGACGATTATATCCAAGAGGTACGGCC
GATCCCTAATGGTGGGG
PS CCCCACCATTAGGGATC
Sulfonylurea AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCICTCGTGGE 269
Resistance ATCACTGGTCAAGTCTCTCGTCGGATGATCGGTACCGATGCTTTC
ALS CAGGAAACTCCAATTGTTGAGGTAACAAGGT
Gossypium hirsutum | ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC | 270
Pro186Ser CGATCATCCGACGAGAGACTTGACCAGTGATCGCCACGAGAGGG
CCT-TCT ATACTATCGAGCATTGCATCAGCGAGACCACT
GTCAAGTCTCICGTCGG :
CCGACGAGAGACTTGAC
. 25 Sulfonylurea GTGGICTCGCTGATGCAATGCTCGATAGTIATCCCTICTCGIGGLGA 73
Resistance TCACTGGTCAAGTCCAACGTCGGATGATCGGTACCGATGCTTTCC
ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC
Gossypium hirsutum | GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA | 274
Pro186Gin CCGATCATCCGACGITGGACTTGACCAGTGATCGCCACGAGAGGE
CCT-CAA GATACTATCGAGCATTGCATCAGCGAGACCAC
TCAAGTCCAACGTCGGA
11/12/01 01:47 pm
AM EN DED SHEET 03137.009 — [NY]753559.1
28-12-2001 01939797
Phenotype, Gene, : scan
Plant & Targeted .
Alteration Altering Oligos _ ——— — —— ——— — — — ——— ———— — —— = —
CT] TCCGACGTTGGACTTGA ulfonylurea TGGTCTCGCTGATGCAATGCTCGATAGTATCCCICTCGTGGCGA [| 277
Resistance TCACTGGTCAAGTCCAGCGTCGGATGATCGGTACCGATGCTTTCC
ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC
Gossypium hirsutum | GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA 278
Pro186GIn CCGATCATCCGACGCTGGACTTGACCAGTGATCGCCACGAGAGG
CCT-CAG GATACTATCGAGCATTGCATCAGCGAGACCAC
TCAAGTCCAGCGTCGGA
TCCGACGCTIGGACTTGA
® Imidazolinone GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACAIGICCT | 281
Resistance GCCTATGATCCCCAATGGAGGGGCTTTCAAAGATGTGATCACAGA
ALS GGGTGATGGAAGAACACAATATTGACCTCA
Gossypium hirsutum | TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT | 282
Ser642Asn TGAAAGCCCCTCCATTGGGGATCATAGGCAGGACATGTTCTTGAT
AGT-AAT GTGGGACAATCACATCCAACAAGTAAGGTC
GATCCCCAATGGAGGGG
CCCCTCCATTGGGGATC
[ Sulfonylurea TCTGGTCTTGCTGATGCACTTCTTGACTCAGICCCICTTGICGCCA| 285
Resistance TTACTGGGCAAGTTICCCGGCGTATGATTGGTACTGATGCTTTTCA
ALS AGAGACTCCAATTGTTGAGGTAACTCGAT
Amaranthus powelli | ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC | 286
Pro192Ser AATCATACGCCGGGAAACTTGCCCAGTAATGGCGACAAGAGGGA
CCC-TCC CTGAGTCAAGAAGTGCATCAGCAAGACCAGA ° I NA
ACGCCGGGAAACTTGCC
Sulfonylurea CTGGTCIT ATGCACTTCTTGACTCAGTCCCTCTTGTGCGGGAT | 289
Resistance TACTGGGCAAGTTCAACGGCGTATGATTGGTACTGATGCTTTTCA
ALS AGAGACTCCAATTGTTGAGGTAACTCGATC
Amaranthus powelli | GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC | 290
Pro192GIn CAATCATACGCCGTTGAACTTGCCCAGTAATGGCGACAAGAGGGA
CCC-CAA CTGAGTCAAGAAGTGCATCAGCAAGACCAG
GCAAGTTCAACGGCGTA
: TACGCCGITGAACTTGC : uffonylurea GTCTTGCTGATGCACTTCTTGACTCAGTCCCICTIGTCGGCAT | 203 : Resistance TACTGGGCAAGTTCAGCGGCGTATGATTGGTACTGATGCTTTTCA
ALS AGAGACTCCAATTGTTGAGGTAACTCGATC
Amaranthus powelli | GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC | 294
Pro192Gin CAATCATACGCCGCTGAACTTGCCCAGTAATGGCGACAAGAGGS
CCC-CA ACTGAGTCAAGAAGTGCATCAGCAAGACCAG 111201 01:47pm
AM E N DED S H EET J3137.009 — [NY]793559.1
28-12-2001 01939797 : Phenotype, Gene,
Plant & Targeted . : Alteration Altering Oligos
GCAAGTTCAGCGGCGTA
TACGCCGCTGAACTTGC midazolinone GACCGTATCTGCTGGATGTAATCGTACCACATCAGGAGCATGIGC | 297
Resistance TGCCTATGATCCCTAACGGTGCCGCCTTCAAGGACACCATAACAG
ALS AGGGTGATGGAAGAAGGGCTTATTAGTTGGT
Amaranthus powelli | ACCAACTAATAAGCCCTTCTTCCATCACCCTCTGTTATGGTGTCCT | 298
Ser652Asn TGAAGGCGGCACCGITAGGGATCATAGGCAGCACATGCTCCTGA
AGC-AAC TGTGGTACGATTACATCCAGCAGATACGGTC
GATCCCTAACGGTGCCG
® CGGCACCGITAGGGATC 14/12/01 01:47 pm
AMENDED SHEET 1ate7.000 — BreaEEat
28-12-2001 01939797
Table 12
Genome-Altering Oligos Conferring Porphyric Herbicide Resistance
Phenotype, Gene, cao
Plant & Targeted . .
Alteration Altering Oligos
Porphyric Herbicide | TCTTGCGCCCTCTTTCTGAATCTGCTGCAAATGCACTCTCAAAACT | 301
Resistant ATATTACCCACCAATGGCAGCAGTATCTATCTCGTACCCGAAAGA
PPO AGCAATCCGAACAGAATGTTTGATAGATGG
Arabidopsis thaliana | CCATCTATCAAACATTCTGTTCGGATTGCTTCTTTCGGGTACGAGA | 302
Val365Met TAGATACTGCTGCCATTGGTGGGTAATATAGTTTTGAGAGTGCATT
GTT-ATG TGCAGCAGATTCAGAAAGAGGGCGCAAGA ® CCCACCAATGGCAGCAG
CTGCTGCCATTGGTGGG
Porphyric Herbicide | TATTACGTCCITCTTTCGGTTGCCGCAGCAGATGCACTTTCAAATT 305
Resistant CTACTATCCCCCAATGGGAGCAGTCACAATTTCATATCCTCAAGAA
PPO GCTATTCGTGATGAGCGTCTGGTTGATGS
Nicotiana tabacum CCATCAACCAGACGCTCATCACGAATAGCTTCTTGAGGATATGAA | 306
Val376Met | ATTGTGACTGCTCCCATTGGGGGATAGTAGAAATTTGAAAGTGCA
GTT-ATG TCTGCTGCGGCAACCGAAAGAGGACGTAATA
TCCCCCAATGGGAGCAG
CTGCTCCCATTGGGGGA
Porphyric Herbicide TGTTGCGTCCGCTTTCGTTGGGTGCAGCAGATGCATTGTCAAAAT 09
Resistant TTTATTATCCTCCGATGGCAGCTGTATCAATTTCATATCCAAAAGA
PPO CGCAATTCGTGCTGACCGGCTGATTGATGG
Cichorium intybus CCATCAATCAGCCGGTCAGCACGAATTGCGTCTTTTGGATATGAA | 310
Val383Met ATTGATACAGCTGCCATCGGAGGATAATAAAATTTTGACAATGCAT ® GTT-ATG CTGCTGCACCCAACGAAAGCGGACGCAACA
TCCTCCGATGGCAGCTG
CAGCTGCCATCGGAGGA
' |Porphyric Herbicide | TCCTTCGTCCACTTTCAGATGTCGCCGCAGAATCTCTTTCAAAATT | 313
Resistant TCATTATCCACCAATGGCAGCTGTGTCACTTTCCTATCCTAAAGAA
PPO GCAATTAGATCAGAGTGCTTGATTGACGG
Spinacia oleracea CCGTCAATCAAGCACTCTGATCTAATTGCTTCTTTAGGATAGGAAA | 314
Val390Met GTGACACAGCTGCCATTGGTGGATAATGAAATTTTGAAAGAGATT . GTT-ATG CTGCGGCGACATCTGAAAGTGGACGAAGGA
TCCACCAATGGCAGCTG
CAGCTGCCATTGGTGGA
11/12/01 01:47 pm
AMENDED SHEET 03137.000 — [NY]763559.1
28-12-2001 01939797
Phenotype, Gene, sca
Plant & Targeted pe
Alteration. Altering Oligos : REET OT I ———————————— —— —— — —————
Porphyric Herbicide TTTGCGTCCACTTTCAAGCGATGCTGCAGATGCTCTATCAAGATT | 317
Resistant CTATTATCCACCGATGGCTGCTGTAACTGTTTCGTATCCAAAGGAA : PPO GCAATTAGAAAAGAATGCTTAATTGATGG
Zea mays CCATCAATTAAGCATTCTTTTCTAATTGCTTCCTTTGGATACGAAAC | 318
Val363Met AGTTACAGCAGCCATCGGTGGATAATAGAATCTTGATAGAGCATC
GTT-ATG TGCAGCATCGCTTGAAAGTGGACGCAAAA
Rg I
CAGCAGCCATCGGTGGA
Porphyric Herbicide | TCTTGCGGCCACTTTCAAGTGATGCAGCAGATGCTCTGTCAATATT | 321 ® Resistant CTATTATCCACCAATGGCTGCTGTAACTGTTTCATATCCAAAAGAA
PPO GCAATTAGAAAAGAATGCTTAATTGACGG
Oryza sativa CCGTCAATTAAGCATTCTTTTCTAATTGCTTCTTTTGGATATGAAAC | 322
Val364Met AGTTACAGCAGCCATTGGTGGATAATAGAATATTGACAGAGCATC
GTT-ATG TGCTGCATCACTTGAAAGTGGCCGCAAGA
TCCACCAATGGCTGCTG
CAGCAGCCATTGGTGGA
Porphyric Herbicide CTGGTCAAGGAGCAGGCGCCCGCCGCCGCCGAGR CT 325
Resistant CCTTCGACTACCCGCCGATGGGCBCCGTGACGCTGTCGTACCCG
PPO CTGAGCGCCGTGCGGGAGGAGCGCAAGGCCTCGG
Chlamydomonas CCGAGGCCTTGCGCTCCTCCCGCACGGCGCTCAGCGGGTACGAC| 326 reinhardtii AGCGTCACGGCGCCCATCGGCGGGTAGTCGAAGGAGCCCAGGG
Val389Met CCTCGGCGGCGGCGGGCGCCTGCTCCTTGACCAG ° EE
A I
Table 13
Genome-Altering Oligos Conferring Triazine Resistance oe eR ee Ee ————— cece
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration ee ___}
Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT | 329 } D1 Protein TTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCTT
Arabidopsis thaliana | AGCGGCTTGGCCGGTAGTAGGTATTTG
Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA | 330
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT
AACCGTGAGCAGCTACAATGTTGTAAGTTT
1112/01 01:47 pm
AMENDED SHEET 03137.009 — [NY]7S3659.
28-12-2001 01939797 ee
Phenotype, Gene,
Plant & Targeted Altering Oligos ) Alteration
LL ~erdon 4 —
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATITIG GATTGAT 33
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC
Nicotiana tabacum | TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA| 334
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCGGCTACGATGTTATAAGTTT
ATATGCTACTTTCAACA
® TGTTGAAAGTAGCATAT
Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 37
D1 Protein CTTCCAATATGCTACTTTTAACAACTCTCGCTCTTTACATTTCTTCT
Populus deltoides TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAG | 338
AGT-ACT CGAGAGTTGTTAAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCGGCTACGATATTATAAGTTT
ATATGCTACTTTTAACA
TGTTAAAAGTAGCATAT
Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT | 341
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC
Petunia x hybrida TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA | 342
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCGGCTACGATATTATAAGTTT
® ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCC
Magnolia pyramidata | TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA | 346
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCAGCTACGATATTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACATTTCTTCC : Medicago sativa TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA | 350
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCTGCTACAATATTATAGGTTT
ATATGCTACTTTCAACA
11/12/01 01:47 pm
AM ENDED SHEET 03137.009 — [NY]793553,1
28-12-2001 01939797 —_—
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration . =5 SS EE __| TGTTGAMGTAGCATAT nazine Resistant AAACCTATAATATTGTAGCTGCTCATGGTIATITTGGCCGATTGAT 353 : D1 Protein CTTCCAATATGCAACTTTCAACAATTCTCGTTCTTTACATTTCTTCT
Glycine max TAGCTGCTTGGCCTGTAGTAGGTATTTG
Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA | 354
AGT-ACT CGAGAATTGTTGAAAGTTGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCAGCTACAATATTATAGGTTT
ATATGCAACTTTCAACA
TGTTGAAAGTTGCATAT
PY Triazine Resistant | AMACTIACAACATTGTAGCTGGTCACGOT TAT TTGOCCoATI Cn 357
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCT
Brassica napus TAGCGGCTTGGCCGGTAGTAGGTATTTG
Gly264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA | 358
GGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCGTGAGCAGCTACAATGTTGTAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
Triazine Resistant | AAMACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT | 361
D1 Protein CTTCCAATATGCTACTTTTAACAACTCTCGTTCTTTACACTTCTTCT
Oryza sativa TGGCTGCTTGGCCTGTAGTAGGGATTTG
Ser264Thr CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA | 362
AGT-ACT CGAGAGTTGTTAAAAGTAGCATATTGGAAGATTAATCGGCCAAAAT
AACCATGAGCGGCCACAATATTATAAGTTT
ATATGCTACTTTTAACA
Py TGTTAAAAGTAGCATAT
Triazine Resistant AGACTTATAATATTGTGGCTGCTCACGGTIATTTTGGTCGATTAAT 1 365
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACACTTCTTCT
Zea mays TGGCTGCTTGGCCTGTAGTAGGGATCTG
Ser264Thr CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA | 366
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATTAATCGACCAAAAT
AACCGTGAGCAGCCACAATATTATAAGTCT
ATATGCTACTTTCAACA
GTTGAAAGTAGCATAT
Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 369 : D1 Protein TTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCTT
Arabidopsis thaliana | AGCGGCTTGGCCGGTAGTAGGTATTTG
Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA | 370
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT
AACCGTGAGCAGCTACAATGTTGTAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
372 1112/01 01:47 pm
AMENDED SHEET 03137.008 — [NY]793558.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Triazine Resistant | AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT | 373
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC
Nicotiana tabacum | TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA | 374
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCGGCTACGATGTTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
D1 Protein CTTCCAATATGCTACTTTTAACAACTCTCGCTCTTTACATTTCTTCT ® Populus deltoides | TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAG | 378
AGT-ACT CGAGAGTTGTTAAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCGGCTACGATATTATAAGTTT
ATATGCTACTTTTAACA
TGTTAAAAGTAGCATAT
Triazine Resistant | AMCTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT | 381
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC
Petunia x hybrida | TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA | 382
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCGGCTACGATATTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
PS
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCC
Magnolia pyramidata | TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA | 386
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCAGCTACGATATTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACATTTCTTCC
Medicago sativa TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATAGCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA | 390
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCTGCTACAATATTATAGGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
1112/01 01:47 pm
AMENDED SHEET ’ 03137.009 — [NY]793559.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Triazine Resistant AAACCTATAATATTGTAGCTGCTCATGGTTATTITGGCCGATTGA 303
D1 Protein CTTCCAATATGCAACTTTCAACAATTCTCGTTCTTTACATTTCTTCT : Glycine max TAGCTGCTTGGCCTGTAGTAGGTATTTG
Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA | 394
AGT-ACT CGAGAATTGTTGAAAGTTGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCAGCTACAATATTATAGGTTT
ATATGCAACTTTCAACA
TGTTGAAAGTTGCATAT
Triazine Resistant ARACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT | 397
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCT @® Brassica napus TAGCGGCTTGGCCGGTAGTAGGTATTTG
Gly264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA | 308
GGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCGTGAGCAGCTACAATGTTGTAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT [400
Triazine Resistant ~~ | AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT | 401
D1 Protein CTTCCAATATGCTACTTTTAACAACTCTCGTTCTTTACACTTCTTCT
Oryza sativa TGGCTGCTTGGCCTGTAGTAGGGATTTG
Ser264Thr CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA | 402
AGT-ACT CGAGAGTTGTTAAAAGTAGCATATTGGAAGATTAATCGGCCAAAAT
AACCATGAGCGGCCACAATATTATAAGTTT
ATATGCTACTTTTAACA
TGTTAAAAGTAGCATAT
CC) Triazine Resistant AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT ]
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACACTTCTTCT
Zea mays TGGCTGCTTGGCCTGTAGTAGGGATCTG
Ser264Thr CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA | 406
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATTAATCGACCAAAAT
AACCGTGAGCAGCCACAATATTATAAGTCT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
Triazine Resistant ~~ | AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT | 409
D1 Protein TTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCTT
Arabidopsis thaliana | AGCGGCTTGGCCGGTAGTAGGTATTTG
Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA | 410
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT
AACCGTGAGCAGCTACAATGTTGTAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
11/12/04 01:47 pm
AMENDED SHEET 03137.009 — [NY]793559.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
Triazine Resistant AAACCTACAATATTGTGGCT ACGGTTATTTCGGCCGATTGAT | 413
D1 Protein CTTCCAGTATGCTACTTTCAACAACTCCCGTTCTTTACATTTCTTCT
Picea abies TAGCTGCTTGGCCCGTAGCAGGTATCTG
Ser264Thr CAGATACCTGCTACGGGCCAAGCAGCTAAGAAGAAATGTAAAGAA | 414
AGT-ACT CGGGAGTTGTTGAAAGTAGCATACTGGAAGATCAATCGGCCGAAA
TAACCGTGAGCAGCCACAATATTGTAGGTTT
GTATGCTACTTTCAACA
TGTTGAAAGTAGCATAC
Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT | 417
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGCTCTTTACATTTCTTCC ® Vicia faba TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAG | 418
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCGTGAGCAGCTACAATATTATAGGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
Triazine Resistant AGACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT | 421
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT
Hordeum vulgare TGGCTGCTTGGCCTGTAGTAGGAATCTG
Ser264Thr CAGATTCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA | 422
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATTAATCGGCCAAAA "| TAACCATGAGCAGCCACAATATTATAAGTCT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
®
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT
Triticum aestivum TGGCTGCTTGGCCTGTAGTAGGAATCTG
Ser264Thr CAGATTCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA | 426
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATTAATCGGCCAAAA
TAACCATGAGCAGCCACAATATTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT riazine Resistant RAACTTATAATATTGTAGC TGCTCATGGTTATTTITGGCCGATIAATC | 429
D1 Protein TTCCAATATGCAACTTTCAACAATTCTCGTTCTTTACATTTCTTCCT
Vigna unguiculata AGCTGCTTGGCCTGTAGTAGGTATTTG
Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA | 430 . 25 AGT-ACT CGAGAATTGTTGAAAGTTGCATATTGGAAGATTAATCGGCCAAAAT
AACCATGAGCAGCTACAATATTATAAGTTT
ATATGCAACTTTCAACA
TGTTGAAAGTTGCATAT
14/12/01 01:47 pm
AMENDED SHEET 031a7.008 — II7EA598.
28-12-2001 01939797 _ — ee
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration - _—_— TT TIE, BERR. riazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT | 43
D1 Protein CTTCCAATATGCAACTTTCAACAACTCTCGTTCTTTACACTTCTTCT : Lotus japonicus TAGCTGCTTGGCCTGTTGTAGGTATCTG
Ser264Thr CAGATACCTACAACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA | 434
AGT-ACT CGAGAGTTGTTGAAAGTTGCATATTGGAAGATCAATCGGCCAAAA
TAACCGTGAGCAGCTACAATATTATAGGTTT
ATATGCAACTTTCAACA
TGTTGAAAGTTGCATAT riazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT | 43
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCT ® Sinapis alba TAGCGGCTTGGCCGGTAGTAGGTATTTG
Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA | 438
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCGTGAGCAGCTACAATGTTGTAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT ] | 440
Triazine Resistant ~~ | AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT | 441
D1 Protein CTTCCAATATGCTACTTTCAACAATTCTCGCTCTTTACATTTCTTCC
Pisum sativum TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAG | 442
AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCGTGAGCAGCTACAATATTATAGGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
®
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT
Spinacia oleracea TAGCTGCTTGGCCTGTAGTAGGTATTTG
Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA | 446
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGACCAAAA
TAACCATGAGCAGCTACGATATTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
LL OVOAMIABCATAL | 448
Triazine Resistant | AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC
Nicotiana debneyi | TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA | 450
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCGGCTACGATGTTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
1 STeBIASAIAY | 452 11112001 0147 pm
AMEN DED SHEET 03137.009 — [NY]793669.1
28-12-2001 01939797 —_—
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Triazine Resistant AAA ATAATATCGTAGCCGCTCATGGTTATTIT GATTGA 4
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC
Solanum nigrum TAGCTGCTTGGCCTGTAGTAGGTATCTG
Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA | 454
AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
TAACCATGAGCGGCTACGATATTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT
D1 Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC ® Nicotiana TAGCTGCTTGGCCTGTAGTAGGTATCTG plumbaginifolia CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA
Ser264Thr CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA
AGT-ACT TAACCATGAGCGGCTACGATGTTATAAGTTT
ATATGCTACTTTCAACA
TGTTGAAAGTAGCATAT | 460 1112/01 01:47 pm
AM EN DED Ss H EET 13137.009 — [NY]793556.1
28-12-2001 01939797
Example 6
Engineering male- or female-sterile plants
Flower development in distantly related dicot plant species is increasingly better understood : and appears to be regulated by a family of genes which encode regulatory proteins. These genes include, for example, AGAMOUS (AG), APETALA1 (AP1), and APETALA3 (AP3) and PISTILLATA (Pl) in
Arabidopsis thaliana, and DEFICIENS A (DEFA), GLOBOSA (GLO), SQUAMOSA (SQUA), and PLENA (PLE) in Antirrhinum majus. Genetic studies have shown that the DEFA, GLO and AP3 genes are essential for petal and stamen development. Sequence analysis of these genes revealed that the gene products contain a conserved MADS box region, a DNA-binding domain. Using these clones as probes, MADS box
C genes have also been isolated from other species including tomato, tobacco, petunia, Brassica napus, and maize.
Altering the expression of these genes results in altered floral morphology. For example, mutations in AP3 and PJ result in male-sterile flowers because petals develop in place of stamens.
The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer altered floral structures in plants.
Table 14
Oligonucleotides to produce male-sterile plants
Phenotype, Gene,
Plant & Targeted Altering Oligos ) Alteration
Male-sterile TTGTCCTCTCCACCAAATCTCTTCAACAAAAAGATTAAACAAAGAG | 461
AP3 AGAAGAATATGGCGTGAGGGAAGATCCAGATCAAGAGGATAGAGA
Arabidopsis thaliana |ACCAGACAAACAGACAAGTGACGTATTCAA
Arg3Term TTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTCTTGATC | 462
AGA-TGA TGGATCTTCCCTCACGCCATATTCTTCTCTCTTTGTTTAATCTTTIT
GTTGAAGAGATTTGGTGGAGAGGACAA
ATATGGCGTGAGGGAAG
CTTCCCTCACGCCATAT
: Male-sterile TCTCCACCAAATCTCTTCAACAAAAAGATTAAACAAAGAGAGAAGA | 465
AP3 ATATGGCGAGAGGGTAGATCCAGATCAAGAGGATAGAGAACCAGA
Arabidopsis thaliana |CAAACAGACAAGTGACGTATTCAAAGAGAA
Lys5Term TTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTC | 466
AAG-TAG TTGATCTGGATCTACCCTCTCGCCATATTCTTCTCTCTTTGTTTAAT
CTTTTTGTTGAAGAGATTTGGTGGAGA
CGAGAGGGTAGATCCAG
14/12001 04:47 pm
AMENDED SH EET 13137.009 — [NY]793559.1
28-12-2001 01939797 [_ CTGGATCTACCCTCICG
Male-sterile CCAAATCTCTTCAACAAAAAGATTAAACAAAGAGAGAAGAATATGG | 469 : AP3 CGAGAGGGAAGATCTAGATCAAGAGGATAGAGAACCAGACAAACA
Arabidopsis thaliana | GACAAGTGACGTATTCAAAGAGAAGGAATG
Gin7Term CATTCCTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCT | 470
CAG-TAG ATCCTCTTGATCTAGATCTTCCCTCTCGCCATATTCTTCTCTCTTTG
TTTAATCTTTTTGTTGAAGAGATTTGG
GGAAGATCTAGATCAAG
CTTGATCTAGATCTTCC
Male-sterile CTCTTCAACAAAAAGATTAAACAAAGAGAGAAGAATATGGCGAGAG| 473
AP3 GGAAGATCCAGATCTAGAGGATAGAGAACCAGACAAACAGACAAG
Arabidopsis thaliana | TGACGTATTCAAAGAGAAGGAATGGTTTAT ® Lys9Term ATAAACCATTCCTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGG | 474
AAG-TAG TTCTCTATCCTCTAGATCTGGATCTTCCCTCTCGCCATATTCTTCTC
TCTTTGTTTAATCTTTTTGTTGAAGAG
TCCAGATCTAGAGGATA
TATCCTCTAGATCTGGA
Malesternie |AGAGGGAAGATCCAGAICAAGAGGATAGAGAACCAGACCAACCG | 477
AP3 ACAAGTGACGTATTCTTAGAGAAGAAATGGTTTGTTCAAGAAAGCT
Brassica oleracea CACGAGCTTACAGTTTTATGTGATGCTAGGG
Lys23Term CCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAACAA | 478
AAG-TAG ACCATTTCTTCTCTAAGAATACGTCACTTGTCGGTTGGTCTGGTTC : TCTATCCTCTTGATCTGGATCTTCCCTCT
CGTATTCTTAGAGAAGA
TCTTCTCTAAGAATACG
® AP3 GTGACGTATTCTAAGTGAAGAAATGGTTTGTTCAAGAAAGCTCACG
Brassica oleracea AGCTTACAGTTTTATGTGATGCTAGGGTTT
Arg24Term AAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAA | 482
AGA-TGA CAAACCATTTCTTCACTTAGAATACGTCACTTGTCGGTTGGTCTGG
TTCTCTATCCTCTTGATCTGGATCTTCCC
ATTCTAAGTIGAAGAAAT
ATTTCTTCACTTAGAAT
Male-sterile AAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAAGTG | 485
AP3 ACGTATTCTAAGAGATGAAATGGTTTGTTCAAGAAAGCTCACGAGC
Brassica oleracea TTACAGTTTTATGTGATGCTAGGGTTTCGA
Arg25Term TCGAAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTT | 486
AGA-TGA GAACAAACCATTTCATCTCTTAGAATACGTCACTTGTCGGTTGGTC : TGGTTCTCTATCCTCTTGATCTGGATCTT
CTAAGAGATGAAATGGT
ACCATTTCATCTCTTAG
1112/01 01:47 pm
AMENDED SHEET 03137.009 — [NY[73559.1
28-12-2001 01939797
Male-sterile TCAAGAGGATAGAGAACCAGACCAACCGACAAGTGACGTATTCTA | 489
AP3 AGAGAAGAAATGGTTAGTTCAAGAAAGCTCACGAGCTTACAGTTTT } Brassica oleracea ATGTGATGCTAGGGTTTCGATTATCATGTT
Leu28Term AACATGATAATCGAAACCCTAGCATCACATAAAACTGTAAGCTCGT
TTG-TAG GAGCTTTCTTGAACTAACCATTTCTTCTCTTAGAATACGTCACTTGT
CGGTTGGTCTGGTTCTCTATCCTCTTGA
AAATGGTTAGTTCAAGA
TCTTGAACTAACCATTT
\/ ale-sterile A AA A A A AA A ATA A AA AAA AA A AQ
AP3 CAGGCAGGTCACCTAGTCCAAGAGAAGAAATGGTTTGTTCAAGAA Bo
Brassica napus AGCACACGAGCTCTCTGTTCTCTGTGATGCT
Tyr21Term AGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAAACC | 494 é TAC-TAG ATTTCTTCTCTTGGACTAGGTGACCTGCCTGTTTGTTTGGTTCTCTA
TCCTCTTAATCTGGATCTTCCCTCGAGCC
GTCACCTAGTCCAAGAG
CTCTTGGACTAGGTGAC | 496
Male-sterile CGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGG | 497
AP3 CAGGTCACCTACTCCTAGAGAAGAAATGGTTTGTTCAAGAAAGCAC
Brassica napus ACGAGCTCTCTGTTCTCTGTGATGCTAAAG
Lys23Term CTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAA | 498
AAG-TAG ACCATTTCTTCTCTAGGAGTAGGTGACCTGCCTGTTTGTTTGGTTC
TCTATCCTCTTAATCTGGATCTTCCCTCG
CCTACTCCTAGAGAAGA | 499
TCTTCTCTAGGAGTAGG
Male-sterile GGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGGCAG
AP3 GTCACCTACTCCAAGIGAAGAAATGGTTTGTTCAAGAAAGCACACG
Brassica napus AGCTCTCTGTTCTCTGTGATGCTAAAGTTT @ Arg24Term AAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAA | 502
AGA-TGA CAAACCATTTCTTCACTTGGAGTAGGTGACCTGCCTGTTTGTTTGG
TTCTCTATCCTCTTAATCTGGATCTTCCC
ACTCCAAGTGAAGAAAT
ATTTCTTCACTTGGAGT | 504
Male-sterile AAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGGCAGGTC
AP3 ACCTACTCCAAGAGATGAAATGGTTTGTTCAAGAAAGCACACGAG
Brassica napus CTCTCTGTTCTCTGTGATGCTAAAGTTTCCA
Arg25Term TGGAAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTT © 25 AGA-TGA GAACAAACCATTTCATCTCTTGGAGTAGGTGACCTGCCTGTTTGTT
TGGTTCTCTATCCTCTTAATCTGGATCTT
: CCAAGAGATGAAATGGT
ACCATTTCATCTCTTGG | 508 1142/01 01:47 pm
AMENDED SHEET 03137.009 — [NY)763559.1
28-12-2001 01939797
Viale-s erie A A! AAA AAA AS AR AAAA AA A A A (JU
DEFA TAGTGGTTCGATGGCTIGAGGGAAGATCCAGATTAAGAGGATAGA
Antirrhinum majus GAACCAAACAAACAGGCAGGTCACCTACTCCA
Arg3Term TGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCTCTTAAT | 510
CGA-TGA CTGGATCTTCCCTCAAGCCATCGAACCACTACCACTACTGCTCTTG
TTTTCTTCTTCCAGCTTTCCTTTCTCTCC
CGATGGCTTGAGGGAAG
CTTCCCTCAAGCCATCG
Male-sterile AAAGGAAAGCTGGAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGT | 513
DEFA TCGATGGCTCGAGGGTAGATCCAGATTAAGAGGATAGAGAACCAA
Antirrhinum majus ACAAACAGGCAGGTCACCTACTCCAAGAGAA
Lys5Term TTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCT | 514 é AAG-TAG CTTAATCTGGATCTACCCTCGAGCCATCGAACCACTACCACTACTG
CTCTTGTTITCTTCTTCCAGCTTTCCTTT
CTCGAGGGTAGATCCAG
CTGGATCTACCCTCGAG
Male-sterile AAGCTGGAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGTTCGATG | 517
DEFA GCTCGAGGGAAGATCTAGATTAAGAGGATAGAGAACCAAACAAAC
Antirrhinum majus AGGCAGGTCACCTACTCCAAGAGAAGAAATG
Gln7Term CATTTCTTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTC | 518
CAG-TAG TATCCTCTTAATCTAGATCTTCCCTCGAGCCATCGAACCACTACCA
CTACTGCTCTTGTTTTCTTCTTCCAGCTT
GGAAGATCTAGATTAAG [519
CTTAATCTAGATCTTCC
Male-sterile GAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGTTCGATGGCTCGA | 521
DEFA GGGAAGATCCAGATTTAGAGGATAGAGAACCAAACAAACAGGCAG
Antirrhinum majus GTCACCTACTCCAAGAGAAGAAATGGTTTGT o Lys9Term ACAAACCATTTCTTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTIG | 522
AAG-TAG GTTCTCTATCCTCTAAATCTGGATCTTCCCTCGAGCCATCGAACCA
CTACCACTACTGCTCTTGTTTTICTTCTTC
TCCAGATTTAGAGGATA
TATCCTCTAAATCTGGA
AP3 TATGGCTCGTGGGTAGATCCAGATCAAGAGAATAGAGAACCAAAC BH
Nicotiana tabacum AAACAGACAAGTCACTTATTCTAAGAGAA
Lys5Term TTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCTATICTC | 526 © 25 AAG-TAG TTGATCTGGATCTACCCACGAGCCATAGTTTTTTTTTCTTTTTGCTC
AAAGTTTGAGATCTTAAGAATTACTGA
CTCGTGGGTAGATCCAG
CTGGATCTACCCACGAG
1412/01 01:47 pm
AMENDED SHEET 03137.009 — [NY1790559.
28-12-2001 01939797
Male-sterile ATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGC| 529
AP3 TCGTGGGAAGATCTAGATCAAGAGAATAGAGAACCAAACAAACAG
Nicotiana tabacum ACAAGTCACTTATTCTAAGAGAAGAAATG
GIn7Term CATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCT | 530
CAG-TAG ATTCTCTTGATCTAGATCTTCCCACGAGCCATAGTTTTTTTTTCTTT
TTGCTCAAAGTTTGAGATCTTAAGAAT
GGAAGATCTAGATCAAG
CTTGATCTAGATCTTCC
Male-sterile AAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGCTCGTG | 533
AP3 GGAAGATCCAGATCTAGAGAATAGAGAACCAAACAAACAGACAAG
Nicotiana tabacum TCACTTATTCTAAGAGAAGAAATGGACTTT
Lys9Term AAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGG | 534
AAG-TAG TTCTCTATTCTCTAGATCTGGATCTTCCCACGAGCCATAGTTTTTTT ® TTCTTTTTGCTCAAAGTTTGAGATCTT
TATTCTCTAGATCTGGA
Male-sterie ~~ |ATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGCTCGTGGGA | 537
AP3 AGATCCAGATCAAGTGAATAGAGAACCAAACAAACAGACAAGTCA
Nicotiana tabacum CTTATTCTAAGAGAAGAAATGGACTTTTCA
Arg10Tem TGAAAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTT | 538
AGA-TGA TGGTTCTCTATTCACTTGATCTGGATCTTCCCACGAGCCATAGTTT
TTTTTTCTTTTTGCTCAAAGTTTGAGAT :
AGATCAAGTGAATAGAG
CTCTATTCACTTGATCT | 540
AP3 CAGACAAGTAACTTAGTCAAAACGAAGGGATGGTCTTTTCAAGAAG BB
Medicago sativa GCCAATGAGCTCACTGTTCTTTGTGATGCT
C Tyr21Term AGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGACCA| 542
TAC-TAG TCCCTTCGTTTTGACTAAGTTACTTGTCTGTTCGTTGTGTTCTCTAT
TCTCTTGATCTGGATCTTTCCTCGAGCC
GTAACTTAGTCAAAACG
CGTTTTGACTAAGTTAC
Male-sterile CTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACA | 545
AP3 GACAAGTAACTTACTGAAAACGAAGGGATGGTCTTTTCAAGAAGG
Medicago sativa CCAATGAGCTCACTGTTCTTTGTGATGCTAA
Ser22Term TTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGAC | 546
TCA-TGA CATCCCTTCGTTTTCAGTAAGTTACTTGTCTGTTCGTTGTGTTICTCT
ATTCTCTTGATCTGGATCTTTCCTCGAG
AACTTACTGAAAACGAA
TTCGTTTTCAGTAAGTT
11201 01:47 pm
AMENDED SHEET 13137.009 — (NY]783559.1
28-12-2001 01939797
Male-sterile CGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGA | 549
AP3 CAAGTAACTTACTCATAACGAAGGGATGGTCTTTTCAAGAAGGCCA ) Medicago sativa ATGAGCTCACTGTTCTTTGTGATGCTAAGG
Lys23Term CCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAG | 550
AAA-TAA ACCATCCCTTCGTTATGAGTAAGTTACTTGTCTGTTCGTTGTGTTCT : CTATTCTCTTGATCTGGATCTTTCCTCG
CTTACTCATAACGAAGG
CCTTCGTTATGAGTAAG
AP3 GTAACTTACTCAAAATGAAGGGATGGTCTTTTCAAGAAGGCCAATG
Medicago sativa AGCTCACTGTTCTTTGTGATGCTAAGGTTT
Arg24Term AAACCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAA | 554
CGA-TGA AAGACCATCCCTTCATTTTGAGTAAGTTACTTGTCTGTTCGTTGTGT ® TCTCTATTCTCTTGATCTGGATCTTTCC
ACTCAAAATGAAGGGAT
ATCCCTTCATTTTGAGT
DEF4 AGGCAAGTGACTTAGTCAAAGAGAAGAAATGGGCTATTCAAGAAG
Solanum tuberosum |GCTAATGAACTTACAGTTCTTTGTGATGCT
Tyr21Term AGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCCCA
TAT-TAG TTTCTTCTCTTTGACTAAGTCACTTGCCTATTTGTTTGGTTTTCTATT
TTCTTGATCTGGATCTTACCACGAGCC
GTGACTTAGTCAAAGAG
CTCTTTGACTAAGTCAC | 560
Male-sterile CTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAG | 561 : DEF4 GCAAGTGACTTATTGAAAGAGAAGAAATGGGCTATTCAAGAAGGC
Solanum tuberosum | TAATGAACTTACAGTTCTTTGTGATGCTAA
C Ser22Term TTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCC | 562
TCA-TGA CATTTCTTCTCTTTCAATAAGTCACTTGCCTATTTGTTTGGTTTTCTA
TTTTCTTGATCTGGATCTTACCACGAG
GACTTATTGAAAGAGAA
TTCTCTTTCAATAAGTC
Male-sterile CGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGG | 565
DEF4 CAAGTGACTTATTCATAGAGAAGAAATGGGCTATTCAAGAAGGCTA
Solanum tuberosum |ATGAACTTACAGTTCTTTGTGATGCTAAAG
Lys23Term CTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAG
AAG-TAG CCCATTTCTTCTCTATGAATAAGTCACTTGCCTATTTGTTTGGTTTT
CTATTTTCTTGATCTGGATCTTACCACG
CTTATTCATAGAGAAGA
[ICTICTCTATGAATAAG | 568 14/12/01 01:47 pm
AMENDED SHEET 03137.009 — INY}7935531
28-12-2001 01939797
Male-sterile GGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGGCAA | 569
DEF4 GTGACTTATTCAAAGTGAAGAAATGGGCTATTCAAGAAGGCTAATG
Solanum tuberosum [AACTTACAGTTCTTTGTGATGCTAAAGTTT
Arg24Term AAACTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAAT | 570
AGA-TGA AGCCCATTTCTTCACTTTGAATAAGTCACTTGCCTATTTGTTTGGTT : TTCTATTTTCTTGATCTGGATCTTACC
ATTCAAAGTGAAGAAAT
ATTTCTTCACTTTGAAT
[Male-sfenle AATGAZ A A AAA AA i
AP3 GATTTCTAGTACTTGAAAACTTCATGAGTTTATAAGTCCCTCTATCA
Lycopersicon CGACCAAACAATTGTTCGATCTGTACC esculentum GGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTATAAA | 574 é Gly27Term CTCATGAAGTTTTCAAGTACTAGAAATCATAACAATTGAAACTTTAG
GGA-TGA CATCACAAAGAACAGTAAGTTCATTAGC
CTAGTACTTIGAAAACTT
AAGTTTTCAAGTACTAG
Male-sterile AATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGAT | 577
AP3 TTCTAGTACTGGATAACTTCATGAGTTTATAAGTCCCTCTATCACGA
Lycopersicon CCAAACAATTGTTCGATCTGTACCAGA esculentum TCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTAT | 578
Lys28Term AAACTCATGAAGTTATCCAGTACTAGAAATCATAACAATTGAAACTT
AAA-TAA TAGCATCACAAAGAACAGTAAGTTCATT
GTACTGGATAACTTCAT
ATGAAGTTATCCAGTAC 580
Male-sterile ACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGATTTCTAGTAC | 581
AP3 TGGAAAACTTCATTAGTTTATAAGTCCCTCTATCACGACCAAACAAT
Lycopersicon TGTTCGATCTGTACCAGAAGACTATTG ( esculentum CAATAGTCTTCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGA | 582
Glu31Term GGGACTTATAAACTAATGAAGTTTTCCAGTACTAGAAATCATAACA
