WO2024147315A1 - Artificial lung - Google Patents

Artificial lung Download PDF

Info

Publication number
WO2024147315A1
WO2024147315A1 PCT/JP2023/046653 JP2023046653W WO2024147315A1 WO 2024147315 A1 WO2024147315 A1 WO 2024147315A1 JP 2023046653 W JP2023046653 W JP 2023046653W WO 2024147315 A1 WO2024147315 A1 WO 2024147315A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas exchange
housing
exchange membrane
blood
gas
Prior art date
Application number
PCT/JP2023/046653
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 川村
和久 石原
圭祐 平間
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Publication of WO2024147315A1 publication Critical patent/WO2024147315A1/en

Links

Images

Definitions

  • the present invention relates to an artificial lung used for extracorporeal circulation during cardiac surgery under cardiac arrest.
  • sealing members are provided between both inner surfaces of the housing and both sides of the gas exchange membrane, and short-circuiting of blood between the inner surfaces of the housing and both sides of the gas exchange membrane is prevented. Therefore, in the artificial lung of Patent Document 1, blood flows through the internal space (inner peripheral region) of the sealing members.
  • sealing members made of polyurethane resin or epoxy resin smooth, and when blood passes around the inner circumference of the sealing member, there is a risk that the blood cells will be damaged by contact with the sealing member.
  • the problem to be solved by this invention is to provide an artificial lung with a new structure that can reduce damage to blood passing through the inside of the housing.
  • the first aspect is an artificial lung comprising a housing having a gas exchange region therein, a gas exchange membrane contained in the gas exchange region of the housing to form a gas flow path, a gas inlet port for introducing a supply gas containing oxygen into the gas flow path, a gas outlet port for discharging an exhaust gas containing carbon dioxide from the gas flow path, a blood inlet port for introducing blood into the gas exchange region of the housing, and a blood outlet port for discharging blood from the gas exchange region of the housing, both sides of the gas exchange membrane being contained in the gas exchange region without being adhered to the housing, and both side edges of the gas exchange membrane being attached to the housing in a compressed state in the direction in which blood passes through the gas exchange membrane.
  • the compression rate of both side edges of the gas exchange membrane caused by the clamping protrusions is set to 5% or more, so that both sides of the gas exchange membrane are sufficiently pressed against the inner surface of the housing, and the necessary sealing performance can be achieved on both sides even if the gas exchange membrane is attached to the housing without being adhesively attached.
  • the compression rate of both side edges of the gas exchange membrane caused by the clamping protrusions is set to 20% or less, so that it is possible to prevent the gas exchange membrane from being damaged by excessive compression, and to prevent gaps from being formed between the gas exchange membrane and the housing due to distortion or other reasons caused by excessive compression, which can cause a short circuit in the blood flow.
  • FIG. 12 is a rear view of the first wall member shown in FIG.
  • FIG. 4 is a perspective view of a second wall member constituting the oxygenator shown in FIG.
  • FIG. 14 is a front view of the second wall member shown in FIG.
  • FIG. 4 is a perspective view of a support member constituting the oxygenator shown in FIG. 16 is a rear view of the support member shown in FIG.
  • FIG. 13 is a partial cross-sectional view of a heat transfer tube constituting an oxygenator according to another embodiment of the present invention.
  • the inlet guide fins 36 may extend from the blood inlet port 32 in a curved shape with a continuously changing inclination angle, or in a bent shape with a stepwise changing inclination angle, but in this embodiment they extend linearly.
  • the protruding height of each inlet guide fin 36 from the inner surface of the first side wall 22 gradually decreases the further away from the blood inlet port 32 it is, and the protruding tip surfaces of the multiple inlet guide fins 36a to 36c from the first side wall 22 are aligned on the same front-to-rear orthogonal plane.
  • the first to third inclined surfaces 56, 58, 60 are all inclined rearward and outward with respect to the front-rear orthogonal plane along which the second side wall portion 44 extends.
  • the first to third inclined surfaces 56, 58, 60 all extend at a substantially constant inclination angle.
  • the inclination angle ⁇ of the first inclined surface 56 with respect to the front-rear orthogonal plane is preferably within a range of 5 to 15°, for example, approximately 10°.
  • the inclination angle ⁇ of the second inclined surface 58 with respect to the front-rear orthogonal plane is preferably within a range of 30 to 50°, for example, approximately 40°.
  • the inclination angle ⁇ of the third inclined surface 60 with respect to the front-rear orthogonal plane is preferably 60° or more, for example, approximately 80°.
  • the outlet pipe connection part 64 may also be bent at a right angle in the middle and bent in a direction different from the left-right direction, and the blood outlet port 62 may extend at an incline in the up-down direction or the front-back direction from the bent part in the middle.
  • the bottom member 18 has an overall shallow rectangular dish shape.
  • a bottom connecting protrusion 74 that protrudes upward is integrally formed with the bottom member 18.
  • the bottom member 18 is provided with a temperature control fluid inlet port portion 76 and a temperature control fluid outlet port portion 78.
  • the lid member 20 is shaped like an upside-down shallow rectangular dish overall.
  • a lid connecting protrusion 82 that protrudes downward is integrally formed with the lid member 20.
  • the lid member 20 is provided with a gas inlet port portion 84.
  • the gas inlet port portion 84 extends upward from the lid member 20 and then extends toward one side in the left-right direction, and the inner cavity that constitutes the gas inlet port is formed by penetrating the lid member 20 in the vertical direction.
  • the first wall member 14, the second wall member 16, the bottom member 18, and the cover member 20 are assembled together in a fluid-tight manner, preventing leakage of blood introduced into the housing 12, water flowing through the heat transfer tube 112 described below, and oxygen flowing through the gas flow path 118 described below from within the housing 12, and preventing entry of foreign matter into the housing 12 from the outside.
  • the first wall member 14, the second wall member 16, the bottom member 18, and the cover member 20 may be fitted together without bonding, sealed with silicone or rubber, but are preferably fixed together by means of adhesion, heat welding, or the like.
  • the housing 12 has a third side wall portion 88 that extends in the flow path length direction (vertical direction) of the gas flow path 118 of the gas exchange membrane 116 described later.
  • the third side wall portion 88 is formed by the first connecting wall portion 24 of the first wall member 14 and the second connecting wall portion 46 of the second wall member 16.
  • the third side wall portion 88 spreads out approximately perpendicular to the first and second side wall portions 22, 44, and extends in the vertical direction, which is the flow path length direction of the gas flow path 118 described later.
  • a pair of third side wall portions 88 are provided that face each other in the left-right direction.
  • a support member 90 is disposed inside the housing 12.
  • the support member 90 is in the shape of a rectangular frame with left and right frame parts extending in the vertical direction connected at both the top and bottom ends by upper and lower frame parts extending in the horizontal direction, and an inner frame area 92 is formed on the inner periphery, penetrating in the front-to-rear direction.
  • Positioning protrusions 94 that protrude outward in the left-right direction are formed on both the left and right outer surfaces of the support member 90.
  • the positioning protrusions 94 extend continuously in the vertical direction and are integrally provided with misassembly prevention sections 96 that are partially wider in the length direction.
  • the misassembly prevention sections 96 provided on the positioning protrusions 94, 94 on both the left and right sides of the support member 90 are positioned differently in the vertical direction.
  • the support member 90 has intermediate protrusions 98 as clamping protrusions that protrude rearward on both left and right sides.
  • the intermediate protrusions 98 are provided on both left and right end portions of the support member 90, and extend continuously with an approximately constant cross-sectional shape over the entire vertical length of the left and right side portions of the support member 90.
