WO2024148595A1 - 一种腹部血管壁成像方法和*** - Google Patents

一种腹部血管壁成像方法和*** Download PDF

Info

Publication number
WO2024148595A1
WO2024148595A1 PCT/CN2023/072037 CN2023072037W WO2024148595A1 WO 2024148595 A1 WO2024148595 A1 WO 2024148595A1 CN 2023072037 W CN2023072037 W CN 2023072037W WO 2024148595 A1 WO2024148595 A1 WO 2024148595A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
abdominal
radial
magnetic resonance
imaging
Prior art date
Application number
PCT/CN2023/072037
Other languages
English (en)
French (fr)
Inventor
张磊
刘新
郑海荣
梁栋
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2023/072037 priority Critical patent/WO2024148595A1/zh
Publication of WO2024148595A1 publication Critical patent/WO2024148595A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to the technical field of magnetic resonance imaging, and more particularly to an abdominal blood vessel wall imaging method and system.
  • Pancreatic cancer is highly malignant, has strong metastatic potential, is prone to recurrence, and has a poor prognosis. The incidence rate continues to rise worldwide. Radical resection is currently the most effective treatment for pancreatic cancer. Based on the location of the tumor, its relationship with surrounding important blood vessels, and distant metastasis as indicated by imaging examination results, the resectability of the tumor is assessed and divided into three types: resectable, junctional resectable, and unresectable. See Table 1 for details.
  • magnetic resonance vascular wall imaging is the only imaging method that can be non-invasive and simultaneously display the vascular wall and lumen.
  • existing magnetic resonance vascular wall imaging is mainly used in the brain and carotid arteries, and is rarely used in the abdomen. This is mainly because the abdomen is always in motion (breathing, intestinal peristalsis, etc.), and magnetic resonance is particularly sensitive to motion, and the imaging effect of moving tissue is poor.
  • DANTE is a new method for suppressing moving proton signals (DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging, Magnetic resonance in medicine, 2012, Vol. 5, Vol. 68, p. 1423). Its suppression effect on carotid blood flow signals is significantly better than that of previous black blood technology. Simulation studies have shown that DANTE can attenuate proton signals with a velocity greater than 0.2 cm/s by 80%.
  • Ning et al. from Tsinghua University proposed using iMSDE-SPGR sequence with respiratory navigation to scan the abdominal aorta and renal arteries (Ning ZH, et al., Free-breathing three-dimensional isotropic-resolution MR sequence for simultaneous vessel wall imaging of bilateral renal arteries and abdominal aorta: Feasibility and reproducibility. Med Phys. 2022 Feb; 49(2): 854-864).
  • This scheme uses respiratory navigation to suppress artifacts caused by abdominal movement, and uses iMSDE to suppress blood flow signals to achieve a black blood effect.
  • the SPGR sequence is used to collect signals. This scheme is prone to motion artifacts for patients with uneven breathing, and the blood compression effect of the iMSDE module is not as good as that of DANTE.
  • Zhu et al. used DANTE-SPACE to scan the abdominal aortic wall (Zhu CC, et al., Isotropic 3D black blood MRI of abdominal aortic aneurysm wall and intraluminal thrombus. Magn Reson Imaging. 2016 Jan; 34(1): 18-25).
  • This scheme did not use any motion correction technology to suppress the artifacts caused by abdominal motion, and used 3.4 times averaging to increase the signal-to-noise ratio.
  • This scheme is greatly affected by abdominal motion, the image is blurred, and the boundary of the vascular wall is not clear.
  • the purpose of the present invention is to overcome the defects of the above-mentioned prior art and provide a robust abdominal vascular wall imaging method and system, while solving the problems of imaging blur and blood flow suppression caused by abdominal movement, and improving the imaging quality of the vascular wall.
  • a method for imaging abdominal blood vessel walls comprises the following steps:
  • the set radio frequency pulse sequence includes, in chronological order: a delayed alternating nutation customized excitation DANTE pulse, a fat suppression FS pulse, and a 3D radial acquisition gradient echo chain, wherein the 3D radial acquisition gradient echo chain includes a series of gradient echoes;
  • an abdominal vascular wall imaging system comprising:
  • a scanning setting unit used for applying a set radio frequency pulse sequence to the imaging area, wherein the set radio frequency pulse sequence includes, in chronological order: a delayed alternating nutation customized excitation DANTE pulse, a fat suppression FS pulse and a 3D radial acquisition gradient echo chain, wherein the 3D radial acquisition gradient echo chain includes a series of gradient echoes;
  • Image acquisition unit used for performing magnetic resonance imaging of the target abdominal vascular wall based on the delayed alternating nutation customized excitation DANTE pulse, the fat suppression FS pulse and the 3D radial acquisition gradient echo chain to obtain a magnetic resonance abdominal vascular wall image.
  • the advantage of the present invention is that a unique scanning pulse sequence is set according to the characteristics of abdominal movement, which can reduce motion artifacts caused by breathing and intestinal peristalsis, and at the same time suppress blood flow signals, thereby improving the clarity of the abdominal vascular wall image.