GAG-TAG ATTGAAACTTTAGCATCACAAAGAACAGT
AACTTCATTAGTTTATA
TATAAACTAATGAAGTT | 584
Male-sterile ATTGTTATGATTTCTAGTACTGGAAAACTTCATGAGTTTATAAGTCC | 585
AP3 CTCTATCACGACCTAACAATTGTTCGATCTGTACCAGAAGACTATT
Lycopersicon GGAGTTGATATTTGGACTACTCACTATG esculentum CATAGTGAGTAGTCCAAATATCAACTCCAATAGTCTTCTGGTACAG
Lys40Term ATCGAACAATTGTTAGGTCGTGATAGAGGGACTTATAAACTCATGA
AAA-TAA AGTTTTCCAGTACTAGAAATCATAACAAT
TCACGACCTAACAATTG
CAATTGTTAGGTCGTGA
1112/01 01:47 pm
AMENDED SHEET 03137.009 — [NY]793559.1
28-12-2001 | 01939797 1 ale-sterile AAGA A ) AAA R AGAA A A oe
AP3 ACAGGCAGGTGACCTAGTCCAAGCGCCGGTCGGGGATCATGAAG
Triticum aestivum AAGGCGCGGGAGCTCACCGTGCTCTGCGACGCC : Tyr21Term GGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATGATCC
TAC-TAG CCGACCGGCGCTTGGACTAGGTCACCTGCCTGTTGGTGGCGTTCT
CGATCCGCTTTATCTCAATCTTCCCCCGCCCC
GTGACCTAGTCCAAGCG
CGCTTGGACTAGGTCAC
Male-sterile CGGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCAACAG | 593
AP3 GCAGGTGACCTACTCCTAGCGCCGGTCGGGGATCATGAAGAAGG
Triticum aestivum CGCGGGAGCTCACCGTGCTCTGCGACGCCCAGG
Lys23Term CCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATG | 594
AAG-TAG ATCCCCGACCGGCGCTAGGAGTAGGTCACCTGCCTGTTGGTGGC ® GTTCTCGATCCGCTTTATCTCAATCTTCCCCCG
CCTACTCCTAGCGCCGG
CCGGCGCTAGGAGTAGG | 596
Male-sterile TTGAGATAAAGCGGATCGAGAACGCCACCAACAGGCAGGTGACCT | 597
AP3 ACTCCAAGCGCCGGTAGGGGATCATGAAGAAGGCGCGGGAGCTC
Triticum aestivum ACCGTGCTCTGCGACGCCCAGGTCGCCATCAT
Ser26Term ATGATGGCGACCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGC
TCG-TAG CTTCTTCATGATCCCCTACCGGCGCTTGGAGTAGGTCACCTGCCT
GTTGGTGGCGTTCTCGATCCGCTTTATCTCAA
GCGCCGGTAGGGGATCA
: TGATCCCCTACCGGCGC | 600
Male-sterile CGGATCGAGAACGCCACCAACAGGCAGGTGACCTACTCCAAGCG | 601
AP3 CCGGTCGGGGATCATGTAGAAGGCGCGGGAGCTCACCGTGCTCT
Triticum aestivum GCGACGCCCAGGTCGCCATCATCATGTTCTCCT @® Lys30Term AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG | 602
AAG-TAG AGCTCCCGCGCCTTCTACATGATCCCCGACCGGCGCTTGGAGTAG
GTCACCTGCCTGTTGGTGGCGTTCTCGATCCG
GGATCATGTAGAAGGCG
CGCCTTCTACATGATCC
Viale-sterile AAGA AGA AR A AGAA A s ol
Sitky1 ACCGCCAGGTGACCTAGTCCAAGCGCCGGACGGGGATCATGAAG
Zea mays AAGGCACGCGAGCTCACCGTGCTCTGCGACGCC
Tyr21Term GGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATGATCCC © 25 TAC-TAG CGTCCGGCGCTTGGACTAGGTCACCTGGCGGTTGGTGGCGTTCT
CGATCCGCTTGATCTCGATCTTGCCGCGCCCC
GTGACCTAGTCCAAGCG
CGCTTGGACTAGGTCAC
11/12/01 01:47 pm
AMENDED SHEET 03137.009 — [NY]793559.1
28-12-2001 01939797
Male-sterile CGCGGCAAGATCGAGATCAAGCGGATCGAGAACGCCACCAACCG
Sitky1 CCAGGTGACCTACTCCTAGCGCCGGACGGGGATCATGAAGAAGG
Zea mays CACGCGAGCTCACCGTGCTCTGCGACGCCCAGG
Lys23Term CCTGGGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATG | 610
AAG-TAG ATCCCCGTCCGGCGCTAGGAGTAGGTCACCTGGCGGTTGGTGGC
GTTCTCGATCCGCTTGATCTCGATCTTGCCGCG
CCTACTCCTAGCGCCGG
CCGGCGCTAGGAGTAGG
Male-sterile CGGATCGAGAACGCCACCAACCGCCAGGTGACCTACTCCAAGCG | 613
Silky1 CCGGACGGGGATCATGTAGAAGGCACGCGAGCTCACCGTGCTCT
Zea mays GCGACGCCCAGGTCGCCATCATCATGTTCTCCT
Lys30Term AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG | 614
AAG-TAG AGCTCGCGTGCCTTCTACATGATCCCCGTCCGGCGCTTGGAGTAG ® GTCACCTGGCGGTTGGTGGCGTTCTCGATCCG
GGATCATGTAGAAGGCA
TGCCTTCTACATGATCC
Male-sterile ATCGAGAACGCCACCAACCGCCAGGTGACCTACTCCAAGCGCCG | 617
Silky GACGGGGATCATGAAGTAGGCACGCGAGCTCACCGTGCTCTGCG
Zea mays ACGCCCAGGTCGCCATCATCATGTTCTCCTCCA
Lys31Term TGGAGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACG | 618
AAG-TAG GTGAGCTCGCGTGCCTACTTCATGATCCCCGTCCGGCGCTTGGAG
TAGGTCACCTGGCGGTTGGTGGCGTTCTCGAT
TCATGAAGTAGGCACGC
GCGTGCCTACTTCATGA
Vale-stenle 4 A AGAGAGATA A :
AP3 GGCCATGGGGAGGGGCTAGATCGAGATCAAGCGGATCGAGAACG
Oryza sativa CGACCAACAGGCAGGTGACCTACTCGAAGCGCC
C Lys5Term GGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCGCGTTCTCGATCC | 622
AAG-TAG GCTTGATCTCGATCTAGCCCCTCCCCATGGCCGCCCCCTGCAGCA
GCTATCTCTCTCGCCGGACAATGCAGCTAGC
GGAGGGGCTAGATCGAG
CTCGATCTAGCCCCTCC
AP3 GGGGAGGGGCAAGATCTAGATCAAGCGGATCGAGAACGCGACCA
Oryza sativa ACAGGCAGGTGACCTACTCGAAGCGCCGCACGG
Glu7 Term CCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCGCGTTCT | 626
GAG-TAG CGATCCGCTTGATCTAGATCTTGCCCCTCCCCATGGCCGCCCCCT
GCAGCAGCTATCTCTCTCGCCGGACAATGCA
: GCAAGATCTAGATCAAG
CTTGATCTAGATCTTGC
111201 01:47 pm
AMENDED SHEET 03137.009 — [NY]793559.1
28-12-2001 01939797
Male-sterile GTCCGGCGAGAGAGATAGCTGCTGCAGGGGGCGGCCATGGGGA | 629
AP3 GGGGCAAGATCGAGATCTAGCGGATCGAGAACGCGACCAACAGG
Oryza sativa CAGGTGACCTACTCGAAGCGCCGCACGGGGATCA
Lys9Term TGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCG| 630
AAG-TAG CGTTCTCGATCCGCTAGATCTCGATCTTGCCCCTCCCCATGGCCG : CCCCCTGCAGCAGCTATCTCTCTCGCCGGAC
TCGAGATCTAGCGGATC
GATCCGCTAGATCTCGA
GAGAGATAGCTGCTGCAGGGGGCGGCCATGGGGAGGGGCAAGA | 633
AP3 TCGAGATCAAGCGGATCTAGAACGCGACCAACAGGCAGGTGACCT
Oryza sativa ACTCGAAGCGCCGCACGGGGATCATGAAGAAGG
Giu12Term CCTTCTTCATGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCC | 634
GAG-TAG TGTTGGTCGCGTTCTAGATCCGCTTGATCTCGATCTTGCCCCTCCC ® CATGGCCBCCCCCTGCAGCAGCTATCTCTC
AGCGGATCTAGAACGCG
CGCGTTCTAGATCCGCT
Table 15
Oligonucleotides to produce male-sterile plants
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Male-sterile TCTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCA | 637
AG GCAATCACGGCGTAGCAATCGGAGCTAGGAGGAGATTCCTCTCC
® Arabidopsis thaliana | CTTGAGGAAATCTGGGAGAGGAAAGATCGAA
Tyr35Term TTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCCT | 638
TAC-TAG CCTAGCTCCGATTGCTACGCCGTGATTGCTGCTCCAAAGCCAAAA
ACGTTTAGGGCAAAATTTGATTAGTACAGA
ACGGCGTAGCAATCGGA
TCCGATTGCTACGCCGT
AG CAATCACGGCGTACTAATCGGAGCTAGGAGGAGATTCCTCTCCCT
Arabidopsis thaliana | TGAGGAAATCTGGGAGAGGAAAGATCGAAA
GIn36Term TTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCC | 642
CAA-TAA TCCTAGCTCCGATTAGTACGCCGTGATTGCTGCTCCAAAGCCAAA
AACGTTTAGGGCAAAATTTGATTAGTACAG
CGGCGTACTAATCGGAG
CTCCGATTAGTACGCCG
111201 01:47 pm
AMENDED SHEET 03137009 — [NY}783550.1
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
Male-sterile ACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAAT
AG CACGGCGTACCAATAGGAGCTAGGAGGAGATTCCTCTCCCTTGA
Arabidopsis thaliana | GGAAATCTGGGAGAGGAAAGATCGAAATCAA
Ser37Term TTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAAT
TCG-TAG CTCCTCCTAGCTCCTIATTGGTACGCCGTGATTGCTGCTCCAAAGC
CAAAAACGTTTAGGGCAAAATTTGATTAGT
GTACCAATAGGAGCTAG
CTAGCTCCTATTGGTAC
Male-sterie | IAATCAAATTITGCCCTAAACGTTTTTGGCTTTGGAGCAGCAATCA
AG CGGCGTACCAATCGTAGCTAGGAGGAGATTCCTCTCCCTTGAGGA
® Arabidopsis thaliana | AATCTGGGAGAGGAAAGATCGAAATCAAAC
Glu38Term GTTTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGA
GAG-TAG ATCTCCTCCTAGCTACGATTGGTACGCCGTGATTGCTGCTCCAAA
GCCAAAAACGTTTAGGGCAAAATTTGATTA
ACCAATCGTAGCTAGGA | 651
TCCTAGCTACGATTGGT
Viale-sterile CTCTCCCACTICTTTTCGGIGGTTTATTCATTTGGTGACGATATCA | 653
AG CAGAAGCAATGGATTAAGGTGGGAGTAGTCACGATGCAGAGAGT
Brassica napus AGCAAGAAGATAGGTAGAGGGAAGATAGAGA
Glu3Term TCTCTATCTTCCCTCTACCTATCTTCTTGCTACTCTCTGCATCGTGA | 654
GAA-TAA CTACTGCCACCTTAATCCATTGCTTCTGTGATATCGTCACCAAATG
AATAAACCACCGAAAAGAAGTGGGAGAG
CAATGGATIAAGGTGGG | 655
CCCACCTTAATCCATTG | 656 ® ale-sterile ATTCATTTGGTGACGATATCACAGAAGCAATGGATGAAGGTGGG | 657
AG AGTAGTCACGATGCATAGAGTAGCAAGAAGATAGGTAGAGGGAA
Brassica napus GATAGAGATAAAGAGGATAGAGAACACAACAA
Glu11Term TTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCTCTACCTATC
GAG-TAG TTCTTGCTACTCTATGCATCGTGACTACTCCCACCTTCATCCATTG
CTTCTGTGATATCGTCACCAAATGAATA
ACGATGCATAGAGTAGC
GCTACTCTATGCATCGT | 660
Male-sterile GGTGACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCA | 661
AG CGATGCAGAGAGTAGCTAGAAGATAGGTAGAGGGAAGATAGAGA
Brassica napus TAAAGAGGATAGAGAACACAACAAATCGTCAAG
Lys14Term CTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCT | 662
AAG-TAG CTACCTATCTTCTAGCTACTCTCTGCATCGTGACTACTCCCACCTT
CATCCATTGCTTCTGTGATATCGTCACC
AGAGTAGCTAGAAGATA
TATCTTCTAGCTACTCT
1412/01 01:47 pm
AMENDED SHEET 03137.003 — [NY}793559.1
28-12-2001 01939797
Phenotype, Gene, . Plant & Targeted Altering Oligos
Alteration
Male-sterile ACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCACGA | 665
AG TGCAGAGAGTAGCAAGTAGATAGGTAGAGGGAAGATAGAGATAAA
Brassica napus GAGGATAGAGAACACAACAAATCGTCAAGTAA
Lys15Term TTACTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTC
AAG-TAG CCTCTACCTATCTACTTGCTACTCTCTGCATCGTGACTACTCCCAC
CTTCATCCATTGCTTCTGTGATATCGTC
GTAGCAAGTAGATAGGT
ACCTATCTACTTGCTAC
"Male-sterile CAACCAAAAAACTTAAAAA CTCTTTCCITTICCTTACAAGGIGA| 669
AG AGTAATGGACTTCTAAAGTGATCTAACCAGAGAGATCTCACCACAA
@® Lycopersicon AGGAAACTAGGAAGGGGGAAAATTGAGA esculentum TCTCAATTTTCCCCCTTCCTAGTTTCCTTTGTGGTGAGATCTCTCT | 670
Glu4Term GGTTAGATCACTTTAGAAGTCCATTACTTCACCTTGTAAGGAAAGG
CAA-TAA AAAGAGAAGATTTTTAAGTTTTTTGGTTG
TGGACTTCTAAAGTGAT
ATCACTTTAGAAGTCCA
Male-sterile | AAAATCTTCICITTCCTITCCTTACAAGGTGAAGTAATGGACTTCC | 673
AG AAAGTGATCTAACCTGAGAGATCTCACCACAAAGGAAACTAGGAA
Lycopersicon GGGGGAAAATTGAGATCAAAAGGATCGAAA esculentum TTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTTTGT | 674
Arg9Term GGTGAGATCTCTCAGGTTAGATCACTTTGGAAGTCCATTACTTCAC
AGA-TGA CTTGTAAGGAAAGGAAAGAGAAGATTTT
ATCTAACCTGAGAGATC
GATCTCTCAGGTTAGAT
® Male-sterile ATCTTCTCTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCCAAA | 677
AG GTGATCTAACCAGATAGATCTCACCACAAAGGAAACTAGGAAGGG
Lycopersicon GGAAAATTGAGATCAAAAGGATCGAAAACA esculentum TGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTT | 678
Glu10Term TGTGGTGAGATCTATCTGGTTAGATCACTTTGGAAGTCCATTACTT
GAG-TAG CACCTTGTAAGGAAAGGAAAGAGAAGAT
TAACCAGATAGATCTCA
TGAGATCTATCTGGTTA
: Male-sterile CTITCGTTTCCTTACAAGGTGAAGTAATGGACTTCCAAAGTGATGT
AG AACCAGAGAGATCTGACCACAAAGGAAACTAGGAAGGGGGAAAA
Lycopersicon TTGAGATCAAAAGGATCGAAAACACGACGAA esculentum TTCGTCGTGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAG | 682
Ser12Term TTTICCTTTGTGGTCAGATCTCTCTGGTTAGATCACTTTGGAAGTCC
TCA-TGA ATTACTTCACCTTGTAAGGAAAGGAAAG
AGAGATCTGACCACAAA
11/12/01 04:47 pm
AMENDED SHEET 13137.000 ~ [NY]783658.3
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration — Tommomm |W
Male-sterile GTACTCTCTATTTTCATCTTCCAACCCTITCTTICCTTACCAGGTGA
NAG1 AAGTATGGACTTCTAAAGTGATCTAACAAGAGAGATCTCTCCACAA
Nicotiana tabacum AGGAAACTGGGAAGAGGAAAGATTGAGA
GIndTerm TCTCAATCTTTCCTCTTCCCAGTTTCCTTTGTGGAGAGATCTCTCTT| 686
CAA-TAA GTTAGATCACTTTAGAAGTCCATACTTTCACCTGGTAAGGAAAGAA
AGGGTTGGAAGATGAAAATAGAGAGTAC
TGGACTTCTAAAGTGAT
ATCACTTTAGAAGTCCA
® ale-sterile ATCITCCAACCCTTICTTICCTTACCAGGTGAAAGTATGGACTTCC | 689
NAG1 AAAGTGATCTAACATGAGAGATCTCTCCACAAAGGAAACTGGGAA
Nicotiana tabacum GAGGAAAGATTGAGATCAAACGGATCGAAA
Arg9Term TTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTTTGT
AGA-TGA GGAGAGATCTCTCATGTTAGATCACTTTGGAAGTCCATACTTTCAC
CTGGTAAGGAAAGAAAGGGTTGGAAGAT
ATCTAACATGAGAGATC
GATCTCTCATGTTAGAT ~
Male-sterile TTCCAACCCTTTCTTTCCTTACCAGGTGAAAGTATGGACTTCCAAA | 693
NAGH1 GTGATCTAACAAGATAGATCTCTCCACAAAGGAAACTGGGAAGAG
Nicotiana tabacum | GAAAGATTGAGATCAAACGGATCGAAAACA
Glu10Term TGTTTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTT | 694
GAG-TAG TGTGGAGAGATCTATCTTGTTAGATCACTTTGGAAGTCCATACTTT
CACCTGGTAAGGAAAGAAAGGGTTGGAA
TAACAAGATAGATCTCT
® AGAGATCTATCTTGTTA | 696
Male-sterile TTICCTTACCAGGTGAAAGTATGGACTTCCAAAGTGATCTAACAA
NAG1 GAGAGATCTCTCCATAAAGGAAACTGGGAAGAGGAAAGATTGAGA
Nicotiana tabacum TCAAACGGATCGAAAACACAACGAATCGTC
Gin14Term GACGATTCGTTGTGTTTTCGATCCGTTTGATCTCAATCTTITCCTCTT| 698
CAA-TAA CCCAGTTTCCTTTATGGAGAGATCTCTCTTGTTAGATCACTTTGGA
AGTCCATACTTTCACCTGGTAAGGAAAG
TCTCTCCATAAAGGAAA [699
TTTCCTTTATGGAGAGA
Male-sterile GCCTATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAAT 70
AG AGAAGATTGGGAAGGTGAAAGATCGAGATCAAGCGGATCGAAAA
Rosa hybrida CACCACCAATCGTCAAGTCACCTTCTGCAAAA
Gly22Term TTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTICGATCCGCT | 702
GGA-TGA TGATCTCGATCTTTCACCTTCCCAATCTTCTTTGGGCATCAGCGTC
CAGGACCGTGTTGGGTTTGTTTTCATAGGC
TGGGAAGGTGAAAGATC
GATCTTTCACCTTCCCA
1112001 04:47 pm
AMENDED SHEET 137.009 NYP93558-1
28-12-2001 01939797
Phenotype, Gene, N } Plant & Targeted Altering Oligos
Alteration fale-sterile TATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGA | 705
AG AGATTGGGAAGGGGATAGATCGAGATCAAGCGGATCGAAAACAC
Rosa hybrida CACCAATCGTCAAGTCACCTTCTGCAAAAGGC
Lys23Term GCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCC | 706
AAG-TAG GCTTGATCTCGATCTATCCCCTTCCCAATCTTCTTTGGGCATCAGC
GTCCAGGACCGTGTTGGGTTTGTTTTCATA
GAAGGGGATAGATCGAG
CTCGATCTATCCCCTTC
Male-sterile AACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTG | 709
AG GGAAGGGGAAAGATCTAGATCAAGCGGATCGAAAACACCACCAA
@ Rosa hybrida TCGTCAAGTCACCTTCTGCAAAAGGCGCAATG
Glu25Term CATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTT | 710
GAG-TAG CGATCCGCTTGATCTAGATCTTTCCCCTTCCCAATCTTCTTTGGGC
ATCAGCGTCCAGGACCGTGTTGGGTTTGTT
GAAAGATCTAGATCAAG
CTTGATCTAGATCTTTC
Male-sterile CCCAACACGGICCTGGACGCTGATGCCCAAAGAAGATTIGGGAAG | 713
AG GGGAAAGATCGAGATCTAGCGGATCGAAAACACCACCAATCGTCA
Rosahybrida ~~ |AGTCACCTTCTGCAAAAGGCGCAATGGTTTGC
Lys27 GCAAACCATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGG | 714
AAG-TAG TGTTTTCGATCCGCTAGATCTCGATCTTTCCCCTTCCCAATCTTCT
TTGGGCATCAGCGTCCAGGACCGTGTTGGG
TCGAGATCTAGCGGATC
GATCCGCTAGATCTCGA
® far GTCTCTAAGCGATTAATCGACCGAGGTATCGCCCGAGAGGAAAAT
Antirrhinum majus CGGGAGAGGAAAGATCGAGATCAAACGGA
Gin7Term TCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTCTCGGGCGA | 718
CAA-TAA TACCTCGGTCGATTAATCGCTTAGAGACGCCATTTCTACTTAGTCA
AAAAGAAAAAAAATAAAAACAGGCAATTG
TAAGCGATTAATCGACC
GGTCGATTAATCGCTTA ale-sterile TTTTIATITITTTICTITTTGACTAAGTAGAAATGGCGTCTCTAAG | 7 far CGATCAATCGACCTAGGTATCGCCCGAGAGGAAAATCGGGAGAG
Antirthinum majus GAAAGATCGAGATCAAACGGATCGAAAACA
Glu10Term TGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTC | 722 © 25 GAG-TAG TCGGGCGATACCTAGGTCGATTGATCGCTTAGAGACGCCATTTCT
ACTTAGTCAAAAAGAAAAAAAATAAAAAC
AATCGACCTAGGTATCG
CGATACCTAGGTCGATT
111201 01:47 pm
AMENDED SHEET 03137.009 — [NY]793559.1 e———— 28-12-2001 01939797
Phenotype, Gene, . Plant & Targeted Altering Oligos
Alteration
Male-sterile TTTCTTTTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGA | 725 far CCGAGGTATCGCCCTAGAGGAAAATCGGGAGAGGAAAGATCGAG
Antirrhinum majus ATCAAACGGATCGAAAACAAAACAAATCAAC
Glu14Term GTTGATTTGTTTTGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTC | 726
GAG-TAG CCGATTTTCCTCTAGGGCGATACCTCGGTCGATTGATCGCTTAGA
GACGCCATTTCTACTTAGTCAAAAAGAAA
TATCGCCCTAGAGGAAA
TTTCCTCTAGGGCGATA far GTATCGCCCGAGAGGTAAATCGGGAGAGGAAAGATCGAGATCAA ® Antirrhinum majus ACGGATCGAAAACAAAACAAATCAACAGGTTA
Lys16Term TAACCTGTTGATTTGTTTTGTTTTCGATCCGTTTGATCTCGATCTTT | 730
AAA-TAA CCTCTCCCGATTTACCTCTCGGGCGATACCTCGGTCGATTGATCG
CTTAGAGACGCCATTTCTACTTAGTCAAA
CCGAGAGGTAAATCGGG
CCCGATTTACCTCTCGG
Male-sterile | TGTCCAAGCATTAICAGTCACCACTCACAAGAATGATTAAGGAAGA| 733
AG AGGAAAGGGTAAGTAGCAAATAAAGGGGATGTTCCAGAATCAAGA
Cucumis sativus AGAGAAGATGTCAGACTCGCCTCAGAGGAA
Leu21Term TTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAACA | 734
TTG-TAG TCCCCTTTATTTGCTACTTACCCTTTCCTTCTTCCTTAATCATTCTT
GTGAGTGGTGACTGATAATGCTTGGACA
GGGTAAGTAGCAAATAA
TTATTTGCTACTTACCC
®
AG GGAAAGGGTAAGTTGTAAATAAAGGGGATGTTCCAGAATCAAGAA
Cucumis sativus GAGAAGATGTCAGACTCGCCTCAGAGGAAGA
Gin22Term TCTTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAA | 738
CAA-TAA CATCCCCTTTATTTACAACTTACCCTTTCCTTCTTCCTTAATCATTC
TTGTGAGTGGTGACTGATAATGCTTGGA
GTAAGTTGTAAATAAAG
CTTTATTTACAACTTAC
Male-sterile CATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAAGGAAAG | 741
AG GGTAAGTTGCAAATATAGGGGATGTTCCAGAATCAAGAAGAGAAG
Cucumis sativus ATGTCAGACTCGCCTCAGAGGAAGATGGGAA
Lys24 Term TTCCCATCTTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATT | 742 - 25 AAG-TAG CTGGAACATCCCCTATATTTGCAACTTACCCTTTCCTTCTTCCTTAA
TCATTCTTGTGAGTGGTGACTGATAATG
TGCAAATATAGGGGATG
CATCCCCTATATTTGCA
1112/01 01:47 pm
AM EN DED S H EET 3437.009 — [NY)783559.1
28-12-2001 01939797
Phenotype, Gene, } Plant & Targeted Altering Oligos
Alteration ale-sterile CCACTCACAAGAATGATTAAGGAAGAAGGAAAGGGTAAGTTGCAA | 745
AG ATAAAGGGGATGTTCTAGAATCAAGAAGAGAAGATGTCAGACTCG
Cucumis sativus CCTCAGAGGAAGATGGGAAGAGGAAAGATTG
Gln28Term CAATCTTTCCTCTTCCCATCTTCCTCTGAGGCGAGTCTGACATCTT | 746
CAG-TAG CTCTTCTTGATTCTAGAACATCCCCTTTATTTGCAACTTACCCTTTC
CTTCTTCCTTAATCATTCTTGTGAGTGG
GGATGTTCIAGAATCAA
TTGATTCTAGAACATCC
Male-sterile CCACCACCACCACCACCACCACCACCACACCATGCTCAACATGAT | 749
AG GACTGATCTGAGCTGAGGGCCGTCGTCCAAGGTCAAGGAGCAGG
® Zea mays TGGCGGCGGCGCCGACGGGCTCCGGCGACAGS
Cys10Term CCTGTCGCCGGAGCCCGTCGGCGCCGCCGCCACCTGCTCCTTGA | 750
TGC-TGA CCTTGGACGACGGCCCTCAGCTCAGATCAGTCATCATGTTGAGCA
TGGTGTGGTGGTGGTGGTGGTGGTGGTGGTIGG
CTGAGCTGAGGGCCGTC
GACGGCCCICAGCTCAG
Male-sterile ACCACCACCACCACCACCACACCATGCTCAACATGATGACTGA 753
AG TGAGCTGCGGGCCGTAGTCCAAGGTCAAGGAGCAGGTGGCGGC
Zea mays GGCGCCGACGGGCTCCGGCGACAGGCAGGGGCA
Ser13Tem TGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCGCCACCT | 754
TCG-TAG GCTCCTTGACCTTGGACTACGGCCCGCAGCTCAGATCAGTCATCA
TGTTGAGCATGGTGTGGTGGTGGTGGTGGTGGT
CGGGCCGTAGTCCAAGG
CCTTGGACTACGGCCCG
® Male-sterile CACCACCACCACCACACCATGCTCAACATGATGACTGATCTGAGC | 757
AG TGCGGGCCGTCGTCCTAGGTCAAGGAGCAGGTGGCGGCGGCGC
Zea mays CGACGGGCTCCGGCGACAGGCAGGGGCAGGGGA
Lys15Term TCCCCTGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCGE | 758
AAG-TAG CACCTGCTCCTTGACCTAGGACGACGGCCCGCAGCTCAGATCAG
TCATCATGTTGAGCATGGTGTGGTGGTGGTGGTG
CGTCGTCCTAGGTCAAG
CTTGACCTAGGACGACG
Male-sterile CACCACCACACCATGCTCAACATGATGACTGATCTGAGCTGCGGG | 76
AG CCGTCGTCCAAGGTCTAGGAGCAGGTGGCGGCGGCGCCGACGG
Zea mays GCTCCGGCGACAGGCAGGGGCAGGGGAGAGGCA
Lys17Term TGCCTCTCCCCTGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCE | 762 + 25 AAG-TAG GCCGCCACCTGCTCCTAGACCTTGGACGACGGCCCGCAGCTCAG
ATCAGTCATCATGTTGAGCATGGTGTGGTGGTG
CCAAGGTCTAGGAGCAG
CTGCTCCTAGACCTTGG
1112101 01:47 pm
AMENDED SHEET 137.005 — [NYI793553.1
28-12-2001 01939797
SE N_—
Phenotype, Gene, . Plant & Targeted Altering Oligos
Alteration
Malesterle | TCCTACCTITICTCCTTCAGACCTCAAAATCTGTGTGATAGGAACA | 765
AG AGAGCATGCACATCTGAGAAGAGGAGGCTACACCATCCACAGTAA
Zea mays CAGGCATCATGTCGACCCTGACTTCGGCGG
ArgdTerm CCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGATGGT | 766
CGA-TGA GTAGCCTCCTCTTCTCAGATGTGCATGCTCTTGTTCCTATCACACA
GATTTTGAGGTCTGAAGGAGAAAAGGTAGGA
TGCACATCTGAGAAGAG
CTCTTCTCAGATGTGCA
Male-sterile TACCTTT1GTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGA | 769
AG GCATGCACATCCGATAAGAGGAGGCTACACCATCCACAGTAACAG
® Zea mays GCATCATGTCGACCCTGACTTCGGCGGGGC
GlusTerm GCCCCGCCGAAGTCAGGGTCBACATGATGCCTGTTACTGTGGAT | 770
GAA-TAA GGTGTAGCCTCCTCTTATCGGATGTGCATGCTCTTGTTCCTATCAC
ACAGATTTTGAGGTCTGAAGGAGAAAAGGTA
ACATCCGATAAGAGGAG
CTCCTCTTATCGGATGT | 772
Male-sterile CTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCA | 773
AG TGCACATCCGAGAATAGGAGGCTACACCATCCACAGTAACAGGCA
Zea mays TCATGTCGACCCTGACTTCGGCGGGGCAGC
GlugTerm GCTGCCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTG | 774 16 GAG-TAG GATGGTGTAGCCTCCTATTCTCGGATGTGCATGCTCTTGTTCCTAT
CACACAGATTTTGAGGTCTGAAGGAGAAAAG
TCCGAGAATAGGAGGCT
AGCCTCCTATTCTCGGA ee ® Male-sterile CTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCATG | 777
AG CACATCCGAGAAGAGTAGGCTACACCATCCACAGTAACAGGCATC
Zea mays ATGTCGACCCTGACTTCGGCGGGGCAGCAGA
Glu7Term TCTGCTGCCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACT | 778
GAG-TAG GTGGATGGTGTAGCCTACTCTTCTCGGATGTGCATGCTCTTGTTC
CTATCACACAGATTTTGAGGTCTGAAGGAGAA
GAGAAGAGTAGGCTACA
TGTAGCCTACTCTTCTC ee
Male-sterile TGGGTCAGGATCGTCGGCGGCGGTGGCGGCGGGGAGCAGC | 78
AG GAGAAGATGGGGAGGGGGTAGATCGAGATAAAGCGGATCGAGAA
Oryza sativa CACGACGAACCGGCAGGTGACCTTCTGCAAGCGCC
Lys5Term GGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTGTTCTCGATC | 782 © 25 AAG-TAG CGCTTTATCTCGATCTACCCCCTCCCCATCTTCTCGCTGCTCCCC
GCCGCCACCGCCGCCGACGATCCTGACCCAGC
GGAGGGGGTAGATCGAG
CTCGATCTACCCECTCC | 784 |] 11/12/01 01:47 pm
AMENDED SHEET 3137.009 ~ [NY]793559.1
Eee — 28-12-2001 01939797
Phenotype, Gene, } Plant & Targeted Altering Oligos
Alteration
Male-sterile TCAGGATCGTCGGCGGCGGTGGCGGCGGGGAGCAGCGAGAAGA | 785
AG TGGGGAGGGGGAAGATCTAGATAAAGCGGATCGAGAACACGACG
Oryza sativa AACCGGCAGGTGACCTTCTGCAAGCGCCGCAATG
Glu7Term CATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTGTTCT | 786
GAG-TAG CGATCCGCTTTATCTAGATCTTCCCCCTCCCCATCTTCTCGCTGCT
CCCCGCCGCCACCGCCGCCGACGATCCTGA
GGAAGATCTAGATAAAG
____ |CTITATCTAGATCTTCC | 788
Male-sterile TCGTCGGCGGCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGG 789
AG AGGGGGAAGATCGAGATATAGCGGATCGAGAACACGACGAACCG
@® Oryza sativa GCAGGTGACCTTCTGCAAGCGCCGCAATGGCCTCC
Lys9Term GGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTC | 790
AAG-TAG GTGTTCTCGATCCGCTATATCTCGATCTTCCCCCTCCCCATCTTCT
CGCTGCTCCCCGCCGCCACCGCCGCCGACGA
TCGAGATATAGCGGATC
GATCCGCTATATCTCGA ale-sterile GCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGGAGGGGGAAG | 79
AG ATCGAGATAAAGCGGATCTAGAACACGACGAACCGGCAGGTGAC
Oryza sativa CTTCTGCAAGCGCCGCAATGGCCTCCTGAAGAAGG
Glu12Term CCTTCTTCAGGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGC 794
GAG-TAG CGGTTCGTCGTGTTCTAGATCCGCTTTATCTCGATCTTCCCCCTCC
CCATCTTCTCGCTGCTCCCCGCCGCCACCGC
AGCGGATCTAGAACACG
CGTGTTCTAGATCCGCT
Table 16
Oligonucleotides to produce male-sterile plants
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration .
PI TAGACAAGTTACATAGTCAAAGAGAAGAAATGGTATCATCAAAAAA
Cucumis sativus GCCAAAGAAATTACTGTTCTTTGCGATGCT ’ Tyr21Term AGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATACCAT | 798
TAT-TAG TTCTTCTCTTTGACTATGTAACTTGTCTATTGCTTGAGTTCTCTATTC ____ ITTTTTATITCTATTITCCCTCTTCCC 111201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, B
Plant & Targeted Altering Oligos ’ Alteration
GTTACATAGTCAAAGAG
CTCTTTGACTATGTAAC
AAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATA | 801
Pl GACAAGTTACATATTGAAAGAGAAGAAATGGTATCATCAAAAAAGC
Cucumis sativus CAAAGAAATTACTGTTCTTTGCGATGCTCA
Ser22Term TGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATAC | 802
TCA-TGA CATTTCTTCTCTTTCAATATGTAACTTGTCTATTGCTTGAGTTCTCTA
TTCTTTTTATTTCTATTTTCCCTCTTC
TACATATTGAAAGAGAA
¢ TTCTCTTTCAATATGTA
Male-sterile AGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGAC
Pi AAGTTACATATTCATAGAGAAGAAATGGTATCATCAAAAAAGCCAA
Cucumis sativus AGAAATTACTGTTCTTTGCGATGCTCAAG
Lys23Term CTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATA| 806
AAG-TAG CCATTTCTTCTCTATGAATATGTAACTTGTCTATTGCTTGAGTTCTC
TATTCTTTTTATTTCTATTTTCCCTCT
CATATTCATAGAGAAGA
TCTTCTCTATGAATATG
Male-sterile GGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGACAAG| 809
PI TTACATATTCAAAGTGAAGAAATGGTATCATCAAAAAAGCCAAAGA
Cucumis sativus AATTACTGTTCTTTGCGATGCTCAAGTTT
Arg24Term AAACTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATG| 810
AGA-TGA ATACCATTTCTTCACTTTGAATATGTAACTTGTCTATTGCTTGAGTT
CTCTATTCTTTTTATTTCTATTTTCCC
® ATTCAAAGTGAAGAAAT
ATTTCTTCACTTTGAAT
PI CAGGCAGGTGACCTAGTCCAAGAGGAGGAATGGGATTATCAAGAA
Malus domestica GGCAAAGGAGATCACTGTTCTATGTGATGCT
Tyr21Term AGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATCCCA | 814
TAC-TAG TTCCTCCTCTTGGACTAGGTCACCTGCCTGTTACTTGAGTTCTCAA
TCCTCTTGATCTCAACCTTCCCACGTCCC
GTGACCTAGTCCAAGAG
CTCTTGGACTAGGTCAC
1112/01 01:47 pm 03137.009 — [NY)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
Male-sterile CGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTCAAGTAACAGG | 817
Pl CAGGTGACCTACTCCTAGAGGAGGAATGGGATTATCAAGAAGGCA
Malus domestica AAGGAGATCACTGTTCTATGTGATGCTAAAG
Lys23Term CTTTAGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATC| 818
AAG-TAG CCATTCCTCCTCTAGGAGTAGGTCACCTGCCTGTTACTTGAGTTCT
CAATCCTCTTGATCTCAACCTTCCCACG
CCTACTCCTAGAGGAGG | 819
CCTCCTCTAGGAGTAGG
Male-sterile AGGATTGAGAACTCAAGTAACAGGCAGGTGACCTACTCCAAGAGG | 821
Pl AGGAATGGGATTATCTAGAAGGCAAAGGAGATCACTGTTCTATGT ® Malus domestica GATGCTAAAGTATCTCTTATCATTTATTCTA
Lys30Term TAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGTGAT | 822
AAG-TAG CTCCTTTGCCTTCTAGATAATCCCATTCCTCCTCTTGGAGTAGGTC
ACCTGCCTGTTACTTGAGTTCTCAATCCT
GGATTATCTAGAAGGCA
TGCCTTCTAGATAATCC
Male-sterile ATTGAGAACTCAAGTAACAGGCAGGTGACCTACTCCAAGAGGAGG | 825
PI AATGGGATTATCAAGTAGGCAAAGGAGATCACTGTTCTATGTGATG
Malus domestica CTAAAGTATCTCTTATCATTTATTCTAGCT
Lys31Term AGCTAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGT | 826
AAG-TAG GATCTCCTTTGCCTACTTGATAATCCCATTCCTCCTCTTGGAGTAG
GTCACCTGCCTGTTACTTGAGTTCTCAAT
TTATCAAGTAGGCAAAG
CTTTGCCTACTTGATAA
@® globosa AAACAAAAAAATGTGAAGAGGAAAAATTGAGATCAAAAGAATTGAG CC
Antirthinum majus AACTCAAGCAACAGGCAGGTTACTTACT
Gly2Term AGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATCTCA| 830
GGA-TGA ATTTTTCCTCTTCACATTTTTTTGTTTTTGTTITTICTCTCTTGTTTTTG
TTTGCAGATAACTATTGTAAAAATG
AAAAAATGTGAAGAGGA
TCCTCTTCACATTTIIT
AAAAACAAGAGAGAAAAACAAAAA] 833 globosa CAAAAAAATGGGATGAGGAAAAATTGAGATCAAAAGAATTGAGAAC
Antirrhinum majus TCAAGCAACAGGCAGGTTACTTACTCAA : Arg3Term TTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTITGATC | 834
AGA-TGA TCAATTTTTCCTCATCCCATTTTTITTGTTTTIGTTTTTCTCTCTTGTTT
TTGTTTGCAGATAACTATTGTAAAA
1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ; Alteration
AAATGGGATGAGGAAAA
: TTTTCCTCATCCCATTT
Male-sterile TACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAACA | 837 globosa AAAAAATGGGAAGATGAAAAATTGAGATCAAAAGAATTGAGAACTC
Antirrhinum majus AAGCAACAGGCAGGTTACTTACTCAAAGA
Gly4Term TCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTG | 838
GGA-TGA ATCTCAATTTTTCATCTTCCCATTTTTTTGTTTTTGTTTTTCTCTCTTG
TTTTTGTTTGCAGATAACTATTGTA
TGGGAAGATGAAAAATT
® AATTTTTCATCTTCCCA
Male-sterile AATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAACAAAA | 841 globosa AAATGGGAAGAGGATAAATTGAGATCAAAAGAATTGAGAACTCAAG
Antirrhinum majus CAACAGGCAGGTTACTTACTCAAAGAGAA
Lys5Term TTCTCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTT | 842
AAA-TAA TTGATCTCAATTTATCCTCTTCCCATTTTTTTGTTTTTGTTTITCTCT
CTTGTTTTTGTTTGCAGATAACTATT
GAAGAGGATAAATTGAG
CTCAATTTATCCTCTTC
Viale-steriie A : A AGAA of
PI AGTATGGGGCGCGGCTAGATCAAGATCAAGAGGATCGAGAACTCT
Zea mays ACCAACCGGCAGGTGACCTTCTCCAAGCGCC
Lys5Term GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC| 846
AAG-TAG TCTTGATCTTGATCTAGCCGCGCCCCATACTGCGTTCTCCACTCCC
AAACAGATCCAAGGGCAGCAAGAGCTCAGC
® GGCGCGGCTAGATCAAG
CTTGATCTAGCCGCGCC
Male-sterile CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG | 849
Pl GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC
Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG
Lys7Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC
AAG-TAG TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTGCGTTCTC
CACTCCCAAACAGATCCAAGGGCAGCAAGAG
GCAAGATCTAGATCAAG
CTTGATCTAGATCTTGC
1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797 -03.
Phenotype, Gene,
Plant & Targeted Altering Oligos " Alteration
Male-sterile CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG | 853
P) GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC
Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG
Lys9Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTIC | 854
AAG-TAG TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTGCGTTCTC
CACTCCCAAACAGATCCAAGGGCAGCAAGAG
GCAAGATCTAGATCAAG
CTTGATCTAGATCTTGC
Pi CAAGATCAAGAGGATCTAGAACTCTACCAACCGGCAGGTGACCTT @® Zea mays CTCCAAGCGCCGGGCCGGACTGGTCAAGAAGG
Glu12Term CCTTCTTGACCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC | 858
GAG-TAG CGGTTGGTAGAGTTCTAGATCCTCTTGATCTTGATCTTGCCGCGCC
CCATACTGCGTTCTCCACTCCCAAACAGATC
AGAGGATCTAGAACTCT | 859
AGAGTTCTAGATCCTCT
Viale-sterile GA AA ; A AGAL 55
PI AGTATGGGGCGCGGCTAGATCGAGATCAAGAGGATCGAGAACTCT
Zea mays ACCAACCGGCAGGTGACCTTCTCCAAGCGCC
Lys5Term GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC| 862
AAG-TAG TCTTGATCTCGATCTAGCCGCGCCCCATACTCCGTTCTCCACTCCC
TAACAGATTCAAGGGCAGCAAGAGCTCAGC
GGCGCGGCTAGATCGAG
CTCGATCTAGCCGCGCC
® Male-sterile CTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATG
Pl GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC
Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG
Glu7Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC | 866
GAG-TAG TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTCCGTTCTC
CACTCCCTAACAGATTCAAGGGCAGCAAGAG
GCAAGATCTAGATCAAG
CTTGATCTAGATCTTGC
Male-sterile CTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCG | 869 g Pl CGGCAAGATCGAGATCTAGAGGATCGAGAACTCTACCAACCGGCA
Zea mays GGTGACCTTCTCCAAGCGCCGGGCCGGACTGG
Lys9Term CCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTA | 670
AAG-TAG GAGTTCTCGATCCTCTAGATCTCGATCTTGCCGCGCCCCATACTC
CGTTCTCCACTCCCTAACAGATTCAAGGGCAG
11/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, }
Plant & Targeted Altering Oligos . Alteration
TCGAGATCTAGAGGATC
: GATCCTCTAGATCTCGA
Male-sterile AATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCGCGGCAAGAT | 873
Pl CGAGATCAAGAGGATCTAGAACTCTACCAACCGGCAGGTGACCTT
Zea mays CTCCAAGCGCCGGGCCGGACTGGTCAAGAAGG
Glui2Term CCTTCTTGACCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC | 874
GAG-TAG CGGTTGGTAGAGTTCTAGATCCTCTTGATCTCGATCTTGCCGCGC
CCCATACTCCGTTCTCCACTCCCTAACAGATT
AGAGGATCTAGAACTCT
® AGAGTTCTAGATCCTCT 'Male-s er 2) AA A A AA /\ /\ /\ A A A 3
Pi CGGGATGGCGCGCGGGTAGATCGAGATCAAGAGGATCGAGAACT
Oryza sativa CCACCAACCGCCAGGTGACCTTCTCCAAGCGCA
Lys5Term TGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCTCGATCC| 878
AAG-TAG TCTTGATCTCGATCTACCCGCGCCCCATCCCGCCTCCTCCTCCTC
CTCCTCCTTCCTCCAGCTAGCTTAGCAGCAA
GGCGCGGGTAGATCGAG
CTCGATCTACCCGCGCC
Male-sterile CTAAGCTAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGCGGGA | 881
PI TGGGGCGCCGGAAGATCTAGATCAAGAGGATCGAGAACTCCACC
Oryza sativa AACCGCCAGGTGACCTTCTCCAAGCGCAGGAGCG
Glu7Term CGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCT| 882
GAG-TAG CGATCCTCTTGATCTAGATCTTCCCGCGCCCCATCCCGCCTCCTC
CTCCTCCTCCTCCTTCCTCCAGCTAGCTTAG
® GGAAGATCTAGATCAAG
CTTGATCTAGATCTTCC
Male-sterile TAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGCGGGATGGGGC | 885
PI GCGGGAAGATCGAGATCTAGAGGATCGAGAACTCCACCAACCGC
Oryza sativa CAGGTGACCTTCTCCAAGCGCAGGAGCGGGATCC
Lys9Term GGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTG | 886
AAG-TAG GAGTTCTCGATCCTCTAGATCTCGATCTTCCCGCGCCCCATCCCG
CCTCCTCCTCCTCCTCCTCCTTCCTCCAGCTA
TCGAGATCTAGAGGATC
GATCCTCTAGATCTCGA
11/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, :
Plant & Targeted Altering Oligos .
Male-sterile GAAGGAGGAGGAGGAGGAGGAGGCGGGATGGGGCGCGGGAAG | 889 . PI ATCGAGATCAAGAGGATCTAGAACTCCACCAACCGCCAGGTGACC
Oryza sativa TTCTCCAAGCGCAGGAGCGGGATCCTCAAGAAGG
Glut2Term CCTTCTTGAGGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGC | 890
GAG-TAG GGTTGGTGGAGTTCTAGATCCTCTTGATCTCGATCTTCCCGCGCC
CCATCCCGCCTCCTCCTCCTCCTCCTCCTTC
AGAGGATCTAGAACTCC
GGAGTTCTAGATCCTCT
14/42/01 01:47 pm 03137.000 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Example 7
Engineering plants for abiotic stress tolerance
Environmental stresses, such as drought, increased soil salinity, soil contamination with heavy metals, and extreme temperature, are major factors limiting plant growth and productivity. The worldwide loss in yield of three major cereal crops, rice, maize, and wheat due to water stress (drought) has been estimated to be over ten billion dollars annually and many currently marginal soils could be brought into cultivation if suitable plant varieties were available.
Physiological and biochemical responses to high levels of ionic or nonionic solutes and ® decreased water potential have been studied in a variety of plants. It is known, for example, that increasing levels of alcohol dehydrogenase can confer enhances flooding resistance in plants. There are also several possible mechanisms to enhance plant salt tolerance. For example, one mechanism underlying the adaptation or tolerance of plants to osmotic stresses is the accumulation of compatible, low molecular weight osmolytes such as sugar alcohols, special amino acids, and glycinebetaine. Such accumulation can be engineered, for example, by removing feedback inhibition on 1-pyrroline-t-carboxylate synthetase, which 16 results in accumulation of proline. Additionally, recent experiments suggest that altering the expression or activity of specific sodium or potassium transporters can confer enhanced salt tolerance.
Plant tolerance of contamination by heavy metals such as lead and aluminum in soils has also been investigated and one mechanism underlying tolerance is the production of dicarboxylic acids such as oxalate and citrate. In addition, individual genes involved in heavy metal sensitivity have been identified. ® The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer stress tolerance in plants.