  • the protruding tip surface of the intermediate protrusion 98 is an intermediate abutment surface 100 having a predetermined width in the left and right direction.
  • the intermediate abutment surface 100 in this embodiment is a flat surface that extends approximately perpendicular to the front-rear direction.
  • intermediate protrusions 102 that protrude forward are formed on both left and right side portions of the support member 90.
  • the intermediate protrusions 102 are provided on both left and right end portions of the support member 90, and extend continuously with an approximately constant cross-sectional shape over the entire vertical length of the left and right side portions of the support member 90.
  • the protruding tip surface of the intermediate protrusion 102 is an intermediate abutment surface 104 having a predetermined width in the left and right direction.
  • the intermediate contact surface 104 is a flat surface that extends approximately perpendicular to the front-rear direction.
  • the intermediate protrusion 98 that protrudes rearward and the intermediate protrusion 102 that protrudes forward are symmetrical on the front and back and have the same shape and size, but they may be different shapes and sizes.
  • the support member 90 has support grooves 106, 106 that open on both the top and bottom end faces.
  • the support member 90 is attached to the front-rear middle part of the housing 12 by fitting the support grooves 106, 106 into the bottom member 18 and the cover member 20.
  • the positioning protrusions 94, 94 of the support member 90 are sandwiched between the tip surfaces of the first connecting wall portion 24 of the first wall member 14 and the second connecting wall portion 46 of the second wall member 16, thereby defining the position of the support member 90 in the front-to-rear direction relative to the housing 12 and limiting the bending of the left and right portions of the support member 90 to stabilize its shape.
  • the tip portions of the first connecting wall portion 24 and the second connecting wall portion 46 have notches formed in portions corresponding to the wide misassembly prevention portions 96, 96 that are partially provided at different positions in the up-down direction on the left and right positioning protrusions 94, 94, and the misassembly prevention portions 96 are inserted into the notches to prevent misassembly of the support member 90 being attached to the housing 12 upside down or upside down.
  • a temperature control area 108 and a gas exchange area 110 are formed on both the front and rear sides of the support member 90 inside the housing 12.
  • the temperature control area 108 and the gas exchange area 110 are arranged side by side in the front-to-rear direction, which is the short axis direction of the flat housing 12, and are connected to each other by an inner-frame area 92 of the support member 90 arranged between the temperature control area 108 and the gas exchange area 110.
  • the connection area connecting the temperature control area 108 and the gas exchange area 110 is formed by the inner-frame area 92, which is the inner peripheral area of the frame-shaped support member 90.
  • the separation distance d between the temperature control area 108 and the gas exchange area 110 by the inner-frame area 92 is preferably within a range of 5 to 20 mm, and more preferably within a range of 10 to 15 mm.
  • the temperature adjustment area 108 houses a temperature regulator 114 composed of multiple heat transfer tubes 112.
  • the temperature regulator 114 has a structure in which multiple heat transfer tubes 112 made of synthetic resin such as polyurethane or polyethylene terephthalate are arranged to extend parallel to one another.
  • the axial direction of the inner cavity of the heat transfer tubes 112 that make up the temperature regulator 114 extends in the up-down direction perpendicular to the thickness direction of the housing 12.
  • the temperature regulator 114 is positioned relative to the housing 12, for example, by bonding both upper and lower end portions to the housing 12.
  • the inner cavity of the heat transfer tube 112 that constitutes the temperature regulator 114 has an opening at the lower end that is connected to a temperature control fluid inlet port 76 and a temperature control fluid outlet port 78.
  • a temperature control fluid such as cold water or hot water is introduced from the temperature control fluid inlet port 76, flows through the inner cavity of the heat transfer tube 112, and is then discharged to the outside from the temperature control fluid outlet port 78.
  • the temperature control fluid discharged from the temperature control fluid outlet port 78 is heated or cooled to an appropriate temperature by a heater or radiator, and then reintroduced into the temperature regulator 114 from the temperature control fluid inlet port 76.
  • a partition piece 115 that protrudes toward the temperature control region 108 is provided in a part of the middle in the left-right direction on the bottom member 18 of the housing 12.
  • the partition piece 115 is provided between the temperature control fluid inlet port 76 and the temperature control fluid outlet port 78, and prevents the temperature control fluid introduced from the temperature control fluid inlet port 76 from flowing to the temperature control fluid outlet port 78 without passing through the inner cavity of the heat transfer tube 112.
  • the temperature control fluid introduced from the temperature control fluid inlet port 76 into the temperature control region 108 flows upward through the inner cavity of the heat transfer tube 112 located to the left of the partition piece 115, and then flows downward through the inner cavity of the heat transfer tube 112 located to the right of the partition piece 115, and is easily discharged from the temperature control fluid outlet port 78, and by flowing through the inner cavity of the heat transfer tube 112, heat exchange with the blood is effectively performed.
  • the lower end opening of the heat transfer tube 112 to the left of the partition piece 115 is connected to the temperature control fluid inlet port 76
  • the lower end opening of the heat transfer tube 112 to the right of the partition piece 115 is connected to the temperature control fluid outlet port 78.
  • the temperature regulator 114 is fixed to the housing 12 with both left and right side edges compressed in the blood flow direction by the first side wall portion 22 of the first wall member 14 and the support member 90. That is, the temperature regulator 114 is in a compressed state in the front-to-rear direction at the peripheral end portion (left and right side edges) located between the opposing surfaces of the forward protrusion 26 of the first side wall portion 22 and the intermediate protrusion 102 of the support member 90, and the thickness dimension in the front-to-rear direction is smaller after being fixed to the housing 12 than before being fixed to the housing 12.
  • the outer surface of the temperature regulator 114 and the inner surface of the housing 12 are in close contact with each other, the gap between the temperature regulator 114 and the housing 12 is reduced, and the flow of blood along the inner surface of the housing 12 can be suppressed.
  • blood flows easily throughout the entire interior of the temperature regulator 114, which is composed of multiple heat transfer tubes 112, and blood does not flow in the short-circuited parts, so that the blood flow is uniform overall. Therefore, the heat exchange efficiency is improved.
  • the temperature regulator 114 is not compressed in the inner peripheral portion that is outside the area between the opposing surfaces of the first side wall portion 22 and the support member 90.
  • the gas exchange region 110 contains a gas exchange membrane 116.
  • the gas exchange membrane 116 has a structure in which a large number of hollow fibers having gas permeability are bundled in parallel.
  • the gas exchange membrane 116 is formed in a generally rectangular block shape by folding a hollow fiber membrane, which is a bundle of a large number of hollow fibers in a blind shape, into a laminated shape.
  • the gas exchange membrane 116 is formed of a synthetic resin such as polypropylene or polymethylpentene.
  • the tube axis direction in which the inner cavity of the hollow fiber constituting the hollow fiber membrane (gas flow path 118 described later) extends is the vertical direction perpendicular to the thickness direction of the housing 12.
  • gas exchange membrane 116 composed of multiple layers of hollow fiber membranes is preferably held in a generally rectangular block shape by, for example, bonding both upper and lower ends.
  • the gas exchange membrane 116 is not necessarily limited to a laminated structure of a membrane body, and can also be formed, for example, by bundling a large number of hollow fibers in parallel and connecting them to each other with an adhesive.
  • the inner cavity of the hollow fiber that constitutes the gas exchange membrane 116 is a gas flow path 118, and the openings at both ends are connected to the gas inlet port 84 and the gas outlet port 80.
  • the supply gas containing oxygen introduced into the gas exchange region 110 from the gas inlet port 84 flows through the gas flow path 118 of the gas exchange membrane 116, and after gas exchange of oxygen and carbon dioxide occurs between the blood in contact with the gas exchange membrane 116, the exhaust gas containing carbon dioxide is discharged to the outside from the gas outlet port 80.