  • FIG1 is a schematic diagram of the adjacent relationship between a tumor and an artery in the prior art
  • FIG2 is a flow chart of a method for imaging abdominal blood vessel walls according to an embodiment of the present invention.
  • FIG3 is a timing diagram of magnetic resonance scanning pulses according to an embodiment of the present invention.
  • FIG4 is a schematic diagram showing that the golden angle between spokes can uniformly fill the k-space according to an embodiment of the present invention
  • FIG5 is a rendering of an abdominal vascular wall image acquired using DANTE-uCSR according to an embodiment of the present invention.
  • FIG6 is a rendering of an abdominal vascular wall image acquired using DANTE-uCSR according to another embodiment of the present invention.
  • RF refers to radio frequency
  • Slice refers to layer
  • Phase refers to phase
  • Readout refers to readout
  • Signal refers to signal.
  • the present invention combines DANTE (Delay Alternating with Nutation for Tailored Excitation) with a 3D radial acquisition gradient echo chain to achieve A method for magnetic resonance abdominal vascular wall imaging is proposed based on the redesign of the pulse sequence for magnetic resonance imaging, which can suppress blood flow signals more effectively and evenly while improving the signal-to-noise ratio of the tissue.
  • DANTE Delay Alternating with Nutation for Tailored Excitation
  • 3D radial acquisition gradient echo chain to achieve A method for magnetic resonance abdominal vascular wall imaging is proposed based on the redesign of the pulse sequence for magnetic resonance imaging, which can suppress blood flow signals more effectively and evenly while improving the signal-to-noise ratio of the tissue.
  • the following embodiments are described using magnetic resonance imaging of abdominal vascular walls as an example, and are not intended to limit the imaging area and use of the present invention.
  • the methods of the various embodiments of the present invention can also be used to image the vascular walls of other parts of the human body or animals, and can also be used to image other parts with similar imaging
  • the provided abdominal vascular wall imaging method includes the following steps:
  • Step S210 setting a black blood preparation pulse and a 3D radial acquisition gradient echo chain for magnetic resonance scanning.
  • FIG3 a timing diagram of a timing sequence for magnetic resonance imaging is shown in FIG3 , wherein FIG3(a) illustrates that the timing diagram includes a preparation pulse and a 3D radial acquisition gradient echo chain.
  • the preparation pulse is composed of a black blood pulse DANTE and a fat suppression pulse FS. DANTE is used to suppress blood flow signals to achieve a black blood effect.
  • the 3D radial acquisition gradient echo chain is used to collect magnetic resonance signals and can effectively suppress motion artifacts caused by breathing and intestinal peristalsis.
  • the DANTE pulse group is composed of multiple repeated pulse modules, as shown in Figure 3(b).
  • Each pulse module includes a rectangular pulse and a dephasing gradient (gray box) applied in three directions, wherein the flip angle ⁇ of the rectangular pulse is a few degrees to more than ten degrees, for example, it can be in the range of 2° to 19°, such as a 10° pulse.
  • the dephasing gradient amplitude can be set to the maximum value that the magnetic resonance system can operate, which can be set to 20mT/m ⁇ 80mT/m (millitesla/meter), such as 80mT/m.
  • the number of repetitions of the pulse module can be adjusted according to the application, generally from dozens to hundreds. The more repetitions, the better the blood flow suppression effect, but it will increase the scanning time and reduce the signal-to-noise ratio of the image. For example, the number of repetitions of the pulse module can be set to the range of 40 to 500.
  • DANTE uses a series of low flip angle radio frequency pulses to intersperse the phase gradient, which produces a phase dispersion effect between voxels on the flowing tissue signal, which can effectively suppress the blood flow signal.
  • the theoretical contrast weighting of the DANTE preparation module is It will not affect the contrast weighting of the subsequent acquisition sequence (uCSR).
  • uCSR contrast weighting of the subsequent acquisition sequence
  • Fat suppression pulses FS are used to suppress fat in the imaging area, reduce fat-related motion and chemical artifacts, enhance the scanning effect and increase the tissue contrast of the image, which is conducive to observing the morphology and contour of the organ.
  • the use of fat suppression pulses FS can improve image quality and increase the detection rate of small lesions.
  • the fat suppression method can use existing technologies such as STIR sequence, FatSat sequence or IDEAL sequence or other derived methods.
  • the 3D radial gradient echo chain is composed of a series of gradient echoes.
  • the timing diagram of a single gradient echo is shown in Figure 3(c).
  • radial trajectories are used to fill the k-space, and Fourier encoding is used in the layer selection direction to achieve 3D acquisition, as shown in Figure 3(d). Because each line of radial acquisition passes through the center of the k-space, motion artifacts such as breathing and intestinal peristalsis can be effectively suppressed.
  • Conventional magnetic resonance imaging generally adopts a Cartesian k-space sampling mode, that is, parallel lines are collected to fill the k-space in sequence.