OL LC MRL Sik
AMENDED SHEET
28-12-2001 01939797
Table 17
J Genome-Altering Oligos Conferring Stress Tolerance
In Phenotype, Gene, . Plant & Targeted Altering Oligos
Salt Tolerance CGTCTTTTTGTGTGGTAGTTGGATGTGACGGTTGCTCAAATGCTT | 893
P5CS GTGACCGATAGCAGTGCTAGAGATAAGGATTTCAGGAAGCAACTT
Arabidopsis thaliana | AGTGAAACTGTCAAAGCGATGCTGAGGATGA
Phe128Ala TCATCCTCAGCATCGCTTTGACAGTTTCACTAAGTTGCTTCCTGAA | 894
TTT-GCT ATCCTTATCTCTAGCACTGCTATCGGTCACAAGCATTTGAGCAACC
GTCACATCCAACTACCACACAAAAAGACG
ATAGCAGTGCTAGAGAT
® ATCTCTAGCACTGCTAT
Salt Tolerance GAGACTATGTTTGACCAGCTGGATGTGA GCTCAGCTGCIG| 897
P5CS 1 GTGAATGACAGTAGTGCCAGAGACAAGGAGTTCAGGAAGCAACTT
Brassica napus AATGAGACAGTGAAGTCCATGCTTGATTTGA
Phe128Ala TCAAATCAAGCATGGACTTCACTGTCTCATTAAGTTGCTTCCTGAA | 898
TTC-GCC CTCCTTGTCTCTGGCACTACTGTCATTCACCAGCAGCTGAGCAGC
CGTCACATCCAGCTGGTCAAACATAGTCTC
ACAGTAGTGCCAGAGAC
GTCTCTGGCACTACTGT 900
Salt Tolerance GAGACTATGTTTGACCAGATGGATGTGACGGTGGCTCAAATGCTG
P5CS 2 GTGACTGATAGCAGTGTCAGAGATAAGGATTTCAGGAAGCAACTT
Brassica napus AGTGAGACAGTCAAAGCTATGCTGAAAATGA
Phe129Ala TCATTTTCAGCATAGCTTTGACTGTCTCACTAAGTTGCTTCCTGAA | 902
TTC-GCC ATCCTTATCTCTGACACTGCTATCAGTCACCAGCATTTGAGCCACC
PS GTCACATCCATCTGGTCAAACATAGTCTC
ATAGCAGTGTCAGAGAT
ATCTCTGACACTGCTAT | 904
Salt Tolerance GATATGTTGTTTAACCAACTGGATGTCTCGTCATCTCAACTTCTTG | 905
P5CS TCACCGACAGTGATGCTGAGAACCCAAAGTTCCGGGAGCAACTCA
Oryza sativa CTGAAACTGTTGAGTCATTATTAGATCTTA
Phe128Ala TAAGATCTAATAATGACTCAACAGTTTCAGTGAGTTGCTCCCGGAA
TTT-GCT CTTTGGGTTCTCAGCATCACTGTCGGTGACAAGAAGTTGAGATGA ; CGAGACATCCAGTTGGTTAAACAACATATC a ACAGTGATGCTGAGAAC
GTTCTCAGCATCACTGT
11/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos © Alteration
Salt Tolerance GATATTTTGTTTAGTCAGCTGGATGTGACATCTGCTCAGCTTCTTG
P5CS TTACTGACAATGATGCTAGAGACCAAGATTTTAGAAAGCAACTTTC
Medicago sativa TGAAACTGTGAGATCACTTCTAGCACTAA
Phe128Ala TTAGTGCTAGAAGTGATCTCACAGTTTCAGAAAGTTGCTTTCTAAA | 910
TTT-GCT ATCTTGGTCTCTAGCATCATTGTCAGTAACAAGAAGCTGAGCAGAT
GTCACATCCAGCTGACTAAACAAAATATC
ACAATGATGCTAGAGAC
GTCTCTAGCATCATTGT
Salt Tolerance GATACATTGTTTAGTCAGCTGGATGTGACATCAGCTCAGCTACTC | 913
P5CS GTTACTGATAATGATGCTAGGGATCCAGAATTCAGGAAGCAACTT ® Actinidia deliciosa ACTGAAACTGTAGAATCACTATTGAATTTGA
Phe128Ala TCAAATTCAATAGTGATTCTACAGTTTCAGTAAGTTGCTTCCTGAAT | 914
TTT-GCT TCTGGATCCCTAGCATCATTATCAGTAACGAGTAGCTGAGCTGAT
GTCACATCCAGCTGACTAAACAATGTATC
ATAATGATGCTAGGGAT
ATCCCTAGCATCATTAT ]
Salt Tolerance GACACACTCTTCAGTCAACTGGATGTGACATCAGCACAGCTTCTT | 917
P5CS GTAACAGATAATGACGCCAGAAGTCCAGAATTTAGAAAACAACTTA
Cichorium intybus CTGAAACAGTCGATTCTTTATTATCTTATA
Phe122Ala TATAAGATAATAAAGAATCGACTGTTTCAGTAAGTTGTTTTCTAAAT | 918
TTC-GCC TCTGGACTTCTGGCGTCATTATCTGTTACAAGAAGCTGTGCTGAT
GTCACATCCAGTTGACTGAAGAGTGTGTC
ATAATGACGCCAGAAGT 919
ACTTCTGGCGTCATTAT
® Salt Tolerance GATTCTITGITCAGTCAGTTGGATGTGACATCAGCTCAGCTTCTGG [ 921
P5CS TGACTGATAATGACGCTAGAGATCCAGATTTTAGGAGACAACTCA
Lycopersicon ATGACACAGTAAATTCGTTGCTTTCTCTAA esculentum TTAGAGAAAGCAACGAATTTACTGTGTCATTGAGTTGTCTCCTAAA | 922
Phe128Ala ATCTGGATCTCTAGCGTCATTATCAGTCACCAGAAGCTGAGCTGA
TTT-GCT TGTCACATCCAACTGACTGAACAAAGAATC
ATAATGACGCTAGAGAT
ATCTCTAGCGTCATTAT alt Tolerance ATACCATGTTCAGCCAGCTTGATGTGACTTCT AACTTCTTG | 925 - P5CS TGAATGATGGATTTGCTAGGGATGCTGGCTTCAGAAAACAACTTT
Vigna unguiculata CGGACACAGTGAACGCGTTATTAGATTTAA
Phe162Ala TTAAATCTAATAACGCGTTCACTGTGTCCGAAAGTTGTTTTCTGAA | 926
TTT-GCT GCCAGCATCCCTAGCAAATCCATCATTCACAAGAAGTTGGGAAGA : AGTCACATCAAGCTGGCTGAACATGGTATC
ATGGATTTGCTAGGGAT
1142001 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, oo
Plant & Targeted Altering Oligos - Alteration
ATCCCTAGCAAATCCAT alt Tolerance | GACACCTITGTTTAGTCAGTTGGATCIGACTGCTGCTCAGCTGCTT | §
P5CS GTGACGGACAACGACGCTAGAGATCCAAGTTTTAGAACACAACTA
Mesembryanthemum | ACTGAAACAGTGTATCAGTTGTTGGATCTAA crystallinum TTAGATCCAACAACTGATACACTGTTTCAGTTAGTTGTGTTCTAAA | 930
Phe125Ala ACTTGGATCTCTAGCGTCGTTGTCCGTCACAAGCAGCTGAGCAGC
TTT-GCT AGTCAGATCCAACTGACTAAACAAGGTGTC
ACAACGACGCTAGAGAT
ATCTCTAGCGTCGTTGT
® Salt Tolerance | GACACATTATTTAGCCAGCTGGATGTGACATCAGCTCAGCTTC 93
P5CS GTGACTGATAATGATGCTAGGGATGAAGCTTTCCGAAATCAACTTA
Vitis vinifera CTCAAACAGTGGATTCATTGTTAGCTTTGA
Phe130Ala TCAAAGCTAACAATGAATCCACTGTTTGAGTAAGTTGATTTCGGAA | 934
TIT-GCT AGCTTCATCCCTAGCATCATTATCAGTCACAAGAAGCTGAGCTGAT
GTCACATCCAGCTGGCTAAATAATGTGTC
ATAATGATGCTAGGGAT
ATCCCTAGCATCATTAT
Salt Tolerance GATACGCTGTTCACTCAGCTCGATGTGACATCGGCTCAGCTICTT | 937
P5CS GTGACGGATAACGATGCTCGAGATAAGGATTTCAGGAAGCAGCTT
Vigna aconitifolia ACTGAGACTGTGAAGTCGCTGTTGGCGCTGA
Phe129Ala TCAGCGCCAACAGCGACTTCACAGTCTCAGTAAGCTGCTTCCTGA | 938
TTT-GCT AATCCTTATCTCGAGCATCGTTATCCGTCACAAGAAGCTGAGCCG
ATGTCACATCGAGCTGAGTGAACAGCGTATC
ATAACGATGCTCGAGAT o ATCTCGAGCATCGTTAT 940 alt Tolerance AGAGATGTICTTAGTTCCAAAGAAATCTCACCTCTCACTTTCTCCG | 941
HKT1 TCTTCACAACAGTTGTCACGTTTGCAAACTGCGGATTTGTCCCCAC
Arabidopsis thaliana | GAATGAGAACATGATCATCTTTCGCAAAA
Ser207Val TTTTGCGAAAGATGATCATGTTCTCATTCGTGGGGACAAATCCGC | 942
TCC-GTC AGTTTGCAAACGTGACAACTGTTGTGAAGACGGAGAAAGTGAGAG
GTGAGATTTCTTTGGAACTAAGAACATCTCT
CAACAGTTGTCACGTTT
AAACGTGACAACTGTTG
Salt Tolerance CGAATGAGAACATGATCATCTTTCGCAAAAACTCTGGTCICAICTG | 945
HKT1 GCTCCTAATCCCTCTAGTACTGATGGGAAACACTTTGTTCCCTTGC : Arabidopsis thaliana | TTCTTGGTTTTGCTCATATGGGGACTTTA
GIn237Leu TAAAGTCCCCATATGAGCAAAACCAAGAAGCAAGGGAACAAAGTG | 946
CAA-CTA TTTCCCATCAGTACTAGAGGGATTAGGAGCCAGATGAGACCAGAG
TTTTTGCGAAAGATGATCATGTTCTCATTCG
1142/01 01:47 pm 03137.009 — [NY)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
AATCCCTCTAGTACTGA
TCAGTACTAGAGGGATT
Salt Tolerance AGTCTCTAGAAGGAATGAGTTCGTACGAGAA TGGATCGT | 949
HKT1 TGTTTCAAGTGGTGAGTTCGCGACACACCGGAGAAACTATAGTAG
Arabidopsis thaliana | ACCTCTCTACACTTTCCCCAGCTATCTTGGT
Asn332Ser ACCAAGATAGCTGGGGAAAGTGTAGAGAGGTCTACTATAGTTTCT | 950
AAT-AGT CCGGTGTGTCGCGAACTCACCACTTGAAACAACGATCCAACCAAC
TTCTCGTACGAACTCATTCCTTCTAGAGACT
AGTGGTGAGTTCGCGAC
® GTCGCGAACTCACCACT alt Tolerance | AGAGATGIGCTAAAGAAGAAAGGTCTCAAARATGGTGACCTTTICC | 9%
HKT1 GTCTTCACCACCGTGGTGACCTTTGCCAGTTGTGGGTTTGTCCCG
Eucalyptus ACCAATGAAAACATGATTATCTTCAGCAAAA camaldulensis TTTTGCTGAAGATAATCATGTTTTCATTGGTCGGGACAAACCCACA | 954
Ser256Val ACTGGCAAAGGTCACCACGGTGGTGAAGACGGAAAAGGTCACCA
TCG-GTG TTTTGAGACCTTTCTTCTTTAGCACATCTCT
CCACCGTGGTGACCTTT
AAAGGTCACCACGGTGG
Salt Tolerance CAATGAAAACATGATTATCTTCAGCAAAAACTCTGGCCTCCT 957
HKT1 GATTCTCATCCCTCIGGCCCTTCTTGGGAACATGCTGTTCCCATC
Eucalyptus GAGCCTACGTTTGACGCTTTGGCTCATCGG camaldulensis CCGATGAGCCAAAGCGTCAAACGTAGGCTCGATGGGAACAGCAT | 958
Gin286Leu GTTCCCAAGAAGGGCCAGAGGGATGAGAATCAGGAGGAGGCCA
CAG-CTG GAGTTTTTGCTGAAGATAATCATGTTTTCATTGG ® CATCCCTCIGGCCCTTC
GAAGGGCCAGAGGGATG | 960
Salt Tolerance AATCGTTGAATGGACTAAGCTCCTGTGAGAAAATCGTGGGCGCGC | 961
HKT1 TGTTTCAGTGCGTGAGCAGCAGACATACCGGCGAGACGGTCGTC
Eucalyptus GATCTGTCCACAGTTGCTCCCGCCATCTTGGT camaldulensis ACCAAGATGGCGGGAGCAACTGTGGACAGATCGACGACCGTCTC | 962
Asn381Ser GCCGGTATGTCTGCTGCTCACGCACTGAAACAGCGCGCCCACGA
AAC-AGC TTTTCTCACAGGAGCTTAGTCCATTCAACGATT
GTGCGTGAGCAGCAGAC
GTCTGCTGCTCACGCAC
1112/01 01:47 pm 03137.008 — [NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Salt Tolerance AAAGCTCCACTGAAGAAGAAAGGGATCAACA ACTCTTCTCA : - HKT1 TTCTCGGTCACGGTCGICTCGTTTGCGAATGTGGGGCTCGTGCC
Oryza sativa GACAAATGAGAACATGGCAATCTTCTCCAAGA
Ser238Val TCTTGGAGAAGATTGCCATGTTCTCATTTGTCGGCACGAGCCCCA
TCC-GTC CATTCGCAAACGAGACGACCGTGACCGAGAATGAGAAGAGTGCA
ATGTTGATCCCTTTCTTCTTCAGTGGAGCTTT
TCACGGTCGICTCGTTT
AAACGAGACGACCGTGA
Call Tolerance | CAAATGAGAACATGGCAATCTTCTCCAAGAACCCGGGCCTCCTCC | 969
HKT1 TCCTGTTCATCGGCCIGATTCTTGCAGGCAATACACTTTACCCTCT ® Oryza sativa CTTCCTAAGGCTATTGATATGGTTCCTGGG
Gin268Leu CCCAGGAACCATATCAATAGCCTTAGGAAGAGAGGGTAAAGTGTA | 970
CAG-CTG TTGCCTGCAAGAATCAGGCCGATGAACAGGAGBAGGAGGCCCGG
GTTCTTGGAGAAGATTGCCATGTTCTCATTIG
CATCGGCCIGATTCTTG
CAAGAATCAGGCCGATG
HKT1 GTTCATGGCAGTGAGCGCAAGGCACTCGGGGGAGAACTCCATCG
Oryza sativa ACTGCTCACTCATCGCCCCTGCTGTTCTAGT
Asn363Ser ACTAGAACAGCAGGGGCGATGAGTGAGCAGTCGATGGAGTTCTC | 974
AAC-AGC CCCCGAGTGCCTTGCGCTCACTGCCATGAACAATGCATTGATAAT
CTTCTGGTAAGAGCTGAGTCCATCAAAGACTG :
GGCAGTGAGCGCAAGGC
GCCTTGCGCTCACTGCC
®
HKT1 TATCAGTCACCGTTGICTCCTGTGCGAATGCAGGACTCGTGCCCA
Triticum aestivum CAAATGAGAACATGGTCATCTTCTCAAAGAA
Ala240Val TTCTTTGAGAAGATGACCATGTTCTCATTTGTGGGCACGAGTCCT | 978
GCC-GTC GCATTCGCACAGGAGACAACGGTGACTGATAGTGAGAAGAGCAC
GATGTTGATCCCTTTCTTGTTCAGTGGGGCAC
CACCGTTGICTCCTGTG
CACAGGAGACAACGGTG
: HKT1 GCTGCTGAGTGGCCIGATGCTCGCAGGCAATACATTGTTCCCTCT
Triticum aestivum | CTTCCTGAGGCTACTGGTGTGGTTCCTGGG
GIn270Leu CCCAGGAACCACACCAGTAGCCTCAGGAAGAGAGGGAACAATGT | 982 + 25 CAG-CTG ATTGCCTGCGAGCATCAGGCCACTCAGCAGCAACAAGAGGCCTG
AATTCTTTGAGAAGATGACCATGTTCTCATTTG
GAGTGGCCTIGATGCTCG
1112101 01:47 pm 03137.009 — [NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
CGAGCATCAGGCCACIC
: Salt Tolerance CAGTCTTTGATGGGCTCAGCTCTTATCAGAAGACTGTCAATGCAT 985
HKT1 CTTCATGGTGGTGAGTGCGAGGCACTCAGGGGAGAATTCCATCG
Triticum aestivum ACTGCTCGCTCATGTCCCCTGCCATTATAGT
Asn365Ser ACTATAATGGCAGGGGACATGAGCGAGCAGTCGATGGAATTCTCC| 986
AAT-AGT CCTGAGTGCCTCGCACTCACCACCATGAAGAATGCATTGACAGTC
TTCTGATAAGAGCTGAGCCCATCAAAGACTG
GGTGGTGAGTGCGAGGC
GCCTCGCACTCACCACC
® Freezing Tolerance TTTTTTTTGTTTTCGTTTTCAAAAACAAAATCTTTGAATTTTATGGCA | 989 proline oxidase ACCCGTCTTCTCTGAACAAACTTTATCCGGCGATCTTACCGTTTAC precursor CCGCTTTTAGCCCGGTGGGTCCTCCCA
Arabidopsis thaliana | TGGGAGGACCCACCGGGCTAAAAGCGGGTAAACGGTAAGATCGC
Arg7Term CGGATAAAGTTTGTTCAGAGAAGACGGGTTGCCATAAAATTCAAA
CGA-TGA GATTTTGTTTTTGAAAACGAAAACAAAAAAAA
GTCTTCTCTGAACAAAC
GTTTGTTCAGAGAAGAC
Freezing Tolerance | TCAAAAACAAAATCTTTGAATTTTATGGCAACCCGTCTTCTCAGAA 993 proline oxidase CAAACTTTATCCGGTGATCTTACCGTTTACCCGCTTTTAGCCCGGT precursor GGGTCCTCCCACCGTGACTGCTTCCACCG
Arabidopsis thaliana | CGGTGGAAGCAGTCACGGTGGGAGGACCCACCGGGCTAAAAGC 994
Arg13Term GGGTAAACGGTAAGATCACCGGATAAAGTTTGTTCTGAGAAGACG
CGA-TGA GGTTGCCATAAAATTCAAAGATTTTGTTTTTGA
TTATCCGGIGATCTTAC | 995 ® GTAAGATCACCGGATAA 996
Freezing Tolerance | AAAATCTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAAACTTT 997 proline oxidase ATCCGGCGATCTTAGCGTTTACCCGCTTTTAGCCCGGTGGGTCCT precursor CCCACCGTGACTGCTTCCACCGCCGTCGTC
Arabidopsis thaliana | GACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCACCGGG | 998
Tyri5Term CTAAAAGCGGGTAAACGCTAAGATCGCCGGATAAAGTTTGTTCGG
TAC-TAG AGAAGACGGGTTGCCATAAAATTCAAAGATTTT
CGATCTTAGCGTTTACC | 999
GGTAAACGCTAAGATCG 1000 11112001 01:47pm 03137.009 — [NY1793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Freezing Tolerance CTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAAACTTTATCCG | 1001 proline oxidase GCGATCTTACCGTTAACCCGCTTTTAGCCCGGTGGGTCCTCCCAC precursor CGTGACTGCTTCCACCGCCGTCGTCCCGGA
Arabidopsis thaliana | TCCGGGACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCA | 1002
Leu17Term CCGGGCTAAAAGCGGGTTAACGGTAAGATCGCCGGATAAAGTTT
TTA-TAA GTTCGGAGAAGACGGGTTGCCATAAAATTCAAAG
TTACCGTTAACCCGCTT
AAGCGGGTTAACGGTAA 1004
Freezing Tolerance | CCGGTGGGTCCTCCCACCGTGACTGCTTCCACCGCCGTCGTCCC | 1005 9 proline oxidase GGAGATTCTCTCCTTTIGACAACAAGCACCGGAACCACCTCTTCA precursor CCACCCAAAACCCACCGAGCAATCTCACGATG
Arabidopsis thaliana | CATCGTGAGATTGCTCGGTGGGTTTTGGGTGGTGAAGAGGTGGT | 1006
Gly4d2Term TCCGGTGCTTGTTGTCAAAAGGAGAGAATCTCCGGGACGACGGC
GGA-TGA GGTGGAAGCAGTCACGGTGGGAGGACCCACCGE
TCTCCTTTIGACAACAA 1007
TTGTTGTCAAAAGGAGA 1008 ead Tolerance ACATGAAGCA AAA ATTGAA ATTA T1009 cyclic nucleotide- AAACTATGAATTTCTIGACAAGAGAAGTTTGTAAGGTCAGTGTTCCA regulated ion channel | GATTTGTCTCATTGAATTCTAAGTCGTGA
Arabidopsis thaliana | TCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCTTAC | 1010
ArgdTerm AAACTTCTCTTGTCAGAAATTCATAGTTTGAGACTAATAAGATTCAA
CGA-TGA TACAAACAGAGATTTCACTGCTTCATGT
TGAATTTCTIGACAAGAG 1011
PY CTCTTGTCAGAAATTCA 1012
Lead Tolerance TGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAA | 1013 cyclic nucleotide- CTATGAATTTCCGATAAGAGAAGTTTGTAAGGTCAGTGTTCCAGAT regulated ion channel | TTGTCTCATTGAATTCTAAGTCGTGAAGC
Arabidopsis thaliana | GCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCT | 1014
GIn5Term TACAAACTTCTCTTATCGGAAATTCATAGTTTGAGACTAATAAGATT
CAA-TAA CAATACAAACAGAGATTTCACTGCTTCA
ATTTCCGATAAGAGAAG
CTTCTCTTATCGGAAAT 1016 © 25 Lead Tolerance AGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTAT | 1017 cyclic nucleotide- GAATTTCCGACAATAGAAGTTTGTAAGGTCAGTGTTCCAGATTTGT regulated ion channel | CTCATTGAATTCTAAGTCGTGAAGCTTA
Arabidopsis thaliana | TAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGA | 1018
Glu6Term CCTTACAAACTTCTATTGTCGGAAATTCATAGTTTGAGACTAATAA
GAG-TAG GATTCAATACAAACAGAGATTTCACTGCT 1112/01 01:47 pm 03137.009 — {NY]783559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, }
Plant & Targeted Altering Oligos
Alteration
TCCGACAATAGAAGTTT 1019
AAACTTCTATTGTCGGA 1020
Lead Tolerance AGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTATGAA | 1021 cyclic nucleotide- TTTCCGACAAGAGTAGTTTGTAAGGTCAGTGTTCCAGATTTGTCTC regulated jon channel | ATTGAATTCTAAGTCGTGAAGCTTAATT
Arabidopsis thaliana | AATTAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACAC | 1022
Lys7Term TGACCTTACAAACTACTCTTGTCGGAAATTCATAGTTTGAGACTAA
AAG-TAG TAAGATTCAATACAAACAGAGATTTCACT
GACAAGAGTAGTTTGTA 1023 ® TACAAACTACTCTTGTC 1024
Lead Tolerance CATTGAATTCTAAGTCGTGAAGCTTAATTCGATTCTTCTTCACTITC | 1025 cyclic nucleotide- TCGGATCAGGTTTIAAGATTGGAAGTCGGATAAGACTTCCTCCGA regulated ion channel | CGTGGAATATTCCGGTAAAAACGAGATTC
Arabidopsis thaliana | GAATCTCGTTTTTACCGGAATATTCCACGTCGGAGGAAGTCTTATC | 1026
GIn12Term CGACTTCCAATCTTAAAACCTGATCCGAGAAAGTGAAGAAGAATC
CAA-TAA GAATTAAGCTTCACGACTTAGAATTCAATG
TCAGGTTTTAAGATTGG 1027
CCAATCTTAAAACCTGA 1028 cyclic nucleotide- GTTATGAATCACCGCTAAGACGAGTTTGTGAGGTTTCAGGATTGG gated calmodulin- AAATCAGAGAGAAGCTCTGAGGGAAATTTTC binding ion channel | GAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTGAAACCT | 1030 (CBP4) CACAAACTCGTCTTAGCGGTGATTCATAACTTTAGCCAATGCATCA ® Nicotiana Tabacum | ACCTGCTCAACGTGGGGGATTGACTTCCA
GIn5Term ATCACCGCTAAGACGAG 2 CAA-TAA CTCGTCTTAGCGGTGAT 1032 cyclic nucleotide AATCACCGCCAAGACTAGTTTGTGAGGTTTCAGGATTGGAAATCA gated calmodulin- GAGAGAAGCTCTGAGGGAAATTTTCATGCTA : binding ion channel | TAGCATGAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTG | 1034 (CBP4) AAACCTCACAAACTAGTCTTGGCGGTGATTCATAACTTTAGCCAAT
Nicotiana Tabacum | GCATCAACCTGCTCAACGTGGGGGATTGA
Gly7Term GCCAAGACTAGTTTGTG 1035
GAG-TAG CACAAAGTAGTCTIGGC 11/12/01 01:47 pm 03137.009 ~ [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Lead Tolerance GAGCAGGTTGATGCATTGGCTAAAGTTATGAATCACCGCCAAGAC | 1037 cyclic nucleotide- GAGTTTGTGAGGTTTTAGGATTGGAAATCAGAGAGAAGCTCTGAG gated calmodulin- GGAAATTTTCATGCTAAAGGTGGAGTCCACC binding ion channel | GGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAGCTTCTCTC| 1038 (CBP4) TGATTTCCAATCCTAAAACCTCACAAACTCGTCTTGGCGGTGATTC
Nicotiana Tabacum | ATAACTTTAGCCAATGCATCAACCTGCTC
Gln12Term TGAGGTTTTAGGATTGG 1039
CAG-TAG
CCAATCCTAAAACCTCA 1040
Lead Tolerance TGATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGT [| 1041 ® cyclic nucleotide- GAGGTTTCAGGATTGTAAATCAGAGAGAAGCTCTGAGGGAAATTT gated calmodulin- TCATGCTAAAGGTGGAGTCCACCGAAGTAAA binding ion channel | TTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAG | 1042 (CBP4) CTTCTCTCTGATTTACAATCCTGAAACCTCACAAACTCGTCTTGGC
Nicotiana Tabacum | GGTGATTCATAACTTTAGCCAATGCATCA
Trp14Term CAGGATTGTAAATCAGA 1043
TGG-TGA TCTGATTTACAATOCTG 1044 cyclic nucleotide- AGGTTTCAGGATTGGTAATCAGAGAGAAGCTCTGAGGGAAATTTT gated calmodulin- CATGCTAAAGGTGGAGTCCACCGAAGTAAAG binding ion channel | CTTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGA | 1046 (CBP4) GCTTCTCTCTGATTACCAATCCTGAAACCTCACAAACTCGTCTTGG
Nicotiana Tabacum | CGGTGATTCATAACTTTAGCCAATGCATC
Lys15Term AGGATTGGTAATCAGAG 1047 ® AAA-TAA CTCTGATTACCAATCCT calmodulin binding TGGAGATAATGATGTAAAGAGAGGACAGATATGTTAGATTTCAGG transport protein ACTGCAAATCAGAGCAATCTGTTATCTCAG
Hordeum vulgare CTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCTAACATA | 1050
Glu2Term TCTGTCCTCTCTTTACATCATTATCTCCACCAGGCGAACAGTTAGC
GAA-TAA AGCTAAGAGTGGTAGATCAATTCTTCAAG
TAATGATGTAAAGAGAG 1051
CTCTCTTTACATCATTA 1052 1142/08 01:47 pm 03137.009 — [NY]793559.4
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Lead Tolerance GAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTG | 1053 calmodulin binding | GAGATAATGATGGAATGAGAGGACAGATATGTTAGATTTCAGGAC transport protein TGCAAATCAGAGCAATCTGTTATCTCAGAGA
Hordeum vulgare TCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCTAAC | 1054
Arg3Term ATATCTGTCCTCTCATTCCATCATTATCTCCACCAGGCGAACAGTT
AGA-TGA AGCAGCTAAGAGTGGTAGATCAATTCTTC
TGATGGAATGAGAGGAC
GTCCTCTCATTCCATCA
Lead Tolerance GAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAG | 1057 ® camodulin binding | ATAATGATGGAAAGATAGGACAGATATGTTAGATTTCAGGACTGC transport protein AAATCAGAGCAATCTGTTATCTCAGAGAACG
Hordeum vulgare CGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCT | 1058
GludTerm AACATATCTGTCCTATCTTTCCATCATTATCTCCACCAGGCGAACA
GAG-TAG GTTAGCAGCTAAGAGTGGTAGATCAATTC
TGGAAAGATAGGACAGA 1059
TCTGTCCTATCTTTCCA | 1060
Lead Tolerance | ATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATG | 1061 calmodulin binding | ATGGAAAGAGAGGACTGATATGTTAGATTTCAGGACTGCAAATCA transport protein GAGCAATCTGTTATCTCAGAGAACGCAGTTT
Hordeum vulgare AAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTIGCAGTCCTG | 1062
Arg6Term AAATCTAACATATCAGTCCTCTCTTTCCATCATTATCTCCACCAGG
AGA-TGA CGAACAGTTAGCAGCTAAGAGTGGTAGAT
GAGAGGACTGATATGTT 1063
PY AACATATCAGTCCTCTC 1064
Lead Tolerance CCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATGATGGA | 1065 calmodulin binding | AAGAGAGGACAGATAGGTTAGATTTCAGGACTGCAAATCAGAGCA transport protein ATCTGTTATCTCAGAGAACGCAGTTTCACCA
Hordeum vulgare TGGTGAAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCA | 1066
Tyr7Term GTCCTGAAATCTAACCTATCTGTCCTCTCTTTCCATCATTATCTCCA
TAT-TAG CCAGGCGAACAGTTAGCAGCTAAGAGTGG
GACAGATAGGTTAGATT 1067
AATCTAACCTATCTGTC 1068 2 4-DB resistance ATCCTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCA | 1069 3-ketoacyl-CoA GCCGGAAAAAATGTAGAAAGCGATCGAGAGACAACGCGTTCTTCT : thiolase TGAGCATCTCCGACCTTCTTCTTCTTCTT
Arabidopsis thaliana | AAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGTTGT | 1070
Glu2Term CTCTCGATCGCTTTCTACATTTTTTCCGGCTGATTAAAGATAAAATT
GAG-TAG CGGATCTGTTGTTITTTCTCAGAGAAGGAT 1112001 01:47 pm 03137.009 — [NY)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
AAAAAATGTAGAAAGCG 1071 ‘ CGCTTTCTACATTTTIT 1072
JA -DB resistance ACSA KAA AACAACAGA AA A AA A () 3-ketoacyl-CoA CGGAAAAAATGGAGTAAGCGATCGAGAGACAACGCGTTCTTCTTG thiolase AGCATCTCCGACCTTCTTCTTCTTCTTCGC
Arabidopsis thaliana | GCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGT | 1074
Lys3Term TGTCTCTCGATCGCTTACTCCATTTTTTCCGGCTGATTAAAGATAA
AAA-TAA AATTCGGATCTGTTGTTTTTTCTCAGAGAAG
AAATGGAGTAAGCGATC 1075
C GATCGCTTACTCCATTT
24-DBresistance | GAAAAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAA | 1077 3-ketoacyl-CoA TGGAGAAAGCGATCTAGAGACAACGCGTTCTTCTTGAGCATCTCC thiolase GACCTTCTTCTTCTTCTTCGCACAATTACG
Arabidopsis thaliana | CGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGA | 1078
GlusTerm AGAACGCGTTGTCTCTAGATCGCTTTCTCCATTTTTTCCGGCTGAT
GAG-TAG TAAAGATAAAATTCGGATCTGITGTTTTTTC
AAGCGATCTAGAGACAA
TTGTCTCTAGATCGCTT 1080 2,4-DB resistance AAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGG | 1081 3-ketoacyl-CoA AGAAAGCGATCGAGIGACAACGCGTTCTTCTTGAGCATCTCCGAC thiolase CTTCTTCTTCTTCTTCGCACAATTACGAGG
Arabidopsis thaliana | CCTCGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAA| 1082
Arg7Term GAAGAACGCGTTGTCACTCGATCGCTTTCTCCATTTTTTCCGGCT
AGA-TGA GATTAAAGATAAAATTCGGATCTGTTGTTTT ® CGATCGAGTGACAACGC
GCGTTGTCACTCGATCG 1084 2,4-DB resistance ACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGGAGA | 1085 3-ketoacyl-CoA AAGCGATCGAGAGATAACGCGTTCTTCTTGAGCATCTCCGACCTT thiolase CTTCTTCTTCTTCGCACAATTACGAGGCTT
Arabidopsis thaliana | AAGCCTCGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGC | 1086
GIn8Term TCAAGAAGAACGCGTTATCTCTCGATCGCTTTCTCCATTTTTTCCG
CAA-TAA GCTGATTAAAGATAAAATTCGGATCTGTTGT
TCGAGAGATAACGCGTT 1087
AACGCGTTATCTCTCGA 1088 1412/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration 2,4-DB resistance GAGAGACAAAGAGTTCTTCTTGAACATCTCCGTCCTTCTTCTTCTT | 1089 : glyoxysomal beta- CCTCTCACAGCTTTTAAGGCTCTCTCTCTGCTTCAGCTTGCTTGGC ketoacyol-thiolase TGGCGGACAGTGCTGCGTATCAGAGGACCT precursor AGGTCCTCTGATACGCAGCACTGTCCCCAGCCAAGCAAGCTGAA | 1090
Brassica napus GCAGAGAGAGAGCCTTAAAAGCTGTGAGAGGAAGAAGAAGAAGG
Glu26Term ACGGAGATGTTCAAGAAGAACTCTTTGTCTCTC
GAA-TAA ACAGCTTTTAAGGCTCT 1091
AGAGCCTTAAAAGCTGT 1092
C [2,4-DB resistance TTGAACATCTCCGTCCTTCTTCTTCTTCCTCTCACAGCTTTGAAGG | 1093 glyoxysomal beta- CTCTCTCTCTGCTTGAGCTTGCTTGGCTGGGGACAGTGCTGCGTA ketoacyol-thiolase TCAGAGGACCTCTCTCTATGGAGATGATGT precursor ACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGCACTGTCC
Brassica napus CCAGCCAAGCAAGCTCAAGCAGAGAGAGAGCCTTCAAAGCTGTG
Ser32Term AGAGGAAGAAGAAGAAGGACGGAGATGTTCAA
TCA-TGA CTCTGCTTGAGCTTGCT 1095
AGCAAGCTCAAGCAGAG 1096 i glyoxysomal beta- TCTGCTTCAGCTTGATTGGCTGGGGACAGTGCTGCGTATCAGAG ketoacyol-thiolase GACCTCTCTCTATGGAGATGATGTAGTCATT precursor AATGACTACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGC | 1098
Brassica napus ACTGTCCCCAGCCAATCAAGCTGAAGCAGAGAGAGAGCCTTCAAA
Cys34Term GCTGTGAGAGGAAGAAGAAGAAGGACGGAGA
TGC-TGA TCAGCTTGATTGGCTGG 1099 ® CCAGCCAATCAAGCTGA 1100 glyoxysomal beta- TGCTTCAGCTTGCTAGGCTGGGGACAGTGCTGCGTATCAGAGGA ketoacyol-thiolase CCTCTCTCTATGGAGATGATGTAGTCATTGT precursor ACAATGACTACATCATCTCCATAGAGAGAGGTCCTCTGATACGCA | 1102
Brassica napus GCACTGTCCCCAGCCTAGCAAGCTGAAGCAGAGAGAGAGCCTTC
Leu35Term AAAGCTGTGAGAGGAAGAAGAAGAAGGACGGA
TTG-TAG AGCTTGCTAGGCTGGGG 1103
CCCCAGCCTAGCAAGCT 1104
M201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : 2,4-DB resistance TCACAGCTTTGAAGGCTCTCTCTCTGCTTCAGCTTGCTTGGCTGG | 1105 glyoxysomal beta- GGACAGTGCTGCGTAGCAGAGGACCTCTCTCTATGGAGATGATGT ketoacyol-thiolase AGTCATTGTTGCGGCACATAGGACTGCACTA precursor TAGTGCAGTCCTATGTGCCGCAACAATGACTACATCATCTCCATA | 1106
Brassica napus GAGAGAGGTCCTCTGCTACGCAGCACTGTCCCCAGCCAAGCAAG
Tyr42Term CTGAAGCAGAGAGAGAGCCTTCAAAGCTGTGA
TAT-TAG GCTGCGTAGCAGAGGAC 1107
GTCCTCTGCTACGCAGC 1108 2,4-DB resistance CAACAGACAGCAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTC | 1109 ® 3-ketoacyl-CoA TTCTTCTCACAATTAGGAGTCCGCTCTTGCCGCATCAGTATGTGCT thiolase B GCAGGGGATAGCGCCGCATATCATAGGGCT
Mangifera indica AGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATGC | 1110
Tyr25Term GGCAAGAGCGGACTCCTAATTGTGAGAAGAAGAATTAGAAGGGC
TAC-TAG GGAGATGCTGGAGCAACACTTGCTGTCTGTTG
CACAATTAGGAGTCCGC
GCGGACTCCTAATTGTG 1112 2 4-DB resistance AACAGACAGCAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATICTT | 1113 3-ketoacyol-CoA CTTCTCACAATTACTAGTCCGCTCTTGCCGCATCAGTATGTGCTGC thiolase B AGGGGATAGCGCCGCATATCATAGGGCTT
Magnifera indica AAGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATG | 1114
Glu26Term CGGCAAGAGCGGACTAGTAATTGTGAGAAGAAGAATTAGAAGGG
GAG-TAG CGGAGATGCTGGAGCAACACTTGCTGTCTGTT
ACAATTACTAGTCCGCT 1115 ® AGCGGACTAGTAATTGT 1116 3-ketoacy\ol-CoA CGCTCTTGCCGCATGAGTATGTGCTGCAGGGGATAGCGCCGCAT thiolase B ATCATAGGGCTTCTGTTTATGGAGACGATGT
Mangifera indica ACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGCGCTATCC | 1118
Ser32Term CCTGCAGCACATACTCATGCGGCAAGAGCGGACTCGTAATTGTGA
TCA-TGA GAAGAAGAATTAGAAGGGCGGAGATGCTGGA
TGCCGCATGAGTATGTG 1119
CACATACTCATGCGGCA 1120 14/12/01 01:47 pm 03137.008 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos 2,4-DB resistance TCTCCGCCCTTCTAATTCTTCTTCTCACAATTACGAGTCCGCTCTT | 1121 3-ketoacyl-CoA GCCGCATCAGTATGAGCTGCAGGGGATAGCGCCGCATATCATAG thiolase B GGCTTCTGTTITATGGAGACGATGTGGTGATT
Mangifera indica AATCACCACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGC | 1122
Cys34Term GCTATCCCCTGCAGCTCATACTGATGCGGCAAGAGCGGACTCGT
TGT-TGA AATTGTGAGAAGAAGAATTAGAAGGGCGGAGA
TCAGTATGAGCTGCAGG 1123
CCTGCAGCTCATACTGA 1124 2,4-DB resistance TCACAATTACGAGTCCGCTCTTGCCGCATCAGTATGTGCTGCAGG | 1125 ® 3-ketoacyl-CoA GGATAGCGCCGCATAGCATAGGGCTTCTGTTTATGGAGACGATGT thiolase B GGTGATTGTGGCAGCTCATCGTACTGCACTT
Mangifera indica AAGTGCAGTACGATGAGCTGCCACAATCACCACATCGTCTCCATA | 1126
Tyrd2Term AACAGAAGCCCTATGCTATGCGGCGCTATCCCCTGCAGCACATAC
TAT-TAG TGATGCGGCAAGAGCGGACTCGTAATTGTGA
GCCGCATAGCATAGGGC 1127
GCCCTATGCTATGCGGC 1128 2,4-DB resistance GAAGGCGATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCC | 1129 3-ketoacyl-CoA TTCTTCTTCCGCTTAGACAAATGAATCTTCGCTCTCTGCATCGGTT thiolase TGTGCAGCTGGGGATAGTGCTTCGTATCAA
Cucumis sativus TTGATACGAAGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG | 1130
Tyr22Tem CGAAGATTCATTTGTCTAAGCGGAAGAAGAAGGCCGGAGATGATG
TAC-TAG TAGCAAAATGCTCTGCCTGTTGATCGCCTTC
TCCGCTTAGACAAATGA 1131 ® TCATTTGTCTAAGCGGA 1132 3-ketoacyl-CoA CCGCTTACACAAATTAATCTTCGCTCTCTGCATCGGTTTGTGCAGC thiolase TGGGGATAGTGCTTCGTATCAAAGGACAT
Cucumis sativus ATGTCCTTTGATACGAAGCACTATCCCCAGCTGCACAAACCGATG | 1134
Glu25Term CAGAGAGCGAAGATTAATTTGTGTAAGCGGAAGAAGAAGGCCGG
GAA-TAA AGATGATGTAGCAAAATGCTCTGCCTGTTGAT
ACACAAATTAATCTTCG 1135
CGAAGATTAATTTGTGT 1136 11112001 01:47 pm 03137.009 — NY1793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration 2,4-DB resistance GGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTTCCGCTTA | 1137 3-ketoacyl-CoA CACAAATGAATCTTAGCTCTCTGCATCGGTTTGTGCAGCTGGGGA thiolase TAGTGCTTCGTATCAAAGGACATCGGTGTT
Cucumis sativus AACACCGATGTCCTTTGATACGAAGCACTATCCCCAGCTGCACAA | 1138
Ser27Term ACCGATGCAGAGAGCTAAGATTCATTTGTGTAAGCGGAAGAAGAA
TCG-TAG GGCCGGAGATGATGTAGCAAAATGCTCTGCC
TGAATCTTAGCTCTCTG 1139
CAGAGAGCTAAGATTCA 1140 24-DB rosstance | TGCTACATCATCTCCGGGCTTCTTCTTCCGCTTACACARATGAATC @® 3-ketoacyl-CoA TTCGCTCTCTGCATAGGTTTGTGCAGCTGGGGATAGTGCTTCGTA thiolase TCAAAGGACATCGGTGTTTGGAGATGATGT
Cucumis sativus ACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCACTATCCC | 1142
Ser31Term CAGCTGCACAAACCTATGCAGAGAGCGAAGATTCATTTGTGTAAG
TCG-TAG CGGAAGAAGAAGGCCGGAGATGATGTAGCA
CTCTGCATAGGTTTGTG 1143
CACAAACCTATGCAGAG
3-ketoacyl-CoA TCTGCATCGGTTTGAGCAGCTGGGGATAGTGCTTCGTATCAAAGG thiolase ACATCGGTGTTTGGAGATGATGTCGTGATT
Cucumis sativus AATCACGACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCA | 1146
Cys33Term CTATCCCCAGCTGCTCAAACCGATGCAGAGAGCGAAGATTCATTT
TGT-TGA GTGTAAGCGGAAGAAGAAGGCCGGAGATGA
TCGGTTTGAGCAGCTGG 1147 ® CCAGCTGCTCAAACCGA 1148 3-ketoacyl-CoA TTCATCTTCGGCTTAGAGCCATGAATCTTCGCTCTCTGCATCGGTT thiolase TGTGCAGCTGGGGATAGTGCGTCGTATCAA
Cucurbita sp. TTGATACGACGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG
Tyr22Term CGAAGATTCATGGCTCTAAGCCGAAGATGAAGGCCGGAGATGAT
TAT-TAG GTAGCAGAATGCTCTGCCTGTTGATTGCCTTC
TCGGCTTAGAGCCATGA 1151
TCATGGCTCTAAGCCGA 1152 1412/01 01:47 pm 03137.063 — [NY]793553.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos 2,4-DB resistance ATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTT | 1153 } 3-ketoacyl-CoA CGGCTTATAGCCATTAATCTTCGCTCTCTGCATCGGTTTGTGCAGC thiolase TGGGGATAGTGCGTCGTATCAAAGAACGT
Cucurbita sp. ACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAAACCGATG | 1154
Glu25Term CAGAGAGCGAAGATTAATGGCTATAAGCCGAAGATGAAGGCCGG
GAA-TAA AGATGATGTAGCAGAATGCTCTGCCTGTTGAT
ATAGCCATTAATCTTCG 1165
CGAAGATTAATGGCTAT 1156 2,4-DB resistance GGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTTCGGCTT | 1157 ® 3-ketoacyl-CoA ATAGCCATGAATCTTAGCTCTCTGCATCGGTTTGTGCAGCTGGGG : thiolase ATAGTGCGTCGTATCAAAGAACGTCGGTGTT
Cucurbita sp. AACACCGACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAA | 1158
Ser27Term ACCGATGCAGAGAGCTAAGATTCATGGCTATAAGCCGAAGATGAA
TCG-TAG GGCCGGAGATGATGTAGCAGAATGCTCTGCC
TGAATCTTAGCTCTCTG 1159
CAGAGAGCTAAGATTCA 1160 2,4-DB resistance TGCTACATCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATC | 1161 3-ketoacyl-CoA TTCGCTCTCTGCATAGGTTTGTGCAGCTGGGGATAGTGCGTCGTA thiolase TCAAAGAACGTCGGTGTTTGGAGATGATGT
Cucurbita sp. ACATCATCTCCAAACACCGACGTTCTTTGATACGACGCACTATCCC | 1162
Ser31Term CAGCTGCACAAACCTATGCAGAGAGCGAAGATTCATGGCTATAAG
TCG-TAG CCGAAGATGAAGGCCGGAGATGATGTAGCA
CTCTGCATAGGTTTGTG 1163 ® CACAAACCTATGCAGAG 1164 3-ketoacyl-CoA TCTGCATCGGTTTGAGCAGCTGGGGATAGTGCGTCGTATCAAAGA thiolase ACGTCGGTGTTTGGAGATGATGTCGTGATA
Cucurbita sp. TATCACGACATCATCTCCAAACACCGACGTTCTTTGATACGACGCA | 1166
Cys33Term CTATCCCCAGCTGCTCAAACCGATGCAGAGAGCGAAGATTCATGG
TGT-TGA CTATAAGCCGAAGATGAAGGCCGGAGATGA
TCGGTTTGAGCAGCTGG 1167
CCAGCTGCTCAAACCGA 1168 4 DB resistance ATA A AZ ) A 3
Pex14 CTATGGCAACTCATTAGCAAACGCAACCTCCTTCCGATTTTCCCGC
Arabidopsis thaliana | TCTTGCCGATGAAAATTCCCAGATTCCAG
GIn5Term CTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGGAA 1170
CAG-TAG GGAGGTTGCGTTTGCTAATGAGTTGCCATAGCAGCTCACTAACCT
TGGAAGAATCCAAGCGGCAAAAGAGACTATGA
111201 01:47 pm 03137.009 — {NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
CAACTCATIAGCAAACG 1171
CGTTTGCTAATGAGTTG 1172 2.4 DB resistance TAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTA | 1173
Pex14 TGGCAACTCATCAGTAAACGCAACCTCCTTCCGATTTTCCCGCTCT
Arabidopsis thaliana | TGCCGATGAAAATTCCCAGATTCCAGGTT
Gin6Term AACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGG | 1174
CAA-TAA AAGGAGGTTGCGTTTACTGATGAGTTGCCATAGCAGCTCACTAAC
CTTGGAAGAATCCAAGCGGCAAAAGAGACTA
CTCATCAGTAAACGCAA 1175 ® TTGCGTTTACTGATGAG 1176 2,4 DB resistance CTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTATGGCA | 1177
Pex14 ACTCATCAGCAAACGTAACCTCCTTCCGATTTTCCCGCTCTTGCCG
Arabidopsis thaliana | ATGAAAATTCCCAGATTCCAGGTTCAATTT
Gin8Term AAATTGAACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAA | 1178
CAA-TAA AATCGGAAGGAGGTTACGTTTGCTGATGAGTTGCCATAGCAGCTC
ACTAACCTTGGAAGAATCCAAGCGGCAAAAG
AGCAAACGTAACCTCCT 1179
AGGAGGTTACGTTTGCT 1180 2,4 DB resistance GCTGCTATGGCAACTCATCAGCAAACGCAACCTCCTTCCGATTTT | 1181
Pex14 CCCGCTCTTGCCGATTAAAATTCCCAGATTCCAGGTTCAATTTACA
Arabidopsis thaliana | CCTTCTAATCATTATTTCTTAATTITTCTT
Glu19Term AAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAATTGAACCTGG | 1182
GAA-TAA AATCTGGGAATTTTAATCGGCAAGAGCGGGAAAATCGGAAGGAG
GTTGCGTTTGCTGATGAGTTGCCATAGCAGC
® TTGCCGATTAAAATTCC 1183
GGAATTTTAATCGGCAA 1184 2,4 DB resistance GCAACTCATCAGCAAACGCAACCTCCTTCCGATTTTCCCGCTCTT 1185
Pex14 GCCGATGAAAATTCCTAGATTCCAGGTTCAATTTACACCTTCTAAT
Arabidopsis thaliana | CATTATTTCTTAATTTTTCTTTGGTGGATT
GIn22Term AATCCACCAAAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAAT | 1186
CAG-TAG TGAACCTGGAATCTAGGAATTTTCATCGGCAAGAGCGGGAAAATC
GGAAGGAGGTTGCGTTTGCTGATGAGTTGC
AAAATTCCTAGATTCCA 1187
TGGAATCTAGGAATTTT 1188
I Ft) WS 1412001 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Example 8
Production of albino mutants for the analysis of photosynthetic processes
Plant productivity is limited by resources available and the ability of plants to hamess these resources. The conversion of light to chemical energy, which is then used to synthesize carbohydrates, fatty acids, sugars, amino acids and other compounds, requires a complex system which combines the light harvesting apparatus of pigments and proteins. The value of light energy to the plant can only be realized when it is efficiently converted into chemical energy by photosynthesis and fed into various biochemical processes. Significant effort has therefore been directed at studying photosynthetic processes in plants in ® order to improve productivity and/or the efficiency of photosynthesis. The analysis of the photosynthetic process is substantially aided by the ability to produce albino plants.