  • the gas flow path 118 through which oxygen and carbon dioxide flow is formed by the gas exchange membrane 116 composed of a hollow fiber membrane.
  • the gas outlet port 80 is formed by penetrating the bottom member 18 of the housing 12 in the vertical direction, even if condensation occurs in the gas flow path 118, for example, the water droplets are quickly discharged to the outside from the gas outlet port 80, and clogging of the gas flow path 118 by water droplets is prevented.
  • the gas exchange membrane 116 is housed within the housing 12 and is positioned relative to the housing 12 by the housing 12 and the support member 90.
  • the upper and lower end portions of the gas exchange membrane 116 are surrounded and supported by the housing 12 and the support member 90, and the upper and lower middle portions are housed in the gas exchange region 110.
  • the upper and lower end portions of the gas exchange membrane 116 are bonded to the surrounding housing 12 and support member 90 as adhesive parts 119, and the overlapping surfaces between the adhesive parts 119 and the housing 12 and support member 90 are liquid-tightly sealed.
  • the gas exchange membrane 116 is bonded to the inner peripheral surface of the peripheral wall of the housing 12 and the support member 90 by a conventionally known method such as centrifugal potting.
  • the method of fixing the gas exchange membrane 116 to the housing 12 is not limited to adhesive fixation by centrifugal potting, and for example, the gas exchange membrane 116 may be fixed without adhesive as long as the sealing performance between the overlapping surfaces of the gas exchange membrane 116, the housing 12, and the support member 90 can be ensured.
  • the upper and lower ends of the temperature regulator 114 are bonded to the peripheral wall of the housing 12 in the same manner as the gas exchange membrane 116.
  • the upper and lower ends of the temperature regulator 114 are bonded to the peripheral wall of the housing 12, for example, by potting, which is the same method of bonding the upper and lower ends of the gas exchange membrane 116 to the housing 12 as described above.
  • the upper and lower ends of the temperature regulator 114 can also be bonded to the peripheral wall of the housing 12 using the same bonding process as the bonding portion 119 of the gas exchange membrane 116.
  • the gas exchange membrane 116 is attached to the housing 12 with its left and right side edges compressed in the front-rear direction, which is the direction of blood flow, between the second side wall portion 44 of the second wall member 16 and the support member 90. That is, the gas exchange membrane 116 is compressed by having its peripheral ends (left and right side edges) sandwiched between the protruding tip surfaces of the rear protruding portion 48 of the second side wall portion 44 and the intermediate protruding portion 98 of the support member 90 (between the opposing surfaces of the rear abutment surface 50 and the intermediate abutment surface 100).
  • the rectangular block-shaped gas exchange membrane 116 is sandwiched between the housing 12 and the left and right frame parts of the support member 90 at both left and right ends, and is overlapped with the upper and lower frame parts of the support member 90 at the adhesive parts 119, 119 formed at both top and bottom ends.
  • the gas exchange membrane 116 is assembled to the housing 12 without adhesive at both left and right ends, and a wide area in the vertical direction outside the adhesive parts 119 is exposed to the frame area 92 without being covered by the support member 90.
  • the upper and lower middle parts outside the adhesive parts 119, 119 on both the top and bottom sides are easily in contact with blood over a wide area in the vertical direction, and the gas exchange efficiency of blood passing through the gas exchange membrane 116 is advantageously ensured.
  • the frame-shaped support member 90 is continuously overlapped with the gas exchange membrane 116 all around.
  • left and right frame portions of the frame-shaped support member 90 are connected by upper and lower frame portions, they can be handled as a single unit compared to when the left and right frame portions are independent, and, for example, are easier to assemble to the housing 12. Furthermore, because the left and right frame portions of the frame-shaped support member 90 are connected by upper and lower frame portions, they have high deformation rigidity, making it easier to stabilize the positioning of the gas exchange membrane 116 relative to the housing 12.
  • the temperature regulator 114 and the gas exchange membrane 116 may be of different structures or materials.
  • a combination of a temperature regulator 114 made of a metal heat transfer tube 112 and a gas exchange membrane 116 made of synthetic resin hollow fibers may be used.
  • both the temperature regulator 114 and the gas exchange membrane 116 are made of synthetic resin hollow fiber membranes and have approximately the same structure. Note that in FIG. 9, the diameters of the heat transfer tube 112 and the hollow fibers are exaggerated for ease of viewing.
  • blood is introduced into the housing 12 from the blood inlet port 32, passes through the temperature control area 108 and the gas exchange area 110 in order, and is then discharged to the outside from the blood outlet port 62.
  • the blood flows outside the heat transfer tube 112 in the temperature regulator 114, and indirect heat exchange occurs between the blood and the temperature control fluid via the heat transfer tube 112. This causes the blood to be heated or cooled to an appropriate temperature.
  • the temperature-controlled blood flows outside the hollow fibers in the gas exchange membrane 116 in the gas exchange area 110, and is oxygenated by receiving oxygen from the supply gas introduced into the gas flow path 118, which is the inner cavity of the hollow fibers.
  • the blood receives oxygen from the gas flow path 118 and expels carbon dioxide to the gas flow path 118.
  • the first side wall portion 22, where the blood inlet port 32 opens is provided with inlet guide fins 36 that extend radially upward from the blood inlet port 32, so that the blood introduced into the temperature control area 108 from the blood inlet port 32 is also guided by the inlet guide fins 36 so that it spreads over a wide area. This improves the efficiency of both heat exchange between the blood and the temperature control fluid and gas exchange between the blood and the supplied gas.
  • the three inlet guide fins 36a, 36b, 36c extend at a relative incline so that they move away from each other as they move away from the blood inlet port 32, so that the blood is guided to a wider range of the temperature control area 108, improving the heat exchange efficiency.
  • the blood guided over a wide range by the inlet guide fins 36 tends to flow in contact with the entire gas exchange membrane 116 because the protruding tips of the inlet guide fins 36 are separated from the gas exchange membrane 116.
  • the blood that has been diffused and introduced into the wide area of the temperature control area 108 passes through the temperature control area 108 and is then introduced into the gas exchange area 110 through the framed area 92.
  • the blood that has passed through each part of the temperature control area 108 joins together in the framed area 92, suppressing the variation in flow rate and stabilizing the flow rate. This prevents the blood flowing from the framed area 92 into the gas exchange area 110 from flowing easily or difficultly locally, and allows the blood to flow with a stable flow rate distribution over a wide area in the gas exchange area 110. Therefore, oxygen is efficiently supplied to the blood from the supply gas of the gas exchange membrane 116, and carbon dioxide held by the blood is efficiently transferred into the gas exchange membrane 116.
  • the oxygenated blood in the gas exchange region 110 is guided to the blood outlet port 62 by the outlet side guide 52, blood located away from the blood outlet port 62 can also be easily discharged from the blood outlet port 62.
  • the blood in the gas exchange region 110 is discharged from the blood outlet port 62 in a mixed state, and the degree of oxygenation of the blood discharged from the blood outlet port 62 is stabilized.
  • the blood in the gas exchange region 110 is prone to unevenness in the degree of oxygenation between the upper part close to the gas inlet port 84 and the lower part far from the gas inlet port 84, but since the upper blood and the lower blood are mixed at the outlet side guide 52, the degree of oxygenation of the blood discharged from the blood outlet port 62 is stabilized.
  • the blood outlet port 62 is provided approximately parallel to the blood inlet port 32 and opens in the opposite direction from the blood inlet port 32 in the left-right direction. This allows for a smooth flow of blood introduced from the blood inlet port 32 and discharged from the blood outlet port 62.