  • This acquisition method is simple and convenient, and is not affected by the performance of the device system. However, this acquisition method is easily affected by respiratory motion, thereby generating motion artifacts, and is not suitable for abdominal vascular wall imaging.
  • radial k-space acquisition (radial sampling) is used to solve this problem. As shown in FIG. 4, it acquires k-space in a star-shaped manner, and each radial k-space line (referred to as a spoke) passes through the center of the k-space, eliminating the problem that phase encoding is easily affected by respiratory motion, thereby achieving free breathing scanning.
  • this acquisition method achieves a very high degree of incoherence and flexibility in the time dimension, and when combined with compressed sensing (CS) technology, the time resolution of the image can be further improved.
  • CS compressed sensing
  • the present invention designs a unique magnetic resonance imaging timing sequence (or called DANTE-uCSR) based on the imaging characteristics of the abdominal vascular wall, which effectively improves the clarity of the image.
  • Step S220 performing magnetic resonance imaging of the target abdominal vascular wall based on the black blood preparation pulse and the 3D radial acquisition gradient echo chain to obtain a magnetic resonance abdominal vascular wall image to analyze the adjacent relationship between the tumor and the artery.
  • the magnetic resonance signal generated by the imaging area under the excitation of the radio frequency pulse chain is collected.
  • the magnetic resonance signal can be collected using an existing method or an improved method, such as through a process of radio frequency pulse, slice selection gradient, readout gradient, phase encoding, etc.
  • the magnetic resonance signal is obtained.
  • the magnetic resonance signal is collected and a magnetic resonance image of the abdominal blood vessel wall in the imaging area can be obtained by, for example, a magnetic resonance image reconstruction algorithm.
  • those skilled in the art can implement it according to the pulse sequence set in the embodiment of the present invention, which will not be described in detail here.
  • Magnetic resonance imaging of the target abdominal vascular wall based on black blood preparation pulses and 3D radial acquisition gradient echo chains can obtain real-time magnetic resonance images to determine the contact between the tumor and the vascular wall surface and the vascular deformation, and then analyze whether to perform resection surgery for clinical indication.
  • Figure 5 is an abdominal vascular wall image acquired by DANTE-uCSR, with a resolution of 1.3mm ⁇ 1.3mm ⁇ 4.5mm and a time of 4min44s.
  • Figure 6 is an abdominal vascular wall image acquired by DANTE-uCSR, with a resolution of 1.3mm ⁇ 1.3mm ⁇ 1.5mm and a time of 5min44s.
  • the vascular walls of the abdominal aorta, celiac trunk and the opening of the superior mesenteric artery can be seen. It can be clearly seen from the figure that the vascular walls of the two main arteries, the celiac trunk and the superior mesenteric artery, are the main large blood vessels that pancreatic cancer may affect.
  • the present invention also provides an abdominal vascular wall imaging system. It is used to implement one aspect or multiple methods of the above method.
  • the system includes: a scanning setting unit, which is used to apply a set radio frequency pulse sequence to the imaging area, wherein the set radio frequency pulse sequence includes in chronological order: delayed alternating nutation customized excitation DANTE pulse, fat suppression FS pulse and 3D radial acquisition gradient echo chain, and the 3D radial acquisition gradient echo chain contains a series of gradient echoes; an image acquisition unit, which is used to perform magnetic resonance imaging of the target abdominal vascular wall based on the delayed alternating nutation customized excitation DANTE pulse, the fat suppression FS pulse and the 3D radial acquisition gradient echo chain to obtain a magnetic resonance abdominal vascular wall image.
  • Each unit of the system can be implemented using a general processor or dedicated hardware, such as FPGA.
  • the present invention has designed a pulse sequence to effectively and evenly suppress blood flow signals in response to the effects of abdominal motion on vascular wall imaging, making up for the defect that DANTE technology cannot overcome abdominal motion artifacts, and further improves the quality of MRI vascular wall imaging by combining DANTE with 3D radial acquisition gradient echo chain.
  • the present invention uses DANTE to suppress blood flow signals, which is better than IMSDE black blood effect. The results are better, and by adopting radial acquisition technology, abdominal motion artifacts can be effectively suppressed, and more robust magnetic resonance images can be obtained.
  • the present invention may be a system, a method and/or a computer program product.
  • the computer program product may include a computer-readable storage medium carrying computer-readable program instructions for causing a processor to implement various aspects of the present invention.
  • Computer readable storage medium can be a tangible device that can hold and store instructions used by an instruction execution device.
  • Computer readable storage medium can be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination thereof.
  • Non-exhaustive list of computer readable storage medium include: a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), a static random access memory (SRAM), a portable compact disk read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanical encoding device, for example, a punch card or a convex structure in a groove on which instructions are stored, and any suitable combination thereof.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick a floppy disk
  • mechanical encoding device for example, a punch card or a convex structure in a groove on which instructions are stored, and any suitable combination thereof.