The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism. 1912/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Table 18
Oligonucleotides to produce albino plants
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
White leaves TTCTTTCCTGTGAAATTATCTGCTCAAATCTTTGGTTCCTGACGGAG| 1189
Immutans ATGGCGGCGATTTGAGGCATCTCCTCTGGTACGTTGACGATTTCA
Arabidopsis thaliana |CGGCCTTTGGTTACTCTTCGACGCTCTAG
Serb5Term CTAGAGCGTCGAAGAGTAACCAAAGGCCGTGAAATCGTCAACGTA | 1190
TCA-TGA CCAGAGGAGATGCCTCAAATCGCCGCCATCTCCGTCAGGAACCAA
AGATTTGAGCAGATAATTTCACAGGAAAGAA
GGCGATTTGAGGCATCT 1191 o AGATGCCTCAAATCGCC 1192
Immutans TCTCCTCTGGTACGTAGACGATTTCACGGCCTTTGGTTACTCTTCG
Arabidopsis thaliana |ACGCTCTAGAGCCGCCGTTTCGTACAGCTC
Leu12Term GAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAGAGTAACCAAA] 1194
TTG-TAG GGCCGTGAAATCGTCTACGTACCAGAGGAGATGCCTGAAATCGCC
GCCATCTCCGTCAGGAACCAAAGATTTGAGC
TGGTACGTAGACGATTT
AAATCGTCTACGTACCA 1196
White leaves : AGA A A i 0
Immutans GTACGTTGACGATTTGACGGCCTTTGGTTACTCTTCGACGCTCTAG
Arabidopsis thaliana |AGCCGCCGTTTCGTACAGCTCCTCTCACCG
Ser15Term CGGTGAGAGGAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAG | 1198
TCA-TGA AGTAACCAAAGGCCGTCAAATCGTCAACGTACCAGAGGAGATGCC [ TGAAATCGCCGCCATCTCCGTCAGGAACCAAA
GACGATTTGACGGCCTT 1199
AAGGCCGTCAAATCGTC 1200
Immutans CCTTTGGTTACTCTTIGACGCTCTAGAGCCGCCGTTTCGTACAGCT
Arabidopsis thaliana |CCTCTCACCGATTGCTTCATCATCTTCCTC
Arg22Term GAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTGTACGAAACG 1202
CGA-TGA GCGGCTCTAGAGCGTCAAAGAGTAACCAAAGGCCGTGAAATCGTC
AACGTACCAGAGGAGATGCCTGAAATCGCCGC
, TTACTCTTIGACGCTCT 1203
AGAGCGTCAAAGAGTAA 1204 1112/01 01:47 pm 03137.003 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797 \W ite leaves A A A A K A A (} immutans CTCTTCGACGCTCTIGAGCCGCCGTTTCGTACAGCTCCTCTCACC
Arabidopsis thaliana |GATTGCTTCATCATCTTCCTCTCTCTTCTC
Arg25Term GAGAAGAGAGAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTG | 1206
AGA-TGA TACGAAACGGCGGCTCAAGAGCGTCGAAGAGTAACCAAAGGCCG : TGAAATCGTCAACGTACCAGAGGAGATGCCTGA
GACGCTCTTGAGCCGCC 1207
GGCGGCTCAAGAGCGTC 1208
White leaves GATTCTTGTGGGAAGGAAGAAGGATCAAGAATGGCGATTTCGATT | 1209
Immutans TCTGCTATGAGTTTTIGAACCTCAGTTTCTTCATATTCTTGTTTTAG
Lycopersicon AGCTAGGAGTTTTGAGAAGTCATCAGTTT esculentum AAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAGAATATGA | 1210
Gly11Term AGAAACTGAGGTTCAAAAACTCATAGCAGAAATCGAAATCGCCATT ) GGA-TGA CTTGATCCTTCTTCCTTCCCACAAGAATC
TGAGTTTTIGAACCTCA 1211
TGAGGTTCAAAAACTCA 1212
White leaves GTGGGAAGGAAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTA | 1213 immutans TGAGTTTTGGAACCTGAGTTTCTTCATATTCTTGTTTTAGAGCTAGG
Lycopersicon AGTTTTGAGAAGTCATCAGTTTTATGCAA esculentum TTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAG | 1214
Ser13Term AATATGAAGAAACTCAGGTTCCAAAACTCATAGCAGAAATCGAAAT
TCA-TGA CGCCATTCTTGATCCTTCTTCCTTCCCAC
TGGAACCTGAGTTICTT 1215
AAGAAACTCAGGTTCCA 1216
White leaves AAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTITGG | 1217
Immutans AACCTCAGTTTCTTGATATTCTTGTTTTAGAGCTAGGAGTTTTGAGA
Lycopersicon AGTCATCAGTTTTATGCAATTCCCAGAA esculentum TTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTC | 1218 ® Ser16Term TAAAACAAGAATATCAAGAAACTGAGGTTCCAAAACTCATAGCAGA
TCA-TGA AATCGAAATCGCCATTCTTGATCCTTCTT
AGTTTCTTGATATTCTT 1219
AAGAATATCAAGAAACT 1220
White leaves AGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACC | 1221
Immutans TCAGTTTCTTCATAGTCTTGTTTTAGAGCTAGGAGTTTTGAGAAGTC
Lycopersicon ATCAGTTTTATGCAATTCCCAGAACCCA esculentum TGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTA | 1222 : Tyri7Term GCTCTAAAACAAGACTATGAAGAAACTGAGGTTCCAAAACTCATAG
TAT-TAG CAGAAATCGAAATCGCCATTCTTGATCCT
TCTTCATAGTCTTGTTT 1223
AAACAAGACTATGAAGA 1224 11/12/01 01:47 pm 03137.008 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
White leaves AAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACCTCAGTT | 1225
Immutans TCTTCATATTCTTGATTTAGAGCTAGGAGTTTTGAGAAGTCATCAGT
Lycopersicon TTTATGCAATTCCCAGAACCCATGTCGG esculentum CCGACATGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAA | 1226
Cys19Term CTCCTAGCTCTAAATCAAGAATATGAAGAAACTGAGGTTCCAAAAC
TGT-TGA TCATAGCAGAAATCGAAATCGCCATTCTT
TATTCTTGATTTAGAGC 1227
GCTCTAAATCAAGAATA 1228
White leaves CGCGTCCGATAAAAAAATCAAGAATGGCGATTTCCATATCTGCTAT | 1229
Immutans GAGTTTTCGAACTTGAGTTTCTTCTTCATATTCAGCATTTTTGTGCA
Capsicum annuum ATTCCAAGAACCCATTTTGTTTGAATTC
Ser13Term GAATTCAAACAAAATGGGTTCTTGGAATTGCACAAAAATGCTGAAT | 1230
TCA-TGA ATGAAGAAGAAACTCAAGTTCGAAAACTCATAGCAGATATGGAAAT @ CGCCATTCTTGATTTTTTTATCGGACGCG
TCGAACTTGAGTTTCTT 1231
AAGAAACTCAAGTTCGA 1232
White leaves AAAAATCAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAAC | 1233 immutans TTCAGTTTCTTCTTGATATTCAGCATTTTTGTGCAATTCCAAGAACC
Capsicum annuum CATTTTGTTTGAATTCTCTATTTTCACT 16 Ser17Term AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA | 1234
TCA-TGA AAAATGCTGAATATCAAGAAGAAACTGAAGTTCGAAAACTCATAGC
AGATATGGAAATCGCCATTCTTGATTTTT
TTCTTCTTGATATTCAG
CTGAATATCAAGAAGAA 1236
White leaves CAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAACTTCAGT | 1237
Immutans TTCTTCTTCATATTGAGCATTTTTGTGCAATTCCAAGAACCCATTTT
Capsicum annuum GTTTGAATTCTCTATTTTCACTTAGGAA @ Ser19Term TTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAAT | 1238
TCA-TGA TGCACAAAAATGCTCAATATGAAGAAGAAACTGAAGTTCGAAAACT + |CATAGCAGATATGGAAATCGCCATTCTTG
TTCATATTGAGCATTTT 1239
AAAATGCTCAATATGAA 1240
White leaves CGATTTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCA | 1241
Immutans TATTCAGCATTTTAGTGCAATTCCAAGAACCCATTTTGTTTGAATTC
Capsicum annuum TCTATTTTCACTTAGGAATTCTCATAG
Leu21Term CTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGT | 1242
TTG-TAG TCTTGGAATTGCACTAAAATGCTGAATATGAAGAAGAAACTGAAGT
TCGAAAACTCATAGCAGATATGGAAATCG
AGCATTTTAGTGCAATT 1243
AATTGCACTAAAATGCT 1244 11112001 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
White leaves TTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCATATT | 1245 immutans CAGCATTTTTGTGAAATTCCAAGAACCCATTTTGTTTGAATTCTCTA
Capsicum annuum TTTTCACTTAGGAATTCTCATAGAACT
Cys22Term AGTTCTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAAAT | 1246
TGC-TGA GGGTTCTTGGAATTTICACAAAAATGCTGAATATGAAGAAGAAACTG
AAGTTCGAAAACTCATAGCAGATATGGAA
TTTTTGTGAAATTCCAA 1247
TTGGAATTTCACAAAAA 1248
White leaves TTCGGCACGAGGGAGAAGGAGCAGACCGAGGTGGCCGTCGAGG | 1249
Immutans AGTCCTTCCCCTTCAGGTAGACGGCTCCTCCTGACGAGCCACTGG
Oryza sativa TCACCGCCGAGGAGAGCTGGGTGGTTAAGCTCG
Glu22Term CGAGCTTAACCACCCAGCTCTCCTCGGCGGTGACCAGTGGCTCGT | 1250 é GAG-TAG CAGGAGGAGCCGTCTACCTGAAGGGGAAGGACTCCTCGACGGCC
ACCTCGGTCTGCTCCTTCTCCCTCGTGCCGAA
CCTTCAGGTAGACGGCT 1251
AGCCGTCTACCTGAAGG 1252
Immutans GACGGCTCCTCCTGACTAGCCACTGGTCACCGCCGAGGAGAGCT
Oryza sativa GGGTGGTTAAGCTCGAGCAGTCCGTGAACATTT
Glu28Term AAATGTTCACGGACTGCTCGAGCTTAACCACCCAGCTCTCCTCGG | 1254
CAG-TAG CGGTGACCAGTGGCTAGTCAGGAGGAGCCGTCTCCCTGAAGGGG
AAGGACTCCTCGACGGCCACCTCGGTCTGCTC
CTCCTGACTAGCCACTG 1255
CAGTGGCTAGTCAGGAG 1256
Immutans GCCACTGGTCACCGCCTAGGAGAGCTGGGTGGTTAAGCTCGAGC
Oryza sativa AGTCCGTGAACATTTTCCTCACGGAGTCAGTCA ® Glu34Term TGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCTTAA | 1258
GAG-TAG CCACCCAGCTCTCCTAGGCGGTGACCAGTGGCTCGTCAGGAGGA
GCCGTCTCCCTGAAGGGGAAGGACTCCTCGAC
TCACCGCCTAGGAGAGC 1259
GCTCTCCTAGGCGGTGA 1260
White leaves GAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCC | 1261
Immutans ACTGGTCACCGCCGAGTAGAGCTGGGTGGTTAAGCTCGAGCAGT
Oryza sativa CCGTGAACATTTTCCTCACGGAGTCAGTCATCA
Glu35Term TGATGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCT | 1262
GAG-TAG TAACCACCCAGCTCTACTCGGCGGTGACCAGTGGCTCGTCAGGA
GGAGCCGTCTCCCTGAAGGGGAAGGACTCCTC
CCGCCGAGTAGAGCTGG 1263
CCAGCTCTACTCGGCGG 1264 11/1201 01:47 pm 03137.008 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
White leaves CTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCCACTGGTCAC | 1265
Immutans CGCCGAGGAGAGCTGAGTGGTTAAGCTCGAGCAGTCCGTGAACA . Oryza sativa TTTTCCTCACGGAGTCAGTCATCACGATACTT
Trp37Term AAGTATCGTGATGACTGACTCCGTGAGGAAAATGTTCACGGACTG | 1266
TGG-TGA CTCGAGCTTAACCACTCAGCTCTCCTCGGCGGTGACCAGTGGCTC : GTCAGGAGGAGCCGTCTCCCTGAAGGGGAAG
GAGAGCTGAGTGGTTAA 1267
TTAACCACTCAGCTCTC 1268
White leaves [TCCGGAGGAGGAAGGGGGATTCGACGAGGAGCTCACCCTCGCCG | 1269
Immutans GCGAGGACGGCGACTGAGTCGTCAGATTCGAGCAGTCCTTCAAC
Triticum aestivum GTATTCCTCACGGATACTGTCATCTTTATACTC
Trp22Term GAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAAGGACTG | 1270 ® TGG-TGA CTCGAATCTGACGACTCAGTCGCCGTCCTCGCCGGCGAGGGTGA
GCTCCTCGTCGAATCCCCCTTCCTCCTCCGGA
GGCGACTGAGTCGTCAG 1271
CTGACGACTCAGTCGCC 1272
Immutans ACGGCGACTGGGTCGTCTIGATTCGAGCAGTCCTTCAACGTATTCC
Triticum aestivum TCACGGATACTGTCATCTTTATACTCGATATTC
Arg25Term GAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAA | 1274
AGA-TGA GGACTGCTCGAATCAGACGACCCAGTCGCCGTCCTCGCCGGCGA
GGGTGAGCTCCTCGTCGAATCCCCCTTCCTC
GGGTCGTCTIGATTCGAG 1275
CTCGAATCAGACGACCC
Immutans ACTGGGTCGTCAGATTCTAGCAGTCCTTCAACGTATTCCTCACGGA
Triticum aestivum TACTGTCATCTTTATACTCGATATTCTGTATC
J Glu27Term GATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATAC | 1278
GAG-TAG GTTGAAGGACTGCTAGAATCTGACGACCCAGTCGCCGTCCTCGCC
GGCGAGGGTGAGCTCCTCGTCGAATCCCCC
TCAGATTCTAGCAGTCC 1279
GGACTGCTAGAATCTGA 1280 immutans GGTCGTCAGATTCGAGTAGTCCTTCAACGTATTCCTCACGGATACT
Triticum aestivum GTCATCTTTATACTCGATATTCTGTATCGTG } GIn28Term CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA| 1282
CAG-TAG TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC
GCCGGCGAGGGTGAGCTCCTCGTCGAATCC
GATTCGAGTAGTCCTTC 1283
GAAGGACTACTCGAATC 1284 1112/01 01:47 pm 03137.009 — [NY}793559.1
AMENDED SHEET
28-12-2001 01939797
White leaves CGAGCAGTCCTTCAACGTATTCCTCACGGATACTGTCATCTTTATA 1285
Immutans CTCGATATTCTGTAGCGTGACCGCGACTACGCAAGGTTCTTCGTG
Triticum aestivum CTCGAGACCATCGCCAGGGTGCCCTATTTC
Tyrd6Term GAAATAGGGCACCCTGGCGATGGTCTCGAGCACGAAGAACCTTG 1286
TAT-TAG CGTAGTCGCGGTCACGCTACAGAATATCGAGTATAAAGATGACAG : TATCCGTGAGGAATACGTTGAAGGACTGCTCG
ATTCTGTAGCGTGACCG 1287
CGGTCACGCTACAGAAT 1288 11/12/01 01:47 pm 03137.009 — [NY]793550.1
AMENDED SHEET
28-12-2001 01939797
Example 9
Altering amino acid content of plants
Another aim of biotechnology is to generate plants, especially crop plants, with added value traits. An example of such a trait is improved nutritional quality in food crops. For example, lysine, tryptophan and threonine, which are essential amino acids in the diet of humans and many animals, are limiting nutrients in most cereal crops. Consequently, grain-based diets, such as those based on com, barley, wheat, rice, maize, millet, sorghum, and the like, must be supplemented with more expensive synthetic amino acids or amino-acid-containing oilseed protein meals. Increasing the lysine content of these ® grains or of any of the feed component crops would result in significant added value.
Naturally occurring mutants of plants that have different levels of particular essential amino acids have been identified. However, these mutants are generally not the result of increased free amino acid, but are instead the result of shifts in the overall protein profile of the grain. For example, in maize, reduced levels of lysine-deficient endosperm proteins (prolamines) are complemented by elevated levels of more lysine-rich proteins (albumins, globulins and glutelins). While nutritionally superior, these mutants are associated with reduced yields and poor grain quality, limiting their agronomic usefulness.
An alternative approach is to generate plants with mutations that render key amino acid biosynthetic enzymes insensitive to feedback inhibition. Many such mutations are known and mutation results in increased free amino acid. The increased production can optionally be coupled to increased expression of an abundant storage protein comprising the chosen amino acid. Alternatively, a normally [ abundant protein can be engineered to contain more of the target amino acid.
The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that remove feedback inhibition in plant amino acid biosynthetic enzymes. 03437008 NYITO3s5o.
AMENDED SHEET
28-12-2001 01939797
Table 19
Genome-Altering Oligos Conferring Amino Acid Overproduction
Phenotype, Gene, . Plant & Targeted Altering Oligos
Alteration ]
CGS GAGCATTAAAGCCCATAGAAACTGTAGCAACATCGGTGTTGCACA
Arabidopsis thaliana | GATCGTGGCGGCTAAGTGGTCCAACAACCC
Arg77His GGGTTGTTGGACCACTTAGCCGCCACGATCTGTGCAACACCGAT 1290
ATTAGGAGGAAATCTTAAGATCCTGGAGGATA
°
Met Overproduction | TCTTAAGATITCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGC on
Arabidopsis thaliana | CTAAGTGGTCCAACAACCCATCCTCCGCGTT
Ser81Asn AACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCCACGATCTG | 1294
TGACGGACGAAATTAGGAGGAAATCTTAAGA et Overproduction | TTTCCTCCTAATTICGTCCGTCAGCTGAGCATTAAA CGTAGAA 297
TT re
Arabidopsis thaliana | CCAACAACCCATCCTCCGCGTTACCTTCGG
Gly84Ser CCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCC | 1298 } TGCTCAGCTGACGGACGAAATTAGGAGGAAA ®
Met Overproduction TCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAAA | 1301
Te ee
Arabidopsis thaliana | CAACAACCCATCCTCCGCGTTACCTTCGGC
Gly84Asp GCCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGC | 1302
ATGCTCAGCTGACGGACGAAATTAGGAGGAA
1111201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Es
Alteration
Vet Overproduction [TATCGTCACTCATCCTCCGCTTCCCT AACT ,CGCCA
EB
Fragraria vesca CAGATCGTCGCGGCTTCGTGGTCCAACAAAGA
CGC-CAC GTTGCTGCAGTTGCGGIGGGCCTTGGTGCTGAGCTGGCGGACGA
AGTTGGGAGGGAAGCGGAGGATGAGTGACGATA
CGS CCCGCCGCAACTGCAACAACATCGGCGTCGCGCAGATCGTCGCG
® Fragraria vesca GCTTCGTGGTCCAACAAAGACTCCGACCTTTC
AGC-AAC CGCGACGCCGATGTTGITGCAGTTGCGGCGGGCCTTGGTGCTGA
GCTGGCGGACGAAGTTGGGAGGGAAGCGGAGGA et Overproduction | TTCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCG | 1313 mem
Fragraria vesca GGTCCAACAAAGACTCCGACCTTTCGGCGGTGC
Gly80Ser GCACCGCCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCG | 1314
GGTGCTGAGCTGGCGGACGAAGTTGGGAGGGAA
Met Overproduction CCCTCCCAACTTCGTCCGCCAGCTCAGCACCAA 7 « ETT Eom
Fragraria vesca GTCCAACAAAGACTCCGACCTTTCGGCGGTGCC
GGC-GAC GACGATCTGCGCGACGICGATGTTGCTGCAGTTGCGGCGGGCCT
TGGTGCTGAGCTGGCGGACGAAGTTGGGAGGGA
Met Overproduction | TCTCCTCCCTCATCCTCCGCTTCCCTCCCAACTTCCAGCGCCAGC 3
Te ee
Glycine max CAAATCGTCGCCGCTTCGTGGTCGAACAACAG
Arg68His CTGTTGTTCGACCACGAAGCGGCGACGATTTGCGCGACGCCGAT | 1322
AGTTGGGAGGGAAGCGGAGGATGAGGGAGGAGA
1142001 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration _ Jereooeerceceniete 1 faa : Viet Overproduction T T AACTTCCA A AAGCACCAAC 25
CGS CGCGCCGCAACTGCAACAACATCGGCGTCGCGCAAATCGTCGCC
Ser72Asn GGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCGACGATTTG | 1326
GCTGGCGCTGGAAGTTGGGAGGGAAGCGGAGGA
CGS CAACTGCAGCAACATCAGCGTCGCGCAAATCGTCGCCGCTTCGT
Glycine max GGTCGAACAACAGCGACAACTCTCCGGCCGCCS
Gly75Ser CGGCGGCCGGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCG | 1330
GGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGAA
Met Overproduction SCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGC 1333
Ee
Glycine max GTCGAACAACAGCGACAACTCTCCGGCCGCCGG
GGC-GAC GACGATTTGCGCGACGICGATGTTGCTGCAGTTGCGGCGCGCCT
TGGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGA
® Met Overproduction | TGTCTTCTCTGATTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCT 337
CGS AAGCATTAAGGCTCACAGGAATTGCAGCAATATTGGCGTGGCTCA TT
Solanum tuberosum | AGTTGTGGCGGCTTCCTGGTCTAACAACCA
Arg70His TGGTTGTTAGACCAGGAAGCCGCCACAACTTGAGCCACGCCAATA
AGG-CAC TTGCTGCAATTCCTGTGAGCCTTAATGCTTAGCTGCCTCACGAAAT
TAGGAGGAAACCTGAAAATCAGAGAAGACA
CGS TAGGAGGAATTGCAACAATATTGGCGTGGCTCAAGTTGTGGCGG CT
Solanum tuberosum
AGC-AAC AGCCACGCCAATATTGITGCAATTCCTCCTAGCCTTAATGCTTAGC
TGCCTCACGAAATTAGGAGGAAACCTGAAAA
1112001 01:47 pm . 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, . Alteration — [GMATIGCAACMIATIG [fas [oummmeme ar et Overproduction | TTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGA 345
CGS AATTGCAGCAATATTAGCGTGGCTCAAGTTGTGGCGGCTTCCTGG oT
Gly77Ser GAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCC | 1346
GGC-AGC ACAACTTGAGCCACGCTAATATTGCTGCAATTCCTCCTAGCCTTAA 0
PY
Met Overproduction TTICCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGGA 349
CGS ATTGCAGCAATATTGACGTGGCTCAAGTTGTGGCGGCTTCCTGET TT
Gly77Asp GGAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGC
GGC-GAC CACAACTTGAGCCACGTCAATATTGCTGCAATTCCTCCTAGCCTTA et Overproduction TTCCTCTCTTATCCTTCGCTTTCCTCCCAACTITTGICCGTCAGCT | 1353
CGS CAGCACCAAGGCTCGCCACAACTGCAGCAACATTGGTGTCGCAC oT crystallinum GAGTTGTTGGACCAGGAGGCAGCGACGACCTGTGCGACACCAAT | 1354
Arg73His GTTGCTGCAGTTGTGGCGAGCCTTGGTGCTGAGCTGACGGACAA ES ° et Overproduction” | TCCTICGCTTTCCTCCCAACTTTGICCGTCAGCTCAGCACCAAGG | 1357
CGS CTCGCCGCAACTGCAACAACATTGGTGTCGCACAGGTCGTCGCT TT crystallinum GCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAGCGACGACCT | 1358
Ser77Asn GTGCGACACCAATGTTGITGCAGTTGCGGCGAGCCTTGGTGCTG BB 1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, ow BP : Alteration
Met Overproduction [| TTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGGCTC C
EEE
Mesembryanthemum | GTCCAACAACTCCGATGCCGGCGCCACCTCTT
Gly80Ser GACGACCTGTGCGACACTAATGTTGCTGCAGTTGCGGCGAGCCT
GGT-AGT TGGTGCTGAGCTGACGGACAAAGTTGGGAGGAAA ® Mesembryanthemum | CCAACAACTCCGATGCCGGCGCCACCTCTTG crystallinum CAAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAG
Gly80Asp CGACGACCTGTGCGACATCAATGTTGCTGCAGTTGCGGCGAGCC et Overproduction | CCTCTGCTACCATCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGC | 1369
CGS TTAGCACCAAGGCACACCGCAACTGCAGCAACATCGGCGTCGCG
Arg41His GGGCAGTCGGACCACGCGGCGGCGACGATCTGCGCGACGCCGA | 1370
AAGTTTGGCGGAAAGCGGAGGATGGTAGCAGAGG
Met Overproduction | TCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGG | 1373 o [FT Emm
Zea mays GCCGCGTGGTCCGACTGCCCCGCCGCTCGCCC
AGC-AAC GCGCGACGCCGATGTTGITGCAGTTGCGGCGTGCCTTGGTGCTA
AGCTGGCGGACAAAGTTTGGCGGAAAGCGGAGGA
CGS AACTGCAGCAACATCAGCGTCGCGCAGATCGTCGCCGCCGCGTG oT
Gly48Ser CTAAGTGGGGGCGAGCGGCGGGGCAGTCGGACCACGCGGCGG | 1378
GGC-AGC CGACGATCTGCGCGACGCIGATGTTGCTGCAGTTGCGGCGTGCC 1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
CC] CGCGACGCIGATGTTGC 1380 et Overproduction | TTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGCA | 138
CGS ACTGCAGCAACATCGACGTCGCGCAGATCGTCGCCGCCGCGTGG
Zea mays TCCGACTGCCCCGCCGCTCGCCCCCACTTAGG
Gly48Asp CCTAAGTGGGGGCGAGCGGCGGGGCAGTCGGACCACGCGGCG | 1382
GGC-GAC GCGACGATCTGCGCGACGTCGATGTTGCTGCAGTTGCGGCGTGC
CTTGGTGCTAAGCTGGCGGACAAAGTTTGGCGGAA
CAACATCGACGTCGCGC 1383
GCGCGACGICGATGTTG 1384
PY Met Overproduction | GTATGAATGATCTGTGGGTGAAACACTGTGGGATTAGTCATACA 85
TS GAAGTTTCAAGGATCGTGGAATGACTGTTTTGGTTAGTCAAGTTAA
Arabidopsis thaliana | TCGTCTGAGAAAGATGAAACGACCTGTGGT
Leu205Arg ACCACAGGTCGTTTCATCTTTCTCAGACGATTAACTTGACTAACCA | 1386
CTT-CGT AAACAGTCATTCCACGATCCTTGAAACTTCCTGTATGACTAATCCC
ACAGTGTTTCACCCACAGATCATTCATAC
CAAGGATCGTGGAATGA 1387
TCATTCCACGATCCTTG 1388
Met Overproduction GCATGACTGATTTGTGG AAACACTGTGGGATTA ATACTG 8
TS GTAGTTTTAAGGATCGTGGGATGACTGTTTTGGTGAGTCAAGTTAA
Solanum tuberosum | TCGCTTGCGGAAAATGCATAAACCGGTTGT
Leu198Arg ACAACCGGTTTATGCATTTTCCGCAAGCGATTAACTTGACTCACCA | 1390
CTT-CGT AAACAGTCATCCCACGATCCTTAAAACTACCAGTATGGCTAATCCC
ACAGTGTTTGACCCACAAATCAGTCATGC
TAAGGATCGTGGGATGA 1391 ® TCATCCCACGATCCTTA 1392
DHPS TAGGCAACACAGGAAACAACTCAACCAGAGAAGCCGTCCACGCA
Zea mays ACAGAACAGGGATTTGCTGTTGGCATGCATGC
Ser157Asn GCATGCATGCCAACAGCAAATCCCTGTTCTGTTGCGTGGACGGCT | 1394
AGC-AAC TCTCTGGTTGAGTTGITTCCTGTGTTGCCTATCACTTTGATTCTAG
AGCCAAAGCAGTTCACTGTGTGCCCAATGA
CACAGGAAACAACTCAA 1395
TTGAGTTGITTCCTGTG 1396
Lys Overproduction TCTAGAATCAAAGTGATA AACACAGGAAGCAACTCAACCA | 1397
DHPS GAGAAGCCGTCCACGAAACAGAACAGGGATTTGCTGTTGGCATG
Zea mays CATGCGGCTCTCCACATCAATCCTTACTACGG } Ala166Val CCGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGC | 1398
GCA-GAA AAATCCCTGTTCTGTTTICGTGGACGGCTTCTCTGGTTGAGTTGCTT
CCTGTGTTGCCTATCACTTTGATTCTAGAGC
1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
CGTCCACGAAACAGAAC 1399 : GTTCTGTTICGTGGACG 1400 ys Overproduction GGCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACC | 140
DHPS AGAGAAGCCGTCCACACAACAGAACAGGGATTTGCTGTTGGCAT
Zea mays GCATGCGGCTCTCCACATCAATCCTTACTACG :
Ala166Thr CGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGCA | 1402
GCA-ACA AATCCCTGTTCTGTTGIGTGGACGGCTTCTCTGGTTGAGTTGCTTC
CTGTGTTGCCTATCACTTTGATTCTAGAGCC
CCGTCCACACAACAGAA 1403 ® TTCTGTTGIGTGGACGG 1404
Lys Overproduction ATTGGGCATACAGTTAACTGCTTTGGCACTAAAATTAAAGT 405
DHPS CGGCAACACAGGAAATAACTCAACAAGGGAGGCTATTCACGCAAC
Oryza sativa TGAGCAGGGATTCGCTGTAGGTATGCACGC
Ser124Asn GCGTGCATACCTACAGCGAATCCCTGCTCAGTTGCGTGAATAGCC | 1406
AGT-AAT TCCCTTGTTGAGTTATTTCCTGTGTTGCCGACCACTTTAATTTITAGT
GCCAAAGCAGTTAACTGTATGCCCAATAA
CACAGGAAATAACTCAA 1407
TTGAGTTATTTCCTGTG 1408
TI
DHPS GGGAGGCTATTCACGTAACTGAGCAGGGATTCGCTGTAGGTATG
Oryza sativa CACGCGGCTCTCCACATCAATCCTTACTACGG
Ala133val CCGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGC | 1410 16 GCA-GTA GAATCCCTGCTCAGTTACGTGAATAGCCTCCCTTGTTGAGTTACTT
CCTGTGTTGCCGACCACTTTAATTTTAGTGC
® TATTCACGTAACTGAGC 1411
GCTCAGTTACGTGAATA 1412
DHPS AGGGAGGCTATTCACACAACTGAGCAGGGATTCGCTGTAGGTAT
Oryza sativa GCACGCGGCTCTCCACATCAATCCTTACTACG
Ala133Thr CGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGCG | 1414
GCA-ACA AATCCCTGCTCAGTTGIGTGAATAGCCTCCCTTGTTGAGTTACTTC
CTGTGTTGCCGACCACTTTAATTTTAGTGCC
CTATTCACACAACTGAG 1415 : CTCAGTTGIGTGAATAG 1416
DHPS 1 AGGCAACACGGGAAATAACTCAACCAGAGAAGCTGTTCACGCGA iticum aestivum CAGAGCAGGGATTTGCTGTTGGCATGCATGC
Ser165Asn
AGT-AAT 11/4201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, )
Plant & Targeted Altering Oligos
Alteration
GCATGCATGCCAACAGCAAATCCCTGCTCTGTCGCGTGAACAGCT | 1418
TCTCTGGTTGAGTTATTTCCCGTGTTGCCTATCACTTTAATGTTGG
CTCCAAAGCAGTTAACAGTATGCCCGATGA
CACGGGAAATAACTCAA 1419
TTGAGTTAITTCCCGTG 1420 ys Overproduction AGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACCA | 1421
DHPS 1 GAGAAGCTGTTCACGTGACAGAGCAGGGATTTGCTGTTGGCATG
Triticum aestivum CATGCAGCTCTTCATGTCAATCCTTACTACGG
Ala174val CCGTAGTAAGGATTGACATGAAGAGCTGCATGCATGCCAACAGCA | 1422
GCG-GTG AATCCCTGCTCTGTCACGTGAACAGCTTCTCTGGTTGAGTTACTTC ® CCGTGTTGCCTATCACTTTAATGTTGGCTC
TGTTCACGTIGACAGAGC 1423
GCTCTGTCACGTGAACA 1424
DHPS 1 AGAGAAGCTGTTCACACGACAGAGCAGGGATTTGCTGTTGGCAT
Triticum aestivum GCATGCAGCTCTTCATGTCAATCCTTACTACG
Aia174Thr CGTAGTAAGGATTGACATGAAGAGCTGCATGCATGCCAACAGCAA | 1426
GCG-ACG ATCCCTGCTCTGTCGTIGTGAACAGCTTCTCTGGTTGAGTTACTTCC
CGTGTTGCCTATCACTTTAATGTTGGCTCC
CTGTTCACACGACAGAG 1427
CTCTGTCGIGTGAACAG 1428
DHPS 2 AGGCAACACGGGAAATAACTCAACTAGAGAAGCGATTCACGCTTC
Triticum aestivum AGAGCAGGGATTTGCTGTTGGCATGCATGC
Ser154Asn GCATGCATGCCAACAGCAAATCCCTGCTCTGAAGCGTGAATCGCT | 1430 @ AGT-AAT TCTCTAGTTGAGTTATTTCCCGTGTTGCCTATCACTTTAATGTTAGT
TCCAAAGCAGTTAACAGTGTGCCCGATGA
CACGGGAAATAACTCAA 1431
TTGAGTTAITTCCCGTG 1432 ys Overproduction | GAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACTA | 1433
DHPS 2 GAGAAGCGATTCACGTITTCAGAGCAGGGATTTGCTGTTGGCATGC
Triticum aestivum ATGCAGCTCTCCATGTCAATCCTTACTATGG
Ala163Val CCATAGTAAGGATTGACATGGAGAGCTGCATGCATGCCAACAGCA | 1434
GCT-GTT AATCCCTGCTCTGAAACGTGAATCGCTTCTCTAGTTGAGTTACTTC
CCGTGTTGCCTATCACTTTAATGTTAGTTC
GATTCACGITTCAGAGC 1435
GCTCTGAAACGTGAATC 1436
M201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Lys Overproduction GGAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAAC 43 : DHPS 2 AGAGAAGCGATTCACACTTCAGAGCAGGGATTTGCTGTTGGCATG
Triticum aestivum CATGCAGCTCTCCATGTCAATCCTTACTATG
Ala163Thr CATAGTAAGGATTGACATGGAGAGCTGCATGCATGCCAACAGCAA | 1438
GCT-ACT ATCCCTGCTCTGAAGIGTGAATCGCTTCTCTAGTTGAGTTACTTCC
CGTGTTGCCTATCACTTTAATGTTAGTICC
CGATTCACACTTCAGAG 1439
CTCTGAAGIGTGAATCG 1440 ys Overproduction ATTGGGCATACTGTGAACTGCTTTGGCTCTAGAATTAAAGTGA iE
DHPS TAGGCAACACAGGAAATAACTCAACCAGAGAAGCTGTTCACGCAA
® Coix lacryma-jobi CAGAGCAGGGATTTGCTGTTGGCATGCATG
Ser154Asn CATGCATGCCAACAGCAAATCCCTGCTCTGTTGCGTGAACAGCTT | 1442
AGT-AAT CTCTGGTTGAGTTATTTCCTGTGTTGCCTATCACTTTAATTCTAGA
GCCAAAGCAGTTCACAGTATGCCCAATGAG
CACAGGAAATAACTCAA 1443
TTGAGTTATTTCCTGTG
Lys Overproduction CTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACCA | 1445
DHPS GAGAAGCTGTTCACGTAACAGAGCAGGGATTTGCTGTTGGCATGC
Coix lacryma-jobi ATGCAGCTCTCCACATCAATCCTTACTATGG
Ala163Val CCATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCA | 1446
GCA-GTA AATCCCTGCTCTGTTACGTGAACAGCTTCTCTGGTTGAGTTACTTC
CTGTGTTGCCTATCACTTTAATTCTAGAGC
TGTTCACGTAACAGAGC
GCTCTGTTACGTGAACA 1448 ® ys Overproduction CTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAA 1449
DHPS AGAGAAGCTGTTCACACAACAGAGCAGGGATTTGCTGTTGGCATG
Coix lacryma-jobi CATGCAGCTCTCCACATCAATCCTTACTATG
Ala163Thr CATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCAA | 1450
GCA-ACA ATCCCTGCTCTGTTGTGTGAACAGCTTCTCTGGTTGAGTTACTTCC
TGTGTTGCCTATCACTTTAATTCTAGAGCC
CTGTTCACACAACAGAG 1451
CTCTGTTGIGTGAACAG 1452 ys Overproduction | TCATTGGTCACACAGTCAATTGI TTTGGAGGGTCCATCAAAGTCAT | 1453 . DHPS CGGGAACACTGGAAACAACTCCACAAGGGAAGCAATCCATGCAA
Nicotiana tabacum CTGAACAGGGATTTGCTGTAGGTATGCATGC
Ser136Asn GCATGCATACCTACAGCAAATCCCTGTTCAGTTGCATGGATTGCTT | 1454 "25 AGC-AAC CCCTTGTGGAGTTGITTCCAGTGTTCCCGATGACTTTGATGGACC
CTCCAAAACAATTGACTGTGTGACCAATGA
CACTGGAAACAACTCCA 1455 1412/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration [| TGGAGTTGITTCCAGTG 1456 : ys Overproduction | GAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCACAA] 145
DHPS GGGAAGCAATCCATGTAACTGAACAGGGATTTGCTGTAGGTATGC
Nicotiana tabacum ATGCAGCTCTTCACATTAATCCCTACTATGG
Ala145Val CCATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCA | 1458
GCA-GTA AATCCCTGTTCAGTTACATGGATTGCTTCCCTTGTGGAGTTGCTTC
CAGTGTTCCCGATGACTTTGATGGACCCTC
AATCCATGTAACTGAAC 1459
GTTCAGTTACATGGATT
® ys Overproduction 3GA TCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCAC | 1461
DHPS AAGGGAAGCAATCCATACAACTGAACAGGGATTTGCTGTAGGTAT
Nicotiana tabacum GCATGCAGCTCTTCACATTAATCCCTACTATG
Ala145Thr CATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCAA | 1462
GCA-ACA ATCCCTGTTCAGTTGTATGGATTGCTTCCCTTGTGGAGTTGCTTCC
AGTGTTCCCGATGACTTTGATGGACCCTCC
CAATCCATACAACTGAA
TTCAGTTGTATGGATTG 1464
Lys Overproduction | TTATAGGCCATACCGTTAACTGTTTTGGCGGAAGCATCAAAGTCAT | 1465
DHPS TGGAAACACTGGAAACAATTCGACTAGAGAAGCAATCCACGCGAC
Arabidopsis thaliana | TGAACAAGGATTCGCGGTTGGAATGCATGC
Ser142Asn GCATGCATTCCAACCGCGAATCCTTGTTCAGTCGCGTGGATTGCT | 1466
AGC-AAC TCTCTAGTCGAATTGTTTCCAGTGTTTCCAATGACTTTGATGCTTC
CGCCAAAACAGTTAACGGTATGGCCTATAA
CACTGGAAACAATTCGA 1467 ® TCGAATTGTTTCCAGTG 1468
DHPS GAGAAGCAATCCACGTGACTGAACAAGGATTCGCGGTTGGAATG
Co Arabidopsis thaliana | CATGCTGCTCTTCATATAAACCCTTACTATGG
Ala151Val CCATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCG | 1470
GCG-GTG AATCCTTGTTCAGTCACGTGGATTGCTTCTCTAGTCGAATTGCTTC
CAGTGTTTCCAATGACTTTGATGCTTCCGC
AATCCACGTGACTGAAC 1471
GTTCAGTCACGTGGATT 1472 :
DHPS AGAGAAGCAATCCACACGACTGAACAAGGATTCGCGGTTGGAAT
Arabidopsis thaliana | GCATGCTGCTCTTCATATAAACCCTTACTATG
Ala151Thr CATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCGA | 1474
GCG-ACG ATCCTTGTTCAGTCGIGTGGATTGCTTCTCTAGTCGAATTGCTTCC
AGTGTTTCCAATGACTTTGATGCTTCCGCC
1411201 01:47 pm : 03137009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ‘ Alteration
CAATCCACACGACTGAA 1475
TTCAGTCGIGTGGATTG 1476 ys Overproduction | TTATT ATACAGTCAACTGTTTTGGTGGGAAAATTAAGGTTAT | 1477
DHPS TGGAAATACTGGAAACAACTCCACCAGGGAAGCAATTCATGCCAC
Glycine max TGAGCAGGGTTTTGCTGTTGGAATGCATGC
Ser103Asn GCATGCATTCCAACAGCAAAACCCTGCTCAGTGGCATGAATTGCT | 1478
AGC-AAC TCCCTGGTGGAGTTGITTCCAGTATTTCCAATAACCTTAATTTICC
CACCAAAACAGTTGACTGTATGAGCAATAA
TACTGGAAACAACTCCA 1479 ® TGGAGTTGITTCCAGTA 1480 ys Overproduction |G AAAATTAAGGTTATTGGAAATA AAGCAACTCCACCA 481
DHPS GGGAAGCAATTCATGICACTGAGCAGGGTTTTGCTGTTGGAATGC
Glycine max ATGCTGCCCTTCACATAAACCCTTACTATGG
Ala112Vval CCATAGTAAGGGTTTATGTGAAGGGCAGCATGCATTCCAACAGCA | 1482
GCC-GTC AAACCCTGCTCAGTGACATGAATTGCTTCCCTGGTGGAGTTGCTT
CCAGTATTTCCAATAACCTTAATTTTCCCAC
AATTCATGICACTGAGC 1483
GCTCAGTGACATGAATT 1484
Lys Overproduction | GGTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACC | 1485
DHPS AGGGAAGCAATTCATACCACTGAGCAGGGTTTTGCTGTTGGAATG
Glycine max CATGCTGCCCTTCACATAAACCCTTACTATG
Ala112Thr CATAGTAAGGGTTTATGTGAAGGGCAGCATGCATTCCAACAGCAA | 1486
GCC-ACC AACCCTGCTCAGTGGTATGAATTGCTTCCCTGGTGGAGTTGCTTC
CAGTATTTCCAATAACCTTAATTTTCCCACC
® CAATTCATACCACTGAG 1487
CTCAGTGGTIATGAATTG 1488 rp Overproduction | CTTGCAGGAGACATATTTCAGATC TGAGTCAACGTTITGA 48
AS CGGCGAACATTTGCAAACCCCTTTGAAGTTTATAGAGCACTAAGA
Arabidopsis thaliana | GTTGTGAATCCAAGTCCGTATATGGGTTATT
Asp341Asn AATAACCCATATACGGACTTGGATTCACAACTCTTAGTGCTCTATA | 1490
GAC-AAC AACTTCAAAGGGGTITGCAAATGTTCGCCGCTCAAAACGTTGACT
CAGCACGATCTGAAATATGTCTCCTGCAAG
CATTTGCAAACCCCTTT 1491
AAAGGGGTITGCAAATG 1492 rp Overproduction | GCTGCAGGAGACATATTTCAAATCGTTTTAAGTCAACGCTTTGAGA | 1493 : AS GAAGAACATTTGCTAACCCATTTGAAGTGTACAGAGCATTAAGAAT
Nicotiana tabacum TGTGAATCCAAGCCCATATATGACTTACA
Asp326Asn
GAC-AAC 1112001 01:47 pm 03137.009 —~ [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
TGTAAGTCATATATGGGCTTGGATTCACAATTCTTAATGCTCTGTA | 1494
CACTTCAAATGGGTTAGCAAATGTTCTTCTCTCAAAGCGTTGACTT
AAAACGATTTGAAATATGTCTCCTGCAGC
CATTTGCTAACCCATTT 1495
AAATGGGTTAGCAAATG 1496
Trp Overproduction TAGCTGGTGACATTTTTCAAGTAGTCTTAAGCCAGCGTTTTGAGA | 1497
AS GGCGTACATTTGCTAACCCCTTTGAGGTGTACCGTGCATTGCGTA
Oryza sativa TTGTCAATCCTAGTCCTTATATGGCCTATC
Asp323Asn GATAGGCCATATAAGGACTAGGATTGACAATACGCAATGCACGGT | 1488
GAC-AAC ACACCTCAAAGGGGTTAGCAAATGTACGCCTCTCAAAACGCTGGC ® TTAAGACTACTTGAAAAATGTCACCAGCTAG
CATTTGCTAACCCCTTT 1499
AAAGGGGTTAGCAAATG 1500
Trp Overproduction CTTGCTGGTGACATATTCCAGATCGTACTAAGTCAGCGTTTTGAAA | 1501
AS GGCGAACGTTCGCAAACCCATTTGAAATCTATAGATCACTGAGGA
Ruta graveolens TTGTTAATCCAAGCCCATATATGACTTATT
Asp354Asn AATAAGTCATATATGGGCTTGGATTAACAATCCTCAGTGATCTATA | 1502
GAC-AAC GATTTCAAATGGGTITGCGAACGTTCGCCTTTCAAAACGCTGACTT
AGTACGATCTGGAATATGTCACCAGCAAG
CGTTCGCAAACCCATTT 1503 ___ |AMATGGGTITGCGAACG | 1504
Trp Overproduction CTGGCTGGGGACATATTCCAGCTTGTCCTAAGTCAGCGTTTTGAA | 1505
AS CGGCGAACATTTGCAAATCCATTTGAAGTCTACCGAGCATTGAGA
Catharanthus roseus | ATTGTCAACCCAAGTCCATATATGACTTATT
Asp354Asn AATAAGTCATATATGGACTTGGGTTGACAATTCTCAATGCTCGGTA | 1506 @® GAT-AAT GACTTCAAATGGATTTGCAAATGTTCGCCGTTCAAAACGCTGACTT
AGGACAAGCTGGAATATGTCCCCAGCCAG
CATTTGCAAATCCATTT 1607
AAATGGATTTGCAAATG 1508 1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Example 10
Production of modified starch in pants
A principal aim of biotechnalogy is the improvement of crop plants for food value, agriculture, and to produce a range of plant-derived raw materials. Along with oils, fats and proteins, polysaccharides constitute the main raw materials derived from plants, and apart from cellulose, the storage polymer starch is the most important polysaccharide raw material. Starch is derived from a range of plants, but maize is the most important cultivated plant for the production of starch.
The polysaccharide starch is a polymer made up of glucose molecules. However, starch is not a homogeneous raw material and is, in fact, a highly complex mixture of various types of molecules ® which differ from each other, for example, in their degree of polymerization and in the degree of branching of the glucose chains. For example, amylose-starch is a basically non-branched polymer made up of a-1,4-glycosidically branched glucose molecules, and amylopectin-starch is a complex mixture of variously branched glucose chains. The branching results from additional -1,6-glycosidic linkages. In plants from which starch is typically isolated, for example maize or potato, the starch is approximately 25% amylose-starch and 75% amylopectin-starch.
In maize, various mutants in starch metabolism are known, for example waxy, sugary, shrunken and opaque-2. In addition to producing a modified starch, these mutations greatly improve grain quality in maize, and thus expand the use of maize not only as the food but also for the important industrial materials in food chemistry. It would therefore be advantageous to be able readily to obtain mutants in ( these genes in particular maize genotypes as well as other plants. Such plants can be obtained, for example, using traditional breeding methods and through specific genetic modification by means of recombinant DNA techniques.