  • the inlet line connection part 34 and the outlet line connection part 64 extend in the left-right direction, the protrusion of the inlet line connection part 34 and the outlet line connection part 64 in the front-rear direction is suppressed, and the front-rear size of the oxygenator 10 is reduced.
  • the tubes connected to the inlet line connection part 34 and the outlet line connection part 64 also extend in the left-right direction, the space required in the front-rear direction when in use is reduced.
  • the blood outlet port 62 is located approximately in the vertical center of the left end portion of the housing 12, and is offset in the vertical and horizontal directions from the blood inlet port 32. This makes it difficult for blood to short-circuit from the blood inlet port 32 to the blood outlet port 62, making it easier for blood to flow over a wide area within the housing 12.
  • the inclination angle of the first inclined surface 56 is within the range of 5 to 15°
  • the inclination angle of the second inclined surface 58 is within the range of 30 to 50°
  • the inclination angle of the third inclined surface 60 is 60° or more, thereby ensuring the necessary depth of the outlet side guide 52 and controlling the speed of blood flow in the left-right direction in the outlet side guide 52 toward the blood outlet port 62.
  • the five outlet side guide fins 66a-66e extend radially at an angle so that they move away from each other as they move away from the blood outlet port 62, so that blood is guided to the outlet side guide section 52 from a wider range of the gas exchange area 110. Therefore, the degree of oxygenation of the blood drawn out from the blood outlet port 62 is stabilized.
  • the outlet guide fins 66a, 66e extend vertically along the left edge of the second side wall 44, making it easier to guide blood from the upper and lower left corners, where it is difficult for a flow to form and blood is likely to stagnate, to the blood outlet port 62, which opens near the left end of the second side wall 44.
  • the relative inclination angle of the outlet guide fins 66a, 66e with respect to the left edge of the second side wall 44 is within the range of 0 to 10°, so that blood can be effectively guided from the upper and lower left corners to the blood outlet port 62.
  • the outlet side guide fins 66b, 66d have one end located at the outlet side guide section 52 and the other end located outside the outlet side guide section 52, so that blood in the area outside the outlet side guide section 52 can be efficiently guided and introduced to the outlet side guide section 52.
  • the protruding tip surfaces of the outlet side guide fins 66a to 66e from the second side wall portion 44 are aligned on a single plane and overlap the rear surface of the gas exchange membrane 116, so that multiple flow paths separated by the outlet side guide fins 66 are formed between the second side wall portion 44 and the gas exchange membrane 116, and blood is efficiently guided through these flow paths to the blood outlet port 62.
  • the blood outlet port 62 is provided in the upper and lower middle parts of the gas exchange area 110, and a wide range of blood, including both the upper and lower parts of the gas exchange area 110, is guided to the blood outlet port 62 by the outlet side guide part 52 and the outlet side guide fins 66. Moreover, since blood guided from a wide range within the gas exchange area 110 is stirred in the outlet side guide part 52 before being discharged from the blood outlet port 62, there is little variation in the oxygenation of the blood discharged from the blood outlet port 62. Furthermore, within the housing 12 including the inlet side guide part 30 and the outlet side guide part 52, the stirring of the blood is controlled to a degree that does not cause damage to blood cells by adjusting the shape of the outlet side guide part 52 and the blood flow rate, etc.
  • the blood inlet port 32 and the blood outlet port 62 are both located above the temperature control fluid inlet port 76 and the temperature control fluid outlet port 78. Therefore, even if the temperature control fluid leaks from the temperature control fluid inlet port 76 or the temperature control fluid outlet port 78, the temperature control fluid is unlikely to come into contact with the blood inlet port 32 and the blood outlet port 62. Therefore, the blood inlet port 32 and the blood outlet port 62 are kept clean and not contaminated by the temperature control fluid.
  • the structure of the housing 12 is not necessarily limited to a structure that combines a peripheral wall portion, a lower wall portion, and an upper wall portion that are independent of each other.
  • the peripheral wall portion and the lower wall portion may be integrally formed, and the lower wall portion may have a two-part structure like the peripheral wall portion.
  • the inlet side guide portion 30 and the outlet side guide portion 52 in the peripheral wall portion may each be separate parts.
  • Oxygenator (First embodiment) 12 Housing 14 First wall member 16 Second wall member 18 Bottom member 20 Lid member 22 First side wall portion 24 First connecting wall portion 26 Forward protrusion portion 28 Front abutment surface 30 Inlet side guide portion 32 Blood inlet port 34 Inlet pipeline connection portion 36 (36a to 36c) Inlet side guide fin 38 Peripheral wall connecting protrusion portion 40 First lid connecting recess 42 First bottom connecting recess 44 Second side wall portion 46 Second connecting wall portion 48 Rear protrusion portion (clamping protrusion) 50 Rear abutment surface 52 Outlet side guide portion 54 Vertex 56 First inclined surface 58 Second inclined surface 60 Third inclined surface 62 Blood outlet port 64 Outlet pipeline connection portion 66 (66a to 66e) Outlet side guide fin 68 Peripheral wall connecting recess 70 Second lid connecting recess 72 Second bottom connecting recess 74 Bottom connecting protrusion 76 Temperature regulating fluid inlet port portion 78 Temperature regulating fluid outlet port portion 80 Gas outlet port 82 Lid connecting protrusion 84 Gas inlet port portion 88

Landscapes

  • External Artificial Organs (AREA)

Abstract

Provided is an artificial lung with a novel structure capable of reducing damage to blood passing through the inside of a housing. The artificial lung is equipped with: a housing (12) having a gas exchange area (110) inside; a gas exchange membrane (116) housed in the gas exchange area (110) of the housing (12) to form a gas channel (118); a gas inlet port for introducing a supply gas containing oxygen into the gas channel (118); a gas outlet port for discharging an exhaust gas containing carbon dioxide from the gas channel (118); a blood inlet port for introducing blood into the gas exchange region (110) of the housing (12); and a blood outlet port (62) for discharging blood from the gas exchange region (110) of the housing (12). In this artificial lung, the gas exchange membrane (116) is housed in the gas exchange area (110) in a non-adhered state to the housing (12) on both sides, and both edges of the gas exchange membrane (116) are attached to the housing (12) in a compressed state in the direction of blood passage to the gas exchange membrane (116).

Description

人工肺Artificial lung
 本発明は、心停止下での心臓手術などにおいて体外循環に用いられる人工肺に関するものである。 The present invention relates to an artificial lung used for extracorporeal circulation during cardiac surgery under cardiac arrest.
 従来から、体外循環において血液との間でガス交換を行って血液を酸素化するために用いられる人工肺が知られている。人工肺は、例えば国際公開第2015/046224号(特許文献1)に開示されているように、ハウジング内に設けられたガス交換領域に中空糸などからなるガス交換膜が配されており、中空糸の外側を流れる血液に対して、中空糸の内側に導入された供給ガスから酸素が供給される。  Artificial lungs have been known for use in oxygenating blood by performing gas exchange with blood in extracorporeal circulation. As disclosed, for example, in International Publication No. 2015/046224 (Patent Document 1), an artificial lung has a gas exchange membrane made of hollow fibers or the like disposed in a gas exchange region provided within a housing, and oxygen is supplied to the blood flowing outside the hollow fibers from a supply gas introduced inside the hollow fibers.