  • the computer readable storage medium used here is not interpreted as a transient signal itself, such as a radio wave or other freely propagating electromagnetic wave, an electromagnetic wave propagated by a waveguide or other transmission medium (for example, a light pulse by an optical fiber cable), or an electrical signal transmitted by a wire.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to each computing/processing device, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network can include copper transmission cables, optical fiber transmissions, wireless transmissions, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives the computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device.
  • the computer program instructions for performing the operations of the present invention may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or source code or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk, C++, Python, etc., and conventional procedural programming languages such as "C” or similar programming languages.
  • Computer readable Program instructions can be executed completely on the user's computer, partially on the user's computer, as an independent software package, partially on the user's computer, partially on the remote computer, or completely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or can be connected to an external computer (e.g., using an Internet service provider to connect through the Internet).
  • LAN local area network
  • WAN wide area network
  • an Internet service provider to connect through the Internet.
  • the electronic circuits can execute computer-readable program instructions, thereby realizing various aspects of the present invention.
  • These computer-readable program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine, so that when these instructions are executed by the processor of the computer or other programmable data processing device, a device that implements the functions/actions specified in one or more boxes in the flowchart and/or block diagram is generated.
  • These computer-readable program instructions can also be stored in a computer-readable storage medium, and these instructions cause the computer, programmable data processing device, and/or other equipment to work in a specific manner, so that the computer-readable medium storing the instructions includes a manufactured product, which includes instructions for implementing various aspects of the functions/actions specified in one or more boxes in the flowchart and/or block diagram.
  • Computer-readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device so that a series of operating steps are performed on the computer, other programmable data processing apparatus, or other device to produce a computer-implemented process, thereby causing the instructions executed on the computer, other programmable data processing apparatus, or other device to implement the functions/actions specified in one or more boxes in the flowchart and/or block diagram.
  • each box in the flowchart or block diagram may represent a module, a program segment, or a portion of an instruction.