The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism. 137.008 NY SsuD
AMENDED SHEET
28-12-2001 01939797
Table 20
Genome-Altering Oligos Conferring Increased Starch
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration _ GE——
Increased Starch GAACTTGAGACTGAGAAAAGGGATCCAAGGACAGTTGCTTCCATT | 1509
ADPGPP ATTCTTGGAGGTGGAAAAGGAACTCGACTCTTTCCTCTCACAAAA
Arabidopsis thaliana | CGCCGCGCCAAGCCTGCCGTTCCTATCGGGG
Ala99Lys CCCCGATAGGAACGGCAGGCTTGGCGCGGCGTTTTGTGAGAGGA | 1510
GCA-AAA AAGAGTCGAGTTCCTITTCCACCTCCAAGAATAATGGAAGCAACT
GTCCTTGGATCCCTTTTCTCAGTCTCAAGTTC
GAGGTGGAAAAGGAACT 1511 ® AGTTCCTITTCCACCTC increased Starc AAAACGCCGCGCCAAGCCTGCCGTTCCTATCGGGGGAGCCTA 1513
ADPGPP AGGTTGATAGATGTACTAATGAGCAATTGTATTAACAGCGGAATCA
Arabidopsis thaliana | ACAAAGTCTACATACTCACACAATATAACTC
Pro127Leu GAGTTATATTGTGTGAGTATGTAGACTTTGTTGATTCCGCTGTTAA | 1514
CCA-CTA TACAATTGCTCATTAGTACATCTATCAACCTATAGGCTCCCCCGAT
AGGAACGGCAGGCTTGGCGCGGCGTTTTG
AGATGTACTAATGAGCA
TGCTCATTAGTACATCT 1516
Increased Starch TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC | 1517
ADPGPP TTACAACTCCAATAATCTTGGCTTTGGAGATGGCTATGTTGAGGTT
: Arabidopsis thaliana | CTTGCGGCCACTCAAACGCCAGGAGAATC
Gly162Asn GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA | 1518
GGA-AAT TCTCCAAAGCCAAGATTATTGGAGTTGTAAGCACGGGCTAAATGC
CTGTTCAATGATGCTGAGTTATATTGTGTGA
® CTCCAATAATCTTGGCT 1519
AGCCAAGATTATTGGAG 1520
ADPGPP TTACAACTCCAATAACCTTGGCTTTGGAGATGGCTATGTTGAGGTT
Arabidopsis thaliana | CTTGCGGCCACTCAAACGCCAGGAGAATC
Gly162Asn GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA | 1522
GGA-AAC TCTCCAAAGCCAAGGTTATTGGAGTTGTAAGCACGGGCTAAATGC
CTGTTCAATGATGCTGAGTTATATTGTGTGA
: CTCCAATAACCTTGGCT 1523
AGCCAAGGTTATTGGAG 1524 1412/01 01:47 pm 03137.009 — [NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos Sea) b __ Aeration |} 1
Increased Starch GTTTGAGAGAAGAAAGGTAGACCCGCAAAATGTGGCTGCAATCAT | 15256 | -
ADPGPP TCTAGGAGGAGGCAAAGGAGCTAAACTCTTCCCTCTTACAATGAG
Arabidopsis thaliana | AGCCGCAACACCAGCTGTAAATATTCATCTT
Asn100Lys AAGATGAATATTTACAGCTGGTGTTGCGGCTCTCATTGTAAGAGG | 1526
AAT-AAA GAAGAGTTTAGCTCCTTTGCCTCCTCCTAGAATGATTGCAGCCAC
ATTTTGCGGGTCTACCTTTCTTCTCTCAAAC
GGAGGCAAAGGAGCTAA 1527
TTAGCTCCITTGCCTCC 1528 [Increased Starch CTTGIGICTTCAAATTATGTTAGGTTCCT TGGATGCTACAG | 1528
ADPGPP GCTGATCGATATCCTGATGAGTAACTGTATTAACAGCTGCATCAAC
® Arabidopsis thaliana | AAGATATTTGTGCTGACACAGTTCAACTC
Pro128Leu GAGTTGAACTGTGTCAGCACAAATATCTTGTTGATGCAGCTGTTAA | 1530
CCG-CTG TACAGTTACTCATCAGGATATCGATCAGCCTGTAGCATCCACCAA
CAGGAACCTAACATAATTTGAAGACACAAG
CGATATCCIGATGAGTA 1531
TACTCATCAGGATATCG
Increased Starch TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC | 1533
ADPGPP TTATTTTGGGAATAATATAAACTTTGGAGGTGGTTTCGTAGAGGTA
Arabidopsis thaliana | CAAACACTATGACAATAATAACTCTCAGC
Gly163Asn GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC | 1534
GGC-AAT CTCCAAAGTTTATATTATTCCCAAAATAAGTTCGTGCTAAATGTCG
ATTAAGGGAAGCTGAGTTGAACTGTGTCA
TGGGAATAATATAAACT
AGTTTATATTATTCCCA 1536 ®
ADPGPP TTATTTTGGGAATAACATAAACTTTGGAGGTGGTTTCGTAGAGGTA
Arabidopsis thaliana | CAAACACTATGACAATAATAACTCTCAGC
Gly163Asn GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC | 1538
GGC-AAC CTCCAAAGTTTATGTTATTCCCAAAATAAGTTCGTGCTAAATGTCG
ATTAAGGGAAGCTGAGTTGAACTGTGTCA
TGGGAATAACATAAACT 1539
AGTTTATGITATTCCCA 1540 : ADPGPP TTCTAGGTGGTGGTAAAGGAACTCGTCTTTTTCCTCTTACAAGCA
Lycopersicon GAAGAGCTAAACCAGCTGTTCCTATTGGTGG esculentum CCACCAATAGGAACAGCTGGTTTAGCTCTTCTGCTTGTAAGAGGA | 1542
Val94Lys AAAAGACGAGTTCCTTTACCACCACCTAGAATGACAGAGGCAACA
GTT-AAA GCITTTGGATCTGCCGTTGGTTGTTCCTCAA
TGGTGGTAAAGGAACTC 1543 1112/01 01:47 pm 03137.009 — {NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
IH GAGTTCCTTTACCACCA 1544 ncreased Starch CAAGCAGAAGAGCTAAACCAGCTGTTCCTATIGGTGGTTGTTAC 545
ADPGPP GGCTAATTGATGTACAAATGAGTAACTGCATTAACAGTGGCATAC
Lycopersicon GGAAAATTTTCATCTTAACACAGTTCAATTC esculentum GAATTGAACTGTGTTAAGATGAAAATTTTCCGTATGCCACTGTTAA | 1546
Pro122Leu TGCAGTTACTCATTIGTACATCAATTAGCCGGTAACAACCACCAAT
CCA-CAA AGGAACAGCTGGTTTAGCTCTTCTGCTTG
TGATGTACAAATGAGTA 1547
TACTCATTIGTACATCA 1548 [ Increased Starch CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA | 1549
ADPGPP TAATTTTGGAAATAATGTGGGTTTTGGAGATGGATTTGTGGAGGTT
Lycopersicon TTAGCTGCAACCCAGACTCCAGGGGATGC esculentum GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA | 1550
Gly158Asn TCTCCAAAACCCACATTATTTCCAAAATTATACGTGCGGGCAAGGT
GGA-AAT GACGATTGAGGGAAAAGGAATTGAACTGTG
TGGAAATAATGTGGGTT 1551
AACCCACATTATTTCCA
Increased Starch ACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA 563
ADPGPP TAATTTTGGAAATAACGTGGGTTTTGGAGATGGATTTGTGGAGGT
Lycopersicon TTTAGCTGCAACCCAGACTCCAGGGGATGC esculentum GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA | 1554
Gly158Asn TCTCCAAAACCCACGTTATTTCCAAAATTATACGTGCGGGCAAGGT
GGA-AAC GACGATTGAGGGAAAAGGAATTGAACTGTG
PS TGGAAATAACGTGGGTT 1555
AACCCACGTTATTTCCA 1556
Increased Starch ACGTAGATTTGGAAAAAAGAGACCCAAGTACAGTTGTAGCAATTAT 557
ADPGPP ACTAGGTGGAGGTAAAGGAACTCGTCTCTTCCCTCTCACCAAGCG
Cicer arietinum ACGAGCCAAGCCTGCTGTTCCAATTGGAGG
Ala101Lys CCTCCAATTGGAACAGCAGGCTTGGCTCGTCGCTTGGTGAGAGG | 1558
GCT-AAA GAAGAGACGAGTTCCITTACCTCCACCTAGTATAATTGCTACAACT
GTACTTGGGTCTCTTTTTTCCAAATCTACGT
TGGAGGTAAAGGAACTC 1659
GAGTTCCTITTACCTCCA 1560 1112/01 01:47 pm 03137.009 — [NY]793550.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ) Alteration increased Starch CAAGCGACGAGCCAAGCCTGCTGITCCAATTGGAGGTGCTTATA | 156 : ADPGPP GGCTGATAGATGTACTAATGAGTAACTGCATCAATAGTGGGATCA
Cicer arietinum ACAAAGTATACATTCTCACTCAATTTAATTC
Pro129Leu GAATTAAATTGAGTGAGAATGTATACTTTGTTGATCCCACTATTGA | 1562
CCA-CTA TGCAGTTACTCATTAGTACATCTATCAGCCTATAAGCACCTCCAAT
TGGAACAGCAGGCTTGGCTCGTCGCTTGG
AGATGTACTAATGAGTA
TACTCATTAGTACATCT _ 1564
Increased Starch CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA | 1565
ADPGPP TAACTCTGGTACTAATGTCACTTTTGGAGATGGCTATGTTGAGGTT
® Cicer arietinum CTTGCAGCAACTCAAACTCCAGGGGAGCA
Gly165Asn TGCTCCCCTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA | 1566
GGA-AAT TCTCCAAAAGTGACATTAGTACCAGAGTTATAAGCACGTGCAATAT
GCCTGTTGAGTGAGGCTGAATTAAATTGAG
TGGTACTAATGTCACTT
AAGTGACATTAGTACCA 1568
ADPGPP TAACTCTGGTACTAACGTCACTTTTGGAGATGGCTATGTTGAGGTT
Cicer arietinum CTTGCAGCAACTCAAACTCCAGGGGAGCA
Gly165Asn TGCTCCCCTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA | 1570
GGA-AAC TCTCCAAAAGTGACGTTAGTACCAGAGTTATAAGCACGTGCAATAT
GCCTGTTGAGTGAGGCTGAATTAAATTGAG
TGGTACTAACGTCACTT 1571
AAGTGACGTTAGTACCA
® ADPGPP ATACTGCCAGGCGGTAAAGGGACACACCTATTCCCTCTCACCAAT
Ipomoea batatas CGAGCTGCAACCCCTGCTGTTCCACTTGGAG
Ala%4Lys CTCCAAGTGGAACAGCAGGGGTTGCAGCTCGATTGGTGAGAGGG | 1574
GCA-AAA AATAGGTGTGTCCCTITACCGCCTGGCAGTATGATTGCAGCCACA
TTCTTAGGGTTTGCCCGACGCCTCTCCAATAT
CAGGCGGTAAAGGGACA 1575
TGTCCCTITACCGCCTG 1576 ncreased Starch AATCGAGCTGCAA CTGITCCACTTGGAGGATGCTATA | 1577
ADPGPP GGTTGATCGACATTCTAATGAGCAACTGCATCAACAGCGGGGTTA
Ipomoea batatas ACAAGATCTTTGTGCTGACCCAGTTCAATTC
Pro122Leu GAATTGAACTGGGTCAGCACAAAGATCTTGTTAACCCCGCTGTTG | 1578 "25 CCA-CTA ATGCAGTTGCTCATTAGAATGTCGATCAACCTATAGCATCCTCCAA
GTGGAACAGCAGGGGTTGCAGCTCGATTGG
CGACATTCTAATGAGCA 1579 11/12/01 01:47 pm 03137.009 — [NY)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration 1TGCTCATTAGAATGTCG | 1580
Increased Starch TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC | 1581
ADPGPP CGTCTTTGGCAATAATGTGAGCTTCGGAGATGGATTTGTTGAGGT
Ipomoea batatas GCTGGCTGCAACCCAAACACAAGGGGAAAC
Gly157Asn GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA | 1582
GGT-AAT TCTCCGAAGCTCACATTATTGCCAAAGACGGTACGGGAAATGTGA
CGGTTAAGAGAAGCTGAATTGAACTGGGTCA
TGGCAATAATGTGAGCT 1583
AGCTCACATTATTGCCA 1584
Increased Starch TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC | 1585 @® ADPGPP CGTCTTTGGCAATAACGTGAGCTTCGGAGATGGATTTGTTGAGGT
Ipomoea batatas GCTGGCTGCAACCCAAACACAAGGGGAAAC
Gly157Asn GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA | 1586
GGT-AAC TCTCCGAAGCTCACGTTATTGCCAAAGACGGTACGGGAAATGTGA
CGGTTAAGAGAAGCTGAATTGAACTGGGTCA
TGGCAATAACGTGAGCT 1587
AGCTCACGTTATTGCCA
Increased Starch CATTCCGGAGGAACTTTGCGGATCCAAATGAGGTTGCTGCTGTTA | 1589
ADPGPP TATTGGGTGGTGGCAAAGGGACTCAACTTTTTCCTCTCACAAGCA
Oryza sativa CAAGGGCCACGCCTGCTGTTCCTATTGGAGG
Thr36Lys CCTCCAATAGGAACAGCAGGCGTGGCCCTTGTGCTTGTGAGAGG | 1590
ACC-AAA AAAAAGTTGAGTCCCTTTGCCACCACCCAATATAACAGCAGCAAC
CTCATTTGGATCCGCAAAGTTCCTCCGGAATG
TGGTGGCAAAGGGACTC 1591
PY GAGTCCCITTGCCACCA ncreased Starc AAGCACAAGGGCCACGCCTGCTGTTCCTATTGGAGGATGCTATA 93
ADPGPP GGCTTATCGATATCCTCATGAGCAACTGTTTCAACAGTGGCATAAA
Oryza sativa CAAGATATTCATAATGACTCAATTCAACTC
Pro124Leu GAGTTGAATTGAGTCATTATGAATATCTTGTTTATGCCACTGTTGA | 1594
CCC-CTC AACAGTTGCTCATGAGGATATCGATAAGCCTATAGCATCCTCCAAT
AGGAACAGCAGGCGTGGCCCTTGTGCTTG
CGATATCCICATGAGCA 1595
TGCTCATGAGGATATCG 1596
Increased Starch TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC | 1597
ADPGPP GTACCTTGGTGGTAATATCAACTTTACTGATGGTTCTGTTGAGGTA
Oryza sativa TTAGCCGCTACACAAATGCCTGGGGAGGC
Gly159Asn GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA | 1598
GGA-AAT TCAGTAAAGTTGATATTACCACCAAGGTACGTACGATGAATGTGA
CGATTAAGAGATGCTGAGTTGAATTGAGTCA
11712001 01:47 pm 03137.009 — [N)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ’ Alteration
TGGTGGTAATATCAACT 1599
AGTTGATATTACCACCA 1600 ncreased Starc TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC
ADPGPP GTACCTTGGTGGTAACATCAACTTTACTGATGGTTCTGTTGAGGTA
Oryza sativa TTAGCCGCTACACAAATGCCTGGGGAGGC
Gly159Asn GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA | 1602
GGA-AAC TCAGTAAAGTTGATGTTACCACCAAGGTACGTACGATGAATGTGA
CGATTAAGAGATGCTGAGTTGAATTGAGTCA
TGGTGGTAACATCAACT 1603
AGTTGATGTTACCACCA
®
ADPGPP ATACTCGGCGGCGGCAAAGGGACTCAGCTCTTCCCACTCACGAG
Triticum aestivum CACAAGGGCCACACCTGCTGTTCCTATTGGAGG
Thr80Lys CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTCGTGAGTGG | 1606
ACC-AAA GAAGAGCTGAGTCCCTTTGCCGCCGCCGAGTATGACGGCCGCAA
CCTCGTTCGGATCGCTTAATCCTCCTGAAGGAC
CGGCGGCAAAGGGACTC
GAGTCCCITTGCCGCCG 1608
ADPGPP GGCTCATCGACATTCICATGAGCAACTGCTTCAACAGTGGCATCA
Triticum aestivum ACAAGATATTCGTCATGACCCAGTTCAACTC
Pro108Leu GAGTTGAACTGGGTCATGACGAATATCTTGTTGATGCCACTGTTG | 1610
CCC-CTC AAGCAGTTGCTCATGAGAATGTCGATGAGCCTGTAACATCCTCCA
ATAGGAACAGCAGGTGTGGCCCTTGTGCTCG
CGACATTCTCATGAGCA 1611 ® TGCTCATGAGAATGTCG 1612
Increased Starch TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA | 1613
ADPGPP CCTACCTCGGCGGGAATATCAATTTCACTGATGGATCCGTTGAGG
Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC
Gly143Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC | 1614
GGA-AAT ATCAGTGAAATTGATATTCCCGCCGAGGTAGGTGCGGTGAATGTG
ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA
CGGCGGGAATATCAATT 1615
AATTGATATTCCCGCCG 1616 : ADPGPP CCTACCTCGGCGGGAACATCAATTTCACTGATGGATCCGTTGAGG iticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC
Gly143Asn
GGA-AAC 111201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC | 1618 ! ATCAGTGAAATTGATGTTCCCGCCGAGGTAGGTGCGGTGAATGTG
ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA
CGGCGGGAACATCAATT 1619
AATTGATGTTCCCGCCG 1620
ADPGPP TTTTGGGTGGAGGCAAAGGAGTTCAACTCTTTCCTCTGACAAGCA
Oryza sativa CAAGGGCTACCCCCGCTGTTCCTGTTGGAGG
Thr95Lys CCTCCAACAGGAACAGCGGGGGTAGCCCTTGTGCTTGTCAGAGG | 1622
ACT-AAA AAAGAGTTGAACTCCITTGCCTCCACCCAAAATGACAGCAGAAAC ® GTGGCTTGCATCAGCATAATTCTTTCGGGAGG
TGGAGGCAAAGGAGTTC 1623
GAACTCCTTTGCCTCCA 1624
Tnoreased Starch | CAAGCAGAAGGGCTACCCCCGCTGTTCCIGTTGGAGGATGTTACA | 1625
ADPGPP GGCTTATTGACATCCITATGAGCAATTGCTTCAATAGCGGAATAAA
Oryza sativa TAAAATATTTGTGATGACTCAGTTCAATTC
Pro123Leu GAATTGAACTGAGTCATCACAAATATTTTATTTATTCCGCTATTGAA | 1626
CCT-CTT GCAATTGCTCATAAGGATGTCAATAAGCCTGTAACATCCTCCAACA
GGAACAGCGGGGGTAGCCCTTGTGCTTG
TGACATCCITATGAGCA 1627
TGCTCATAAGGATGTCA
Increased Starch TGACTCAGTTCAATTCTGCTTCTCTTAATCGCCATATCCATCATACA| 1629
ADPGPP TACCTTGGTGGGAATATCAACTTTACTGATGGGTCTGTGCAGGTA
Oryza sativa TTGGCTGCTACACAAATGCCTGACGAACC
Gly158Asn GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA | 1630 ® GGG-AAT TCAGTAAAGTTGATATTCCCACCAAGGTATGTATGATGGATATGGC
GATTAAGAGAAGCAGAATTGAACTGAGTCA
TGGTGGGAATATCAACT 1631
AGTTGATATTCCCACCA 1632
ADPGPP TACCTTGGTGGGAACATCAACTTTACTGATGGGTCTGTGCAGGTA
Oryza sativa TTGGCTGCTACACAAATGCCTGACGAACC
Gly158Asn GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA | 1634
GGG-AAC TCAGTAAAGTTGATGITCCCACCAAGGTATGTATGATGGATATGG
CGATTAAGAGAAGCAGAATTGAACTGAGTCA
TGGTGGGAACATCAACT 1635
AGTTGATGTTCCCACCA 1636 1112/01 01:47 pm 03137.003 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ) Alteration
ADPGPP ATACTCGGCGGTGGCAAAGGGACTCAGCTCTTCCCTCTCACAAG
Triticum aestivum CACAAGGGCCACACCTGCTGTTCCTATTGGAGG
Thr99Lys CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTTGTGAGAGG | 1638
ACC-AAA GAAGAGCTGAGTCCCITTGCCACCGCCGAGTATGACGGCCGCGA
CCTCGTTCGGATCGGCGTAATTCCTGCGGAAGG
CGGTGGCAAAGGGACTC 1639
GAGTCCCITTGCCACCG 1640 oreased Starch | CAAGCACAAGGGCCACACCTGCTGTTCOTATT GGAGGATGTTAGA | 1641
ADPGPP GGCTCATCGATATTCTICATGAGCAACTGCTTCAATAGTGGCATCAA
® Triticum aestivum CAAGATATTCGTCATGACGCAGTTCAACTC
Pro127Leu GAGTTGAACTGCGTCATGACGAATATCTTGTTGATGCCACTATTGA | 1642
CCC-CTC AGCAGTTGCTCATGAGAATATCGATGAGCCTGTAACATCCTCCAA
TAGGAACAGCAGGTGTGGCCCTTGTGCTTG
CGATATTCICATGAGCA
TGCTCATGAGAATATCG | 1644
Increased Starch TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA | 1645
ADPGPP CCTACCTCGGCGGGAATATCAATTTCACTGATGGATCTGTTGAGG
Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC
Gly162Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC 1646
GGA-AAT ATCAGTGAAATTGATATTICCCGCCGAGGTAGGTGCGGTGAATGTG
ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA
CGGCGGGAATATCAATT
AATTGATATTICCCGCCG
® [Tncreased Stare ACGCAGTTCAACTC CTCTCTTAATCGTCACATTCACCGCA | 1649
ADPGPP CCTACCTCGGCGGGAACATCAATTTCACTGATGGATCTGTTGAGG
Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC
Gly162Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC 1650
GGA-AAC ATCAGTGAAATTGATGTTCCCGCCGAGGTAGGTGCGGTGAATGTG
ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA
CGGCGGGAACATCAATT 1651
AATTGATGTTCCCGCCG 1652
ADPGPP TTTTGGGTGGTGGTAAAGGGACTCAGCTTTTCCCTCTCACAAGCA
Zea mays CAAGGGCCACCCCTGCTGTTCCTATTGGAGG
Thr96Lys CCTCCAATAGGAACAGCAGGGGTGGCCCTTGTGCTTGTGAGAGG | 1654
ACC-AAA GAAAAGCTGAGTCCCTTTACCACCACCCAAAATGACGGCAGCGAC
TTCATTAGGATCAGCATAATTCCTCCGAAAAG
TGGTGGTAAAGGGACTC 1655 11/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET i2-2001 Uivog: oi!
Phenotype, Gene,
Plant & Targeted Altering Oligos SEQ : D . \ NO:
Alteration
TT] GAGTCCCTTTACCACCA 1656
Increased Starch CAAGCACAA CACCCCTGCT ATTGGAGGATGTTACA 657
ADPGPP GGCTTATTGATATCCTCATGAGCAACTGTTTCAACAGTGGCATAAA
Zea mays CAAGATATTTGTTATGACTCAGTTCAACTC
Pro124Leu GAGTTGAACTGAGTCATAACAAATATCTTGTTTATGCCACTGTTGA | 1658
CCC-CTC AACAGTTGCTCATGAGGATATCAATAAGCCTGTAACATCCTCCAAT
AGGAACAGCAGGGGTGGCCCTTGTGCTTG
TGATATCCICATGAGCA 1659
TGCTCATGAGGATATCA 1660 » Increased Starch TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC | 1661
ADPGPP CTATCTTGGTGGGAATATCAACTTCACTGATGGATCTGTTGAGGT
Zea mays GCTGGCTGCAACACAAATGCCTGGGGAGGC
Gly159Asn GCCTCCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA | 1662
GGG-AAT TCAGTGAAGTTGATATTCCCACCAAGATAGGTACGATGAATGTGA
CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA
TGGTGGGAATATCAACT
AGTTGATATICCCACCA ncreased Starch ACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATICA AC | 1665
ADPGPP CTATCTTGGTGGGAACATCAACTTCACTGATGGATCTGTTGAGGT
Zea mays GCTGGCTGCAACACAAATGCCTGGGGAGGC
Gly159Asn GCCTCCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA | 1666
GGG-AAC TCAGTGAAGTTGATGTTCCCACCAAGATAGGTACGATGAATGTGA
CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA
TGGTGGGAACATCAACT 1667 ® AGTTGATGTTCCCACCA 1668
Increased Starc CTTGAGA AAAAGAAGGGCGATGCAAGGACAGTAGTAGCAAT 0
ADPGPP CATTCTAGGAGGGGGAAAGGGAACTCGTCTTTTCCCCCTCACCAA
Solanum tuberosum | ACGTCGTGCTAAGCCTGCCGTTCCAATGGGAG
Ala58Lys CTCCCATTGGAACGGCAGGCTTAGCACGACGTTTGGTGAGGGGG | 1670
GCG-AAG AAAAGACGAGTTCCCTTTCCCCCTCCTAGAATGATTGCTACTACTG
TCCTTGCATCGCCCTTCTTTTGCCTCTCAAG
GAGGGGGAAAGGGAACT 1671
AGTTCCCTITCCCCCTC 1672 ) Increased Starc CCAAACGTCGTGCTAAGCCTGCCGTTCCAATGGGAGGAGCATATA | 1673
ADPGPP GGCTAATTGATGTACTAATGAGCAACTGTATTAACAGTGGCATCAA
Solanum tuberosum | CAAAGTATACATTCTCACTCAATTCAACTC
Pra86leu GAGTTGAATTGAGTGAGAATGTATACTTTGTTGATGCCACTGTTAA | 1674
CCA-CTA TACAGTTGCTCATTAGTACATCAATTAGCCTATATGCTCCTCCCAT
TGGAACGGCAGGCTTAGCACGACGTTTIGG
1411201 01:47 pm 03137.009 — (NY}793558.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ; Alteration
TGATGTACTAATGAGCA 1675 ‘ TGCTCATTAGTACATCA 1676 ncreased Starc TCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA 677
ADPGPP CAACTTTGGCAATAATGTCACATTCGAGAGTGGCTATGTCGAGGT
Solanum tuberosum | CTTAGCAGCAACTCAAACACCAGGTGAATT
Gly122Asn AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA | 1678
GGG-AAT CTCTCGAATGTGACATTATTGCCAAAGTTGTAAGCACGAGCTATAT
GCCTGTTAAGTGAGGCTGAGTTGAATTGAG
TGGCAATAATGTCACAT 1679 ® ATGTGACATTATTGCCA 1680
Increased Starc CAATTCAACTCA TCACTTAACAGGCATATAGCT: CTTA | 1681
ADPGPP CAACTTTGGCAATAACGTCACATTCGAGAGTGGCTATGTCGAGGT
Solanum tuberosum | CTTAGCAGCAACTCAAACACCAGGTGAATT
Gly122Asn AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA | 1682
GGG-AAC CTCTCGAATGTGACGTTATTGCCAAAGTTGTAAGCACGAGCTATAT
GCCTGTTAAGTGAGGCTGAGTTGAATTGAG
TGGCAATAACGTCACAT 1683
ATGTGACGTTATTGCCA 1684 ncreased Starc TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT 68
ADPGPP GCTGGGTGGTGGTAAAGGGACTCGCCTCTTTCCTCTTACTAGCAG
Beta vulgaris GAGAGCTAAGCCAGCAGTGCCAATTGGAGG
AlaS8Lys CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA | 1686
GCT-AAA AAGAGGCGAGTCCCTTTACCACCACCCAGCACAATTGCAGCCACA
TTTTTTGGGTCAGCTTTTGGAGATTCAAATA
® TGGTGGTAAAGGGACTC 1687
GAGTCCCTTTACCACCA 1688
Increased Starc TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTC CAATTGT [ 1689
ADPGPP GCTGGGTGGTGGTAACGGGACTCGCCTCTTTCCTCTTACTAGCAG
Beta vulgaris GAGAGCTAAGCCAGCAGTGCCAATTGGAGG
Ala98Lys CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA | 1690
GCT-AAC AAGAGGCGAGTCCCGTTACCACCACCCAGCACAATTGCAGCCAC
ATTTTTTGGGTCAGCTTTTGGAGATTCAAATA
TGGTGGTAACGGGACTC 1691 . GAGTCCCGTTACCACCA 1692
Increased Starch TAGCAGGAGAGCTAAGCCAGCAGTGCCAATTGGAGGGTGTTAC 6
ADPGPP AGGCTGATTGATGTGCTTATGAGCAACTGCATCAACAGTGGCATT
Bata vulgar AGAAAGATTTTCATTCTTACCCAGTTCAATTC
Pro126Leu
CCT-CTT 141201 01:47pm 03137.009 — [NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
GAATTGAACTGGGTAAGAATGAAAATCTTTCTAATGCCACTGTTGA | 1694
TGCAGTTGCTCATAAGCACATCAATCAGCCTGTAACACCCTCCAA
TTGGCACTGCTGGCTTAGCTCTCCTGCTAG
TGATGTGCTTATGAGCA : 1695
TGCTCATAAGCACATCA 1696 ncreased Starc AGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA | 1697
ADPGPP TAATTTTGGAGATAATGTGAATTTTGGGGATGGCTTTGTGGAGGTT
Beta vulgaris TTTGCTGCTACACAAACACCTGGAGAATC
Gly162Asn GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA | 1698
GGT-AAT TCCCCAAAATTCACATTATCTCCAAAATTATAGGTTCGAGCAAGAT ® GACGATTAAGCGAAAACGAATTGAACTGGG
TGGAGATAATGTGAATT 1699
AATTCACATTATCTCCA 1700 ncreased Starch AGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA 701
ADPGPP TAATTTTGGAGATAACGTGAATTTTGGGGATGGCTTTGTGGAGGT
Beta vulgaris TTTTGCTGCTACACAAACACCTGGAGAATC
Gly162Asn GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA | 1702
GGT-AAC TCCCCAAAATTCACGTTATCTCCAAAATTATAGGTTCGAGCAAGAT
GACGATTAAGCGAAAACGAATTGAACTGGG
TGGAGATAACGTGAATT 1703
AATTCACGTTATCTCCA
14/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Table 21
Oligonucleotides to produce plants with waxy starch
Phenotype, Gene, , Plant & Targeted Altering Oligos
Alteration
Waxy starch GAATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTT | 1705
GBSS CTTCTAACTTTGTGTGAAGAACTTCACTTTTCAACAATCATGGTGCT
Arabidopsis thaliana {TCTTCATGCTCTGATGTCGCTCAGATTAC
Ser12Term GTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGTTG | 1706
TCA-TGA AAAAGTGAAGTTCTTCACACAAAGTTAGAAGAAGCAGTCACAGTTG
CCATTATGAACTACCCGTTTACCTGGATTC
CTTTGTGTGAAGAACTT
® AAGTTCTTCACACAAAG 1708
Waxy starch ATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTT | 1709
GBSS CTAACTTTGTGTCATGAACTTCACTTTTCAACAATCATGGTGCTTCT
Arabidopsis thaliana |TCATGCTCTGATGTCGCTCAGATTACCT
Arg13Term AGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGT | 1710 16 AGA-TGA TGAAAAGTGAAGTTCATGACACAAAGTTAGAAGAAGCAGTCACAGT
TGCCATTATGAACTACCCGTTTACCTGGAT
TTGTGTCATGAACTTCA
TGAAGTTCATGACACAA 1712
Waxy starch TAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTTCTAACTT | 1713
GBSS TGTGTCAAGAACTTGACTTTTCAACAATCATGGTGCTTCTTCATGCT
Arabidopsis thaliana |CTGATGTCGCTCAGATTACCTTAAAAGG
Ser15Term CCTTTTAAGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCAT | 1714
TCA-TGA GATTGTTGAAAAGTCAAGTTCTTGACACAAAGTTAGAAGAAGCAGT ® CACAGTTGCCATTATGAACTACCCGTTTA
AAGAACTTGACTTTTCA 1715
TGAAAAGTCAAGTTCTT 1716
Waxy starch TGACTGCTTCTTCTAACTTTGTGTCAAGAACTTCACTTTTCAACAAT | 1717
GBSS CATGGTGCTTCTTGATGCTCTGATGTCGCTCAGATTACCTTAAAAG
Arabidopsis thaliana |GCCAATCCTTGACTCATTGTGGGTTAAG
Ser24Term CTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATCTGAG | 1718
TCA-TGA CGACATCAGAGCATCAAGAAGCACCATGATTGTTGAAAAGTGAAG
TTCTTGACACAAAGTTAGAAGAAGCAGTCA
: TGCTTCTTGATGCTCTG 1719
CAGAGCATCAAGAAGCA 1720 11/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Waxy starch TGCTTCTTCTAACTTTGTGTCAAGAACTTCACTTTTCAACAATCATG | 1721
GBSS GTGCTTCTTCATGATCTGATGTCGCTCAGATTACCTTAAAAGGCCA
) Arabidopsis thaliana |ATCCTTGACTCATTGTGGGTTAAGGTCA
Cys25Term TGACCTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATC | 1722
TGC-TGA TGAGCGACATCAGATCATGAAGAAGCACCATGATTGTTGAAAAGT
GAAGTTCTTGACACAAAGTTAGAAGAAGCA
TCTTCATGATCTGATGT 1723
ACATCAGATCATGAAGA
Waxy starch GTAACAGCTTCACAGTTGGTGTCACATGTCCATGGTGGAGCAACG | 1725
GBSS TCTTCACCGGATACTTAAACAAACTTGGCCCAGGTTGGCCTCAGG
® Antirrhinum majus AACCAGCAATTCACTCACAATGGGTTGAGAT
Lys24Term ATCTCAACCCATTGTGAGTGAATTGCTGGTTCCTGAGGCCAACCTG| 1726
AAA-TAA GGCCAAGTTTGTTTAAGTATCCGGTGAAGACGTTGCTCCACCATG
GACATGTGACACCAACTGTGAAGCTGTTAC
CGGATACTTAAACAAAC 1727
GTTTGTTTAAGTATCCG 1728
Waxy starch CACAGTTGGTGTCACATGTCCATGGTGGAGCAACGTCTTCACCGG | 1729
GBSS ATACTAAAACAAACTAGGCCCAGGTTGGCCTCAGGAACCAGCAAT
Antirrhinum majus TCACTCACAATGGGTTGAGATCAATAAACAT
Leu27Term ATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTTCCTGA | 1730
TTG-TAG GGCCAACCTGGGCCTAGTTTGTTTTAGTATCCGGTGAAGACGTTG
CTCCACCATGGACATGTGACACCAACTGTG
AACAAACTAGGCCCAGG 1731
CCTGGGCCTAGTTTGTT 1732 ® Waxy starch TTGGTGTCACATGTCCATGGTGGAGCAACGTCTTCACCGGATACT | 1733
GBSS AAAACAAACTTGGCCTAGGTTGGCCTCAGGAACCAGCAATTCACT
Antirrhinum majus CACAATGGGTTGAGATCAATAAACATGGTTG
GIn29Term CAACCATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTT 1734
CAG-TAG CCTGAGGCCAACCTAGGCCAAGTTTGTTTTAGTATCCGGTGAAGA
CGTTGCTCCACCATGGACATGTGACACCAA
ACTTGGCCTAGGTTGGC 1735
GCCAACCTAGGCCAAGT 1736
Waxy starch GGTGGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAG | 1737
GBSS GTTGGCCTCAGGAACTAGCAATTCACTCACAATGGGTTGAGATCA i Antirrhinum majus ATAAACATGGTTGATAAGCTTCAAATGAGGA
GIn35Term TCCTCATTTGAAGCTTATCAACCATGTTTATTGATCTCAACCCATTG | 1738
CAG-TAG TGAGTGAATTGCTAGTTCCTGAGGCCAACCTGGGCCAAGTTTGTTT
TAGTATCCGGTGAAGACGTTGCTCCACC
1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ) Alteration
TCAGGAACTAGCAATTC 1739
GAATTGCTAGTTCCTGA 1740
Waxy starch GGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAGGTT | 1741
GBSS GGCCTCAGGAACCAGTAATTCACTCACAATGGGTTGAGATCAATAA
Antirrhinum majus ACATGGTTGATAAGCTTCAAATGAGGAACA
GIn36Term TGTTCCTCATTTGAAGCTTATCAACCATGTTTATTGATCTCAACCCA | 1742
CAA-TAA TTGTGAGTGAATTACTGGTTCCTGAGGCCAACCTGGGCCAAGTTT
GTTTTAGTATCCGGTGAAGACGTTGCTCC
GGAACCAGTAATTCACT 1743 ® AGTGAATTACTGGTTCC
Waxy starch GTGATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTG | 1745
GBSS GGGGTGCCACTTCTIGAGAATCAAAAGTGGGGTTGGGTCAATTAG
Ipomoea batatas CCCTGAGGAGCCAAGCTGTGACTCACAATG
Gly20Term CATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCAACC | 1746
GGA-TGA CCACTTTTGATTCTCAAGAAGTGGCACCCCCACAGACATGAGAAA
CAAAGTGTGAGGCAGTTATAGTCGCCATCAC
CCACTTCTIGAGAATCA
TGATTCTCAAGAAGTGG 1748
Waxy starch ATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGG | 1749
GBSS GTGCCACTTCTGGATAATCAAAAGTGGGGTTGGGTCAATTAGCCC
Ipomoea batatas TGAGGAGCCAAGCTGTGACTCACAATGGGT
Glu21Term ACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCA | 1750
GAA-TAA ACCCCACTTTTGATTATCCAGAAGTGGCACCCCCACAGACATGAG ® AAACAAAGTGTGAGGCAGTTATAGTCGCCAT
CTTCTGGATAATCAAAA 1751
TTTTGATTATCCAGAAG
Waxy starch CGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGC | 1753
GBSS CACTTCTGGAGAATGAAAAGTGGGGTTGGGTCAATTAGCCCTGAG
Ipomoea batatas GAGCCAAGCTGTGACTCACAATGGGTTGAG
Ser22Term CTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGA | 1754
TCA-TGA CCCAACCCCACTTTTCATTCTCCAGAAGTGGCACCCCCACAGACAT
GAGAAACAAAGTGTGAGGCAGTTATAGTCG
. TGGAGAATGAAAAGTGG 1755
CCACTTTTCATTCTCCA 1756 1142/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos .
Waxy starch ACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCA | 1757 } GBSS CTTCTGGAGAATCATAAGTGGGGTTGGGTCAATTAGCCCTGAGGA
Ipomoea batatas GCCAAGCTGTGACTCACAATGGGTTGAGAC
Lys23Term GTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATT | 1758
AAA-TAA GACCCAACCCCACTTATGATTCTCCAGAAGTGGCACCCCCACAGA
CATGAGAAACAAAGTGTGAGGCAGTTATAGT
GAGAATCATAAGTGGGG 1759
CCCCACTTATGATTCTC 1760
Waxy starch CCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCACTTCTGGAGA| 1761
PY GBSS ATCAAAAGTGGGGTAGGGTCAATTAGCCCTGAGGAGCCAAGCTGT
Ipomoea batatas GACTCACAATGGGTTGAGACCTGTGAACAA
Leu26Term TTGTTCACAGGTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCA | 1762
TTG-TAG GGGCTAATTGACCCTACCCCACTTTTGATTCTCCAGAAGTGGCACC
CCCACAGACATGAGAAACAAAGTGTGAGG
AGTGGGGTAGGGTCAAT 1763
ATTGACCCTACCCCACT 1764
Waxy starch CATCGGCGATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACG]| 1765
GBSS GTGACGGGGTCTTAGGTGGTGTCGAGAAGCGCGTGCTTCAATTCC
Astragalus CAGGGAAGAACAGAAGCCAAAGTGAATTCA membranaeus TGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGAAGCACGCG | 1766
Tyr8Term CTTCTCGACACCACCTAAGACCCCGTCACCGTTGCCATTCTGTGA
TAT-TAG GAGAGCAGTAAGGAGCAACAATCGCCGATG
GGGTCTTAGGTGGTGTC 1767
GACACCACCTAAGACCC 1768 ®
GBSS GGTCTTATGTGGTGTAGAGAAGCGCGTGCTTCAATTCCCAGGGAA
Astragalus GAACAGAAGCCAAAGTGAATTCACCTCAGAA membranaeus TTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGA | 1770
Ser{1Term AGCACGCGCTTCTCTACACCACATAAGACCCCGTCACCGTTGCCA
TCG-TAG TTCTGTGAGAGAGCAGTAAGGAGCAACAAT
TGTGGTGTAGAGAAGCG
CGCTTCTCTACACCACA 1772 1142101 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
Waxy starch TGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGGGG | 1773
GBSS TCTTATGTGGTGTCGTGAAGCGCGTGCTTCAATTCCCAGGGAAGA
‘ Astragalus ACAGAAGCCAAAGTGAATTCACCTCAGAAGA membranaeus TCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATT | 1774
Arg12Term GAAGCACGCGCTTCACGACACCACATAAGACCCCGTCACCGTTGC
AGA-TGA CATTCTGTGAGAGAGCAGTAAGGAGCAACA
TGGTGTCGIGAAGCGCG
CGCGCTTCACGACACCA 1776
Waxy starch ACTGCTCTCTCACAGAATGGCAACGGTGACGGGGTCTTATGTGGT | 1777 ® GBSS GTCGAGAAGCGCGTGATTCAATTCCCAGGGAAGAACAGAAGCCAA
Astragalus AGTGAATTCACCTCAGAAGATAAATCTCAAT membranaeus ATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTC | 1778
Cys15Term CCTGGGAATTGAATCACGCGCTTCTCGACACCACATAAGACCCCG
TGC-TGA TCACCGTTGCCATTCTGTGAGAGAGCAGT
AGCGCGTGATTCAATTC 1779
GAATTGAATCACGCGCT 1780
GBSS CGCGTGCTTCAATTCCTAGGGAAGAACAGAAGCCAAAGTGAATTC
Astragalus ACCTCAGAAGATAAATCTCAATAGCCAAGCAT membranaeus ATGCTTGGCTATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCT| 1782
GIn19Term TCTGTTCTTCCCTAGGAATTGAAGCACGCGCTTCTCGACACCACAT
CAG-TAG AAGACCCCGTCACCGTTGCCATTCTGTG
TCAATTCCTAGGGAAGA 1783
TCTTCCCTAGGAATTGA
® Waxy starch TGTAGCTTGGTAGATTCCCCTTTTTGTAGACCACACATCACATGGC | 1785
GBSS AAGCATCACAGCTTGACACCACTTTGTGTCAAGAAGCCAAACTTCA
Solanum tuberosum |CTAGACACCAAATCAACCTTGTCACAGAT
Ser7Term ATCTGTGACAAGGTTGATTTGGTGTCTAGTGAAGTTTGGCTTCTTG | 1786
TCA-TGA ACACAAAGTGGTGTCAAGCTGTGATGCTTGCCATGTGATGTGTGG
TCTACAAAAAGGGGAATCTACCAAGCTACA
CACAGCTTGACACCACT 1787
AGTGGTGTCAAGCTGTG 1788 aK Waxy starch TCCCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTC | 1789
GBSS ACACCACTTTGTGTGAAGAAGCCAAACTTCACTAGACACCAAATCA
. Solanum tuberosum |ACCTTGTCACAGATAGGACTCAGGAACCA
Ser12Term TGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAGTG | 1790
TCA-TGA AAGTTTGGCTTCTTCACACAAAGTGGTGTGAAGCTGTGATGCTTGC
CATGTGATGTGTGGTCTACAAAAAGGGGA
11/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
CTTTGTGTGAAGAAGCC 1791 i GGCTTCTTCACACAAAG 1792
Waxy starch CCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTCAC | 1793
GBSS ACCACTTTGTGTCATGAAGCCAAACTTCACTAGACACCAAATCAAC
Solanum tuberosum |CTTGTCACAGATAGGACTCAGGAACCATA
Arg13Term TATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAG | 179%
AGA-TGA TGAAGTTTGGCTTCATGACACAAAGTGGTGTGAAGCTGTGATGCTT
GCCATGTGATGTGTGGTCTACAAAAAGGG
TTGTGTCATGAAGCCAA 1795 ® TTGGCTTCATGACACAA 1796
Waxy starch TTGTAGACCACACATCACATGGCAAGCATCACAGCTTCACACCACT | 1797
GBSS TTGTGTCAAGAAGCTAAACTTCACTAGACACCAAATCAACCTTGTC
Solanum tuberosum |ACAGATAGGACTCAGGAACCATACTCTGA
Gin15Term TCAGAGTATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGT | 1798
CAA-TAA GTCTAGTGAAGTTTAGCTTCTTGACACAAAGTGGTGTGAAGCTGTG
ATGCTTGCCATGTGATGTGTGGTCTACAA
CAAGAAGCTAAACTTCA
TGAAGTTTAGCTTCTTG 1800 starch CCACACATCACATGGCAAGCATCACAGCTTCACACCACTTTIGTGTC | 1801
GBSS AAGAAGCCAAACTTGACTAGACACCAAATCAACCTTGTCACAGATA
Solanum tuberosum |GGACTCAGGAACCATACTCTGACTCACAA
Ser17Term TTGTGAGTCAGAGTATGGTTCCTGAGTCCTATCTGTGACAAGGTTG | 1802
TCA-TGA ATTTGGTGTCTAGTCAAGTTTGGCTTCTTGACACAAAGTGGTGTGA ® AGCTGTGATGCTTGCCATGTGATGTGTGG
CCAAACTTGACTAGACA 1803
TGTCTAGTCAAGTTTGG 1804
GBSS TGGCAACAATAACGTGATCTTCAATGCCGACGAGAACCGCGTGCT
Pisum sativum TCAATTACCAAGGAAGATCAGCAGAGTCTA
Gly6Term TAGACTCTGCTGATCTTCCTTGGTAATTGAAGCACGCGGTTCTCGT | 1806
GGA-TGA CGGCATTGAAGATCACGTTATTGTTGCCATTTTTGTGTCAAAATCT
GTTTCGGCGGTGAGAGAAGAGTGATCGAC
' CAATAACGIGATCTTCA 1807
TGAAGATCACGTTATTG 1808
N20! 01:47 pm 03137.009 — [NY)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos )
Waxy starch ACTCTTCTCTCACCGCCGAAACAGATTTTGACACAAAAATGGCAAC | 1809
GBSS AATAACGGGATCTTGAATGCCGACGAGAACCGCGTGCTTCAATTA
) Pisum sativum CCAAGGAAGATCAGCAGAGTCTAAACTGAA
Ser8Term TTCAGTTTAGACTCTGCTGATCTTCCTTGGTAATTGAAGCACGCGG | 1810
TCA-TGA TTCTCGTCGGCATTCAAGATCCCGTTATTGTTGCCATTTTTGTGTCA
AAATCTGTTTCGGCGGTGAGAGAAGAGT
GGGATCTTGAATGCCGA 1811
TCGGCATTCAAGATCCC 1812
Waxy starch ACCGCCGAAACAGATTTTGACACAAAAATGGCAACAATAACGGGA | 1813 ® GBSS TCTTCAATGCCGACGIGAACCGCGTGCTTCAATTACCAAGGAAGA
Pisum sativum TCAGCAGAGTCTAAACTGAATTTGCCTCAGA
Arg12Term TCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTTCCTTGGTAATT 1814
AGA-TGA GAAGCACGCGGTTCACGTCGGCATTGAAGATCCCGTTATTGTTGC
CATTTTTGTGTCAAAATCTGTTTCGGCGGT
TGCCGACGTGAACCGCG
CGCGGTTCACGTCGGCA 1816
Waxy starch AGATTTTGACACAAAAATGGCAACAATAACGGGATCTTCAATGCCG | 1817
GBSS ACGAGAACCGCGTGATTCAATTACCAAGGAAGATCAGCAGAGTCT
Pisum sativum AAACTGAATTTGCCTCAGATACACTTCAAT
Cys15Term ATTGAAGTGTATCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTT | 1818
TGC-TGA CCTTGGTAATTGAATCACGCGGTTCTCGTCGGCATTGAAGATCCC
GTTATTGTTGCCATTTTTGTGTCAAAATCT
ACCGCGTGATTCAATTA 1819
TAATTGAATCACGCGGT
® AAAAATGGCAACAATAACGGGATC TTGAATGCCGACGAGAAC | 1821
GBSS CGCGTGCTTCAATTAGCAAGGAAGATCAGCAGAGTCTAAACTGAA
Pisum sativum TTTGCCTCAGATACACTTCAATAACAACCAA
Tyr18Term TTGGTTGTTATTGAAGTGTATCTGAGGCAAATTCAGTTTAGACTCT 1822
TAC-TAG GCTGATCTTCCTTGCTAATTGAAGCACGCGGTTCTCGTCGGCATTG
AAGATCCCGTTATTGTTGCCATTTTTGTG
TTCAATTAGCAAGGAAG 1823
CTTCCTTGCTAATTGAA 1824
GBSS TCGTTTCCAGGAGCTGACACTTGAGCATCCATGCATTAGAGACTAA
A Manihot esculenta GGCTAATAATTTGTCTCACACTGGACCCTG
Ser14Term CAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTAATGCAT | 1826
TCA-TGA GGATGCTCAAGTGTCAGCTCCTGGAAACGAAATGTGCAGCTATTA
CAGTTGCCATGGTGCTCTCTCCGGTGTAGA
1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos , Alteration
CAGGAGCTGACACTTGA 1827 } TCAAGTGTCAGCTCCTG 1828
Waxy starch CCGGAGAGAGCACCATGGCAACTGTAATAGCTGCACATTTCGTTT | 1829
GBSS CCAGGAGCTCACACTAGAGCATCCATGCATTAGAGACTAAGGCTA
Manihot esculenta ATAATTTGTCTCACACTGGACCCTGGACCCA
Leu16Term TGGGTCCAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTA| 1830
TTG-TAG ATGCATGGATGCTCTAGTGTGAGCTCCTGGAAACGAAATGTGCAG
CTATTACAGTTGCCATGGTGCTCTCTCCGG
CTCACACTAGAGCATCC 1831 ® GGATGCTCTAGTGTGAG 1832
Waxy starch | TGGCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGGTCACACTT | 1833
GBSS GAGCATCCATGCATGAGAGACTAAGGCTAATAATTTGTCTCACACT
Manihot esculenta GGACCCTGGACCCAAACTATCACTCCCAA
Leu21Term TTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAATTA | 1834
TTA-TGA TTAGCCTTAGTCTCTCATGCATGGATGCTCAAGTGTGAGCTCCTGG
AAACGAAATGTGCAGCTATTACAGTTGCCA
CCATGCATGAGAGACTA
TAGTCTCTCATGCATGG
GBSS GCATCCATGCATTATAGACTAAGGCTAATAATTTGTCTCACACTGG
Manihot esculenta ACCCTGGACCCAAACTATCACTCCCAATG
Glu22Term CATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAAT | 1838
GAG-TAG TATTAGCCTTAGTCTATAATGCATGGATGCTCAAGTGTGAGCTCCT ® GGAAACGAAATGTGCAGCTATTACAGTTGC
ATGCATTATAGACTAAG 1839
CTTAGTCTATAATGCAT 1840
GBSS ATGCATTAGAGACTTAGGCTAATAATTTGTCTCACACTGGACCCTG
Manihot esculenta GACCCAAACTATCACTCCCAATGGTTTAA
Lys24Term TTAAACCATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAG | 1842
AAG-TAG ACAAATTATTAGCCTAAGTCTCTAATGCATGGATGCTCAAGTGTGA
GCTCCTGGAAACGAAATGTGCAGCTATTAC
. TAGAGACTTAGGCTAAT 1843
ATTAGCCTAAGTCTCTA 1844 1112/01 01:47 pm 03137.009 — [NY]793558.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Waxy starch ACAACTCCTCCGTCACCGGTATAAGCATGGCAACGGTATCGATGG | 1845
GBSS CATCGTGCGTGGCGTGAAAAGGCGCGTGGAGTACAGAGACAAAA i Phaseolus vulgaris GTGAAATCTTCGGGTCAGATGAGCCTGAACCG
Ser12Term CGGTTCAGGCTCATCTGACCCGAAGATTTCACTTTTGTCTCTGTAC | 1846
TCA-TGA TCCACGCGCCTTTTCACGCCACGCACGATGCCATCGATACCGTTG
CCATGCTTATACCGGTGACGGAGGAGTTGT
CGTGGCGTGAAAAGGCG 1847
CGCCTTTTCACGCCACG
Waxy starch CACCGGTATAAGCATGGCAACGGTATCGATGGCATCGTGCGTGGC | 1849 ® GBSS GTCAAAAGGCGCGTGAAGTACAGAGACAAAAGTGAAATCTTCGGG
Phaseolus vulgaris ~~ |TCAGATGAGCCTGAACCGTCATGAATTGAAA
Trp16Term TTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGATTTCACT
TGG-TGA TTTGTCTCTGTACTTICACGCGCCTTTTGACGCCACGCACGATGCCA
TCGATACCGTTGCCATGCTTATACCGGTG
GGCGCGTGAAGTACAGA | 1851
TCTGTACTICACGCGCC 1852
Waxy starch ATAAGCATGGCAACGGTATCGATGGCATCGTGCGTGGCGTCAAAA | 1853
GBSS GGCGCGTGGAGTACATAGACAAAAGTGAAATCTTCGGGTCAGATG
Phaseolus vulgaris AGCCTGAACCGTCATGAATTGAAATACGATG
Glu19Term CATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGA
GAG-TAG TTTCACTTTTGTCTATGTACTCCACGCGCCTTTTGACGCCACGCAC
GATGCCATCGATACCGTTGCCATGCTTAT
GGAGTACATAGACAAAA 1855
TTTITGTCTATGTACTCC | 1856 ® ARAAGGCGC | 1857
GBSS GTGGAGTACAGAGACATAAGTGAAATCTTCGGGTCAGATGAGCCT
Phaseolus vulgaris GAACCGTCATGAATTGAAATACGATGGGTTGA
Lys21Term TCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACC | 1858
AAA-TAA CGAAGATTTCACTTATGTCTCTGTACTCCACGCGCCTTTTGACGCC
ACGCACGATGCCATCGATACCGTTGCCAT
CAGAGACATAAGTGAAA 1859
TTTCACTTATGTCTCTG 1860
ARAAGGCGCGTGGAG | 1861
GBSS TACAGAGACAAAAGTGTAATCTTCGGGTCAGATGAGCCTGAACCG
] Phaseolus vulgaris TCATGAATTGAAATACGATGGGTTGAGATCTC
Lys23Term GAGATCTCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCAT | 1862
AAA-TAA CTGACCCGAAGATTACACTTTTGTCTCTGTACTCCACGCGCCTTTT
GACGCCACGCACGATGCCATCGATACCGT
11/12/01 01:47 pm 03137.009 — [NY)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
CAAAAGTGTAATCTTCG 1863 . CGAAGATTACACTTTTG 1864
Waxy starch GCGCCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGG 1865
GBSS GTTCCATTCCTAATTAGTGTTCTTATCAAACAAACAGTGTTGGTTCA
Triticum aestivum CTGAAACTGTCGCCTCACATCCAATTCCAG
Tyr7Term CTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACTGTT | 1866
TAT-TAG TGTTTGATAAGAACACTAATTAGGAATGGAACCCATTGGTGCAGCC
TCTCAATGACGACCTTTTCGAGCTAGGCGC
CCTAATTAGTGTTCTTA 1867 ® TAAGAACACTAATTAGG 1868
Waxy starch CCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTC | 1869
GBSS CATTCCTAATTATTGATCTTATCAAACAAACAGTGTTGGTTCACTGA
Triticum aestivum AACTGTCGCCTCACATCCAATTCCAGCAA
Cys8Term TTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACT | 1870
TGT-TGA GTTTGTTTGATAAGATCAATAATTAGGAATGGAACCCATTGGTGCA
GCCTCTCAATGACGACCTTTTCGAGCTAGG
TGATAAGATCAATAATT 1872
Waxy starch TCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCC | 1873
GBSS TAATTATTGTTCTTAGCAAACAAACAGTGTTGGTTCACTGAAACTGT
Triticum aestivum CGCCTCACATCCAATTCCAGCAATCTTGT