国際公開第2015/046224号International Publication No. 2015/046224
 ところで、特許文献1の人工肺では、ハウジングの両側内面とガス交換膜の両側面との間にシール部材が設けられており、それらハウジングの両側内面とガス交換膜の両側面との間を通じた血液の短絡的な流動が防止されている。従って、特許文献1の人工肺において、血液はシール部材の内部空間(内周領域)を流動する。 In the artificial lung of Patent Document 1, sealing members are provided between both inner surfaces of the housing and both sides of the gas exchange membrane, and short-circuiting of blood between the inner surfaces of the housing and both sides of the gas exchange membrane is prevented. Therefore, in the artificial lung of Patent Document 1, blood flows through the internal space (inner peripheral region) of the sealing members.
 しかしながら、ポリウレタン樹脂あるいはエポキシ樹脂等からなるシール部材は、表面を滑らかにすることが難しく、シール部材の内周を血液が通過すると、シール部材への接触によって血球が損傷するおそれもあった。 However, it is difficult to make the surface of sealing members made of polyurethane resin or epoxy resin smooth, and when blood passes around the inner circumference of the sealing member, there is a risk that the blood cells will be damaged by contact with the sealing member.
 本発明の解決課題は、ハウジング内部を通過する血液へのダメージを低減することができる、新規な構造の人工肺を提供することにある。 The problem to be solved by this invention is to provide an artificial lung with a new structure that can reduce damage to blood passing through the inside of the housing.
 以下、本発明を把握するための好ましい態様について記載するが、以下に記載の各態様は、例示的に記載したものであって、適宜に互いに組み合わせて採用され得るだけでなく、各態様に記載の複数の構成要素についても、可能な限り独立して認識及び採用することができ、適宜に別の態様に記載の何れかの構成要素と組み合わせて採用することもできる。それによって、本発明では、以下に記載の態様に限定されることなく、種々の別態様が実現され得る。 Below, preferred embodiments for understanding the present invention are described, but each embodiment described below is described as an example, and not only can they be used in combination with each other as appropriate, but the multiple components described in each embodiment can also be recognized and used independently as far as possible, and can also be used in combination with any of the components described in another embodiment as appropriate. As a result, the present invention is not limited to the embodiments described below, and various alternative embodiments can be realized.
 第1の態様は、人工肺であって、内部にガス交換領域を有するハウジングと、該ハウジングの該ガス交換領域に収容されてガス流路を形成するガス交換膜と、該ガス流路へ酸素を含む供給ガスを導入するガス入口ポートと、該ガス流路から二酸化炭素を含む排出ガスを導出するガス出口ポートと、該ハウジングの該ガス交換領域に血液を導入する血液入口ポートと、該ハウジングの該ガス交換領域から血液を導出する血液出口ポートとを、備えており、該ガス交換膜の両側面が該ハウジングに対して非接着で該ガス交換領域に収容され、該ガス交換膜の両側縁部は、該ガス交換膜に対する血液の通過方向において圧縮された状態で該ハウジングに取り付けられているものである。 The first aspect is an artificial lung comprising a housing having a gas exchange region therein, a gas exchange membrane contained in the gas exchange region of the housing to form a gas flow path, a gas inlet port for introducing a supply gas containing oxygen into the gas flow path, a gas outlet port for discharging an exhaust gas containing carbon dioxide from the gas flow path, a blood inlet port for introducing blood into the gas exchange region of the housing, and a blood outlet port for discharging blood from the gas exchange region of the housing, both sides of the gas exchange membrane being contained in the gas exchange region without being adhered to the housing, and both side edges of the gas exchange membrane being attached to the housing in a compressed state in the direction in which blood passes through the gas exchange membrane.
 本態様に従う構造とされた人工肺によれば、ガス交換膜の両側面がハウジングに対して非接着とされて、ガス交換膜の両側縁部が圧縮支持されていることから、ガス交換膜の両側縁部とハウジングとの間に接着層等を設けることなく、ガス交換膜をハウジングに対して取り付けることができる。それゆえ、ガス交換領域を通過する血液が接着層表面の凹凸に接触することで血球が損傷するのを防ぐことができて、血液へのダメージが低減される。 In an artificial lung constructed according to this embodiment, both sides of the gas exchange membrane are not adhered to the housing, and both edge portions of the gas exchange membrane are compressed and supported, so that the gas exchange membrane can be attached to the housing without providing an adhesive layer or the like between both edge portions of the gas exchange membrane and the housing. Therefore, blood passing through the gas exchange region can be prevented from coming into contact with the unevenness of the adhesive layer surface, which would damage blood cells, and damage to the blood can be reduced.
 ガス交換膜の両側縁部が血液の通過方向で圧縮されることによって、ガス交換膜の両側面がハウジングの内面に押し当てられている。それゆえ、ガス交換膜の両側面とハウジングとの間が非接着であっても、ガス交換膜の両側面とハウジングの間を通じた血液の短絡的な流動が抑制されて、血液がガス交換膜と十分に接することで、優れたガス交換性能が確保される。 By compressing both edges of the gas exchange membrane in the direction of blood flow, both sides of the gas exchange membrane are pressed against the inner surface of the housing. Therefore, even if there is no adhesion between the both sides of the gas exchange membrane and the housing, short-circuiting flow of blood through between the both sides of the gas exchange membrane and the housing is suppressed, and blood comes into sufficient contact with the gas exchange membrane, ensuring excellent gas exchange performance.
 第2の態様は、第1の態様に記載された人工肺において、前記ハウジングには、前記ガス交換膜を該ハウジング内で位置決めする支持部材が収容されており、該ガス交換膜の両側縁部は、該ガス交換膜に対する血液の通過方向で該ハウジングと該支持部材との間で圧縮支持されることにより該ハウジングに取り付けられているものである。 In the second aspect, in the artificial lung described in the first aspect, the housing contains a support member that positions the gas exchange membrane within the housing, and both side edges of the gas exchange membrane are attached to the housing by being compressed and supported between the housing and the support member in the direction in which blood passes through the gas exchange membrane.
 本態様に従う構造とされた人工肺によれば、ハウジング内に収容された支持部材によってガス交換膜の圧縮支持を実現することにより、ハウジング自体の構造やハウジング内部の構造を、大きな自由度で設計することが可能となる。 In an artificial lung constructed in accordance with this embodiment, the gas exchange membrane is compressed and supported by a support member contained within the housing, allowing for a large degree of freedom in the design of the structure of the housing itself and the structure inside the housing.
 第3の態様は、第2の態様に記載された人工肺において、前記支持部材が枠状とされて、前記ガス交換膜の外周端部に全周に亘って重ね合わされているものである。 The third aspect is the artificial lung described in the second aspect, in which the support member is frame-shaped and is superimposed over the entire outer peripheral end of the gas exchange membrane.
 本態様に従う構造とされた人工肺によれば、ガス交換膜の両側縁部をハウジングとの間で挟持する支持部材が枠状とされていることにより、支持部材の両側部が相互に連結されており、支持部材の両側の側部を一体的に取り扱うことが可能となって、ハウジングへの組付け作業性の向上が図られる。 In an artificial lung constructed according to this embodiment, the support member that holds both side edges of the gas exchange membrane between the housing and the support member is frame-shaped, so that both sides of the support member are interconnected and can be handled as a single unit, improving the ease of assembly to the housing.
 また、枠状の支持部材を利用して、ガス交換膜を全周囲に亘ってハウジングに対して位置決めすることも可能となることから、ガス交換膜のハウジングに対する組み付け安定性の向上も実現可能となる。更に、支持部材が枠状とされることによって、支持部材自体の変形剛性を確保し易くなって、ガス交換膜の安定した支持が可能になる。 In addition, by using a frame-shaped support member, it is possible to position the gas exchange membrane relative to the housing around its entire periphery, which improves the stability of assembling the gas exchange membrane to the housing. Furthermore, by making the support member frame-shaped, it becomes easier to ensure the deformation rigidity of the support member itself, enabling stable support of the gas exchange membrane.