  • a part of a module, a program segment or an instruction comprises one or more executable instructions for realizing the specified logical function.
  • the function marked in the box may also occur in a sequence different from that marked in the accompanying drawings. For example, two continuous boxes may actually be executed substantially in parallel, and they may sometimes be executed in the opposite order, depending on the function involved.
  • each box in the block diagram and/or the flow chart, and the combination of the boxes in the block diagram and/or the flow chart may be implemented by a dedicated hardware-based system that performs the specified function or action, or may be implemented by a combination of dedicated hardware and computer instructions. It is well known to those skilled in the art that it is equivalent to implement by hardware, implement by software, and implement by combining software and hardware.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种腹部血管壁成像方法和***,该方法包括:将一设定射频脉冲序列应用于成像区域,其中,设定射频脉冲序列按照时间顺序依次包括:延迟交替章动定制激发DANTE脉冲、脂肪抑制FS脉冲和3D径向采集梯度回波链,基于黑血准备脉冲和3D径向采集梯度回波链覆盖腹部主要的血管(包括腹主动脉、胃动脉、脾动脉、腹腔干、肝总动脉、肠系膜上动脉、肠系膜下动脉和肾动脉等),对目标腹部血管壁进行磁共振成像,获得磁共振腹部血管壁图像(S220)。该成像方法能够减弱由于呼吸、肠道蠕动引起的运动伪影,并同时抑制血流信号,提高了腹部血管壁图像的分辨率。

Description

一种腹部血管壁成像方法和*** 技术领域
本发明涉及磁共振成像技术领域,更具体地,涉及一种腹部血管壁成像方法和***。
背景技术
胰腺癌恶性程度高、转移能力强、极易复发、预后能力差,发病率在世界范围内呈持续上升趋势。根治性切除是目前治疗胰腺癌最有效的手段,基于影像学检查结果提示的肿瘤的位置以及和周围重要血管的关系以及远处转移情况,评估肿瘤可切除性并将其分为可切除,交接可切除和不可切除3种类型,具体参见表1。
表1胰腺癌可切除性的影像学评估
肿瘤和胰腺周围血管的接触程度对切除治疗至关重要,参见图1所示的肿瘤(T)和动脉(A)的毗邻关系,其中图1(a)示意了肿瘤和血管表 面接触小于180°且没有导致血管形变;图1(b)示意了肿瘤和血管表面接触超过180°且没有导致血管形变,这种情况不建议进行切除手术;图1(c)是血管壁形态不规则的情况,不管肿瘤和血管之间接触程度如何,都被认为是肿瘤入侵血管壁的征兆,也不建议进行切除手术。
目前,磁共振血管壁成像是唯一能够无创、并且同时显示血管壁和管腔的成像手段。然而现有的磁共振血管壁成像主要应用于大脑和颈动脉,在腹部应用比较少,这主要是因为腹部一直在运动(呼吸、肠道蠕动等),而磁共振对运动特别敏感,对于运动的组织成像效果较差。
DANTE是用于抑制运动质子信号的新方法(DANTE-prepared pulse trains:a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging,Magnetic resonance in medicine,2012年,5期68卷,第1423页),对颈动脉血流信号的抑制效果明显优于以往的黑血技术。仿真研究表明,DANTE对运动速度大于0.2cm/s的质子信号的衰减可以达到80%。
在现有技术中,清华的Ning等人提出使用带呼吸导航iMSDE-SPGR序列进行腹主动脉和肾动脉的扫描(Ning ZH,et al.,Free-breathing three-dimensional isotropic-resolution MR sequence for simultaneous vessel wall imaging of bilateral renal arteries and abdominal aorta:Feasibility and reproducibility.Med Phys.2022 Feb;49(2):854-864),该方案采用呼吸导航抑制腹部运动产生的伪影,利用iMSDE抑制血流信号,达到黑血效果,SPGR序列则是用于采集信号。这种方案对于呼吸不均匀的患者容易产生运动伪影,而且iMSDE模块的压血效果也没有DANTE好。
Zhu等人利用DANTE-SPACE进行腹主动脉血管壁扫描(Zhu CC,et al.,Isotropic 3D black blood MRI of abdominal aortic aneurysm wall and intraluminal thrombus.Magn Reson Imaging.2016 Jan;34(1):18-25),该方案没有采用任何运动矫正技术来抑制腹部运动产生的伪影,采用3.4倍平均来增加信噪比。这种方案受腹部运动影响较大,图像模糊,血管壁边界不清晰。
发明内容
本发明的目的是克服上述现有技术的缺陷,提供一种鲁棒的腹部血管壁成像方法和***,同时解决由于腹部运动导致的成像模糊和血流抑制的问题,改善了血管壁的成像质量。
根据本发明的第一方面,提供一种腹部血管壁成像方法。该方法包括以下步骤:
将一设定射频脉冲序列应用于成像区域,其中,设定射频脉冲序列按照时间顺序依次包括:延迟交替章动定制激发DANTE脉冲、脂肪抑制FS脉冲和3D径向采集梯度回波链,所述3D径向采集梯度回波链包含一系列梯度回波;
基于所述延迟交替章动定制激发DANTE脉冲、所述脂肪抑制FS脉冲和所述3D径向采集梯度回波链对目标腹部血管壁进行磁共振成像,获得磁共振腹部血管壁图像。
根据本发明的第二方面,提供一种腹部血管壁成像***。该***包括:
扫描设置单元:用于将一设定射频脉冲序列应用于成像区域,其中,设定射频脉冲序列按照时间顺序依次包括:延迟交替章动定制激发DANTE脉冲、脂肪抑制FS脉冲和3D径向采集梯度回波链,所述3D径向采集梯度回波链包含一系列梯度回波;