Tyr10Term TACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACC | 1874
TAT-TAG AACACTGTTTGTTTGCTAAGAACAATAATTAGGAATGGAACCCATT ® GGTGCAGCCTCTCAATGACGACCTTTTCGA
TGTTCTTAGCAAACAAA 1875
TTTGTTTGCTAAGAACA 1876
Waxy starch CGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCCT | 1877
GBSS AATTATTGTTCTTATIAAACAAACAGTGTTGGTTCACTGAAACTGTC
Triticum aestivum GCCTCACATCCAATTCCAGCAATCTTGTA
GIn11Term TACAAGAT GCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAAC | 1878 | -
CAA-TAA CAACACTGTTTGTTTAATAAGAACAATAATTAGGAATGGAACCCATT
GGTGCAGCCTCTCAATGACGACCTTTTCG
. GTTCTTATTAAACAAAC 1879
GTTTGTTTAATAAGAAC 1880 : 1112001 01:47 pm 03137.008 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Waxy starch AGGCTGCACCAATGGGTTCCATTCCTAATTATTGTTCTTATCAAACA] 1881
GBSS AACAGTGTTGGTTGACTGAAACTGTCGCCTCACATCCAATTCCAGC
’ Triticum aestivum AATCTTGTAACAATGAAGTTATGTTCCT
Ser17Term AGGAACATAACTTCATTGTTACAAGATTGCTGGAATTGGATGTGAG | 1882
TCA-TGA GCGACAGTTTCAGTCAACCAACACTGTTTGTTTGATAAGAACAATA
ATTAGGAATGGAACCCATTGGTGCAGCCT
TGTTGGTTGACTGAAAC 1883
GTTTCAGTCAACCAACA 1884
Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT | 1885 ® GBSS CCGGCGTGCAGGTTTCTAGGGCGTGAGGCCCCGGAGCCCGGCG
Triticum aestivum GATGCGGCTCTCGGCATGAGGACCGTCGGAGCTA
GIn28Term TAGCTCCGACGGTCCTCATGCCGAGAGCCGCATCCGCCGGGCTC | 1886
CAG-TAG CGGGGCCTCACGCCCTAGAAACCTGCACGCCGGAACCTGTCGGT
GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
CAGGTTTCTAGGGCGTG 1887
CACGCCCTAGAAACCTG 1888
Waxy starch ~ [GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCGGATGCGGCTCT| 1889
GBSS CGGCATGAGGACCGTCTGAGCTAGCGCCGCCCCAACGCAAAGCC
Triticum aestivum GGAAAGCGCACCGCGGGACCCGGCGGTGCCTCT
Gly46Term AGAGGCACCGCCGGGTCCCGCGGTGCGCTTTCCGGCTTTGCGTT | 1890
GGA-TGA GGGGCGGCGCTAGCTCAGACGGTCCTCATGCCGAGAGCCGCATC
CGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC
GGACCGTCIGAGCTAGC 1891
GCTAGCTCAGACGGTCC 1892 ® Waxy starch CGGAGCCCGGCGGATGCGGCTCTCGGCATGAGGACCGTCGGAG | 1893
GBSS CTAGCGCCGCCCCAACGTAAAGCCGGAAAGCGCACCGCGGGACC
Triticum aestivum CGGCGGTGCCTCTCCATGGTGGTGCGCGCCACCG
GIn53Term CGGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG | 1894
CAA-TAA GTGCGCTTTCCGGCTTTACGTTGGGGCGGCGCTAGCTCCGACGG
TCCTCATGCCGAGAGCCGCATCCGCCGGGCTCCG
CCCCAACGTAAAGCCGG 1895
CCGGCTTTACGTTGGGG 1896
GBSS CCCAACGCAAAGCCGGTAAGCGCACCGCGGGACCCGGCGGTGC
} Triticum aestivum CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCG
Lys56Term CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAGGCACCGCCG | 1898
AAA-TAA GGTCCCGCGGTGCGCTTACCGGCTTTGCGTTGGGGCGGCGCTAG
CTCCGACGGTCCTCATGCCGAGAGCCGCATCCGC
1112/01 01:47 pm 03137.009 — |NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration ——
AAAGCCGGTAAGCGCAC
} GTGCGCTTACCGGCTTT 1900 1]
Waxy starch CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCGGCATGAACCT | 1901
GBSS CGTGTTCGTCGGCGCCTAGATGGCGCCCTGGAGCAAGACCGGCG
Triticum aestivum GCCTCGGCGACGTCCTCGGGGGCCTCCCCCCAG
Glu85Term CTGGGGGGAGGCCCCCGAGGACGTCGCCGAGGCCGCCGGTCTT | 1902
GAG-TAG GCTCCAGGGCGCCATCTAGGCGCCGACGAACACGAGGTTCATGC
CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAG
TCGGCGCCTAGATGGCG 1903 [ CGCCATCTAGGCGCCGA 1904
Waxy starch GTCGTCTCTCGCTGCAGGTAGCCACACCCTGCGCGCGCGATGGC | 1905
GBSS GGCTCTGGTCACGTCGIAGCTCGCCACCTCCGGCACCGTCCTCG
Triticum aestivum GCATCACCGACAGGTTCCGGCGTGCAGGTTTTC
GIn8Term GAAAACCTGCACGCCGGAACCTGTCGGTGATGCCGAGGACGGTG
CAG-TAG CCGGAGGTGGCGAGCTACGACGTGACCAGAGCCGCCATCGCGC
GCGCAGGGTGTGGCTACCTGCAGCGAGAGACGAC
TCACGTCGTAGCTCGCC
GGCGAGCTACGACGTGA 1908
Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT | 1909
GBSS CCGGCGTGCAGGTTTTTAGGGTGTGAGGCCCCGGAGCCCGGCAG
Triticum aestivum ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA
GIn28Term TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC | 1910
CAG-TAG CGGGGCCTCACACCCTAAAAACCTGCACGCCGGAACCTGTCGGT ® GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
CACACCCTAAAAACCTG 1912
Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGG] 1913
GBSS AGCGAGCGCCGCCCCGTAGCAACAAAGCCGGAAAGCGCACCGCG
Triticum aestivum GGACCCGGCGGTGCCTCTCCATGGTGGTGCGCEG
Lys52Term CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGRTRCGE | 1914
AAG-TAG TTTCCGGCTTTGTTGCTACGGGGCGGCGCTCGCTCCGRTAGTCCT
CATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG
: CCGCCCCGTAGCAACAA 1915
TTGTIGCTACO068066 | 1st
YY] 11712001 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, ]
Plant & Targeted Altering Oligos __ Alteration} 00}
Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG 1917
GBSS CGAGCGCCGCCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGEG
’ Triticum aestivum GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA
GIn53Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGRTG
CAA-TAA CGCTTTCCGGCTTTGTTACTTCGGGGCGGCGCTCGCTCCGGTAGT
CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG
CCCCGAAGTAACAAAGC 1919
GCTTTGTTACTTCGGGG
Waxy starch N AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGAG | 1921 ® GBSS CGCCGCCCCGAAGCAATAAAGCCGGAAAGCGCACCGCGGGACCC
Triticum aestivum GGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG
GIn54Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCa 1922
CAA-TAA GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGGCGCTCGCTCCGRT
AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT
CGAAGCAATAAAGCCGG 1923
CCGGCTTTATTGCTTCG 1924
Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1925
GBSS CCGGCGTGCAGGTTTCTAGGGCGTGAGGCCCCGGAACCCGGCG
Triticum durum GATGCGGCCCTCGTCATGAGGACTATCGGAGCGA
GIn28Term TCGCTCCGATAGTCCTCATGACGAGGGCCGCATCCGCCGGGTTC 1926
CAG-TAG CGGGGCCTCACGCCCTAGAAACCTGCACGCCGGAACCTGTCGGT
GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
CAGGTTTCTAGGGCGTG 1927
CACGCCCTAGAAACCTG 1928 ®
GBSS AGCGAGCGCCGCCCCGTAGCAAAGCCGGAAAGCGCACCGCGGG
Triticum durum AGCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA
Lys52Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGCGRTG 1930
AAG-TAG CGCTTTCCGGCTTTGCTACGGGGCGGCGCTCGCTCCGATAGTCCT
CATGACGAGGGCCGCATCCGCCGGGTTCCGGGE
CCGCCCCGTAGCAAAGC 1931
GBSS GAGCGCCGCCCCGAAGTAAAGCCGGAAAGCGCACCGCGGGAGE
} Triticum durum CGGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG
GIn53Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGLE 1934
CAA-TAA GTGCGCTTTCCGGCTTTACTTCGGGGCGGCGCTCGCTCCGATAGT
CCTCATGACGAGGGCCGCATCCGCCGGGTTCCG
1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797 —_—
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
CCCCGAAGTAAAGCCGG 1935
CCGGCTTTACTTCGGGG 1936
Waxy starch GCGGATGCGGCCCTCGTCATGAGGACTATCGGAGCGAGCGCCGC | 1937
GBSS CCCGAAGCAAAGCCGGTAAGCGCACCGCGGGAGCCGGCGGRTGC
Triticum durum CTCTCCATGGTGGTGCGCGCCACGGGCAGCGGCG
Lys56Term CGCCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG | 1938
AAA-TAA GCTCCCGCGGTGCGCTTACCGGCTTTGCTTCGGGGCGGCGCTCG
CTCCGATAGTCCTCATGACGAGGGCCGCATCCGC
{AAAGCCGGTAAGCGCAC 1939 ® GTGCGCTTACCGGCTTT 1940
GBSS GCGGGAGCCGGCGGTGACTCTCCATGGTGGTGCGCGCCACGGG
Triticum durum CAGCGGCGGCATGAACCTCGTGTTCGTCGGCGCC
Cys64Term GGCGCCGACGAACACGAGGTTCATGCCGCCGCTGCCCGTGGCGC | 1942
TGC-TGA GCACCACCATGGAGAGICACCGCCGGCTCCCGCGGTGCGLCTTTC
CGGCTTTGCTTCGGGGCGGCGCTCGCTCCGATA
CGGCGGTGACTCTCCAT 1943
ATGGAGAGICACCGCCG 1944
GBSS CCGGCGTGCAGGTTTTTAGGGTGTGAGGCCCCGGAGCCCGGCAG "
Triticum turgidum ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA
Gin28Term TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC | 1946
CAG-TAG CGGGGCCTCACACCCTAAAAACCTGCACGCCGGAACCTGTCGGT
GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
® CAGGTTTTTAGGGTGTG
CACACCCTAAAAACCTG 1948
Waxy starch | CCOCGGAGCCCGGCAGATGCGLCGCTCOGCATGAGGACTACCGE | 1048
GBSS AGCGAGCGCCGCCCCGTAGCAACAAAGCCGGAAAGCGCACCGCEG
Triticum turgidum GGACCCGGCGGTGCCTCTCCATGGTGGTGCGCG
Lys52Term CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC | 1950
AAG-TAG TTTCCGGCTTTGTTGCTACGGGGCGGCGCTCGCTCCGGTAGTCCT
CATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG
: CCGCCCCGTAGCAACAA 1951 [TTGTTGOTACGo66C66 | foi 1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos :
Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG | 1953
GBSS CGAGCGCCGCCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGE
Triticum turgidum GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA
GinS3Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG | 1954
CAA-TAA CGCTTTCCGGCTTTGTTACTTCGGGGCGGCGCTCGCTCCGGTAGT
CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG
CCCCGAAGTAACAAAGC
GCTTTGTTACTTCGGGG 1956
Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGAG| 1957 ® GBSS CGCCGCCCCGAAGCAATAAAGCCGGAAAGCGCACCGCGGGACCC
Triticum turgidum GGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG
GIn54Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG
CAA-TAA GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGGCGCTCGCTCCGGT
AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT
CGAAGCAATAAAGCCGG 1959
CCGGCTTTATTGCTTCG 1960
Waxy starch GATGCGCCGCTCGGCATGAGGACTACCGGAGCGAGCGCCGCCCC| 1961
GBSS GAAGCAACAAAGCCGGTAAGCGCACCGCGGGACCCGGCGGTGC
Triticum turgidum CTCTCCATGGTGGTGCGCGCCACGGGCAGCGCCG
Lys57Term CGGCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG | 1962
AAA-TAA GGTCCCGCGGTGCGCTTACCGGCTTTGTTGCTTCGGGGCGGCGC
TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATC
AAAGCCGGTAAGCGCAC 1963
GTGCGCTTACCGGCTTT
® Waxy starch CAGCTCGCCACCTCCGCCACCGTCCTCGGCATCACCGACAGGTTC| 1965
GBSS CGCCATGCAGGTTTCTAGGGCGTGAGGCCCCGGAGCCCGGCAGA
Aegilops spelfoides |TGCGCCGCTCGGCATGAGGACTGTCGGAGCGA
GIn28Term TCGCTCCGACAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC | 1966
CAG-TAG CGGGGCCTCACGCCCTAGAAACCTGCATGGCGGAACCTGTCGGT
GATGCCGAGGACGGTGGCGGAGGTGGCGAGCTG
CAGGTTTCTAGGGCGTG 1967
CACGCCCTAGAAACCTG 1968 ’ Waxy starch GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCAGATGCGCCGCT| 1969
GBSS CGGCATGAGGACTGTCTGAGCGAGCGCCGCCCCGAAGCAACAAA
. Aegilops speltoides ~~ |GCCGGAAAGCGCACCGCGGGACCCGGCGGTGCC
Glyd6Term GGCACCGCCGGGTCCCGCGGTGCGCTTTCCGGCTTTGTTGCTTC | 1970
GGA-TGA GGGGCGGCGCTCGCTCAGACAGTCCTCATGCCGAGCGGCGCATC
TGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC
1112/01 01:47 pm 03137.009 — {NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ___ Alteration
GGACTGTCTGAGCGAGC 1971
GCTCGCTCAGACAGTCC 1972
Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGG| 1973
GBSS AGCGAGCGCCGCCCCGTAGCAACAAAGCCGGAAAGCGCACCGCG
Aegilops spelfoides GGACCCGGCGGTGCCTCTCGATGGTGGTGCGCG
Lys52Term CGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTGCGCT| 1974
AAG-TAG TTCCGGCTTTGTTGCTACGGGGCGGCGCTCGCTCCGACAGTCCTC
ATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG
CCGCCCCGTAGCAACAA 1975 ® TTGTTGCTACGGGGCGG 1976
Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAG | 1977
GBSS CGAGCGCCGCCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGG
Aegilops spelfoides |GACCCGGCGGTGCCTCTCGATGGTGGTGCGCGCCA
GIn53Term TGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGRTG 1978
CAA-TAA CGCTTTCCGGCTTTGTTACTTCGGGGCGGCGCTCGCTCCGACAGT
CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG
CCCCGAAGTAACAAAGC 1979
GCTTTGTTACTTCGGGG 1980
Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAGCGAG | 1981
GBSS CGCCGCCCCGAAGCAATAAAGCCGGAAAGCGCACCGCGGGACCC
Aegilops speltoides GGCGGTGCCTCTCGATGGTGGTGCGCGCCACCG
GIn54Term CGGTGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGLE 1982 156 CAA-TAA GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGGCGCTCGCTCCGAC ® AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT
CGAAGCAATAAAGCCGG 1983
CCGGCTTTATTGCTTCG 1984
Waxy slarch | AGTGCAGAGATCTTCCACAGCAACAGCTAGACAACCACCATGTCE | 1988
GBSS GCTCTCACCACGTCCTAGCTCGCCACCTCGGCCACCGGCTTICGG
Oryza glaberrima CATCGCTGACAGGTCGGCGCCGTCGTCGCTGC
GIn8Term GCAGCGACGACGGCGCCGACCTGTCAGCGATGCCGAAGCCGGT 1986
CAG-TAG GGCCGAGGTGGCGAGCTAGGACGTGGTGAGAGCCGACATGRTG
GTTGTCTAGCTGTTGCTGTGGAAGATCTCTGCACT
: CCACGTCCTAGCTCGCC 1987
GGCGAGCTAGGACGTGG 1988 1112/01 01:47 pm 03137.009 — [NY)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Waxy starch TCCACAGCAACAGCTAGACAACCACCATGTCGGCTCTCACCACGT | 1989
GBSS CCCAGCTCGCCACCTAGGCCACCGGCTTCGGCATCGCTGACAGG
Oryza glaberrima TCGGCGCCGTCGTCGCTGCTCCGCCACGGGTT
Ser12Term AACCCGTGGCGGAGCAGCGACGACGGCGCCGACCTGTCAGCGAT | 1990
TCG-TAG GCCGAAGCCGGTGGCCTAGGTGGCGAGCTGGGACGTGGTGAGA
GCCGACATGGTGGTTGTCTAGCTGTTGCTGTGGA
CGCCACCTAGGCCACCG 1991
CGGTGGCCTAGGTGGCG 1992
Waxy starch CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC | 1993
PS GBSS GGCATCGCTGACAGGTAGGCGCCGTCGTCGCTGCTCCGCCACGG
Oryza glaberrima GTTCCAGGGCCTCAAGCCCCGCAGCCCCGCCGG
Ser22Term CCGGCGGGGCTGCEGGGGCTTGAGGCCCTGGAACCCGTGGCGGA | 1994
TCG-TAG GCAGCGACGACGGCGCCTACCTGTCAGCGATGCCGAAGCCGGTG
GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG
TGACAGGTAGGCGCCGT 1995
ACGGCGCCTACCTGTCA | 199
Waxystach ~~ JCCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCT | 1997
GBSS GACAGGTCGGCGCCGTAGTCGCTGCTCCGCCACGGGTTCCAGGG
Oryza glaberrima CCTCAAGCCCCGCAGCCCCGCCGGCGGCGACGE
Ser25Term GCGTCGCCGCCGGCGGGGCTGCGGGGCTTGAGGCCCTGGAACC | 1998
TCG-TAG CGTGGCGGAGCAGCGACTACGGCGCCGACCTGTCAGCGATGCCG
AAGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG
GGCGCCGTAGTCGCTGC 1999
GCAGCGACTACGGCGCC 2000 ® Waxy starch CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCTGAC | 2001
GBSS AGGTCGGCGCCGTCGTAGCTGCTCCGCCACGGGTTCCAGGGCCT
Oryza glaberrima CAAGCCCCGCAGCCCCGCCGGCGGCGACGCGAC
Ser26Term GTCGCGTCGCCGCCGGCGGGGCTGCGGGGCTTGAGGCCCTGGA | 2002
TCG-TAG ACCCGTGGCGGAGCAGCTACGACGGCGCCGACCTGTCAGCGATG
CCGAAGCCGGTGGCCGAGGTGGCGAGCTGGGACG
GCCGTCGTAGCTGCTCC
GGAGCAGCTACGACGGC 2004 : Waxy starch TCCACAGCAAGAGCTAAACAGCCGACCGTGTGCACCACCATGTCG | 2005
GBSS GCTCTCACCACGTCCTAGCTCGCCACCTCGGCCACCGGCTTCGG
Oryza sativa CATCGCCGACAGGTCGGCGCCGTCGTCGCTGC
GIn8Term GCAGCGACGACGGCGCCGACCTGTCGGCGATGCCGAAGCCGGT | 2006
CAG-TAG GGCCGAGGTGGCGAGCTAGGACGTGGTGAGAGCCGACATGGTG
GTGCACACGGTCGGCTGTTTAGCTCTTGCTGTGGA
1112/01 01:47 pm 03137.009 — {NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
CCACGTCCTAGCTCGCC 2007 } GGCGAGCTAGGACGTGG 2008
Waxy starch CTAAACAGCCGACCGTGTGCACCACCATGTCGGCTCTCACCACGT | 2009
GBSS CCCAGCTCGCCACCTAGGCCACCGGCTTCGGCATCGCCGACAGG
Oryza sativa TCGGCGCCGTCGTCGCTGCTTCGCCACGGGTT
Ser12Term AACCCGTGGCGAAGCAGCGACGACGGCGCCGACCTGTCGGCGAT| 2010
TCG-TAG GCCGAAGCCGGTGGCCIAGGTGGCGAGCTGGGACGTGGTGAGA
GCCGACATGGTGGTGCACACGGTCGGCTGTTTAG
CGCCACCTAGGCCACCG 2011
C CGGTGGCCTAGGTGGCG 2012
Waxy starch CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC [| 2013
GBSS GGCATCGCCGACAGGTAGGCGCCGTCGTCGCTGCTTCGCCACGG
Oryza sativa GTTCCAGGGCCTCAAGCCCCGTAGCCCAGCCGG
Ser22Term CCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCCGTGGCGAA 2014
TCG-TAG GCAGCGACGACGGCGCCTACCTGTCGGCGATGCCGAAGCCGGTG
GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG
CGACAGGTAGGCGCCGT
ACGBCGCCTACCTGTCG [206
Waxy starch CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCC | 2017
GBSS GACAGGTCGGCGCCGTAGTCGCTGCTTCGCCACGGGTTCCAGGS
Oryza sativa CCTCAAGCCCCGTAGCCCAGCCGGCGGGGACGC
Ser25Term GCGTCCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCC] 2018
TCG-TAG GTGGCGAAGCAGCGACTACGGCGCCGACCTGTCGGCGATGCCGA
AGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG
® GocccceTAGTCGCTee | a
GCAGCGACTACGGCGCC 2020
Waxy starch CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCCGAC | 2021
GBSS AGGTCGGCGCCGTCGTAGCTGCTTCGCCACGGGTTCCAGGGCCT
Oryza sativa CAAGCCCCGTAGCCCAGCCGGCGGGGACGCATC
Ser26Term GATGCGTCCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAA | 2022
TCG-TAG CCCGTGGCGAAGCAGCTACGACGGCGCCGACCTGTCGGCGATGE
CGAAGCCGGTGGCCGAGGTGGCGAGCTGGGACS
GAAGCAGCTACGACGGC 2024 fret] 1112/01 01:47 pm 03137.009 — [NY]793558.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Waxy starch GTCTCTCACTGCAGGTAGCCACACCCTGTGCGCGGCGCCATGGC | 2025
GBSS GGCTCTGGCCACGTCCTAGCTCGCCACCTCCGGCACCGTCCTCG
Hordeum vulgare GCGTCACCGACAGATTCCGGCGTCCAGGTTTTC
GIn8Term GAAAACCTGGACGCCGGAATCTGTCGGTGACGCCGAGGACGGTG | 2026
CAG-TAG CCGGAGGTGGCGAGCTAGGACGTGGCCAGAGCCGCCATGGCGC
CGCGCACAGGGTGTGGCTACCTGCAGTGAGAGAC
CCACGTCCTAGCTCGCC 2027
GGCGAGCTAGGACGTGG 2028
Waxy starch ATGGCGGCTCTGGCCACGTCCCAGCTCGCCACCTCCGGCACCGT | 2029 ® GBSS CCTCGGCGTCACCGACTGATTCCGGCGTCCAGGTTTTCAGGGCCT
Hordeum vulgare CAGGCCCCGGAACCCGGCGGATGCGGCGCTTG
Arg21Term CAAGCGCCGCATCCGCCGGGTTCCGGGGCCTGAGGCCCTGAAAA | 2030
AGA-TGA CCTGGACGCCGGAATCAGTCGGTGACGCCGAGGACGGTGCCGG
AGGTGGCGAGCTGGGACGTGGCCAGAGCCGCCAT
TCACCGACTGATTCCGG 2031
CCGGAATCAGTCGGTGA 2032
GBSS CCGGCGTCCAGGTTTTTAGGGCCTCAGGCCCCGGAACCCGGCGEG
Hordeum vulgare ATGCGGCGCTTGGTATGAGGACTATCGGAGCAA
GIn28Term TTGCTCCGATAGTCCTCATACCAAGCGCCGCATCCGCCGGGTTCC | 2034
CAG-TAG GGGGCCTGAGGCCCTAAAAACCTGGACGCCGGAATCTGTCGGTG
ACGCCGAGGACGGTGCCGGAGGTGGCGAGCTG
CAGGTTTTTAGGGCCTC 2035
GAGGCCCTAAAAACCTG 2036 ®
GBSS TGGTATGAGGACTATCTGAGCAAGCGCCGCCCCGAAGCAAAGCC
Hordeum vulgare GGAAAGCGCACCGCGGGAGCCGGCGGTGCCTCT
Gly46Term AGAGGCACCGCCGGCTCCCGCGGTGCGCTTTCCGGCTTTGCTTC | 2038
GGA-TGA GGGGCGGCGCTTGCTCAGATAGTCCTCATACCAAGCGCCGCATC
CGCCGGGTTCCGGGGCCTGAGGCCCTGAAAACC
GGACTATCTIGAGCAAGC 2039
GCTTGCTCAGATAGTCC 2040
GBSS AGCAAGCGCCGCCCCGTAGCAAAGCCGGAAAGCGCACCGCGGG
Hordeum vulgare AGCCGGCGGTGCCTCTCCGTGGTGGTGAGCGCCA
Lys52Term TGGCGCTCACCACCACGGAGAGGCACCGCCGGCTCCCGCGGTGC| 2042
AAG-TAG GCTTTCCGGCTTTGCTACGGGGCGGCGCTTGCTCCGATAGTCCTC
ATACCAAGCGCCGCATCCGCCGGGTTCCGGGG
1142/01 01:47 pm } 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
CCGCCCCGTAGCAAAGC 2043 : GCTTTGCTACGGGGCGG 2044
Waxy starch ACGTCTTTTCTCTCTCTCCTACGCAGTGGATTAATCGGCATGGCGG | 2045
GBSS CTCTGGCCACGTCGTAGCTCGTCGCAACGCGCGCCGGCCTGGGE
Zea mays GTCCCGGACGCGTCCACGTTCCGCCGCGGLE
GIn8Term CGCCGCGGCGGAACGTGGACGCGTCCGGGACGCCCAGGCCGGC | 2046
CAG-TAG GCGCGTTGCGACGAGCTACGACGTGGCCAGAGCCGCCATGCCGA
TTAATCCACTGCGTAGGAGAGAGAGAAAAGACGT
CCACGTCGTAGCTCGTC 2047 @ GACGAGCTACGACGTGG starch GTCGCAACGCGCGCCGGCCTGGGCGTCCCGGACGCGTCCACGTT| 2049
GBSS CCGCCGCGGCGCCGCGTAGGGCCTGAGGGGGGCCCGGGCGTCG
Zea mays GCGGCGGCGGACACGCTCAGCATGCGGACCAGCG
GIn30Term CGCTGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGCCCGG| 2050
CAG-TAG GCCCCCCTCAGGCCCTACGCGGCGCCGCGGCGGAACGTGGACG
CGTCCGGGACGCCCAGGCCGGCGCGCGTTGCGAC
GCGCCGCGTAGGGCCTG
CAGGCCCTACGCGGCGC
Waxy starch TCCCGGACGCGTCCACGTTCCGCCGCGGCGCCGCGCAGGGCCT | 2053
GBSS GAGGGGGGCCCGGGCGTAGGCGGCGGCGGACACGCTCAGCATG
Zea mays CGGACCAGCGCGCGCGCGGCGCCCAGGCACCAGCA
Ser38Term TGCTGGTGCCTGGGCGCCGCGCGCGCGCTGGTCCGCATGCTGAG | 2054
TCG-TAG CGTGTCCGCCGCCGCCIACGCCCGGGCCCCCCTCAGGCCCTGAG
PY CGGCGCCGCGGCGGAACGTGGACGCGTCCGGGA
CCGGGCGTAGGCGGCGG 2055
CCGCCGCCTACGCCCGG 2056
GBSS GCGCGGCGCCCAGGCACTAGCAGCAGGCGCGCCGCGGGGGCAG
Zea mays GTTCCCGTCGCTCGTCGTGTGCGCCAGCGCCGGCA
Ser57Term TGCCGGCGCTGGCGCACACGACGAGCGACGGGAACCTGCCCCC | 2058
CAG-TAG GCGGCGCGCCTGCTGCTAGTGCCTGGGCGCCGCGCGCGCGCTG
GTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGE
CCAGGCACTAGCAGCAG 2059
CTGCTGCTAGTGCCTGG 2060 1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797 pee
Phenotype, Gene,
Plant & Targeted Altering Oligos } Alteration
Waxy starch TCGGCGGCGGCGGACACGCTCAGCATGCGGACCAGCGCGCGCG | 2061
GBSS CGGCGCCCAGGCACCAGTAGCAGGCGCGCCGCGGGGGCAGGTT
Zea mays CCCGTCGCTCGTCGTGTGCGCCAGCGCCGGCATGA
GIn58Term TCATGCCGGCGCTGGCGCACACGACGAGCGACGGGAACCTGCCC | 2062
CAG-TAG CCGCGGCGCGCCTGCTACTGGTGCCTGGGCGCCGCGCGCGCGL
TGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGA
GGCACCAGTAGCAGGCG 2063
CGCCTGCTACTGGTGCC 2064 11/1201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Example 11
Altering fatty acid content of plants ] Improved means to manipulate fatty acid compositions, from biosynthetic or natural plant sources, are needed. For example, ails containing reduced saturated fatty acids are desired for dietary reasons and oils containing increased saturated fatty acids are also needed as alternatives to current sources of highly saturated oil products, such as tropical oils or chemically hydrogenated oils. It would therefore be advantageous to influence directly the production and composition of fatty acids in crop plants.
Higher plants synthesize fafty acids, primarily palmitic, stearic and oleic acids, in the ® plastids (i.e., chloroplasts, proplastids, or other related organelles) as part of the Fatty Acid Synthase (FAS) complex. Fatty acid synthesis is the result of the three enzymatic activities: acyl-ACP elongase, acyl-ACP desaturase and acyl-ACP thioesterases specific for each of palmitoyl-, stearoyl- and oleoyl-ACP.
A variety of enzymes have been identified that influence the relative levels of saturated vs, unsaturated fatty acids in plants. For example, the enzymes stearoyl-acyl carrier protein (stearoyl-ACP) desaturase, oleoyl desaturase and linoleate desaturase produce unsaturated fatty acids from saturated precursors. Similarly, relative enzymatic activities of the various acyl-ACP thioesterases influences the relative acyl-chain composition of the resultant fatty acids. Consequently a reduction or an increase of the activity of these enzymes can alter the properties of oils produced in a plant. In fact, specific targeting of particular enzymatic activities can results in altered levels of particular fatty acids.
The attached tables disclose exemplary oligonucleotides base sequences which can be ® used to generate site-specific mutations in plant genes encoding proteins involved in fatty acid biosynthesis.
Table 22
Oligonucleotides to produce plants with reduced palmitate
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Reduced palmitate TTTGGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGC | 2065
Acyl-ACP-thioesterase {CACCTCTGCTACGTAGTCATTCTTTCCTGTACCATCTTCTTCACTTG : Arabidopsis thaliana |ATCCTAATGGAAAAGGCAATAAGATTGG
Ser8Term CCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATGGTA | 2066
TCG-TAG CAGGAAAGAATGACTACGTAGCAGAGGTGGCCACCATGACGAGG
AGATGAAGCGTTCAAAGACACTGCCACCAAA
1112/01 01:47 pm 03137.009 — [NY]793569.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
TGCTACGTAGTCATTCT 2067 } AGAATGACTACGTAGCA 2068
Reduced palmitate GGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGCCA | 2069
Acyl-ACP-thioesterase |CCTCTGCTACGTCGTGATTCTTTCCTGTACCATCTTCTTCACTTGAT
Arabidopsis thaliana | CCTAATGGAAAAGGCAATAAGATTGGGTC
Ser9Term GACCCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATG | 2070
TCA-TGA GTACAGGAAAGAATCACGACGTAGCAGAGGTGGCCACCATGACG
AGGAGATGAAGCGTTCAAAGACACTGCCACC
TACGTCGTGATTCTTTC 2071
CY GAAAGAATCACGACGTA
Reduced palmitate ATCTCCTCGTCATGGTGGCCACCTCTGCTACGTCGTCATTCTTTCC | 2073
Acyl-ACP-thioesterase | TGTACCATCTTCTTGACTTGATCCTAATGGAAAAGGCAATAAGATT
Arabidopsis thaliana |GGGTCTACGAATCTTGCTGGACTCAATTC
Ser17Term GAATTGAGTCCAGCAAGATTCGTAGACCCAATCTTATTGCCTTTTC | 2074
TCA-TGA CATTAGGATCAAGTCAAGAAGATGGTACAGGAAAGAATGACGACG
TAGCAGAGGTGGCCACCATGACGAGGAGAT
ATCTTCTTGACTTGATC
GATCAAGTCAAGAAGAT 2076
Reduced palmitate GTGGCCACCTCTGCTACGTCGTCATTCTTTCCTGTACCATCTTCTT | 2077
Acyl-ACP-thioesterase |CACTTGATCCTAATTGAAAAGGCAATAAGATTGGGTCTACGAATCT
Arabidopsis thaliana |TGCTGGACTCAATTCTGCACCTAACTCTG
Gly22Term CAGAGTTAGGTGCAGAATTGAGTCCAGCAAGATTCGTAGACCCAA | 2078
GGA-TGA TCTTATTGCCTTTTCAATTAGGATCAAGTGAAGAAGATGGTACAGG
AAAGAATGACGACGTAGCAGAGGTGGCCAC
® ATCCTAATIGAAAAGGC 2079
GCCTTTTCAATTAGGAT 2080
Reduced palmitate AZ ) A AA ACAZ 08
Acyl-ACP-thioesterase |TACTGCCGCCACGTGATCATTCTTTCCGTTGACTTCCCCTTCTGGG
Garcinia mangostana |GATGCCAAATCGGGCAATCCCGGAAAAGG : Ser8Term CCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAAGTC | 2082
TCA-TGA AACGGAAAGAATGATCACGTGGCGGCAGTAGCAACCATTGTGGCC
ACAATTAACCAATCAGATCACAAATTCAAGC
CGCCACGTGATCATTCT
AGAATGATCACGTGGCG 2084 11/12/01 01:47 pm 03137.009 — [NY]793589.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ) Alteration
Acyl-ACP-thioesterase |TGCCGCCACGTCATGATTCTTTCCGTTGACTTCCCCTTCTGGGGAT
Garcinia mangostana |GCCAAATCGGGCAATCCCGGAAAAGGGTC
Ser9Term GACCCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAA | 2086
TCA-TGA GTCAACGGAAAGAATCATGACGTGGCGGCAGTAGCAACCATTGTG
GCCACAATTAACCAATCAGATCACAAATTCA
CACGTCATGATTCTTTC 2087 .
GAAAGAATCATGACGTG 2088
Reduced palmitate CTGATTGGTTAATTGTGGCCACAATGGTTGCTACTGCCGCCACGT | 2089
Acyl-ACP-thioesterase |CATCATTCTTTCCGTAGACTTCCCCTTCTGGGGATGCCAAATCGGG @® Garcinia mangostana |CAATCCCGGAAAAGGGTCGGTGAGTTTTGG
Leu13Term CCAAAACTCACCGACCCTTTTCCGGGATTGCCCGATTTGGCATCC | 2090
TTG-TAG CCAGAAGGGGAAGTCTACGGAAAGAATGATGACGTGGCGGCAGT
AGCAACCATTGTGGCCACAATTAACCAATCAG
CTTTCCGTAGACTTCCC 2091
GGGAAGTCTACGGAAAG 2092
Reduced palmitate ATGGTTGCTACTGCCGCCACGTCATCATTCTTTCCGTTGACTTCCC | 2093
Acyl-ACP-thioesterase {CTTCTGGGGATGCCTAATCGGGCAATCCCGGAAAAGGGTCGGTG
Garcinia mangostana |AGTTTTGGGTCAATGAAGTCGAAATCCGCGG
Lys21Term CCGCGGATTTCGACTTCATTGACCCAAAACTCACCGACCCTTTTCC | 2094
AAA-TAA GGGATTGCCCGATTAGGCATCCCCAGAAGGGGAAGTCAACGGAA
AGAATGATCGACGTGGCGGCAGTAGCAACCAT
GGGATGCCTAATCGGGC | 2095
GCCCGATTAGGCATCCC | 2096 ® Reduced palmitate A AGCACGAAA AR AAAAACCA 09 : Acyl-ACP-thicesterase |TACTGCTGTGACATAGGCGTTTTTCCCAGTCACTTCTTCACCTGAC
Gossypium hirsutum |TCCTCTGACTCGAAAAACAAGAAGCTCGG
Ser8Term CCGAGCTTCTTGTTTTTCGAGTCAGAGGAGTCAGGTGAAGAAGTG | 2098
TCG-TAG ACTGGGAAAAACGCCTATGTCACAGCAGTAGCAACCATGGTTTTTA
AAAACAACTTCAATTTCGTGCTGAAATCCC
TGTGACATAGGCGTTTT 2099
AAAACGCCTATGTCACA 2100 - Reduced palmitate TGTTTTTAAAAACCATGGTTGCTACTGCTGTGACATCGGCGTTTTT | 2101
Acyl-ACP-thicesterase |CCCAGTCACTTCTTGACCTGACTCCTCTGACTCGAAAAACAAGAAG
Gossypium hirsutum |CTCGGAAGCATCAAGTCGAAGCCATCGGT
Ser16Term ACCGATGGCTTCGACTTGATGCTTCCGAGCTTCTTGTTTTTCGAGT | 2102
TCA-TGA CAGAGGAGTCAGGTCAAGAAGTGACTGGGAAAAACGCCGATGTCA
CAGCAGTAGCAACCATGGTTTTTAAAAACA
1112/01 01:47 pm 03137.009 — [NY]783559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos } Alteration I—
CACTTCTTGACCTGACT 2103
AGTCAGGTCAAGAAGTG 2104
Reduced palmitate TTGCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACC | 2105
Acyl-ACP-thioesterase |TGACTCCTCTGACTAGAAAAACAAGAAGCTCGGAAGCATCAAGTC
Gossypium hirsutum |GAAGCCATCGGTTTCTTCTGGAAGTTTGCA
Ser22Term TGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCCG | 2106
TCG-TAG AGCTTCTTGTTTTTCTAGTCAGAGGAGTCAGGTGAAGAAGTGACTG
GGAAAAACGCCGATGTCACAGCAGTAGCAA
CTCTGACTAGAAAAACA 2107 9 TGTTTTTCIAGTCAGAG 2108
Reduced palmitate GCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACCTG | 2109
Acyl-ACP-thioesterase |ACTCCTCTGACTCGTAAAACAAGAAGCTCGGAAGCATCAAGTCGA
Gossypium hirsutum |AGCCATCGGTTTCTTCTGGAAGTTTGCAAG
Lys23Term CTTGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCC | 2110
AAA-TAA GAGCTTCTTGTTTTACGAGTCAGAGGAGTCAGGTGAAGAAGTGAC
TGGGAAAAACGCCGATGTCACAGCAGTAGC
CTGACTCGTAAAACAAG 2111
CTTGTTTTACGAGTCAG 2112
Acyl-ACP-thioesterase |CATTCTTCCCCGTGTAGTCCCCGGTCACCTCCTCTAGACCAGGAA
Cuphea hookeriana | AGCCCGGAAATGGGTCATCGAGCTTCAGCCC
Ser14Term GGGCTGAAGCTCGATGACCCATTTCCGGGCTTTCCTGGTCTAGAG | 2114
TCG-TAG GAGGTGACCGGGGACTACACGGGGAAGAATGCAGAGCTTGCAGC
GGTAGCCACCATTGTCTTTCAACGAGCGGGAG
® CCCCGTGTAGTCCCCGG 3115
CCGGGGACTACACGGGG 2116
Acyl-ACP-thioesterase | CCGGTCACCTCCTCTTGACCAGGAAAGCCCGGAAATGGGTCATCG
Cuphea hookeriana |AGCTTCAGCCCCATCAAGCCCAAATTTGTCG
Arg21Term CGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACCCATTTC | 2118
AGA-TGA CGGGCTTTCCTGGTCAAGAGGAGGTGACCGGGGACGACACGGEG
GAAGAATGCAGAGCTTGCAGCGGTAGCCACCAT
CCTCCTCTIGACCAGGA 2119
TCCTGGTCAAGAGGAGG 2120 11/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Reduced palmitate GCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTC | 2121
Acyl-ACP-thioesterase |ACCTCCTCTAGACCATGAAAGCCCGGAAATGGGTCATCGAGCTTC
Cuphea hookeriana | AGCCCCATCAAGCCCAAATTTGTCGCCAATG
Gly23Term CATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACC | 2122
GGA-TGA CATTTCCGGGCTTTCATGGTCTAGAGGAGGTGACCGGGGACGAC
ACGGGGAAGAATGCAGAGCTTGCAGCGGTAGC
CTAGACCATGAAAGCCC 2123
GGGCTTTCATGGTCTAG 2124
Reduced palmitate ACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTCACC | 2125
Acyl-ACP-thioesterase |TCCTCTAGACCAGGATAGCCCGGAAATGGGTCATCGAGCTTCAGC ® Cuphea hookeriana | CCCATCAAGCCCAAATTTGTCGCCAATGGCG
Lys24Term CGCCATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATG | 2126
AAG-TAG ACCCATTTCCGGGCTATCCTGGTCTAGAGGAGGTGACCGGGGAC
GACACGGGGAAGAATGCAGAGCTTGCAGCGGT
GACCAGGATAGCCCGGA
TCCGGGCTATCCTGGTC 2128
Reduced palmitate 4 AA A A J
Acyl-ACP-thioesterase |ACCTCCTCTAGGCCGTGAAAGCTCGGAAATGGGTCATCGAGCTTG CT
Cuphea lanceolata AGCCCCCTCAAGCCCAAATTTGTCGCCAATG
Gly23Term CATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGATGACC | 2130
GGA-TGA CATTTCCGAGCTTTCACGGCCTAGAGGAGGTGTCCGGGGACGGC
AGGGGGAAGAATGCAGAACTTGCAGCGGTGGC
CTAGGCCGTGAAAGCTC 2131
GAGCTTTCACGGCCTAG
® Reduced palmitate ACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACC | 2133
Acyl-ACP-thioesterase |TCCTCTAGGCCGGGATAGCTCGGAAATGGGTCATCGAGCTTGAGC
Cuphea lanceolata CCCCTCAAGCCCAAATTTGTCGCCAATGCCG
Lys24Term CGGCATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGAT | 2134
AAG-TAG GACCCATTTCCGAGCTATCCCGGCCTAGAGGAGGTGTCCGGGGA
CGGCAGGGGGAAGAATGCAGAACTTGCAGCGGT
GGCCGGGATAGCTCGGA 2135
TCCGAGCTATCCCGGCC 2136 : Reduced palmitate GCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCT | 2137
Acyl-ACP-thioesterase |AGGCCGGGAAAGCTCTGAAATGGGTCATCGAGCTTGAGCCCCCT
Cuphea lanceolata CAAGCCCAAATTTGTCGCCAATGCCGGGTTGA
Gly26Term TCAACCCGGCATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGC | 2138
GGA-TGA TCGATGACCCATTTCAGAGCTTTCCCGGCCTAGAGGAGGTGTCCG
GGGACGGCAGGGGGAAGAATGCAGAACTTGC
1112101 01:47 pm 03137.008 — [NY]793659.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
GAAAGCTCIGAAATGGG 2139
CCCATTTCAGAGCTTTC 2140
Reduced palmitate CATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCTAGGCCGGGAA | 2141
Acyl-ACP-thioesterase |[AGCTCGGAAATGGGTGATCGAGCTTGAGCCCCCTCAAGCCCAAAT
Cuphea lanceolata TTGTCGCCAATGCCGGGTTGAAGGTTAAGGC
Ser29Term GCCTTAACCTTCAACCCGGCATTGGCGACAAATTTGGGCTTGAGG | 2142
TCA-TGA GGGCTCAAGCTCGATCACCCATTTCCGAGCTTTCCCGGCCTAGAG
GAGGTGTCCGGGGACGGCAGGGGGAAGAATG
AAATGGGTGATCGAGCT 2143 [ AGCTCGATCACCCATTT
Acyl-ACP-thicesterase |GAGTGCTACTGCGTAGCTGTTTCCGGTTTCTTCCCCAAAACCTCAC
Helianthus annuus TCTGGAGCCAAGACATCTGATAAGCTTGG
Ser8Term CCAAGCTTATCAGATGTCTTGGCTCCAGAGTGAGGTTTTGGGGAA | 2146
TCG-TAG GAAACCGGAAACAGCTACGCAGTAGCACTCATAGCTACCATGATT
AAAACACTTAAATGTCCGATCCACTTAAACG
TACTGCGTAGCTGTTTC
GAAACAGCTACGCAGTA 2148
Reduced palmitate AGTGTTTTAATCATGGTAGCTATGAGTGCTACTGCGTCGCTGTITC | 2149
Acyl-ACP-thicesterase |CGGTTTCTTCCCCATAACCTCACTCTGGAGCCAAGACATCTGATAA
Helianthus annuus GCTTGGAGGTGAACCAGGTAGTGTTGCTG
Lys17Term CAGCAACACTACCTGGTTCACCTCCAAGCTTATCAGATGTCTTGGC | 2150
AAA-TAA TCCAGAGTGAGGTTATGGGGAAGAAACCGGAAACAGCGACGCAG
TAGCACTCATAGCTACCATGATTAAAACACT
® CTTCCCCATAACCTCAC 2151
GTGAGGTTATGGGGAAG 2152
Reduced palmitate ATGGTAGCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCC | 2153
Acyl-ACP-thicesterase |CAAAACCTCACTCTIGAGCCAAGACATCTGATAAGCTTGGAGGTG
Helianthus annuus AACCAGGTAGTGTTGCTGTGCGCGGAATCA
Gly21Term TGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAGCTTATC | 2154
GGA-TGA AGATGTCTTGGCTCAAGAGTGAGGTTTTGGGGAAGAAACCGGAAA
CAGCGACGCAGTAGCACTCATAGCTACCAT
. CTCACTCTIGAGCCAAG 2155
CTTGGCTCAAGAGTGAG 2156 1112001 01:47 pm 03137.009 — [NY)793553.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos :
Reduced palmitate GCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCCCAAAAC | 2157
Acyl-ACP-thioesterase |CTCACTCTGGAGCCTAGACATCTGATAAGCTTGGAGGTGAACCAG
Helianthus annuus GTAGTGTTGCTGTGCGCGGAATCAAGACAA
Lys23Term TTGTCTTGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAG | 2158
AAG-TAG CTTATCAGATGTCTAGGCTCCAGAGTGAGGTTTTGGGGAAGAAAC
CGGAAACAGCGACGCAGTAGCACTCATAGC
CTGGAGCCTAGACATCT 2159
AGATGTCTAGGCTCCAG 2160
Reduced palmitate A AGCAA A A 3
Acyl-ACP-thioesterase [CCAGGAGCCTCCCCTTAACCTGGGAAGTTAGGCAACTGGTCATCG @® Cuphea palustris AGTTTGAGCCCTTCCTTGAAGCCCAAGTCAA
Lys21Term TTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATGACCAGTTGC | 2162
AAA-TAA CTAACTTCCCAGGTTAAGGGGAGGCTCCTGGGGATGGAACAGGG
AAGCATGCAGAACTTGCTGCAGCAGCCACCAT
CCTCCCCTTAACCTGGG 2163
CCCAGGTTAAGGGGAGG EZ
Reduced palmitate GCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCCCCAGGAGCC | 2165
Acyl-ACP-thioesterase |[TCCCCTAAACCTGGGTAGTTAGGCAACTGGTCATCGAGTTTGAGC
Cuphea palustris CCTTCCTTGAAGCCCAAGTCAATCCCCAATG
Lys24Term CATTGGGGATTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATG | 2166
AAG-TAG ACCAGTTGCCTAACTACCCAGGTTTAGGGGAGGCTCCTGGGGATG
GAACAGGGAAGCATGCAGAACTTGCTGCAGC
AACCTGGGTAGTTAGGC 2167
GCCTAACTACCCAGGTT
@® [Reducedpamiate |TGOATGGTTCCCIGTICOATCCCOAGGAGCCTCOCCTARCETGS | 2168
Acyl-ACP-thioesterase [GAAGTTAGGCAACTGATCATCGAGTTTGAGCCCTTCCTTGAAGCC
Cuphea palustris CAAGTCAATCCCCAATGGCGGATTTCAGGTT
Trp28Term AACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAAGG | 2170
TGG-TGA GCTCAAACTCGATGATCAGTTGCCTAACTTCCCAGGTTTAGGGGA
GGCTCCTGGGGATGGAACAGGGAAGCATGCA
GGCAACTGATCATCGAG 2171
CTCGATGAICAGTTGCC 2172
Acyl-ACP-thioesterase |[AGTTAGGCAACTGGTGATCGAGTTTGAGCCCTTCCTTGAAGCCCA
Cuphea palustris AGTCAATCCCCAATGGCGGATTTCAGGTTAA
Ser29Term TTAACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAA | 2174
TCA-TGA GGGCTCAAACTCGATCACCAGTTGCCTAACTTCCCAGGTTTAGGG
GAGGCTCCTGGGGATGGAACAGGGAAGCATG
11/12/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration i ES—
CAACTGGTGATCGAGTT 2175
AACTCGATCACCAGTTG 2176
Acyl-ACP-thicesterase |CCGGGAATCTCCCCTTAACCCGGGAAGTTCGGTAATGGTGGCTTT
Cuphea hookeriana CAGGTTAAGGCAAACGCCAATGCCCATCCTA
Lys21Term TAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGCCACCATTAC | 2178
AAA-TAA CGAACTTCCCGGGTTAAGGGGAGATTCCCGGGGTTGGAACGGAG
AAGAATGCAGAACTTGCTGCGGCAGCCACCAT
TCTCCCCTTAACCCGGG 2179 ® CCCGGGTTAAGGGGAGA 2180
Acyl-ACP-thicesterase |TCCCCTAAACCCGGGTAGTTCGGTAATGGTGGCTTTCAGGTTAAG
Cuphea hookeriana | GCAAACGCCAATGCCCATCCTAGTCTAAAGT
Lys24Term ACTTTAGACTAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGC | 2182
AAG-TAG CACCATTACCGAACTACCCGGGTTTAGGGGAGATTCCCGGGGTTG
GAACGGAGAAGAATGCAGAACTTGCTGCGGC
AACCCGGGTAGTTCGGT 2183
ACCGAACTACCCGGGTT
Reduced palmitate TTCTCCGTTCCAACCCCGGGAATCTCCCCTAAACCCGGGAAGTTC | 2185
Acyl-ACP-thicesterase |GGTAATGGTGGCTTTTAGGTTAAGGCAAACGCCAATGCCCATCCT
Cuphea hookeriana |AGTCTAAAGTCTGGCAGCCTCGAGACTGAAG
GIn31Term CTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGGCATTGG | 2186
CAG-TAG CGTTTGCCTTAACCTAAAAGCCACCATTACCGAACTTCCCGGGTTT
AGGGGAGATTCCCGGGGTTGCAACGGAGAA
® GTGGCTTTTAGGTTAAG 2187
CTTAACCTAAAAGCCAC 2188
Acyl-ACP-thicesterase |GGTGGCTTTCAGGTTTAGGCAAACGCCAATGCCCATCCTAGTCTA
Cuphea hookeriana |AAGTCTGGCAGCCTCGAGACTGAAGATGACA
Lys33Term TGTCATCTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGG | 2190
AAG-TAG CATTGGCGTTTGCCTAAACCTGAAAGCCACCATTACCGAACTTCCC
GGGTTTAGGGGAGATTCCCGGGGTTGGAAC
: TTCAGGTTTAGGCAAAC 2191
GTTTGCCTAAACCTGAA
1112/01 01:47 pm 03137008 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Reduced palmitate A AA AA i ATAA ACAGA J
Acyl-ACP-thioesterase |TCTCGCATTCTCATTAACCGGATCCGGCACACCGGAGAACCGTCT
Brassica rapa CCTCCGTGTCGTGCTCTCATCTGAGGAAAC
Gin21Term GTTTCCTCAGATGAGAGCACGACACGGAGGAGACGGTTCTCCGGT| 2194
CAA-TAA GTGCCGGATCCGGTTAATGAGAATGCGAGAAGAGGGTCTGTAACT
TATCAGTCGCATTACACGAGAGCTTCAACAT
ATTCTCATTAACCGGAT 2195
ATCCGGTTAATGAGAAT
Reduced palmitate GCGACTGATAAGTTACAGACCCTCTTCTCGCATTCTCATCAACCGG | 2197
Acyl-ACP-thioesterase |ATCCGGCACACCGGIGAACCGTCTCCTCCGTGTCGTGCTCTCATC @ Brassica rapa TGAGGAAACCGGTTCTCGATCCTTTGCGAG
Arg28Term CTCGCAAAGGATCGAGAACCGGTTTCCTCAGATGAGAGCACGACA | 2198
AGA-TGA CGGAGGAGACGGTTCACCGGTGTGCCGGATCCGGTTGATGAGAA
TGCGAGAAGAGGGTCTGTAACTTATCAGTCGC
CACACCGGTIGAACCGTC 2199
GACGGTTCACCGGTGTG 2200
Reduced palmitate CCCTCTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAA | 2201
Acyl-ACP-thioesterase |CCGTCTCCTCCGTGTAGTGCTCTCATCTGAGGAAACCGGTTCTCG
Brassica rapa ATCCTTTGCGAGCGATCGTATCTGCTGATCA
Ser24Term TGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGGTTTC | 2202
TCG-TAG CTCAGATGAGAGCACTACACGGAGGAGACGGTTCTCCGGTGTGC
CGGATCCGGTTGATGAGAATGCGAGAAGAGGG
CTCCGTGTAGTGCTCTC 2203
GAGAGCACTACACGGAG 2204 ®
Acyl-ACP-thioesterase [CTCCTCCGTGTCGTGATCTCATCTGAGGAAACCGGTTCTCGATCC
Brassica rapa TTTGCGAGCGATCGTATCTGCTGATCAAGGA
Cys25Term TCCTTGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGG | 2206
TGC-TGA TTTCCTCAGATGAGATCACGACACGGAGGAGACGGTTCTCCGGTG
TGCCGGATCCGGTTGATGAGAATGCGAGAAG
GTGTCGTGATCTCATCT 2207
AGATGAGATCACGACAC 2208 .