 第4の態様は、第3の態様に記載された人工肺において、前記ガス交換膜は、多数の中空糸が並列的に束ねられた構造を有しており、該ガス交換膜は、各該中空糸の長さ方向の両端部分において前記ハウジングの周壁内面に接着されており、枠状とされた前記支持部材は、各該中空糸の長さ方向の両側において該ガス交換膜の接着部分に重ね合わされているものである。 In the fourth aspect, in the artificial lung described in the third aspect, the gas exchange membrane has a structure in which a large number of hollow fibers are bundled in parallel, the gas exchange membrane is adhered to the inner surface of the peripheral wall of the housing at both ends of the length of each hollow fiber, and the frame-shaped support member is superimposed on the adhered portion of the gas exchange membrane on both sides of the length of each hollow fiber.
 ガス交換膜は、ハウジングの周壁部との間のシール性能を確保する等の目的から、中空糸の長さ方向の両端部分においてハウジングの周壁部に対する接着部分を備え得るが、当該接着部分ではガス交換性能を発揮しない。そこで、本態様に従う構造とされた人工肺のように、中空糸の長さ方向両側において支持部材の両端部がガス交換膜の接着部分と重ね合わされるようにすれば、ガス交換性能が発揮されるガス交換膜の有効面積を大きく確保することができて、血液のガス交換効率を高めることができる。 The gas exchange membrane may have adhesive parts at both ends of the hollow fiber in the longitudinal direction to the peripheral wall of the housing for the purpose of ensuring sealing performance between the hollow fiber and the peripheral wall of the housing, but these adhesive parts do not exhibit gas exchange performance. Therefore, as in an artificial lung constructed according to this embodiment, if both ends of the support member are overlapped with the adhesive parts of the gas exchange membrane on both sides of the hollow fiber in the longitudinal direction, it is possible to ensure a large effective area of the gas exchange membrane where gas exchange performance is exhibited, and the efficiency of blood gas exchange can be improved.
 なお、本態様において、ガス交換膜の接着部分とは、ハウジングの周壁内面に接着される領域のことであり、支持部材は、当該領域に対して接着されていてもよいし、非接着でもよい。 In this embodiment, the adhesive portion of the gas exchange membrane refers to the area that is adhered to the inner surface of the peripheral wall of the housing, and the support member may or may not be adhered to this area.
 第5の態様は、第2又は3の態様に記載された人工肺において、前記ハウジングと前記支持部材には挟持突起がそれぞれ設けられて、前記ガス交換膜の両側縁部が該挟持突起の突出先端間で圧縮されており、該挟持突起の突出方向の投影における面積が前記ガス交換領域の同方向における面積に対して5~15%の範囲内とされているものである。 The fifth aspect is an artificial lung according to the second or third aspect, in which the housing and the support member are each provided with a clamping protrusion, both side edges of the gas exchange membrane are compressed between the protruding tips of the clamping protrusions, and the area of the clamping protrusions projected in the protruding direction is within the range of 5 to 15% of the area of the gas exchange region in the same direction.
 本態様に従う構造とされた人工肺によれば、ガス交換膜の両側縁部における圧縮部分の面積がガス交換領域の面積の5%以上とされることによって、ガス交換膜がハウジングに対して非接着で取り付けられていても、ガス交換膜のハウジングに対する取付け強度を確保することができると共に、ガス交換膜の両側面において必要なシール性能を実現することができる。また、ガス交換膜の両側縁部における圧縮部分の面積がガス交換領域の面積の15%以下とされることによって、圧縮部分よりも内周側の実質的にガス交換が行われる領域を十分に確保して、優れたガス交換性能を実現することができる。 In an artificial lung constructed according to this embodiment, the area of the compressed portions on both side edges of the gas exchange membrane is 5% or more of the area of the gas exchange region, so that even if the gas exchange membrane is attached to the housing without adhesive, the attachment strength of the gas exchange membrane to the housing can be ensured and the necessary sealing performance can be achieved on both sides of the gas exchange membrane. Also, by making the area of the compressed portions on both side edges of the gas exchange membrane 15% or less of the area of the gas exchange region, a sufficient area can be secured on the inner side of the compressed portions where gas exchange actually takes place, achieving excellent gas exchange performance.
 第6の態様は、第2~第5の何れか1つの態様に記載された人工肺において、前記ハウジングと前記支持部材には挟持突起がそれぞれ設けられて、前記ガス交換膜の両側縁部が該挟持突起の突出先端間で圧縮されており、該挟持突起による該ガス交換膜の両側縁部の圧縮率が5~20%の範囲内とされているものである。 The sixth aspect is an artificial lung according to any one of the second to fifth aspects, in which the housing and the support member are each provided with a clamping protrusion, both side edges of the gas exchange membrane are compressed between the protruding tips of the clamping protrusions, and the compression rate of both side edges of the gas exchange membrane by the clamping protrusions is within the range of 5 to 20%.
 本態様に従う構造とされた人工肺によれば、挟持突起によるガス交換膜の両側縁部の圧縮率が5%以上とされることによって、ガス交換膜の両側面がハウジングの内面に十分に押し当てられて、ガス交換膜がハウジングに対して非接着で取り付けられていても、両側面において必要なシール性能を実現することができる。また、挟持突起によるガス交換膜の両側縁部の圧縮率が20%以下とされることによって、過度な圧縮によってガス交換膜が損傷したり、過度な圧縮による歪な変形等に起因してガス交換膜とハウジングとの間に隙間が形成されて血液流動の短絡が発生したりするのを、防ぐことができる。 In an artificial lung constructed according to this embodiment, the compression rate of both side edges of the gas exchange membrane caused by the clamping protrusions is set to 5% or more, so that both sides of the gas exchange membrane are sufficiently pressed against the inner surface of the housing, and the necessary sealing performance can be achieved on both sides even if the gas exchange membrane is attached to the housing without being adhesively attached. In addition, the compression rate of both side edges of the gas exchange membrane caused by the clamping protrusions is set to 20% or less, so that it is possible to prevent the gas exchange membrane from being damaged by excessive compression, and to prevent gaps from being formed between the gas exchange membrane and the housing due to distortion or other reasons caused by excessive compression, which can cause a short circuit in the blood flow.
 第7の態様は、第2~第6の何れか1つの態様に記載された人工肺において、前記ハウジングと前記支持部材には前記ガス交換膜の側縁部を圧縮する挟持突起がそれぞれ設けられており、該挟持突起が突出方向に対する直交方向に連続して延びており、該ガス交換膜の側縁部が該挟持突起によって全長に亘って連続して圧縮されているものである。 The seventh aspect is an artificial lung according to any one of the second to sixth aspects, in which the housing and the support member are each provided with a clamping protrusion that compresses the side edge of the gas exchange membrane, the clamping protrusions extend continuously in a direction perpendicular to the protruding direction, and the side edge of the gas exchange membrane is continuously compressed over its entire length by the clamping protrusions.
 本態様に従う構造とされた人工肺によれば、ガス交換膜の側縁部が挟持突起によって全長に亘って圧縮されることにより、ガス交換膜の側面がハウジングの内面に対して全長に亘って連続的に押し当てられて、ガス交換膜の側面とハウジングとの間を通じた血液流動の短絡がより効果的に防止される。 In an artificial lung constructed according to this embodiment, the side edges of the gas exchange membrane are compressed over their entire length by the clamping protrusions, so that the sides of the gas exchange membrane are continuously pressed against the inner surface of the housing over their entire length, more effectively preventing short-circuiting of blood flow between the sides of the gas exchange membrane and the housing.