图像采集单元:用于基于所述延迟交替章动定制激发DANTE脉冲、所述脂肪抑制FS脉冲和所述3D径向采集梯度回波链对目标腹部血管壁进行磁共振成像,获得磁共振腹部血管壁图像。
与现有技术相比,本发明的优点在于,针对腹部运动的特点,设置特有的扫描脉冲序列,能够减弱由于呼吸、肠道蠕动引起的运动伪影,并同时抑制血流信号,提升了腹部血管壁图像的清晰度。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是现有技术中肿瘤和动脉的毗邻关系示意图;
图2是根据本发明一个实施例的腹部血管壁成像方法的流程图;
图3是根据本发明一个实施例的磁共振扫描脉冲的时序图;
图4是根据本发明一个实施例的辐条之间间隔黄金角可均匀地填充k空间的示意图;
图5是根据本发明一个实施例的利用DANTE-uCSR采集的腹部血管壁图像效果图;
图6是根据本发明另一实施例的利用DANTE-uCSR采集的腹部血管壁图像的效果图;
附图中,RF-射频;Slice-层;Phase-相位;Readout-读出;Signal-信号。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明将DANTE(Delay Alternating with Nutation for Tailored Excitation,延迟交替章动定制激发)与3D径向采集梯度回波链相结合进 行血管壁磁共振成像,在重新设计用于磁共振成像的脉冲序列基础上,提出了一种磁共振腹部血管壁成像方法,能够更有效、更均匀地抑制血流信号,同时提高组织的信噪比。应理解的是,下述各实施例以对腹部血管壁磁共振成像为例进行描述,并非用以限定本发明的成像区域和用途。本领域技术人员了解本发明各实施例的方法还可以用于对人体或动物其他部位的血管壁进行成像,同样地还可以用于与血流具有类似成像特性的其他部位的成像。
参见图2所示,所提供的腹部血管壁成像方法包括以下步骤:
步骤S210,设置用于磁共振扫描的黑血准备脉冲以及3D径向采集梯度回波链。
在一个实施例中,用于磁共振成像的时序序列的时序图如图3所示,其中图3(a)示意了该时序图包含准备脉冲和3D径向采集梯度回波链两部分,准备脉冲由黑血脉冲DANTE和压脂脉冲FS构成,DANTE用于抑制血流信号,达到黑血效果。3D径向采集梯度回波链用于采集磁共振信号,能有效抑制呼吸和肠道蠕动产生的运动伪影。
DANTE可用于抑制血流信号。具体地,DANTE脉冲群由多个重复的脉冲模块构成,参见图3(b)所示,每个脉冲模块包括一个矩形脉冲和施加在三个方向的散相梯度(灰色框),其中矩形脉冲的翻转角α大小为几度到十几度,例如可为2°至19°范围,如为10°脉冲。散相梯度幅值可设为磁共振***能运行的最大值,可设为20mT/m~80mT/m(毫特斯拉/米),如设为80mT/m。脉冲模块的重复次数可视应用情况调整,一般从几十到几百,重复次数越多,血流抑制效果越好,但会增加扫描时间和降低图像的信噪比,例如可将脉冲模块的重复次数设置为40至500范围内。
DANTE利用一系列低翻转角的射频脉冲穿插去相位梯度,对流动的组织信号产生体素间的相位散相作用,能很好地抑制血流信号。DANTE准备模块理论上的对比度加权为不会对后面的采集序列(uCSR)的对比度加权产生影响。此外,由于采用了小翻转角脉冲,对B1场的不均匀性理论上不敏感,这使得DANTE序列可以很好的用于超高场磁共振成像。
压脂脉冲FS用于抑制成像区域内的脂肪、减少脂肪相关的运动和化学伪影等、增强扫描的效果并增加图像的组织对比度等,有利于观察器官的形态和轮廓。利用压脂脉冲FS可以改善图像质量、提高小病灶的检出率。压脂方法可采用STIR序列、FatSat序列或IDEAL序列等现有技术或其他衍生的方法。
3D径向梯度回波链是由一系列梯度回波构成,单个梯度回波的时序图如图3(c)所示,在xy平面采用径向(radial)轨迹填充k空间,在层选方向采用佛里叶编码实现3D采集,参见图3(d)所示。因为径向采集的每条线都经过k空间的中心,能够有效抑制运动伪影,例如呼吸,肠道蠕动等产生。
传统磁共振成像一般采用笛卡尔k空间采样模式,即采集平行线按顺序填充k空间,这种采集方式简单便捷,并且不太受设备***性能的影像。然而,这种采集方式容易受呼吸运动影响从而产生运动伪影,不适用于腹部血管壁成像。在本发明实施例中,采用径向k空间采集(radial sampling)来解决这一问题,参见图4所示,它以星状方式采集k空间,每条径向k空间线(简称辐条)都穿过k空间中心,消除了相位编码容易被呼吸运动影响的问题,从而实现自由呼吸扫描。当前辐条和下一个辐条之间的夹角有多个选择,例如采用黄金角(111.25°),使得每一条k空间线都不会和之前的采样重复,在重建时能最大化利用所有k空间信息以提高图像质量。同时,这种采集方式实现了非常高的时间维度的不相干性和灵活性,与压缩感知(CS)技术结合后,可进一步提高图像的时间分辨率。
综上,本发明针对腹部血管壁的成像特点,设计了特有的磁共振成像时序序列(或称为DANTE-uCSR),有效提升了图像的清晰度。
步骤S220,基于黑血准备脉冲和3D径向采集梯度回波链对目标腹部血管壁进行磁共振成像,获得磁共振腹部血管壁图像,以分析肿瘤和动脉的毗邻关系。
具体地,将上述脉冲序列应用于成像区域后,采集成像区域在射频脉冲链激励下产生的磁共振信号,该磁共振信号可以利用现有方法或改进方法进行采集,例如经过射频脉冲、选层梯度、读出梯度、相位编码等过程 实现得到磁共振信号。采集得到磁共振信号通过例如磁共振图像重建算法可以得到成像区域中腹部血管壁的磁共振图像。对于该步骤,本领域技术人员可以根据本发明实施例设定的脉冲序列实现,在此不再赘述。
基于黑血准备脉冲和3D径向采集梯度回波链对目标腹部血管壁进行磁共振成像,可获得实时的磁共振图像,以判断肿瘤和血管壁表面的接触情况以及血管形变情况,进而分析是否进行切除手术,用于临床指示。
为进一步验证本发明用于腹部血管壁成像的可行性和效果,利用新开发的DANTE-uCSR序列,扫描了几例志愿者,扫描结果参见图5和图6所示,图5是DANTE-uCSR采集的腹部血管壁图像,分辨率1.3mm×1.3mm×4.5mm,时间为4min44s,可以清晰的看到腹主动脉和肠系膜上动脉(箭头所示)的血管壁。图6是DANTE-uCSR采集的腹部血管壁图像,分辨率1.3mm×1.3mm×1.5mm,时间为5min44s,可以看到腹主动脉、腹腔干和肠系膜上动脉开口处(箭头所示)的血管壁。由图可以清晰看到,腹腔干肠系膜上动脉这两根主要大动脉的血管壁,这两根血管是胰腺癌会累及的主要大血管。
相应地,本发明还提供一种腹部血管壁成像***。用于实现上述方法的一个方面或多个方法。例如,该***包括:扫描设置单元,其用于将一设定射频脉冲序列应用于成像区域,其中,设定射频脉冲序列按照时间顺序依次包括:延迟交替章动定制激发DANTE脉冲、脂肪抑制FS脉冲和3D径向采集梯度回波链,所述3D径向采集梯度回波链包含一系列梯度回波;图像采集单元,其用于基于所述延迟交替章动定制激发DANTE脉冲、所述脂肪抑制FS脉冲和所述3D径向采集梯度回波链对目标腹部血管壁进行磁共振成像,获得磁共振腹部血管壁图像。该***的各单元可采用通用处理器或专用硬件实现,例如FPGA等。