Acyl-ACP-thioesterase | GCATCAAAAATGTAGAAGCTTTCGTGTAATGTGACTAACAACTTAC CT
Brassica napus ACACCTTCTCCTTCTTCTCCGATTCCTC
Leu2Term GAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTGTTAGTCACA | 2210
TTG-TAG TTACACGAAAGCTTCTACATTTTTGATGCCCTTTTTTTTTTATGGTTC
CTGAGGTTTTGGTTTATAGAAGAAGAAT
1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ) Alteration _— — — ___———— — —_— —————— ———=
AAAAATGTAGAAGCTTT 2211
AAAGCTTCTACATTTTT 2212
Reduced palmitate TCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGGG | 2213
Acyl-ACP-thioesterase |CATCAAAAATGTTGTAGCTTTCGTGTAATGTGACTAACAACTTACAC
Brassica napus ACCTTCTCCTTCTTCTCCGATTCCTCCC
Lys3Term GGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTGTTAGTCA| 2214
AAG-TAG CATTACACGAAAGCTACAACATTTTTGATGCCCTTTTTTTTTTATGG
TTCCTGAGGTTTTGGTTTATAGAAGAAGA
AAATGTTGTAGCTTTCG 2215 ® CGAAAGCTACAACATTT 2216 —_— | <£'9
Reduced palmitate CTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAA | 2217
Acyl-ACP-thioesterase |AATGTTGAAGCTTTAGTGTAATGTGACTAACAACTTACACACCTTCT
Brassica napus CCTTCTTCTCCGATTCCTCCCTTTTCAT
Ser5Term ATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTT | 2218
TCG-TAG GTTAGTCACATTACACTAAAGCTTCAACATTTTTGATGCCCTTTTTI
TTTTATGGTTCCTGAGGTTTTGGTTTATAG
GAAGCTTTAGTGTAATG 2219
CATTACACTAAAGCTTC
AAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAAAATG | 2221
Acyl-ACP-thicesterase | TTGAAGCTTTCGTGAAATGTGACTAACAACTTACACACCTTCTCCTT
Brassica napus CTTCTCCGATTCCTCCCTTTTCATCCCG
Cys6Term CGGGATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTA | 2222
TGT-TGA AGTTGTTAGTCACATTICACGAAAGCTTCAACATTTTTGATGCCCTT
TTTTTTTTATGGTTCCTGAGGTTTTGGTTT
® CTTTCGTGAAATGTGAC 2223
GTCACATTTICACGAAAG 2224 = | eect 1112101 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Table 23
Oligonucleotides to produce plants with increased stearate
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration _
Increased stearate GGGAGAGCTCTAGCTCTGTAGAAAAGAAGGATTCATTCATCATATC | 2225 stearoyl-ACP CAGAAATGGCTCTATAGTTTAACCCTTTGGTGGCATCTCAGCCTTA desaturase CAAATTCCCTTCCTCGACTCGTCCGCCAA
Arabidopsis thaliana | TTGGCGGACGAGTCGAGGAAGGGAATTTGTAAGGCTGAGATGCC | 2226
Lys4Term ACCAAAGGGTTAAACTATAGAGCCATTTCTGGATATGATGAATGAA
AAG-TAG TCCTTCTTTTCTACAGAGCTAGAGCTCTCCC
TGGCTCTATAGTTTAAC 2227 ® GTTAAACTATAGAGCCA 2228
Increased stearate CTCTGTAGAAAAGAAGGATTCATTCATCATATCCAGAAATGGCTCT | 2229 stearoyl-ACP AAAGTTTAACCCTTAGGTGGCATCTCAGCCTTACAAATTCCCTTCC desaturase TCGACTCGTCCGCCAACTCCTTCTTTCAG
Arabidopsis thaliana |CTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAAGGGAATTTGTA | 2230
Leu8Term AGGCTGAGATGCCACCTAAGGGTTAAACTTTAGAGCCATTTCTGG
TTG-TAG ATATGATGAATGAATCCTTCTTTTCTACAGAG
TAACCCTTAGGTGGCAT 2231
ATGCCACCTAAGGGTTA 2232
Increased stearate AGAAGGATTCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACC | 2233 stearoyl-ACP CTTTGGTGGCATCTTAGCCTTACAAATTCCCTTCCTCGACTCGTCC desaturase GCCAACTCCTTCTTTCAGATCTCCCAAGT
Arabidopsis thaliana | ACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAA | 2234
Gin12Term GGGAATTTGTAAGGCTAAGATGCCACCAAAGGGTTAAACTTTAGA ® CAG-TAG GCCATTTCTGGATATGATGAATGAATCCTTCT
TGGCATCTTAGCCTTAC 2235
GTAAGGCTAAGATGCCA 2236
Increased stearate TCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACCCTTTGGTG | 2237 stearoyl-ACP GCATCTCAGCCTTAGAAATTCCCTTCCTCGACTCGTCCGCCAACTC desaturase CTTCTTTCAGATCTCCCAAGTTCCTCTGC
Arabidopsis thaliana |GCAGAGGAACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAG | 2238
Phe14Term TCGAGGAAGGGAATTTCTAAGGCTGAGATGCCACCAAAGGGTTAA : TAC-TAG ACTTTAGAGCCATTTCTGGATATGATGAATGA
CAGCCTTAGAAATTCCC 2239 : GGGAATTTCTAAGGCTG 2240 1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration ncreased stearate AGA AAAGAACA AAA A AAAAA 4 stearoyl-ACP AAAGAAAATGGCATAGAAGCTTAACCCTTTGGCATCTCAGCCTTAC desaturase AAACTCCCTTCCTCGGCTCGTCCGCCAAT
Brassica napus ATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGATGC | 2242
Leu3Term CAAAGGGTTAAGCTTCTATGCCATTTTCTTTITTTTGATACGAGGTT
TTG-TAG TGATGTTCTTTCAGACACGAGCGAGCTCTC
AATGGCATAGAAGCTTA 2243
TAAGCTTCTATGCCATT
Increased stearate |GAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAAAA | 2245 stearoyl-ACP AGAAAATGGCATTGTAGCTTAACCCTTTGGCATCTCAGCCTTACAA ® desaturase ACTCCCTTCCTCGGCTCGTCCGCCAATCT
Brassica napus AGATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGAT | 2246
Lys4Term GCCAAAGGGTTAAGCTACAATGCCATTTTCTTTTTTTTGATACGAG
AAG-TAG GTTTGATGTTCTTTCAGACACGAGCGAGCTC
TGGCATTGTAGCTTAAC 2247
GTTAAGCTACAATGCCA 2248
Increased stearate ~~ [TCTGAAAGAACATCAAACCTCGTATCAAAAAAAAGAAAATGGCATT | 2249 stearoyl-ACP GAAGCTTAACCCTTAGGCATCTCAGCCTTACAAACTCCCTTCCTCG desaturase GCTCGTCCGCCAATCTCTACTCTCAGATC
Brassica napus GATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAAGGGAGTTT | 2250
Leu8Term GTAAGGCTGAGATGCCTAAGGGTTAAGCTTCAATGCCATTTTCTTT
TTG-TAG TTTTTGATACGAGGTTTGATGTTCTTTCAGA
TAACCCTTAGGCATCTC 2251
GAGATGCCTAAGGGTTA 2252 ® AAAAAAAAGAAAATGGCATTGAAGCTTA | 2253 stearoyl-ACP ACCCTTTGGCATCTTAGCCTTACAAACTCCCTTCCTCGGCTCGTCC desaturase GCCAATCTCTACTCTCAGATCTCCCAAGT
Brassica napus ACTTGGGAGATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAA | 2254
Gin11Term GGGAGTTTGTAAGGCTAAGATGCCAAAGGGTTAAGCTTCAATGCC
CAG-TAG ATTTTCTTTTTTTTGATACGAGGTTTGATGTT
TGGCATCTTAGCCTTAC 2255
GTAAGGCTAAGATGCCA 2256 ncreased sfearale AA AAAAGAAAAA AAGAAAAAAAL RA R7 x stearoyl-ACP ATCCTTTCCTTTCTTAAACCCAAAAGTTACCTTCTTTCGCTCTTCCA desaturase CCAATGGCCAGTACCAGATCTCCTAAGT : Ricinus communis ~~ [ACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGAAAGAAG | 2258
GIn27Term GTAACTTTTGGGTTTAAGAAAGGAAAGGATTGAGCTTGAGAGCCAT
CAA-TAA TGTTITTTITCTTACCTTTTITCTTTTGGTT 1112/01 01:47 pm 03137.009 — (NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos } Alteration a ———— ee ——
TCCTTTCTTAAACCCAA 2259
TTGGGTTTAAGAAAGGA 2260 increased stearate AAGAAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCAATCCTT | 2261 stearoyl-ACP TCCTTTCTCAAACCTAAAAGTTACCTTCTTTCGCTCTTCCACCAATG desaturase GCCAGTACCAGATCTCCTAAGTTCTACA
Ricinus communis TGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGA | 2262
Gin29Term AAGAAGGTAACTTTTAGGTTTGAGAAAGGAAAGGATTGAGCTTGA
CAA-TAA GAGCCATTGTTTTTTTTCTTACCTTTTTCTT
CTCAAACCTAAAAGTTA 2263 [ TAACTTTTAGGTTTGAG 2264
Increased stearate AAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCAATCCTTTCC | 2265 stearoyl-ACP TTTCTCAAACCCAATAGTTACCTTCTTTCGCTCTTCCACCAATGGCC desaturase AGTACCAGATCTCCTAAGTTCTACATGG
Ricinus communis CCATGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAG | 2266
Lys30Term CGAAAGAAGGTAACTATTGGGTTTGAGAAAGGAAAGGATTGAGCT
AAG-TAG TGAGAGCCATTGTTTTTTITTCTTACCTTTTT
AAACCCAATAGTTACCT 2267
AGGTAACTATTGGGTTT 2268
Increased stearate TCTCAAACCCAAAAGTTACCTICTTTCGCTCTTCCACCAATGGCCA 2269 stearoyl-ACP GTACCAGATCTCCTTAGTTCTACATGGCCTCTACCCTCAAGTCTGG desaturase TTCTAAGGAAGTTGAGAATCTCAAGAAGC
Ricinus communis GCTTCTTGAGATTCTCAACTTCCTTAGAACCAGACTTGAGGGTAGA | 2270
Lysd6Term GGCCATGTAGAACTAAGGAGATCTGGTACTGGCCATTGGTGGAAG
AAG-TAG AGCGAAAGAAGGTAACTTTTGGGTTTGAGA ® GATCTCCTTAGTTCTAC 2271
GTAGAACTAAGGAGATC 2272 ncreased stearate A A AZ i ATCAA SAGACTIGAA T9073 stearoyl-ACP CCCTATCCCCACCTAAACCTTCTCCCTCCCCCAAATGGCCAGTCTC desaturase AGATCTCCCAGGTTCCGCATGGCCTCTA
Glycine max TAGAGGCCATGCGGAACCTGGGAGATCTGAGACTGGCCATTTGG | 2274
Gin11Term GGGAGGGAGAAGGTTTAGGTGGGGATAGGGTTCAGTCTCAGAGC
CAA-TAA CATTGATGAGTAAAGATTAAATGAATCAGAAGA ] TCCCCACCTIAAACCTTC 2275
GAAGGTTTAGGTGGGGA 2276 11/12/01 01:47 pm 03137.008 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos } Alteration
Ee 1
Increased stearate CTTTACTCATCAATGGCTCTGAGACTGAACCCTATCCCCACCCAAA | 2277 stearoyl-ACP CCTTCTCCCTCCCCIAAATGGCCAGTCTCAGATCTCCCAGGTTCC desaturase GCATGGCCTCTACCCTCCGCTCCGGTTCCA
Glycine max TGGAACCGGAGCGGAGGGTAGAGGCCATGCGGAACCTGGGAGAT | 2278
GIn17Term CTGAGACTGGCCATTTAGGGGAGGGAGAAGGTTTGGGTGGGGAT
CAA-TAA AGGGTTCAGTCTCAGAGCCATTGATGAGTAAAG
CCCTCCCCTAAATGGCC 2279
GGCCATTTAGGGGAGGG
Increased stearate GCTCTGAGACTGAACCCTATCCCCACCCAAACCTTCTCCCTCCCC 2281 stearoyl-ACP CAAATGGCCAGTCTCTGATCTCCCAGGTTCCGCATGGCCTCTACC ® desaturase CTCCGCTCCGGTTCCAAAGAGGTTGAAAATA
Glycine max TATTTTCAACCTCTTTGGAACCGGAGCGGAGGGTAGAGGCCATGC | 2282
Arg22Term GGAACCTGGGAGATCAGAGACTGGCCATTTGGGGGAGGGAGAAG
AGA-TGA GTTTGGGTGGGGATAGGGTTCAGTCTCAGAGC
GGGAGATCAGAGACTGG 2284
Increased stearate CAAATGGCCAGTCTCAGATCTCCCAGGTTCCGCATGGCCTCTACC | 2285 stearoyl-ACP CTCCGCTCCGGTTCCTAAGAGGTTGAAAATATTAAGAAGCCATTCA desaturase CTCCTCCCAGAGAAGTGCATGTTCAAGTAA
Glycine max TTACTTGAACATGCACTTCTCTGGGAGGAGTGAATGGCTTCTTAAT | 2286
Lys37Term ATTTTCAACCTCTTAGGAACCGGAGCGGAGGGTAGAGGCCATGCG
AAA-TAA GAACCTGGGAGATCTGAGACTGGCCATTTG
CCGGTTCCTAAGAGGTT 2287
AACCTCTTAGGAACCGG 2288 o ncreased stearate AA AA ) A J AA AA AA A AA AA A A HY stearoyl-ACP AATACGGCGACGTTTTAATCAGACCTGTACCGTTCATTCGCGTTTC desaturase CTCAACCGAAACCTCTCAGATCTCCCAAAT
Helianthus annuus ATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAATGAAC | 2290
GIn11Term GGTACAGGTCTGATTAAAACGTCGCCGTATTGATGCGAATCGCCA
CAA-TAA TTGTTGATGTTGTTCTTGTGTGTGCTTGTTG
CGACGTTTTAATCAGAC 229A
GTCTGATTAAAACGTCG 2292
Increased stearate AAGCACACACAAGAACAACATCAACAATGGCGATTCGCATCAATACT 2293 stearoyl-ACP GGCGACGTTTCAATGAGACCTGTACCGTTCATTCGCGTTTCCTCAA desaturase CCGAAACCTCTCAGATCTCCCAAATTCGC
Helianthus annuus GCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAAT | 2294
Ser12Term GAACGGTACAGGTCTCATTGAAACGTCGCCGTATTGATGCGAATC
TCA-TGA GCCATTGTTGATGTTIGTTICTTGTGTGTGCTT 11112101 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
GTTTCAATGAGACCTGT
: ACAGGTCTCATTGAAAC 2296
Increased stearate AAGAACAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTT| 2297 stearoyl-ACP CAATCAGACCTGTAGCGTTCATTCGCGTTTCCTCAACCGAAACCTC desaturase TCAGATCTCCCAAATTCGCCATGGCTTCC
Helianthus annuus GGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGG| 2298
Tyr15Term AAACGCGAATGAACGCTACAGGTCTGATTGAAACGTCGCCGTATT
TAC-TAG GATGCGAATCGCCATTGTTGATGTTGTTCTT
GACCTGTAGCGTTCATT 2299 ® AATGAACGCTACAGGTC 2300 stearoyl-ACP AGACCTGTACCGTTGATTCGCGTTTCCTCAACCGAAACCTCTCAGA desaturase TCTCCCAAATTCGCCATGGCTTCCACCAT
Helianthus annuus ATGGTGGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGT | 2302
Ser17Term TGAGGAAACGCGAATCAACGGTACAGGTCTGATTGAAACGTCGCC
TCA-TGA GTATTGATGCGAATCGCCATTGTTGATGTTG
GTACCGTIGATICGCGT ~~ | 2303
ACGCGAATCAACGGTAC 2304 stearoyl-ACP AACGATGGCGCTTIGAATGAGTCCGGTGACGCTTCAACGGGAGAT desaturase ATATCCTTCATACACTTTTCATCAATCGA
Helianthus annuus TCGATTGATGAAAAGTGTATGAAGGATATATCTCCCGTTGAAGCGT | 2306
Arg4Term CACCGGACTCATTCAAAGCGCCATCGTTGATGAAGAAGATGATGA
CGA-TGA TGTGTGTGTGATTGAGTGTGTGTTGTGTGT ® TGGCGCTTTGAATGAGT 2307
ACTCATTCAAAGCGCCA 2308 stearoyl-ACP GTCCGGTGACGCTTTAACGGGAGATATATCCTTCATACACTTTTCA desaturase TCAATCGAAAAATCTCAGATCTCCTAAAT
Helianthus annuus ATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTATGAAGG | 2310
GIn11Term ATATATCTCCCGTTAAAGCGTCACCGGACTCATTCGAAGCGCCATC
CAA-TAA GTTGATGAAGAAGATGATGATGTGTGTGT
TGACGCTTTAACGGGAG 2311
CTCCCGTTAAAGCGTCA 2312 111201 01:47 pm 03137.009 — [NY]793550.1
AMENDED SHEET
28-12-2001 01939797 8 EE es CCE. EASE ee AES
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
Increased stearate ACATCATCATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGG | 2313 stearoyl-ACP TGACGCTTCAACGGTAGATATATCCTTCATACACTTTTCATCAATCG desaturase AAAAATCTCAGATCTCCTAAATTCGCGA
Helianthus annuus TCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTA | 2314
Glu13Term TGAAGGATATATCTACCGTTGAAGCGTCACCGGACTCATTCGAAG
GAG-TAG CGCCATCGTTGATGAAGAAGATGATGATGT
TTCAACGGTAGATATAT 2315
ATATATCTACCGTTGAA 2316
Increased stearate ATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGGTGACGCTT 2317 stearoyl-ACP CAACGGGAGATATAGCCTTCATACACTTTTCATCAATCGAAAAATC @ desaturase TCAGATCTCCTAAATTCGCGATGGCTTCC
Helianthus annuus GGAAGCCATCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGA | 2318
Tyr15Term AAAGTGTATGAAGGCTATATCTCCCGTTGAAGCGTCACCGGACTC
TAT-TAG ATTCGAAGCGCCATCGTTGATGAAGAAGAT
GAGATATAGCCTTCATA 2319
TATGAAGGCTATATCTC 2320 stearoyl-ACP ACAACAATGGCTCTCTAGCTCAACCCAGTCACCACCTTCCCTTCAA desaturase CACGCTCCCTCAACAACTTCTCCTCCAGAT
Linum usitatissimum |ATCTGGAGGAGAAGTTGTTGAGGGAGCGTGTTGAAGGGAAGGTG | 2322
Lys4Term GTGACTGGGTTGAGCTAGAGAGCCATTGTIGTTGAAGGTTITTCT
AAG-TAG GCGCTGTTGTTTGGGGGCAAGCTGGCTGAGTT
TGGCTCTCTAGCTCAAC 2323
GTTGAGCTAGAGAGCCA 2324 ® stearoyl-ACP TCACCACCTTCCCTTGAACACGCTCCCTCAACAACTTCTCCTCCAG desaturase ATCTCCTCGCACCTTTCTCATGGCTGCTTC : Linum usitatissimum |GAAGCAGCCATGAGAAAGGTGCGAGGAGATCTGGAGGAGAAGTT | 2326
Ser13Term GTTGAGGGAGCGTGTTCAAGGGAAGGTGGTGACTGGGTTGAGCT
TCA-TGA TGAGAGCCATTGTTGTTGAAGGTTTTITCTGCGC
CTTCCCTTGAACACGCT 2327
AGCGTGTTCAAGGGAAG 2328 .25 Increased stearate CTCAAGCTCAACCCAGTCACCACCTTCCCTTCAACACGCTCCCTCA! 2329 stearoyl-ACP ACAACTTCTCCTCCTIGATCTCCTCGCACCTTTCTCATGGCTGCTTC desaturase CACTTTCAATTCCACCTCCACCAAGTAAG
Linum usitatissimum |CTTACTTGGTGGAGGTGGAATTGAAAGTGGAAGCAGCCATGAGAA | 2330
Arg23Term AGGTGCGAGGAGATCAGGAGGAGAAGTTGTTGAGGGAGCGTGTT
AGA-TGA GAAGGGAAGGTGGTGACTGGGTTIGAGCTTGAG 1412/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797 — ee
Phenotype, Gene,
Plant & Targeted Altering Oligos } Alteration [fercercereareneer
AGGAGATCAGGAGGAGA 2332 stearoyl-ACP ATTCCACCTCCACCTAGTAAGCATCTCCTCCTCCTCGGAATCTCCG desaturase CCGATTTCTTTTAAGCGATTGATCGTAGA
Linum usitatissimum | TCTACGATCAATCGCTTAAAAGAAATCGGCGGAGATTCCGAGGAG | 2334
Lys41Term GAGGAGATGCTTACTAGGTGGAGGTGGAATTGAAAGTGGAAGCA
AAG-TAG GCCATGAGAAAGGTGCGAGGAGATCTGGAGGA
CCTCCACCTAGTAAGCA 2335 @ TGCTTACTAGGTGGAGG 2336 ncreased stearate i A AAA A ACAAGA stearoyl-ACP CCGATGCTCGTATCTIGATCTCACAGGGTTTTCATGGCTTCAACTAT desaturase TCATTCTCCTTCTATGGAGGTCGGAAAAG
Olea europaea CTTTTCCGACCTCCATAGAAGGAGAATGAATAGTTGAAGCCATGAA | 2338
Arg21Term AACCCTGTGAGATCAGATACGAGCATCGGGGAAGGAAGGCATCTT
AGA-TGA GTGGGGTGGAAAGCAAAGTTTCAGTGCCAT
CTCGTATCIGATCTCAC 2339
GTGAGATCAGATACGAG 2340
Increased stearate CCCACAAGATGCCTTCCTTCCCCGATGCTCGTATCAGATCTCACAG| 2341 stearoyl-ACP GGTTTTCATGGCTTGAACTATTCATTCTCCTTCTATGGAGGTCGGA desaturase AAAGTTAAAAAGCCTTTCACGCCTCCACG
Olea europaea CGTGGAGGCGTGAAAGGCTTTTTAACTTTTCCGACCTCCATAGAA 2342
Ser29Term GGAGAATGAATAGTTCAAGCCATGAAAACCCTGTGAGATCTGATAC
TCA-TGA GAGCATCGGGGAAGGAAGGCATCTTGTGGG @® CATGGCTTGAACTATTC 2343
GAATAGTTCAAGCCATG 2344
Increased stearate GATGCTCGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTC | 2345 stearoyl-ACP ATTCTCCTTCTATGTAGGTCGGAAAAGTTAAAAAGCCTTTCACGCC desaturase TCCACGAGAGGTACATGTTCAAGTAACCC
Olea europaea GGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAGGCTTTT | 2346
Glu37Term TAACTTTTCCGACCTACATAGAAGGAGAATGAATAGTTGAAGCCAT
GAG-TAG GAAAACCCTGTGAGATCTGATACGAGCATC : CTTCTATGTAGGTCGGA 2347
TCCGACCTACATAGAAG 2348
IN——— Udit etd td Wat 1112/01 01:47 pm 03137.009 — [NY)793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration stearoyl-ACP CTTCTATGGAGGTCTGAAAAGTTAAAAAGCCTTTCACGCCTCCACG desaturase AGAGGTACATGTTCAAGTAACCCATTCCT
Olea europaea AGGAATGGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAG | 2350
Gly39Term GCTTTTTAACTTTTCAGACCTCCATAGAAGGAGAATGAATAGTTGA
GGA-TGA AGCCATGAAAACCCTGTGAGATCTGATACG
TGGAGGTCTGAAAAGTT 2351
AACTTTTCAGACCTCCA 2352 ncreased stearate ATCA } . |stearoyl-ACP GAGAAATGGCACTGTAACTCAGTCCAGTCATGTTTCAATCTCAGAA @® desaturase GCTTCCATTTCTTGCCTCCTATCCGCCTT
Persea americana AAGGCGGATAGGAGGCAAGAAATGGAAGCTTCTGAGATTGAAACA | 2354
Lysd4Term TGACTGGACTGAGTTACAGTGCCATTTCTCCGTGCCTGATAGAGA
AAA-TAA GAGAGAGCAGAGGGGACGACAAAAACGAGAA
TGGCACTGIAACTCAGT 2355
ACTGAGTTACAGTGCCA 2356
Increased stearate CTGCTCTCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCA| 2357 stearoyl-ACP GTCCAGTCATGTTTTAATCTCAGAAGCTTCCATTTCTTGCCTCCTAT desaturase CCGCCTTCCAATCTCAGATCTCCGAGGG
Persea americana CCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAAGAAAT | 2358
GIn11Term GGAAGCTTCTGAGATTAAAACATGACTGGACTGAGTTTCAGTGCC
CAA-TAA ATTTCTCCGTGCCTGATAGAGAGAGAGAGCAG
TCATGTTTTAATCTCAG 2359
CTGAGATTAAAACATGA 2360 @® Increased stearate TCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCA | 2361 stearoyl-ACP GTCATGTTTCAATCTTAGAAGCTTCCATTTCTTGCCTCCTATCCGCC desaturase TTCCAATCTCAGATCTCCGAGGGTTTTCA
Persea americana TGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAA] 2362
Gln13Term GAAATGGAAGCTTCTAAGATTGAAACATGACTGGACTGAGTTTCAG
CAG-TAG TGCCATTTCTCCGTGCCTGATAGAGAGAGA
TTCAATCTTAGAAGCTT 2363
AAGCTTCTAAGATTGAA 2364 ‘25 Increased stearate CTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCAGTC | 2365 stearoyl-ACP ATGTTTCAATCTCAGTAGCTTCCATTTCTTGCCTCCTATCCGCCTTC desaturase CAATCTCAGATCTCCGAGGGTTTTCATGG
Persea americana CCATGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAG 2366
Lys14Term GCAAGAAATGGAAGCTACTGAGATTGAAACATGACTGGACTGAGT
AAG-TAG TTCAGTGCCATTTCTCCGTGCCTGATAGAGAG 11/12/01 01:47 pm 03137.009 — [NY]793558.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos , Alteration EIS ES—
AATCTCAGTAGCTTCCA 2367 : TGGAAGCTACTGAGATT 2368 ncreasea stearate AGA A OY stearoyl-ACP ACACCGCATCGCCGTAGTCCTGCGGCGGCGTGGCGCAGAGGAG desaturase GAGCAATGGGATGTCGAAGATGGTGGCCATGGCC
Oryza sativa GGCCATGGCCACCATCTTCGACATCCCATTGCTCCTCCTCTGCGC | 2370
Tyr12Term CACGCCGCCGCAGGACTACGGCGATGCGGTGTGGGACGCCGCE
TAC-TAG AACGCCATGAGCAGCGGCAGCGAGATCTCGGGG
TCGCCGTAGTCCTGCGG 2371 ® CCGCAGGACTACGGCGA 2372
Increased stearate CTGCTCATGGCGTTCGCGGCGTCCCACACCGCATCGCCGTACTCC| 2373 stearoyl-ACP TGCGGCGGCGTGGCGTAGAGGAGGAGCAATGGGATGTCGAAGAT desaturase GGTGGCCATGGCCTCCACCATCAACAGGGTCA
Oryza sativa TGACCCTGTTGATGGTGGAGGCCATGGCCACCATCTTCGACATCC | 2374
GIn19Term CATTGCTCCTCCTCTACGCCACGCCGCCGCAGGAGTACGGCGAT
CAG-TAG GCGGTGTGGGACGCCGCGAACGCCATGAGCAG
GCGTGGCGTAGAGGAGG 2375
CCTCCTCTACGCCACGC 2376
Increased stearate CCCACACCGCATCGCCGTACTCCTGCGGCGGCGTGGCGCAGAGG | 2377 stearoyl-ACP AGGAGCAATGGGATGTAGAAGATGGTGGCCATGGCCTCCACCAT desaturase CAACAGGGTCAAGACTGCTAAGAAGCCCTACAC
Oryza sativa GTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGGCC | 2378
Ser26Term ATGGCCACCATCTTCTACATCCCATTGCTCCTCCTCTGCGCCACGE
TCG-TAG CGCCGCAGGAGTACGGCGATGCGGTGTGGEG ® TGGGATGTAGAAGATGG 2379
CCATCTTCTACATCCCA
Increased stearate CACACCGCATCGCCGTACTCCTGCGGCGGCGTGGCGCAGAGGAG | 2381 stearoyl-ACP GAGCAATGGGATGTCGTAGATGGTGGCCATGGCCTCCACCATCAA desaturase CAGGGTCAAGACTGCTAAGAAGCCCTACACTC
Oryza sativa GAGTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGG | 2382
Lys27Term CCATGGCCACCATCTACGACATCCCATTGCTCCTCCTCTGCGCCA
AAG-TAG CGCCGCCGCAGGAGTACGGCGATGCGGTGTG : GGATGTCGTAGATGGTG 2383
CACCATCTACGACATCC 2384 1112001 01:47 pm 03137.009 — [NY]793553.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration ncreased stearafe A i ACCAACAGAAGCA AGGAGHA 3 stearoyl-ACP GAGAAGCAATGGCGTAGAAGCTTCACCACACGGCCTTCAATCCTT desaturase CCATGGCGGTTACCTCTTCGGGACTTCCTCG
Simmondsia chinensis |CGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAGGC | 2386
Leu3Term CGTGTGGTGAAGCTTCTACGCCATTGCTTCTCTCTCCTAAGTGCTT
TTG-TAG CTGTTGGTAACCGCTCAACCTAGAGAGAGAA
AATGGCGTAGAAGCTTC 2387
GAAGCTTCTACGCCATT 2388
Increased stearate CTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGAGA | 2389 stearoyl-ACP GAAGCAATGGCGTTGTAGCTTCACCACACGGCCTTCAATCCTTCC ) desaturase ATGGCGGTTACCTCTTCGGGACTTCCTCGAT
Simmondsia chinensis |ATCGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAG 2390
Lysd4Term GCCGTGTGGTGAAGCTACAACGCCATTGCTTCTCTCTCCTAAGTG
AAG-TAG CTTCTGTTGGTAACCGCTCAACCTAGAGAGAG
TGGCGTTGTAGCTTCAC 2391
GTGAAGCTACAACGCCA 2392
Increased stearate AAGCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCAT| 2393 stearoyl-ACP GGCGGTTACCTCTTAGGGACTTCCTCGATCGTATCACCTCAGATCT desaturase CACCGCGTTTTCATGGCTTCTTCTACAAT
Simmondsia chinensis |ATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGATAC | 2394
Ser19Term GATCGAGGAAGTCCCTAAGAGGTAACCGCCATGGAAGGATTGAAG
TCG-TAG GCCGTGTGGTGAAGCTTCAACGCCATTGCTT
TACCTCTTAGGGACTTC 2395
GAAGTCCCTIAAGAGGTA 2396
J Increased stearate GCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCATG | 2397 stearoyl-ACP GCGGTTACCTCTTCGIGACTTCCTCGATCGTATCACCTCAGATCTC desaturase ACCGCGTTTTCATGGCTTCTTCTACAATTG
Simmondsia chinensis |CAATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGAT | 2398
Gly20Term ACGATCGAGGAAGTCACGAAGAGGTAACCGCCATGGAAGGATTG
GGA-TGA AAGGCCGTGTGGTGAAGCTTCAACGCCATTGC
CCTCTTCGIGACTTCCT 2399
AGGAAGTCACGAAGAGG 2400 ncreased stearate AA AA ACACCA i 20 stearoyl-ACP ATTGCCGTCTTTCTGACCTCGTCAAACGCCTTCTCGCAGATCTCCC desaturase AAATTCTTCATGGCTTCCACTCTCAGCAG
Spinacia oleracea CTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATCTGCGAGAA | 2402
Ser21Term GGCGTTTGACGAGGTCAGAAAGACGGCAATCGACGACACTGAAAT
A-TGA GGTGTGGAAACGGGGTTGAGATTCAGAGCCA 141112001 01:47 pm 03137.009 — [NY}793559.1
AMENDED SHEET
28-12-2001 01939797 — ee _
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
GTCTITCTGACCICGIC 2403 i GACGAGGTCAGAAAGAC 2404
Increased stearate AATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCGATTGCCGT | 2405 stearoyl-ACP CTTTCTCACCTCGTTAAACGCCTTCTCGCAGATCTCCCAAATTCTT desaturase CATGGCTTCCACTCTCAGCAGCTCTTCTC
Spinacia oleracea GAGAAGAGCTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATC | 2406
GIn24Term TGCGAGAAGGCGTTTAACGAGGTGAGAAAGACGGCAATCGACGA
CAA-TAA CACTGAAATGGTGTGGAAACGGGGTTGAGATT
CACCTCGTTAAACGCCT 2407
C AGGCGTTTAACGAGGTG 2408
Increased stearate TCCACACCATTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTC | 2409 stearoyl-ACP AAACGCCTTCTCGCTGATCTCCCAAATTCTTCATGGCTTCCACTCT desaturase CAGCAGCTCTTCTCCTAAGGAAGCGGAAA
Spinacia oleracea TTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGGAAGCCATGA | 2410
Arg29Term AGAATTTGGGAGATCAGCGAGAAGGCGTTTGACGAGGTGAGAAA
AGA-TGA GACGGCAATCGACGACACTGAAATGGTGTGGA
CTTCTCGCIGATCTCCC
GGGAGATCAGCGAGAAG 2412
Increased stearate TTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTCAAACGCCTT | 2413 stearoyl-ACP CTCGCAGATCTCCCTAATTCTTCATGGCTTCCACTCTCAGCAGCTC desaturase TTCTCCTAAGGAAGCGGAAAGCCTGAAGA
Spinacia oleracea TCTTCAGGCTTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGG | 2414 © |Lys32Term AAGCCATGAAGAATTAGGGAGATCTGCGAGAAGGCGTTTGACGAG
AAA-TAA GTGCAGAAAGACGGCAATCGACGACACTGAAA [ GATCTCCCTAATTCTTC 2475
GAAGAATTAGGGAGATC stearoyl-ACP CAATGGGGTGTCGTGAAAATCTCACAAAATGTTACCATTTCCTTGT desaturase TCTTCAGCCAGATCTGAGCGAGTTTTCAT
Solanum tuberosum |ATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTAAC | 2418
Leu10Term ATTTTGTGAGATTTTCACGACACCCCATTGATATTCAGTGCCATTGT
TTA-TGA TGATGCTCTGTTTTTCACCTCGACTATTT : GGTGTCGTGAAAATCTC 2419
GAGATTTTCACGACACC 2420 = | cY 11112101 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos :
Increased stearate ATAGTCGAGGTGAAAAACAGAGCATCAACAATGGCACTGAATATCA| 2421 stearoyl-ACP ATGGGGTGTCGTTATAATCTCACAAAATGTTACCATTTCCTTGTTCT desaturase TCAGCCAGATCTGAGCGAGTTTTCATGG
Solanum tuberosum |CCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTA | 2422
Lys11Term ACATTTTGTGAGATTATAACGACACCCCATTGATATTCAGTGCCATT
AAA-TAA GTTGATGCTCTGTTTTTCACCTCGACTAT
TGTCGTTATAATCTCAC 2423
GTGAGATTATAACGACA 2424
Increased stearate GTGAAAAACAGAGCATCAACAATGGCACTGAATATCAATGGGGTG | 2425 stearoyl-ACP TCGTTAAAATCTCACTAAATGTTACCATTTCCTTGTTCTTCAGCCAG ® desaturase ATCTGAGCGAGTTTTCATGGCTTCAACCA
Solanum tuberosum | TGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAG | 2426
Lys14Term GAAATGGTAACATTTAGTGAGATTTTAACGACACCCCATTGATATT
AAA-TAA CAGTGCCATTGTTGATGCTCTGTTTTTCAC
AATCTCACTAAATGTTA 2427
TAACATTTAGTGAGATT 2428
Increased stearate ACAGAGCATCAACAATGGCACTGAATATCAATGGGGTGTCGTTAAA| 2429 stearoyl-ACP ATCTCACAAAATGTGACCATTTCCTTGTTCTTCAGCCAGATCTGAG desaturase CGAGTTTTCATGGCTTCAACCATTCATCG
Solanum tuberosum |CGATGAATGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAA | 2430
Leu16Term GAACAAGGAAATGGTCACATTTTGTGAGATTTTAACGACACCCCAT
TTA-TGA TGATATTCAGTGCCATTGTTGATGCTCTGT
CAAAATGTGACCATTTC 2431
GAAATGGTCACATTTTG 2432 @® ncreased stearate A AA AA ACAGAA 4 stearoyl-ACP TCCTTCTTCATCATGATCTTCTTCTTCTTCATCGTTCTCGCTTCCTC desaturase AAATGGCTAGCCTCAGATCTCCAAGGTT
Arachis hypogaea AACCTTGGAGATCTGAGGCTAGCCATTTGAGGAAGCGAGAACGAT | 2434
Ser21Term GAAGAAGAAGAAGATCATGATGAAGAAGGAGAGAGAAAGAGCTTC
TCA-TGA TGTGAAGGGTTAGGGTTCAGCCTCAGAGCCA
TTCATCATGATCTTCTT 2435
AAGAAGATCATGATGAA 2436 2 stearoyl-ACP TCTTCTTCTTCTTGATCGTTCTCGCTTCCTCAAATGGCTAGCCTCA desaturase GATCTCCAAGGTTCCGCATGGCCTCCAC
Arachis hypogaea GTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCATTTGA | 2438
Ser26Term GGAAGCGAGAACGATCAAGAAGAAGAAGATGATGATGAAGAAGGA
TCA-TGA GAGAGAAAGAGCTTCTGTGAAGGGTTAGGGT 11/12/01 01:47 pm 03137.009 — {NY]793550.