 第8の態様は、第2~第7の何れか1つの態様に記載された人工肺において、前記ハウジングの内部に温度調節領域が設けられて、血液の温度を調節する温度調節器が該温度調節領域に収容されており、前記ガス交換領域と該温度調節領域とが前記ガス交換膜に対する血液の通過方向に並んで設けられており、該ガス交換領域と該温度調節領域との間に枠状の前記支持部材が配されており、該ガス交換領域と該温度調節領域を相互に接続する接続領域が、該支持部材の枠内領域によって形成されているものである。 The eighth aspect is an artificial lung according to any one of the second to seventh aspects, in which a temperature control area is provided inside the housing, a temperature regulator that controls the temperature of the blood is housed in the temperature control area, the gas exchange area and the temperature control area are arranged side by side in the direction in which blood passes through the gas exchange membrane, the frame-shaped support member is disposed between the gas exchange area and the temperature control area, and a connection area that connects the gas exchange area and the temperature control area to each other is formed by the frame area of the support member.
 本態様に従う構造とされた人工肺によれば、枠状の支持部材によって、ガス交換膜の外周縁部を支持しながら、枠内領域によってガス交換領域と温度調節領域とを接続する接続領域が構成されており、枠内領域を通じてガス交換領域と温度調節領域の間で血液の通過が許容される。また、支持部材は、ガス交換領域と温度調節領域との間に配されることにより、ガス交換膜と温度調節器とを相互に離れた所定位置に位置決めするスペーサとしての機能も期待できる。 In an artificial lung constructed according to this embodiment, the frame-shaped support member supports the outer peripheral edge of the gas exchange membrane, while the inner-frame region forms a connection region that connects the gas exchange region and the temperature regulation region, allowing blood to pass between the gas exchange region and the temperature regulation region through the inner-frame region. In addition, by being disposed between the gas exchange region and the temperature regulation region, the support member is also expected to function as a spacer that positions the gas exchange membrane and the temperature regulator at predetermined positions separated from each other.
 温度調節領域とガス交換領域との間に接続領域が設定されていることにより、例えば、温度調節領域の通過部位によって血液の流速にばらつきが生じたとしても、血液がガス交換領域に導入される前に接続領域で合流することで流速のばらつきが低減される。それゆえ、ガス交換領域内へ導入される血液の流速のばらつきが抑えられて、ガス交換領域におけるガス交換性能の安定化が図られる。 By providing a connection area between the temperature control area and the gas exchange area, even if there is variation in the flow rate of blood depending on the part of the temperature control area it passes through, the blood will join in the connection area before being introduced into the gas exchange area, reducing the variation in flow rate. Therefore, the variation in the flow rate of blood introduced into the gas exchange area is suppressed, stabilizing the gas exchange performance in the gas exchange area.
 第9の態様は、第8の態様に記載された人工肺において、前記接続領域による前記ガス交換領域と前記温度調節領域との離隔距離が5~20mmの範囲内とされているものである。 The ninth aspect is the artificial lung described in the eighth aspect, in which the separation distance between the gas exchange area and the temperature control area by the connection area is within the range of 5 to 20 mm.
 本態様に従う構造とされた人工肺によれば、接続領域によるガス交換領域と温度調節領域との離隔距離が5mm以上とされていることによって、接続領域において血液の流速のばらつきを低減する効果が有効に発揮される。また、接続領域によるガス交換領域と温度調節領域との離隔距離が20mm以下とされていることによって、接続領域の容積が過度に大きくなるのを防いで、ハウジング内における血液の通過領域を満たすために必要な血液量を少なくすることができる。 In an artificial lung constructed according to this embodiment, the separation distance between the gas exchange area and the temperature control area in the connection area is set to 5 mm or more, which effectively reduces the variation in blood flow rate in the connection area. In addition, the separation distance between the gas exchange area and the temperature control area in the connection area is set to 20 mm or less, which prevents the volume of the connection area from becoming excessively large, thereby reducing the amount of blood required to fill the area through which blood passes within the housing.
 第10の態様は、第1~第9の何れか1つの態様に記載された人工肺において、前記ガス交換膜は、多数の中空糸が並列的に束ねられて所定の幅寸法及び厚さ寸法の矩形ブロック状とされており、各該中空糸の長さ方向に直交する該矩形ブロック状の該ガス交換膜の幅方向の両側縁部が厚さ方向で圧縮支持されることにより、該ガス交換膜の両側縁部が該ハウジングに対して非接着状態で取り付けられているものである。 The tenth aspect is an artificial lung according to any one of the first to ninth aspects, in which the gas exchange membrane is a rectangular block of predetermined width and thickness dimensions formed by bundling a large number of hollow fibers in parallel, and both side edges of the rectangular block-shaped gas exchange membrane in the width direction perpendicular to the length direction of each hollow fiber are compressed and supported in the thickness direction, so that both side edges of the gas exchange membrane are attached to the housing in a non-adhesive manner.
 本態様に従う構造とされた人工肺によれば、ガス交換膜が矩形ブロック状とされていることによって、ハウジングによる圧縮支持が容易であると共に、ガス交換膜がハウジングに対して圧縮によって非接着状態で取り付けられていても、ガス交換膜とハウジング内面との間のシール性能を確保し易い。 In an artificial lung constructed according to this embodiment, the gas exchange membrane is in the shape of a rectangular block, which makes it easy to compress and support it with the housing, and also makes it easy to ensure sealing performance between the gas exchange membrane and the inner surface of the housing, even if the gas exchange membrane is attached to the housing in a non-adhesive state by compression.
 本発明によれば、人工肺において、ハウジング内部を通過する血液へのダメージを低減することができる。 The present invention makes it possible to reduce damage to blood passing through the inside of the housing in an artificial lung.
本発明の第1の実施形態としての人工肺を示す斜視図FIG. 1 is a perspective view showing an oxygenator according to a first embodiment of the present invention; 図1に示す人工肺を別の角度で示す斜視図FIG. 2 is a perspective view showing the oxygenator shown in FIG. 1 from a different angle; 図1に示す人工肺の正面図FIG. 2 is a front view of the oxygenator shown in FIG. 図3に示す人工肺の背面図A rear view of the oxygenator shown in FIG. 図3に示す人工肺の平面図FIG. 4 is a plan view of the oxygenator shown in FIG. 図3に示す人工肺の底面図A bottom view of the oxygenator shown in FIG. 図1に示す人工肺の左側面図FIG. 2 is a left side view of the oxygenator shown in FIG. 図1に示す人工肺の右側面図FIG. 2 is a right side view of the oxygenator shown in FIG. 図3のIX-IX断面図IX-IX cross-sectional view of FIG. 図3のX-X断面図XX cross-sectional view of FIG. 図3に示す人工肺を構成する第1壁部材の斜視図FIG. 4 is a perspective view of a first wall member constituting the oxygenator shown in FIG. 図11に示す第1壁部材の背面図FIG. 12 is a rear view of the first wall member shown in FIG. 図3に示す人工肺を構成する第2壁部材の斜視図FIG. 4 is a perspective view of a second wall member constituting the oxygenator shown in FIG. 図13に示す第2壁部材の正面図FIG. 14 is a front view of the second wall member shown in FIG. 図3に示す人工肺を構成する支持部材の斜視図FIG. 4 is a perspective view of a support member constituting the oxygenator shown in FIG. 図15に示す支持部材の背面図16 is a rear view of the support member shown in FIG. 本発明の別の1実施形態としての人工肺を構成する伝熱管の部分断面図FIG. 13 is a partial cross-sectional view of a heat transfer tube constituting an oxygenator according to another embodiment of the present invention.