综上所述,本发明针对腹部运动对血管壁成像所造成的影响,独创地设计了脉冲序列,能够有效、均匀地抑制血流信号,弥补了DANTE技术不能克服腹部运动伪影的缺陷,并通过将DANTE和3D径向采集梯度回波链相结合进一步提高了磁共振血管壁成像质量。与最好的现有技术iMSDE-SPGR相比,本发明采用DANTE抑制血流信号,比IMSDE黑血效 果更佳,进而通过采用径向采集技术,有效抑制可腹部运动伪影,获得了更加鲁棒的磁共振图像。
本发明可以是***、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本发明的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是但不限于电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本发明操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++、Python等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读 程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本发明的各个方面。
这里参照根据本发明实施例的方法、装置(***)和计算机程序产品的流程图和/或框图描述了本发明的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本发明的多个实施例的***、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述 模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人员来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种腹部血管壁成像方法,包括以下步骤:
    将一设定射频脉冲序列应用于成像区域,其中,设定射频脉冲序列按照时间顺序依次包括:延迟交替章动定制激发DANTE脉冲、脂肪抑制FS脉冲和3D径向采集梯度回波链,所述3D径向采集梯度回波链包含一系列梯度回波;
    基于所述延迟交替章动定制激发DANTE脉冲、所述脂肪抑制FS脉冲和所述3D径向采集梯度回波链对目标腹部血管壁进行磁共振成像,获得磁共振腹部血管壁图像。
  2. 根据权利要求1所述的方法,其特征在于,所述延迟交替章动定制激发DANTE脉冲包含多个重复的脉冲模块,每个脉冲模块包含一个矩形脉冲和施加在三个方向的散相梯度。
  3. 根据权利要求2所述的方法,其特征在于,将所述矩形脉冲的翻转角设置为2°至19°范围内,将所述散相梯度的幅值设置为磁共振成像***能够运行的最大值,所述脉冲模块的数目根据磁共振成像的信噪比要求以及扫描时间要求进行设置。
  4. 根据权利要求3所述的方法,其特征在于,将所述散相梯度的幅值设置为80mT/m,所述脉冲模块的持续时间为1ms~2ms,所述脉冲模块的重复次数为50~500。
  5. 根据权利要求1所述的方法,其特征在于,所述3D径向采集梯度回波链用于实现径向k空间采集,在xy平面采用径向轨迹填充k空间,并且每条径向k空间线都穿过k空间中心,在层选方向采用佛里叶编码实现。
  6. 根据权利要求5所述的方法,其特征在于,在径向k空间采集过程中,将当前径向k空间线和下一个径向k空间线之间的夹角设置为黄金角111.25°。
  7. 根据权利要求1所述的方法,其特征在于,还包括:利用所获得的磁共振腹部血管壁图像,判断肿瘤和血管壁表面的接触情况以及血管形变情况。
  8. 一种腹部血管壁成像***,包括:
    扫描设置单元:用于将一设定射频脉冲序列应用于成像区域,其中,设定射频脉冲序列按照时间顺序依次包括:延迟交替章动定制激发DANTE脉冲、脂肪抑制FS脉冲和3D径向采集梯度回波链,所述3D径向采集梯度回波链包含一系列梯度回波;
    图像采集单元:用于基于所述延迟交替章动定制激发DANTE脉冲、所述脂肪抑制FS脉冲和所述3D径向采集梯度回波链对目标腹部血管壁进行磁共振成像,获得磁共振腹部血管壁图像。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现根据权利要求1至7中任一项所述的方法的步骤。
  10. 一种计算机设备,包括存储器和处理器,在所述存储器上存储有能够在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述的方法的步骤。
PCT/CN2023/072037 2023-01-13 2023-01-13 一种腹部血管壁成像方法和*** WO2024148595A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/072037 WO2024148595A1 (zh) 2023-01-13 2023-01-13 一种腹部血管壁成像方法和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/072037 WO2024148595A1 (zh) 2023-01-13 2023-01-13 一种腹部血管壁成像方法和***

Publications (1)

Publication Number Publication Date
WO2024148595A1 true WO2024148595A1 (zh) 2024-07-18

Family

ID=91897799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072037 WO2024148595A1 (zh) 2023-01-13 2023-01-13 一种腹部血管壁成像方法和***

Country Status (1)

Country Link
WO (1) WO2024148595A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080154117A1 (en) * 2006-12-11 2008-06-26 Sonia Nielles-Vallespin Magnetic resonance method and apparatus for acquisition of image data of a vessel wall
US7706855B1 (en) * 2004-07-20 2010-04-27 General Electric Company System and method for MR data acquisition with uniform fat suppression
CN103976735A (zh) * 2014-05-04 2014-08-13 清华大学 基于磁共振的黑血电影成像方法
CN104545918A (zh) * 2014-12-29 2015-04-29 中国科学院深圳先进技术研究院 非对比增强磁共振静脉造影成像方法
US20160266223A1 (en) * 2015-03-12 2016-09-15 Siemens Healthcare Gmbh System And Method For Motion-Robust 3D Magnetic Resonance Imaging Of Vessel Walls