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
TTCTTCTTGATCGTTCT 2439 : AGAACGATCAAGAAGAA
Increased stearate CTAACCCTTCACAGAAGCTCTTTCTCTCTCCTICTTCATCATCATCT 2441 stearoyl-ACP TCTTCTTCTTCATAGTTCTCGCTTCCTCAAATGGCTAGCCTCAGAT desaturase CTCCAAGGTTCCGCATGGCCTCCACCCT
Arachis hypogaea AGGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCAT | 2442
Ser27Term TTGAGGAAGCGAGAACTATGAAGAAGAAGAAGATGATGATGAAGA i
TCG-TAG AGGAGAGAGAAAGAGCTTCTGTGAAGGGTTAG
TTCTTCATAGTTCTCGC 2443 9 GCGAGAACTATGAAGAA 2444
Increased stearate CTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCATCTTCTTCT | 2445 stearoyl-ACP TCTTCATCGTTCTAGCTTCCTCAAATGGCTAGCCTCAGATCTCCAA desaturase GGTTCCGCATGGCCTCCACCCTCCGCAC
Arachis hypogaea GTGCGGAGGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCT | 2446
Ser29Term AGCCATTTGAGGAAGCTAGAACGATGAAGAAGAAGAAGATGATGA
TCG-TAG TGAAGAAGGAGAGAGAAAGAGCTTCTGTGAAG
ATCGTTCTAGCTTCCTC 2447
GAGGAAGCTAGAACGAT 2448 [Increased stearate AAA AAAA AAAA AAACCAGGAAZ AAACGAA 443 stearoyl-ACP AAGAAAAAATGGCTTAGAATTTTAATGCCATCGCCTCGAAATCTCA desaturase GAAGCTCCCTTGCTTTGCTCTTCCACCAAA
Gossypium hirsutum | TTTGGTGGAAGAGCAAAGCAAGGGAGCTTCTGAGATTTCGAGGCG | 2450
Leu3Term ATGGCATTAAAATTCTAAGCCATTTTTTCTTTTCGTTTGCCTTTCCT
TTG-TAG GGTTTGGGTTTTGGACGGCTTTTAACTTT @ AATGGCTTAGAATTTTA 2451
TAAAATTCTAAGCCATT 2452
Increased stearate CCCAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTT| 2453 stearoyl-ACP TAATGCCATCGCCTAGAAATCTCAGAAGCTCCCTTGCTTTGCTCTT desaturase CCACCAAAGGCCACCCTTAGATCTCCCAA
Gossypium hirsutum | TTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAGG | 2454
Ser1-Term GAGCTTCTGAGATTTCTAGGCGATGGCATTAAAATTCAAAGCCATT
TCG-TAG TTTTCTTTTCGTTTGCCTTTCCTGGTTTGGG } CATCGCCTAGAAATCTC 2455
GAGATTTCTAGGCGATG 2456 11/42/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
Increased stearate CAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTA | 2457 stearoyl-ACP ATGCCATCGCCTCGTAATCTCAGAAGCTCCCTTGCTTTGCTCTTCC desaturase ACCAAAGGCCACCCTTAGATCTCCCAAGT
Gossypium hirsutum |ACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAG | 2458
Lys11Term GGAGCTTCTGAGATTACGAGGCGATGGCATTAAAATTCAAAGCCA
AAA-TAA TTITTTCTTTTCGTITGCCTITCCTGGTTTG
TCGCCTCGTAATCTCAG
CTGAGATTACGAGGCGA 2460
Increased stearate AGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTAATGCCA | 2461 stearoyl-ACP TCGCCTCGAAATCTTAGAAGCTCCCTTGCTTTGCTCTTCCACCAAA @® desaturase GGCCACCCTTAGATCTCCCAAGTTTTCCA
Gossypium hirsutum | TGGAAAACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAA | 2462
GIn13Term AGCAAGGGAGCTTCTAAGATTTCGAGGCGATGGCATTAAAATTCA
CAG-TAG AAGCCATTTTTTCTTTTCGTTTGCCTTTCCT
CGAAATCTTAGAAGCTC 2463
GAGCTTCTAAGATTTCG 2464 1/1201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Table 24
Oligonucleotides to produce plants with reduced linolenic acid
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
Reduced linolenic acid [AATAGAACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGC | 2465 omega-3 fatty acid TCCAATGGCGAGCTAGGTTTTATCAGAATGTGGTTTTAGACCTCTC desaturase CCCAGATTCTACCCTAAACACACAACCTC
Arabidopsis thaliana |GAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTAAAACCA | 2466
SerdTerm CATTCTGATAAAACCTAGCTCGCCATTGGAGCCTCTTCCCAAGAAG
TCG-TAG AAAAGAGGAAAAAGTCTCTGTCGTTCTATT
GGCGAGCTIGGTTTTAT 2467 ® ATAAAACCAAGCTCGCC 2468
Reduced linolenic acid | ACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAAT | 2469 omega-3 fatty acid GGCGAGCTCCGTTTGATCAGAATGTGGTTTTAGACCTCTCCCCAG desaturase ATTCTACCCTAAACACACAACCTCTTTTGC
Arabidopsis thaliana |GCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTA | 2470
LeuBTerm AAACCACATTCTGATCAAACCGAGCTCGCCATTGGAGCCTCTTCCC
TTA-TGA AAGAAGAAAAGAGGAAAAAGTCTCTGTCGT
CTCGGTTTGATCAGAAT 2471
ATTCTGATCAAACCGAG 2472
Reduced linolenic acid |ACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGC | 2473 omega-3 fatty acid GAGCTCGGTTTTATGAGAATGTGGTTTTAGACCTCTCCCCAGATTC desaturase TACCCTAAACACACAACCTCTTTTGCCTC
Arabidopsis thaliana |GAGGCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGT | 2474
Ser7Term CTAAAACCACATTCTCATAAAACCGAGCTCGCCATTGGAGCCTCTT
Q TCA-TGA CCCAAGAAGAAAAGAGGAAAAAGTCTCTGT
GGTTTTATGAGAATGTG 2475
CACATTCTCATAAAACC 2476
Reduced linolenic acid |AGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGCGA | 2477 omega-3 fatty acid GCTCGGTTTTATCATAATGTGGTTTTAGACCTCTCCCCAGATTCTA desaturase CCCTAAACACACAACCTCTTTTGCCTCTA
Arabidopsis thaliana |TAGAGGCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAG | 2478
Glu8Term GTCTAAAACCACATTATGATAAAACCGAGCTCGCCATTGGAGCCTC
GAA-TAA TTCCCAAGAAGAAAAGAGGAAAAAGTCTCT
TTTTATCATAATGTGGT 2479
ACCACATTATGATAAAA
1112/01 01:47 pm 03137.009 — [NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene, B
Plant & Targeted Altering Oligos . Alteration
Reduced linolenic acid A A AGAGCAGAGAGA AAAAGA 48 omega-3 fatty acid TAGCAATGGCGAACTAGGTCTTATCCGAATGTGGCATAAGACCTC desaturase TCCCCAGAATCTACACCACACCCAGATCCAC
Brassica juncea GTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTTATGCCA | 2482
LeudTerm CATTCGGATAAGACCTAGTTCGCCATTGCTAGAGCTCTTTTGCTCT
TTG-TAG CTCTCTCTCCCCAGAAGAAGAAGATGATGA
GGCGAACTAGGTCTTAT 2483
ATAAGACGCTAGTTCGCC 2484
Reduced linolenic acid [TCTTCTTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAA | 2485 omega-3 fatty acid TGGCGAACTTGGTCTGATCCGAATGTGGCATAAGACCTCTCCCCA ® desaturase GAATCTACACCACACCCAGATCCACTTTCCT
Brassica juncea AGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTT | 2486
LeubTerm ATGCCACATTCGGATCAGACCAAGTTCGCCATTGCTAGAGCTCTTT
TTA-TGA TGCTCTCTCTCTCTCCCCAGAAGAAGAAGA
CTTGGTCTGATCCGAAT
ATTCGGATCAGACCAAG
Reduced linolenic acid [TTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCG | 2489 omega-3 fatty acid AACTTGGTCTTATCCTAATGTGGCATAAGACCTCTCCCCAGAATCT desaturase ACACCACACCCAGATCCACTTTCCTCTCCA :
Brassica juncea TGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGA | 2490
Glu8Term GGTCTTATGCCACATTAGGATAAGACCAAGTTCGCCATTGCTAGA
GAA-TAA GCTCTTTTGCTCTCTCTCTCTCCCCAGAAGAA
TCTTATCCTAATGTGGC 2491
GCCACATTAGGATAAGA 2492 ® Reduced linolenic acid [CTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCGAACT | 2493 omega-3 fatty acid TGGTCTTATCCGAATGAGGCATAAGACCTCTCCCCAGAATCTACAC desaturase CACACCCAGATCCACTTTCCTCTCCAACACC
Brassica juncea GGTGTTGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATICTGG | 2494
Cys9Term GGAGAGGTCTTATGCCTCATTCGGATAAGACCAAGTTCGCCATTG
TGT-TGA CTAGAGCTCTTTTGCTCTCTCTCTCTCCCCAG
TCCGAATGAGGCATAAG 2495
CTTATGCCTCATTCGGA 2496 -25 Reduced linolenic acid JATAACAGAR AA i A AR xe omega-3 fatty acid TGGCTGCTGGTTGAGTATTATCAGAATGTGGTTTAAGGCCTCTCCC desaturase AAGAATCTACTCACGACCCAGAATTGGT
Ricinus communis ACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTTAAACC | 2498
Trp5Term ACATTCTGATAATACTCAACCAGCAGCCATTGAAAACCCAGAAGCT
TGG-TGA AAAAATGCAAGAATTCAGCAATTCTGTTAT 14/12/01 01:47 pm ' 03137.009 — JNY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
GCTGGTTGAGTATTATC 2499 : GATAATACTCAACCAGC 2500
Reduced linolenic acid [AGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCT | 2501 omega-3 fatty acid GCTGGTTGGGTATGATCAGAATGTGGTTTAAGGCCTCTCCCAAGA desaturase ATCTACTCACGACCCAGAATTGGTTTTAC
Ricinus communis GTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTT | 2502
Leu7Term AAACCACATTCTGATCATACCCAACCAGCAGCCATTGAAAACCCAG
TTA-TGA AAGCTAAAAATGCAAGAATTCAGCAATTCT
TTGGGTATGATCAGAAT 2503 ® ATTCTGATCATACCCAA 2504
Reduced linolenic acid |ATTGCTGAATTCTTGCATITTTAGCTTCTGGGTTTTCAATGGCTGCT | 2505 omega-3 fatty acid GGTTGGGTATTATGAGAATGTGGTTTAAGGCCTCTCCCAAGAATCT desaturase ACTCACGACCCAGAATTGGTTTTACATC
Ricinus communis GATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGC | 2506
Ser8Term CTTAAACCACATTCTCATAATACCCAACCAGCAGCCATTGAAAACC
TCA-TGA CAGAAGCTAAAAATGCAAGAATTCAGCAAT
GGTATTATGAGAATGTG
CACATTCTCATAATACC 2508
Reduced linolenic acid |TGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCTG | 2509 omega-3 fatty acid GTTGGGTATTATCATAATGTGGTTTAAGGCCTCTCCCAAGAATCTA desaturase CTCACGACCCAGAATTGGTTTTACATCGA
Ricinus communis TCGATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAG | 2510
Glu9Term GCCTTAAACCACATTATGATAATACCCAACCAGCAGCCATTGAAAA
GAA-TAA CCCAGAAGCTAAAAATGCAAGAATTCAGCA ® TATTATCATAATGTGGT 2511
ACCACATTATGATAATA 2512
Reduced linolenic acid AA ATCAGAA AGACCA AAGAA omega-3 fatty acid TCTACCCTAAGCCCTGAACTGGGGCAGCCACTTCTGCCTCCTCTC desaturase ACATTAAGTTGAGAATTTCACGTACAGATC
Nicotiana tabacum GATCTGTACGTGAAATTCTCAACTTAATGTGAGAGGAGGCAGAAGT| 2514
Arg22Term GGCTGCCCCAGTTCAGGGCTTAGGGTAGATTCTTGGGAGTGGTCT
AGA-TGA AAGACCACATTCTGATAAAACCCAACTTGC : CTAAGCCCTIGAACTGGG 2515
CCCAGTTCAGGGCTTAG 2516 112001 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos :
Reduced linolenic acid | CTCCCAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCT | 2517 . omega-3 fatty acid GCCTCCTCTCACATTTAGTTGAGAATTTCACGTACAGATCTGAGTG desaturase GTTCTGCAATTTCTITGTCTAATACTAATA
Nicotiana tabacum TATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGTACG | 2518
Lys34Term TGAAATTCTCAACTAAATGTGAGAGGAGGCAGAAGTGGCTGCCCC
AAG-TAG AGTTCTGGGCTTAGGGTAGATTCTTGGGAG
CTCACATTTAGTTGAGA 2519
TCTCAACTAAATGTGAG 2520
Reduced linolenic acid | CAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCT | 2521 omega-3 fatty acid CCTCTCACATTAAGTAGAGAATTTCACGTACAGATCTGAGTGGTTC ® desaturase TGCAATTTCTTTGTCTAATACTAATAAAGA
Nicotiana tabacum TCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGT | 2522
Leu35Term ACGTGAAATTCTCTACTTAATGTGAGAGGAGGCAGAAGTGGCTGC
TTG-TAG CCCAGTTCTGGGCTTAGGGTAGATTCTTG
CATTAAGTAGAGAATTT 2523
AAATTCTCTACTTAATG 2524
Reduced linolenic acid |AGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCTCC | 2525 omega-3 fatty acid TCTCACATTAAGTTGTGAATTTCACGTACAGATCTGAGTGGTTCTG desaturase CAATTTCTTTGTCTAATACTAATAAAGAGA
Nicotiana tabacum TCTCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCT | 2526
Arg36Term GTACGTGAAATTCACAACTTAATGTGAGAGGAGGCAGAAGTGGCT
AGA-TGA GCCCCAGTTCTGGGCTTAGGGTAGATTCT
TTAAGTTGTIGAATTTCA 2527
TGAAATTCACAACTTAA 2528 @® Reduced linolenic acid A ATCAGAA A A A J omega-3 fatty acid GTCTATCCTAAGCCATGAACTGGCCACCCTTTGTTGAATTCCAATC desaturase CCACAAAGCTGAGATTTTCAAGAACAGATC
Sesamum indicum GATCTGTTCTTGAAAATCTCAGCTTTGTGGGATTGGAATTCAACAA | 2530
Arg22Term AGGGTGGCCAGTTCATGGCTTAGGATAGACCCTCGGGAGTGGCC
AGA-TGA TCAGACCACATTCTGATAAAACCCAACTCGC
CTAAGCCATGAACTGGC 2531
GCCAGTTCATGGCTTAG 2532 ‘25 Reduced linolenic acid |CAGAATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAA | 2533 omega-3 fatty acid GAACTGGCCACCCTTAGTTGAATTCCAATCCCACAAAGCTGAGATT desaturase TTCAAGAACAGATCTTGGAAATGGTTCTTC
Sesamum indicum GAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGTGG | 2534
Leu27Term GATTGGAATTCAACTAAGGGTGGCCAGTTCTTGGCTTAGGATAGA
TTG-TAG CCCTCGGGAGTGGCCTCAGACCACATTCTG 1112001 01:47 pm 03137.009 — {NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
CCACCCTTAGTTGAATT 2535
AATTCAACTAAGGGTGG 2536
Reduced linolenic acid |AATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAAGAA | 2537 omega-3 fatty acid CTGGCCACCCTTTGTAGAATTCCAATCCCACAAAGCTGAGATTTTC desaturase AAGAACAGATCTTGGAAATGGTTCTTCATT
Sesamum indicum AATGAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGT[ 2538
Leu28Term GGGATTGGAATTCTACAAAGGGTGGCCAGTTCTTGGCTTAGGATA
TIG-TAG GACCCTCGGGAGTGGCCTCAGACCACATT
CCCTTTGTAGAATTCCA 2539 ® TGGAATTCTACAAAGGG
Reduced linolenic acid |CTCCCGAGGGTCTATCCTAAGCCAAGAACTGGCCACCCTTIGTTG | 2541 omega-3 fatty acid AATTCCAATCCCACATAGCTGAGATTTTCAAGAACAGATCTTGGAA desaturase ATGGTTCTTCATTCTGTTTGTCGAGTGGGA
Sesamum indicum TCCCACTCGACAAACAGAATGAAGAACCATTTCCAAGATCTGTTCT | 2542
Lys34Term TGAAAATCTCAGCTATGTGGGATTGGAATTCAACAAAGGGTGGCC
AAG-TAG AGTTCTTGGCTTAGGATAGACCCTCGGGAG
ATCCCACATAGCTGAGA
TCTCAGCTATGTGGGAT
Reduced linolenic acid A AGA A | A AA A AAGAA A 4 omega-3 fatty acid GAAGTCTATGAGTTAGGTCGTCAGAGAGCTAGCCATCGTGTTCGC desaturase ACTAGCTGCTGGAGCTGCTTACCTCAACAAT
Brassica napus ATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACACGATGGC | 2546
Tyr3Term TAGCTCTCTGACGACCTAACTCATAGACTTCCATGGATTCTTAACC
TAC-TAG CAGCAATGCTTAGGTATCGCCGCTCTGATG ® ATGAGTTAGGTCGTCAG 2547
CTGACGACCTAACTCAT 2548
Reduced linolenic acid |GCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCT | 2549 omega-3 fatty acid ATGAGTTACGTCGTCTGAGAGCTAGCCATCGTGTTCGCACTAGCT desaturase GCTGGAGCTGCTTACCTCAACAATTGGCTTG
Brassica napus CAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACA | 2550
Arg6Term CGATGGCTAGCTCTCAGACGACGTAACTCATAGACTTCCATGGATT
AGA-TGA CTTAACCCAGCAATGCTTAGGTATCGCCGC ‘ ACGTCGTCTGAGAGCTA 2551
TAGCTCTCAGACGACGT 2552 111201 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos : Alteration
Reduced linolenic acid | GCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCTATGA| 2553 omega-3 fatty acid GTTACGTCGTCAGATAGCTAGCCATCGTGTTCGCACTAGCTGCTG desaturase GAGCTGCTTACCTCAACAATTGGCTTGTTT
Brassica napus AAACAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGA | 2554
Glu7Term ACACGATGGCTAGCTATCTGACGACGTAACTCATAGACTTCCATG
GAG-TAG GATTCTTAACCCAGCAATGCTTAGGTATCGC
TCGTCAGATAGCTAGCC 2555
GGCTAGCTATCTGACGA omega-3 fatty acid TTCGCACTAGCTGCTIGAGCTGCTTACCTCAACAATTGGCTTGTTT @® desaturase GGCCTCTCTATTGGATTGCTCAAGGAACCA
Brassica napus TGGTTCCTTGAGCAATCCAATAGAGAGGCCAAACAAGCCAATTGTT | 2558
Gly17Term GAGGTAAGCAGCTCAAGCAGCTAGTGCGAACACGATGGCTAGCT
GGA-TGA CTCTGACGACGTAACTCATAGACTTCCATGG
TAGCTGCTTGAGCTGCT 2559
AGCAGCTCAAGCAGCTA 2560
Reduced linolenic acid AA ATCAGAA AGA ACTACCAAGAA B omega-3 fatty acid TATACCCAAAGCCCTGAATAGGGTCTTCTTCCGTTTGCGCCACCAA desaturase TTTAAATCTGAGAAGAATTTCACCTTCAC
Solanum tuberosum |GTGAAGGTGAAATTCTTCTCAGATTTAAATTGGTGGCGCAAACGGA| 2562
Arg22Term AGAAGACCCTATTCAGGGCTTTGGGTATATTCTTGGTAGTGGTCTA
AGA-TGA AGACCACATTCTGATAGAACCCAACTTGC
CAAAGCCCTGAATAGGG 2563
CCCTATTCAGGGCTTTG
® omega-3 fatty acid GTCTTCTTCCGTTTGAGCCACCAATTTAAATCTGAGAAGAATTTCA desaturase CCTTCACCTATACGAACAGATCGGAATTGT
Solanum tuberosum |ACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAATTCTTCTCAGA | 2566
Cys29Term TTTAAATTGGTGGCTCAAACGGAAGAAGACCCTATTCTGGGCTTTG
TGC-TGA GGTATATTCTTGGTAGTGGTCTAAGACCA
TCCGTTTGAGCCACCAA 2567
TTGGTGGCTCAAACGGA 2568
Reduced linolenic acid | CACTACCAAGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGT | 2569 omega-3 fatty acid TTGCGCCACCAATTGAAATCTGAGAAGAATTTCACCTTCACCTATA desaturase CGAACAGATCGGAATTGTTGGGCATTGAG
Solanum tuberosum CTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAA 2570
Leu33Term TTCTTCTCAGATTTCAATTGGTGGCGCAAACGGAAGAAGACCCTAT
TTA-TGA TCTGGGCTTTGGGTATATTCTTGGTAGTG 1112/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos ) Alteration
CACCAATTGAAATCTGA 2571
TCAGATTTCAATTGGTG 2572
Reduced linolenic acid AGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGTTTGCGCCA| 2573 omega-3 fatty acid CCAATTTAAATCTGTGAAGAATTTCACCTTCACCTATACGAACAGAT desaturase CGGAATTGTTGGGCATTGAGGGTAAGTG
Solanum tuberosum {CACTTACCCTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGA | 2574
Arg36Term AGGTGAAATTCTTCACAGATTTAAATTGGTGGCGCAAACGGAAGAA
AGA-TGA GACCCTATTCTGGGCTTTGGGTATATTCT
TAAATCTGIGAAGAATT 2575 [ AATTCTTCACAGATTTA 2576
Reduced linolenic acid ATTA AGT i A omega-3 fatty acid TATGGCAAGTTGAGTGATTTCAGAATGTGGGCTAAGGCCACTTCC desaturase AAGAATCTATGCCAGGCCCAGAAGTGGA
Petroselinum crispum |TCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGCCTTAGCCC | 2578
Trp4Tem ACATTCTGAAATCACTCAACTTGCCATAGGTGACTCAGAACTCAAA
TGG-TGA AAAAACAAAGAAGAGGAGGATAATAAAGAG
GCAAGTTGAGTGATTTC
GAAATCACTICAACTTGC 2580 omega-3 fatty acid AGTTGGGTGATTTGAGAATGTGGGCTAAGGCCACTTCCAAGAATC desaturase TATGCCAGGCCCAGAAGTGGAGCTTCATG
Petroselinum crispum |CATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGC | 2582
Ser7Term CTTAGCCCACATTCTCAAATCACCCAACTTGCCATAGGTGACTCAG
TCA-TGA AACTCAAAAAAAACAAAGAAGAGGAGGATA @ GGTGATTTGAGAATGTG | 2583
CACATTCTCAAATCACC
Reduced linolenic acid |[TCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCAAG | 2585 omega-3 fatty acid TTGGGTGATTTCATAATGTGGGCTAAGGCCACTTCCAAGAATCTAT desaturase GCCAGGCCCAGAAGTGGAGCTTCATGTT
Petroselinum crispum |AACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTG | 2586
Glu8Term GCCTTAGCCCACATTATGAAATCACCCAACTTGCCATAGGTGACTC
GAA-TAA AGAACTCAAAAAAAACAAAGAAGAGGAGGA : TGATTTCATAATGTGGG 2587
CCCACATTATGAAATCA 2588 11/42/01 01:47 pm 03137.009 — [NY}793559.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Reduced linolenic acid |CTCTTCTTTGTTTTTTTITGAGTTCTGAGTCACCTATGGCAAGTTGGG | 2589 : omega-3 fatty acid TGATTTCAGAATGAGGGCTAAGGCCACTTCCAAGAATCTATGCCA desaturase GGCCCAGAAGTGGAGCTTCATGTTTCAAC
Petroselinum crispum {GTTGAAACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGG | 2590
Cys9Term AAGTGGCCTTAGCCCTCATTCTGAAATCACCCAACTTGCCATAGGT
TGT-TGA GACTCAGAACTCAAAAAAAACAAAGAAGAG
TCAGAATGAGGGCTAAG 2591
CTTAGCCCICATTCTGA 2592
Reduced finolenic acid JATGAAGCAGCAACAGTACAAAGACA AA AAJ A 0 omega-3 fatty acid ATGGTTTTCATGCTTAAGAAGAAGAAGAAGAAGAGGATTTCGACTT ® desaturase AAGCAATCCTCCTCCATTCAATATTGGTC
Vernicia fordii GACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTCTTC | 2594
Lys21Term TTCTTCTTCTTCTTAAGCATGAAAACCATTAACGCCATTTAGAATTG
AAA-TAA CGGTGTCTTTGTACTGTTGCTGCTTCAT
TTCATGCTTAAGAAGAA 2595
TTCTTCTTAAGCATGAA 2596
Reduced linolenic acid [AAGCAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATG | 2597 omega-3 fatty acid GTTTTCATGCTAAATAAGAAGAAGAAGAAGAGGATTTCGACTTAAG desaturase CAATCCTCCTCCATTCAATATTGGTCAGA
Vernicia fordii TCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTC | 2598
Glu22Term TTCTTCTTCTTCTTATTTAGCATGAAAACCATTAACGCCATTTAGAA
GAA-TAA TTGGGGTGTCTTTGTACTGTTGCTGCTT
ATGCTAAATAAGAAGAA 2599
TTCTTCTTATTTAGCAT 2600 ® Reduced linolenic acid | CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT | 2601 . 20 omega-3 fatty acid TTCATGCTAAAGAATAAGAAGAAGAAGAGGATTTCGACTTAAGCAA desaturase TCCTCCTCCATTCAATATTGGTCAGATCC
Vernicia fordii GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC | 2602
Glu23Term CTCTTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA
GAA-TAA GAATTGGGGTGTCTTTGTACTGTTGCTG
CTAAAGAATAAGAAGAA 2603
TTCTTCTTATICTTTAG 2604
Reduced linolenic acid |CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT | 2605 omega-3 fatty acid TTCATGCTAAAGAATAAGAAGAAGAAGAGGATTTCGACTTAAGCAA desaturase TCCTCCTCCATTCAATATTGGTCAGATCC
Vernicia fordii GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC| 2606
Glu24Term CTCTTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA
GAA-TAA GAATTGGGGTGTCTITGTACTGTTGCTG 11/12/01 01:47 pm 03137.009 — [NY}793558.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos
Alteration
CTAAAGAATAAGAAGAA 2607 : TTCTTCTTATTCTTTAG 2608 reduced linolenic acid AAGCACA ACAACA AA A AA HUY omega-3 fatty acid AGAAGATCAAGCTTAGTTTGATCCAAGTGCTCCACCACCCTTCAAG desaturase ATTGCAAATATCAGAGCAGCAATTCCAAAA
Glycine max TTTTGGAATTGCTGCTCTGATATTTGCAATCTTGAAGGGTGGTGGA | 2610
Tyr21Term GCACTTGGATCAAACTAAGCTTGATCTTCTTTCCCTGCACCATTAC
TAT-TAG CAACATGTTGTAGAGGCTGTGCTTGGACC
CAAGCTTAGTTTGATCC 2611 ® GGATCAAACTAAGCTTG 2612
Reduced Inokenc acd |GGTAATGGTGCAGGGAAAGARGATCARGCT TATTTTGATCOAAGT | 2613 omega-3 fatty acid GCTCCACCACCCTTCTAGATTGCAAATATCAGAGCAGCAATTCCAA desaturase AACATTGCTGGGAGAAGAACACATTGAGAT
Glycine max ATCTCAATGTGTTCTTCTCCCAGCAATGTTTTGGAATTGCTGCTCT 2614
Lys31Term GATATTTGCAATCTAGAAGGGTGGTGGAGCACTTGGATCAAAATAA
AAG-TAG GCTTGATCTTCTTTCCCTGCACCATTACC
CACCCTTCTAGATTGCA 2615
TGCAATCTAGAAGGGTG 2616
Reduced linolenic acid |AAAGAAGATCAAGCTTATTTTGATCCAAGTGCTCCACCACCCTTCA | 2617 omega-3 fatty acid AGATTGCAAATATCTGAGCAGCAATTCCAAAACATTGCTGGGAGAA desaturase GAACACATTGAGATCTCTGAGTTATGTTC
Glycine max GAACATAACTCAGAGATCTCAATGTGTTCTTCTCCCAGCAATGTTTT| 2618
Arg36Term GGAATTGCTGCTCAGATATTTGCAATCTTGAAGGGTGGTGGAGCA
AGA-TGA CTTGGATCAAAATAAGCTTGATCTTCTTT
Qo CAAATATCTGAGCAGCA 2619
TGCTGCTCAGATATTTG 2620 omega-3 fatty acid GAGCAGCAATTCCATAACATTGCTGGGAGAAGAACACATTGAGAT desaturase CTCTGAGTTATGTTCTGAGGGATGTGTTGG
Glycine max CCAACACATCCCTCAGAACATAACTCAGAGATCTCAATGTGTTCTT | 2622
LeudtTerm CTCCCAGCAATGTTATGGAATTGCTGCTCTGATATTTGCAATCTTG
AAA-TAA AAGGGTGGTGGAGCACTTGGATCAAAATA
CAATTCCATAACATTGC 2623
GCAATGTTATGGAATTG 2624 111201 01:47 pm 03137.009 — [NY]793550.1
AMENDED SHEET
28-12-2001 01939797
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration ey} NO:
Reduced Tinolenic acid [CA A i A A y: 3 omega-3 fatty acid CCGGCTCGTGCTCTCCTAGTGCTCGGGCCTCGCGCCCGTCCGCE desaturase GCCTGCGCGCCGGCCGGGGCBCCATTGCGGCGC
Zea mays GCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGCGGACGG | 2626
Glu8Term GCGCGAGGCCCGAGCACTAGGAGAGCACGAGCCGGBCCATTGC
GAG-TAG CGCCGTCAGCGGGGCGGGTGCGGGTGCGGGTGGATG
TeCeTCeneTeCis aw
CGAGCACTAGGAGAGCA 2628
Reduced linolenic acid | ACCCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGCCCGG | 2629 omega-3 fatty acid CTCGTGCTCTCCGAGTGATCGGGCCTCGCGCCCGTCCGCCGCCT ® desaturase GCGCGCCGGCCGGGGCGCCATTGCGGCGCGGTCA
Zea mays TGACCGCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGCGG | 2630
Cys9Term ACGGGCGCGAGGCCCGATCACTCGGAGAGCACGAGCCGGGCCA
TGC-TGA TTGCCGCCGTCAGCGGGGCGGGTGCGGGRTGCGGET
I CC I
AGGCCCGATCACTCGGA 2632
Reduced linolenic acid | CCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGCCCGGCT | 2633 omega-3 fatty acid CGTGCTCTCCGAGTGCTAGGGCCTCGCGCCCGTCCGCCGCCTGC desaturase GCGCCGGCCGGGGCGCCATTGCGGCGCGGTCACC
Zea mays GGTGACCGCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGE | 2634
Ser10Term GGACGGGCGCGAGGCCCTAGCACTCGGAGAGCACGAGCCGGGC
TCG-TAG CATTGCCGCCGTCAGCGGGGCGGRTGCGGGTGCGE
CGAGTGCTAGGGCCTCG 2635
CGAGGCCCTAGCACTCG 2636 ® Reduced linolenic acid {GCTCGGGCCTCGCGCCCGTCCGCCGCCTGCGCGCCGGCCGGRG | 2637 omega-3 fatty acid CGCCATTGCGGCGCGGTBGACCCCCCGCGCTCTCCGCGGCGCCE desaturase CGCCGTCGTCCCGCGTCCGCGTCCATCCACCGCGA
Zea mays TCGCGGTGGATGGACGCGGACGCGGGACGACGGCGCGGCGCCE | 2638
Ser29Term CGGAGAGCGCGGGGGGTCACCGCGCCGCAATGGCGCCCCGGLC i TCA-TGA GGCGCGCAGGCGGCGGACGGGCGCGCAGGCCCGAGC a
Reduced linolenic acid A ACA ACAGA A A of omega-3 fatty acid CCCCGCAATGAGGCCGTAGCAGGAGGCGAGCTGCAAGGCCACCG desaturase AGGACCACCGCTCCGAGTTCGACGCCGCCAAGC ) Triticum aestivum GCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGCCTTG | 2642
GluBTerm CAGCTCGCCTCCTGCTACGGCCTCATTGCGGGGGCCATGGCCGC
GAG-TAG GGATGGATCTGTGCGTGTGCGTGGGCGAGGGEE 11201 01:47 pm 03137.009 — [NY]783559.1
AMENDED SHEET
28-12-2001 01939797
B Phenotype, Gene,
Plant & Targeted Altering Oligos i Alteration
TM TITTITITIIT ROORR BERiaytiyez >
TGAGGCCGTAGCAGGAG 2643
CTOCTGCTACGGCCTCA | %#
Reduced linolenic acid |CCTCCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCC | 2845 omega-3 fatty acid CGCAATGAGGCCGGAGTAGGAGGCGAGCTGCAAGGCCACCGAG desaturase GACCACCGCTCCGAGTTCGACGCCGCCAAGCCEGC
Triticum aestivum GCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGRCC| 2646
GIn9Term TTGCAGCTCGCCTCCTACTCCGGCCTCATTGCGGGGGCCATGGC
CAG-TAG CGCGGATGGATCTGTGCGTGTGCGTGGGGGAGG
GGCCGGAGTAGGAGGCG 2647 ® CooCTCCTACTCCGGC. | mm
Reduced linolenic acid {CCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCCCGE [| 2649 omega-3 fatty acid AATGAGGCCGGAGCAGTAGGCGAGCTGCAAGGCCACCGAGGACC desaturase ACCGCTCCGAGTTCGACGCCGCCAAGCCGCCGC
Triticum aestivum GCGGCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGT | 2650
Glu10Term GGCCTTGCAGCTCGCCTACTGCTCCGGCCTCATTGCGGGGGCCA
GAG-TAG TGGCCGCCGCGATGGATCTGTGCGTGTGCGTGGGGE
CGGAGCAGTAGGCGAGC 2651
OCTCGCCTACTGCTCCG [26%
Reduced linolenic acid JACGCACAGATCCATCCGCGGCCATGGCCCCCGCAATGAGGCCGG | 2653 omega-3 fatty acid AGCAGGAGGCGAGCTGAAAGGCCACCGAGGACCACCGCTCCGA desaturase GTTCGACGCCGCCAAGCCGCCGCCCTTCCGCATC
Triticum aestivum GATGCGGAAGGGCGGCGGCTTGGCGGCGTCGAACTCGGAGCGG | 2654
Cys13Term TGGTCCTCGGTGGCCTTTICAGCTCGCCTCCTGCTCCGGCCTCATT
TGC-TGA GCGGGGGCCATGGCCGCGGATGGATCTGTGCGT ® GCGAGCTGAAAGGCCAC 2655
GTGGCCTTICAGCTCGC 2656
Reduced linolenic acid ACAAATCACAAE AATCAGA ACCACGACA 0 omega-3 fatty acid CGGCAATGGCGGCGTAGGCGACCCAGGAGGCCGACTGCAAGGE desaturase TTCCGAGGACGCCCGTCTCTTCTTCGACGCCGC
Oryza sativa GCGGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGCCTTGCAGTC | 2658
SerdTerm GGCCTCCTGGGTCGCCTACGCCGCCATTGCCGCCRGGGTGTCGT
TCG-TAG GGTGGATCTGATTCCGATTTGTGATTTGTGAAG
GaGTeeeCTAGSEeeCe | 7m ee _] SYYY 1412/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET
28-12-2001 01939797 —
Phenotype, Gene,
Plant & Targeted Altering Oligos . Alteration
TI TN EE RTC VT NC TT CY ee
Reduced linolenic acid ATCACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATG | 2661 , omega-3 fatty acid GCGGCGTCGGCGACCTAGGAGGCCGACTGCAAGGCTTCCGAGGA desaturase CGCCCGTCTCTTCTTCGACGCCGCCAAGCCCC
Oryza sativa GGGGCTTGGCGGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGC | 2662
GIn7Term CTTGCAGTCGGCCTCCTAGGTCGCCGACGCCGCCATTGCCGCCS
CAG-TAG GGGTGTCGTGGTGGATCTGATTCCGATTTGTGAT
CGGCGACCTAGGAGGCC 2663
GGCCTCCTAGGTCGCC6 ~~ — | 2664
Reduced linolenic acid |ACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATGGC 2665 omega-3 fatty acid GGCGTCGGCGACCCAGTAGGCCGACTGCAAGGCTTCCGAGGACG @ desaturase CCCGTCTCTTCTTCGACGCCGCCAAGCCCCCGC
Oryza sativa GCGGGGGCTTGGCGGCGTCGAAGAAGAGACGGGCGTCCTCGGA | 2666
Glu8Term AGCCTTGCAGTCGGCCTACTGGGTCGCCGACGCCGCCATTGCCG
GAG-TAG CCGGGGTGTCGTGATGGATCTGATTCCGATTTGT
CGACCCAGTAGGCCGAC 2667 omega-3 fatty acid CCCAGGAGGCCGACTGAAAGGCTTCCGAGGACGCCCGTCTCTTC desaturase TTCGACGCCGCCAAGCCCCCGCCCTTCCGCATC
Oryza sativa GATGCGGAAGGGCGGGGGCTTGGCGGCGTCGAAGAAGAGACGG | 2670
Cys10Term GCGTCCTCGGAAGCCTTICAGTCGGCCTCCTGGGTCGCCGACGE
TGC-TGA CGCCATTGCCGCCGGGGTGTCGTGGTGGATCTGA
GCCGACTGAAAGGCTTC 2671
GAAGCCTTTICAGTCGGC 2672 11/42/01 01:47 pm 03137.009 — [NY]793559.1
AMENDED SHEET

Claims (74)

204-3 WHAT IS CLAIMED IS:
1. A method of targeted alteration of a plant chromosome sequence, the method comprising: introducing a sequence-altering oligonucleotide into a plant cell in vitro, wherein said sequence-altering oligonucleotide: is a single-stranded nonhairpin oligonucleotide 17 - 121 nucleotides in length; has an unmodified DNA domain of at least 8 contiguous deoxyribonucleotides; is fully complementary in sequence to a first strand of the cell's chromosomal DNA at a chromosomal target sequence, except for one or two mismatches positioned (i) within said oligonucleotide's unmodified DNA domain and (ii) at least 8 nucleotides from said oligonucleotide's 5' and 3' termini; and has at least one terminal chemical modification, wherein said sequence alteration confers a phenotype selected from the group consisting of: imidazolinone herbicide resistance, sufonylurea herbicide resistance, porphyric herbicide resistance, triazine resistance, male sterility, abiotic stress tolerance, albinism, altered amino acid content, altered starch metabolism, and altered fatty acid content.
2. A method of targeted alteration of a plant chromosome sequence, the method comprising: introducing a sequence-altering oligonucleotide into a plant cell in vitro, wherein said sequence-altering oligonucleotide: } is a single-stranded nonhairpin oligonucleotide 17 - 121 nucleotides in length; has an unmodified DNA domain of at least 8 contiguous deoxyribonucleotides; is fully complementary in sequence to a first strand of the cell's chromosomal DNA at a chromosomal target sequence, except for one or two mismatches Amended Sheet —- 2004-08-20
-203- C positioned (i) within said oligonucleotide's unmodified DNA domain and (ii) at least 8 nucleotides from said oligonucleotide’s §' and 3' termini; and has at least one terminal chemical modification, wherein said plant cell is selected from the group of plant species consisting of: Chlamydomonas reinhardtii, Physcomitrella patens, cauliflower, artichoke, apples, mangoes, berries, kiwifruit, grapes, bell peppers, cherries, cucumber, melons, nuts, walnuts, peanut, orange, peach, pear, plum, strawberry, tomato, alfalfa, cabbage, endive, leek, lettuce arrowroot, beet, carrot, cassava, turnip, radish, yam, sweet potato, oilseeds, beans, pea, cowpea, mothbean, sorghum, barley, rice, millet, sunflower, oats, chickpea, tubers, kohirabi, potato, flax, cotton, pine, oak, eucalyptus, turfgrass, petunia, hyacinth, carnation, delphinium, Job's tears, snapdragon, poppy, lilac, hydrangea, roses, Gallica roses, Alba roses, Damask roses, Damask Perpetual roses, Centifolia roses, China roses, Tea roses, Hybrid Tea roses, and ornamental goldenrods.
3. A method of targeted alteration of a plant chromosome sequence, the method comprising: introducing a sequence-altering oligonucleotide into a plant cell in vitro, wherein said sequence-altering oligonucleotide: is a single-stranded nonhairpin oligonucleotide 17 - 121 nucleotides in length; has an unmodified DNA domain of at least 8 contiguous deoxyribonuclectides; is fully complementary in sequence to a first strand of the cell's chromosomal DNA at a chromosomal target sequence, except for one or two mismatches positioned (i) within said oligonucleotide's unmodified DNA domain and (ii) at least 8 nucleotides from said oligonucleotide's 5' and 3' termini; and has at least one terminal chemical modification, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 1 —- 2672.
4. The method of any one of claims 1 - 3, wherein said at least one terminal modification is selected from the group consisting of: at least one terminal Amended Sheet - 2004-08-20
208.5 phosphorothioate linkage, at least one terminal locked nucleic acid (LNA) residue, and at least one 2'-O-Me residue.
5. The method of claim 4, wherein said at least one terminal modification is at least one terminal phosphorothioate linkage.
6. The method of claim 5, wherein said at least one terminal modification is a plurality of contiguous terminal phosphorothioate linkages.
7. The method of claim 6, wherein said at least one terminal modification is at least three contiguous terminal phosphorothioate linkages.
8. The method of any one of claims 1 — 7, wherein both of said oligonucleotide's termini have terminal modifications.
9. The method of claim 8, wherein both of said oligonucleotide’s termini have at least one terminal phosphorothioate linkage.
10. The method of claim 9, wherein both of said oligonucleotide's termini have a plurality of contiguous phosphorothioate linkages.
11. The method of claim 10, wherein both of said oligonucleotide's termini have three contiguous terminal phosphorothioate linkages.
12. The method of any one of claims 1 - 11, wherein said sequence alteration is a substitution of at least one base.
13. The method of any one of claims 1 — 11, wherein said sequence alteration is a deletion of at least one base.
14. The method of any one of claims 1 ~ 11, wherein said alteration is an insertion of at least one base. Amended Sheet - 2004-08-20
207k
15. The method of any one of claims 1 - 14, wherein said oligonucleotide is at least 25 nucleotides in length.
16. The method of any one of claims 1 — 15, wherein said oligonucleotide is no more than 74 nucleotides in length.
17. The method of any one of claims 1 — 16, wherein said first strand is the nontranscribed strand of the chromosomal target.
18. The method of any one of claims 1 — 17, wherein the sequences of said oligonucleotide deoxyribonucleotide domain and of the target nucleic acid first strand are mismatched at a single nucleotide.
19. The method of any one of claims 1 - 17, wherein the sequences of said oligonucleotides deoxyribonucleotide domain and of its complement on the target nucleic acid first strand are mismatched at two or more nucleotides.
20. The method of any one of claims 2 — 19, wherein said sequence alteration confers a phenotype of glyphosate resistance.
21. The method of claim 20, wherein said oligonucleotide comprises a sequence selected from the group of SEQ ID NOs: 1 - 36.
22. The method of any one of claims 2 - 19, wherein said sequence alteration confers a phenotype of herbicide resistance.
23. The method of any one of claims 1 — 19, wherein said sequence alteration confers a phenotype of resistance to an imidazolinone herbicide.
24. The method of claim 23, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 49 - 56, 69 - 72, 81-88, 97 Amended Sheet — 2004-08-20
-20F7 -100, 109 - 112, 125-128, 141 — 144, 164 — 168, 181 — 184, 193 - 196, 209 - 212, 221 - 224, 237 - 240, 253 - 256, 265 - 268, 281 ~ 284, and 297 - 300.
25. The method of claim 22, wherein said herbicide is a sufonylurea herbicide.
26. The method of claim 25, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 27 — 48, 57 - 68, 73 ~ 80, 89 -96, 101 - 108, 113 - 124, 129 - 140, 145 — 152, 157 - 163, 169 — 180, 185-192, 197 - 208, 213 - 220, 225 - 236, 241 - 252, 257 - 264, 269 - 280, and 285 — 296.
27. The method of claim 22, wherein said herbicide is a porphyric herbicide.
28. The method of claim 27, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 301 — 328.
29. The method of claim 22, wherein said herbicide is a triazine herbicide.
30. The method of claim 29, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 329 - 460.
31. The method of any one of claims 1 - 19, wherein said sequence alteration confers a phenotype of male sterility.
32. The method of claim 31, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 461 - 892.
33. The method of any one of claims 1 - 19, wherein said sequence alteration confers a phenotype of stress tolerance. Amended Sheet — 2004-08-20
34. The method of claim 33, wherein said sequence alteration confers salt tolerance.
35. The method of claim 34, wherein said oligonucleotide comprises a sequence selected from the group of SEQ ID NOs: 893 — 988.
36. The method of claim 33, wherein said sequence alteration confers tolerance to freezing.
37. The method of claim 36, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 989 — 1008.
38. The method of claim 33, wherein said sequence alteration confers lead tolerance.
39. The method of claim 38, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 1009 — 1068.
40. The method of any one of claims 1 - 19, wherein said sequence alteration confers a phenotype of resistance to 2,4-DB.
41. The method of claim 40, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 1069 — 1188.
42. The method of any one of claims 1 — 19, wherein said sequence alteration confers an albino phenotype.
43. The method of claim 42, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 1189 - 1288. Amended Sheet — 2004-08-20 wl >a
44, The method of any one of claims 1 - 19, wherein said sequence alteration confers a phenotype of altered amino acid content.
45. The method of claim 44, wherein said phenotype is methionine overproduction.
46. The method of claim 45, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 1289 - 1392.
47. The method of claim 44, wherein said phenotype is lysine overproduction.
48. The method of claim 47, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 1393 - 1488.
49. The method of claim 44, wherein said phenotype is tryptophan overproduction.
50. The method of claim 49, wherein said oligonucleotide has a sequence selected from the group consisting of SEQ ID NOs: 1489 - 1508.
51. The method of any one of claims 1 — 19, wherein said sequence alteration confers a phenotype of altered starch metabolism.
52. The method of claim 51, wherein said phenotype is increased starch production.
53. The method of claim §2, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 1509 - 1704.
54. The method of claim 51, wherein said phenotype is production of waxy starch. Amended Sheet — 2004-08-20
55. The method of claim 54, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 1705 - 2064.
56. The method of any one of claims 1 - 19, wherein said sequence alteration confers a phenotype of altered fatty acid content.
57. The method of claim 56, wherein said sequence alteration causes reduced levels of palmitate.
58. The method of claim 57, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 2065 - 2224.
59. The method of claim 56, wherein said sequence alteration causes increased levels of stearate.
60. The method of claim 53, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 2225 - 2464.
61. The method of claim 56, wherein said sequence alteration causes reduced levels of linolenic acid.
62. The method of claim 61, wherein said oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NOs: 2465 - 2672.
63. The method of any one of claims 1 - 62, wherein said oligonucleotide is introduced into said cells by biolistic or particle bombardment.
64. The method of any one of claims 1 — 62, wherein said oligonucleotide is introduced into said cells by electroporation, using polycations, using cationic using lipids, using liposomes, using polyethylenimine (PE!), or by microinjection. Amended Sheet — 2004-08-20 w=
65. The method of claim 1 or claim 3, wherein said plant cell is selected from the group of plant species consisting of: canola, Arabidopsis, tobacco, banana, maize, soybean, wheat, spinach, Chlamydomonas reinhardtii, Physcomitrella patens, cauliflower, artichoke, apples, mangoes, berries, kiwifruit, grapes, bell peppers, cherries, cucumber, melons, nuts, walnuts, peanut, orange, peach, pear, plum, strawberry, tomato, alfalfa, cabbage, endive, leek, lettuce arrowroot, beet, carrot, cassava, turnip, radish, yam, sweet potato, oilseeds, beans, pea, cowpea, mothbean, sorghum, barley, rice, millet, sunflower, oats, chickpea, tubers, kohlrabi, potato, flax, cotton, pine, oak, eucalyptus, turfgrass, petunia, hyacinth, carnation, delphinium, Job's tears, snapdragon, poppy, lilac, hydrangea, roses, Gallica roses, Alba roses, Damask roses, Damask Perpetual roses, Centifolia roses, China roses, Tea roses, Hybrid Tea roses, and ornamental goldenrods.
66. The method of claim 65, wherein said plant cell is selected from the group of plant species consisting of: canola, maize, soybean, wheat, and rice.
67. The method of claim 66, wherein said plant cell is a canola cell.
68. The method of claim 66, wherein said plant cell is a maize cell.
69. The method of claim 66, wherein said plant cell is a soybean cell.
70. The method of claim 66, wherein said plant cell is a wheat cell.
71. The method of claim 66, wherein said plant cell is a rice cell.
72. The method of any one of claims 1 — 71, further comprising the later step of: generating a plant from said cell.
73. Aplant having an altered chromosomal sequence produced by the method of claim 72. Amended Sheet —- 2004-08-20
74. A seed derived from a plant according to claim 73. Amended Sheet — 2004-08-20
ZA200209833A 2000-06-01 2002-12-04 Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides. ZA200209833B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20853800P 2000-06-01 2000-06-01

Publications (1)

Publication Number Publication Date
ZA200209833B true ZA200209833B (en) 2004-06-21

Family

ID=34078743

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200209833A ZA200209833B (en) 2000-06-01 2002-12-04 Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides.

Country Status (1)

Country Link
ZA (1) ZA200209833B (en)

Similar Documents

Publication Publication Date Title
AU2001265277B2 (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides
AU2001265277A1 (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides
US20230407322A1 (en) Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair
AU2013203454B2 (en) Improved techniques for transfecting protoplasts
US20070122822A1 (en) Compositions and methods for enhancing oligonucleotide-directed nucleic acid sequence alteration
NZ582721A (en) Targeted nucleotide exchange with improved modified oligonucleotides
CA2404780A1 (en) Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
US20040205839A1 (en) Methods for obtaining plant varieties
CA3118340A1 (en) Targeted mutagenesis using base editors
WO2003104451A2 (en) Modifying dna recombination and repair
DK2857512T3 (en) Targeted DNA change
US20110312094A1 (en) Use of double stranded rna to increase the efficiency of targeted gene alteration in plant protoplasts
US20210010013A1 (en) Fad2 genes and mutations
EP1490013A2 (en) Methods, compositions, and kits for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising a histone deacetylase inhibitor, lambda phage beta protein, or hydroxyurea
NZ524366A (en) Methods for enhancing targeted gene alteration using oligonucleotides
CA3080234A1 (en) Lodging resistance in plants
ZA200209833B (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides.
KR20190122595A (en) Gene Construct for Base Editing in Plant, Vector Comprising the Same and Method for Base Editing Using the Same
US20040175722A1 (en) Methods and compositions for reducing screening in oligonucleotide-directed nucleic acid sequence alteration
CN114787364A (en) TAL effector nucleases for gene editing
WO2019043395A1 (en) Gene editing method
CA3064337A1 (en) Compositions and methods for increasing extractability of solids from coffee beans
NZ751577B2 (en) Methods And Compositions For Increasing Efficiency Of Targeted Gene Modification Using Oligonucleotide-Mediated Gene Repair