CN107690309A (zh) * 2016-11-08 2018-02-13 中国科学院深圳先进技术研究院 磁共振血管壁成像方法和设备
US20190025396A1 (en) * 2017-07-24 2019-01-24 Northshore University Health System System and method for fast interrupted steady-state (fiss) mri

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706855B1 (en) * 2004-07-20 2010-04-27 General Electric Company System and method for MR data acquisition with uniform fat suppression
US20080154117A1 (en) * 2006-12-11 2008-06-26 Sonia Nielles-Vallespin Magnetic resonance method and apparatus for acquisition of image data of a vessel wall
CN103976735A (zh) * 2014-05-04 2014-08-13 清华大学 基于磁共振的黑血电影成像方法
CN104545918A (zh) * 2014-12-29 2015-04-29 中国科学院深圳先进技术研究院 非对比增强磁共振静脉造影成像方法
US20160266223A1 (en) * 2015-03-12 2016-09-15 Siemens Healthcare Gmbh System And Method For Motion-Robust 3D Magnetic Resonance Imaging Of Vessel Walls
CN107690309A (zh) * 2016-11-08 2018-02-13 中国科学院深圳先进技术研究院 磁共振血管壁成像方法和设备
US20190025396A1 (en) * 2017-07-24 2019-01-24 Northshore University Health System System and method for fast interrupted steady-state (fiss) mri

Similar Documents

Publication Publication Date Title
Block et al. Towards routine clinical use of radial stack-of-stars 3D gradient-echo sequences for reducing motion sensitivity
CN102077108B (zh) 分子mri中的磁敏度精确量化
JP3878176B2 (ja) インターリービングされた投影−再構成データを使用する三次元位相コントラスト磁気共鳴イメージング
CN107126211B (zh) 磁共振成像方法和***
JP6595393B2 (ja) 磁気共鳴イメージング装置、及び、画像処理方法
JP2014503292A (ja) 任意k空間トラジェクトリの高速並行再構成
US20190041479A1 (en) Dynamic magnetic resonance imaging
JP2006527636A (ja) 時間分解された磁気共鳴血管造影法のためのバックグラウンド抑制法
JPH10512482A (ja) 画像アーティファクトを抑制したデジタル消去磁気共鳴血管造影法
US10203387B2 (en) MR imaging with enhanced susceptibility contrast
JP6568760B2 (ja) 磁気共鳴イメージング装置、および、画像処理装置
JP2015062637A (ja) 磁気共鳴イメージング装置、画像処理装置および磁化率画像算出方法
JP2017529963A (ja) 高性能な骨可視化核磁気共鳴画像法
Lingala et al. Feasibility of through‐time spiral generalized autocalibrating partial parallel acquisition for low latency accelerated real‐time MRI of speech
Gottwald et al. Pseudo‐spiral sampling and compressed sensing reconstruction provides flexibility of temporal resolution in accelerated aortic 4D flow MRI: A comparison with k‐t principal component analysis
CN116077047A (zh) 一种腹部血管壁成像方法和***
CN110940943B (zh) 搏动伪影校正模型的训练方法和搏动伪影校正方法
US20160054420A1 (en) Compensated magnetic resonance imaging system and method for improved magnetic resonance imaging and diffusion imaging
WO2024148595A1 (zh) 一种腹部血管壁成像方法和***
US10928475B2 (en) Dynamic contrast enhanced magnetic resonance imaging with flow encoding
Ahn et al. Quantitative susceptibility map reconstruction using annihilating filter‐based low‐rank Hankel matrix approach
Koktzoglou 4D Dark blood arterial wall magnetic resonance imaging: methodology and demonstration in the carotid arteries
Roy et al. Intra-bin correction and inter-bin compensation of respiratory motion in free-running five-dimensional whole-heart magnetic resonance imaging
US20180081017A1 (en) Systems and methods for multi-echo, background suppressed magnetic resonance angiography
JP2011030673A (ja) 磁気共鳴イメージング装置、および、画像再構成プログラム