 以下、本発明の実施形態について、図面を参照しつつ説明する。 Below, an embodiment of the present invention will be described with reference to the drawings.
 図1~図10には、本発明の第1の実施形態としての人工肺10が示されている。人工肺10は、ハウジング12を備えている。以下の説明において、原則として、上下方向とはハウジング12の高さ方向である図3中の上下方向を、前後方向とはハウジング12の厚さ方向である図7中の左右方向を、左右方向とはハウジング12の幅方向である図3中の左右方向を、それぞれ言う。 Figures 1 to 10 show an oxygenator 10 according to a first embodiment of the present invention. The oxygenator 10 is equipped with a housing 12. In the following description, in principle, the up-down direction refers to the up-down direction in Figure 3, which is the height direction of the housing 12, the front-rear direction refers to the left-right direction in Figure 7, which is the thickness direction of the housing 12, and the left-right direction refers to the left-right direction in Figure 3, which is the width direction of the housing 12.
 ハウジング12は、全体として中空の矩形ボックス状とされている。ハウジング12は、前後方向の外寸(厚さ寸法)が、上下方向の外寸(高さ寸法)及び左右方向の外寸(幅寸法)よりも小さくされており、厚さ方向(前後方向)を短軸方向とする扁平な形状とされている。ハウジング12は、全体が或いは部分的に金属で形成され得るが、本実施形態では、例えば硬質の合成樹脂で形成されている。 The housing 12 is generally in the shape of a hollow rectangular box. The housing 12 has an outer dimension in the front-to-rear direction (thickness dimension) that is smaller than the outer dimension in the up-down direction (height dimension) and the outer dimension in the left-to-right direction (width dimension), and has a flat shape with the thickness direction (front-to-rear direction) as the minor axis direction. The housing 12 can be made entirely or partly from metal, but in this embodiment, it is made, for example, from a hard synthetic resin.
 ハウジング12は、周壁部を構成する第1壁部材14及び第2壁部材16と、下壁部を構成する底部材18と、上壁部を構成する蓋部材20とを、備えている。 The housing 12 includes a first wall member 14 and a second wall member 16 that form the peripheral wall portion, a bottom member 18 that forms the lower wall portion, and a lid member 20 that forms the upper wall portion.
 第1壁部材14は、図11,図12に示すように、第1側壁部22の左右両端部から後述する第2側壁部44に向けて第1連結壁部24,24が突出した構造を有している。第1側壁部22は前後方向視で略矩形とされており、第1連結壁部24,24は左右方向視で略矩形とされている。第1壁部材14における第1側壁部22と第1連結壁部24,24とがなす各内周隅部には、第1側壁部22から第2側壁部44との対向側(後側)へ向けて突出する前方突出部26が一体形成されている。前方突出部26は、第2側壁部44の上下略全長に亘って略一定の断面形状で連続して形成されており、突出先端面が前後方向と直交して広がる平面状の前方当接面28とされている。 As shown in Figs. 11 and 12, the first wall member 14 has a structure in which the first connecting walls 24, 24 protrude from both the left and right ends of the first side wall portion 22 toward the second side wall portion 44 described later. The first side wall portion 22 is generally rectangular when viewed in the front-rear direction, and the first connecting walls 24, 24 are generally rectangular when viewed in the left-right direction. A forward protrusion 26 protruding from the first side wall portion 22 toward the opposing side (rear side) of the second side wall portion 44 is integrally formed at each inner corner formed by the first side wall portion 22 and the first connecting walls 24, 24 of the first wall member 14. The forward protrusion 26 is formed continuously with a generally constant cross-sectional shape over the entire length of the second side wall portion 44 in the vertical direction, and the protruding tip surface is a planar forward abutment surface 28 that extends perpendicular to the front-rear direction.
 第1側壁部22には、図3,図12に示すように、左右方向の一方(右方)の端部に入口側案内部30が設けられている。入口側案内部30は、第1側壁部22の外側へ向けて突出しており、内面及び外面が突出先端に向けて収縮するテーパ形状とされている。入口側案内部30の突出先端は、第1側壁部22の下部に位置している。入口側案内部30は、第1側壁部22の上部まで広がっており、突出先端から上方に向かって左右方向の幅が次第に大きくなっている。 As shown in Figures 3 and 12, the first side wall 22 has an entrance side guide portion 30 at one end in the left-right direction (the right side). The entrance side guide portion 30 protrudes outward from the first side wall 22, and has a tapered shape in which the inner and outer surfaces contract toward the protruding tip. The protruding tip of the entrance side guide portion 30 is located at the bottom of the first side wall 22. The entrance side guide portion 30 extends to the top of the first side wall 22, and its width in the left-right direction gradually increases from the protruding tip upward.
 第1側壁部22における左右方向の一方の端部(右端部)には、血液入口ポート32が設けられている。血液入口ポート32は、図7,図11,図12に示すように、入口側案内部30の突出先端部分を貫通して、第1側壁部22の下部に開口して設けられており、入口側案内部30が血液入口ポート32に向かって収束している。血液入口ポート32は、右方に向けて開口しており、入口側案内部30の突出先端部分から左右方向の一方側へ突出する筒状の入口管路接続部34を備えている。入口管路接続部34は、左右方向に直線的に延びているが、例えば、左右方向に対して上下方向や前後方向に傾斜して延びていても良い。また、入口管路接続部34は、途中で屈折して左右方向とは別の向きに直角に曲がっていてもよく、途中の屈曲部分から上下方向や前後方向に傾斜して血液入口ポート32が延びていても良い。 The blood inlet port 32 is provided at one end (right end) in the left-right direction of the first side wall 22. As shown in Figs. 7, 11, and 12, the blood inlet port 32 penetrates the protruding tip of the inlet guide 30 and opens at the bottom of the first side wall 22, and the inlet guide 30 converges toward the blood inlet port 32. The blood inlet port 32 opens to the right and has a cylindrical inlet line connection 34 that protrudes from the protruding tip of the inlet guide 30 to one side in the left-right direction. The inlet line connection 34 extends linearly in the left-right direction, but may extend at an incline in the up-down direction or the front-back direction with respect to the left-right direction, for example. The inlet line connection 34 may also be bent at a right angle in the middle and bent in a direction different from the left-right direction, and the blood inlet port 32 may extend at an incline in the up-down direction or the front-back direction from the bent part in the middle.
 第1側壁部22の内面には、図11,図12に示すように、入口側ガイドフィン36が設けられている。入口側ガイドフィン36は、複数が第1側壁部22の内面に突出して設けられており、第1側壁部22の下部に形成された血液入口ポート32の開口付近を中心とする放射状に上方へ向けて延びている。本実施形態では、第1側壁部22の内面に3つの入口側ガイドフィン36a,36b,36cが突出形成されている。中間の入口側ガイドフィン36bが第1側壁部22の略対角方向に延びており、入口側ガイドフィン36a,36cは、入口側ガイドフィン36bに対して傾斜して延びている。これにより、入口側ガイドフィン36a,36cと入口側ガイドフィン36bの距離が、血液入口ポート32から離れるに従って大きくなっている。本実施形態では、入口側ガイドフィン36aが上下方向に延びており、入口側ガイドフィン36cが血液入口ポート32から離れるに従って上傾して延びている。 As shown in Figures 11 and 12, an inlet side guide fin 36 is provided on the inner surface of the first side wall portion 22. A plurality of inlet side guide fins 36 are provided protruding from the inner surface of the first side wall portion 22, and extend radially upward from the vicinity of the opening of the blood inlet port 32 formed at the lower part of the first side wall portion 22. In this embodiment, three inlet side guide fins 36a, 36b, and 36c are protrudingly formed on the inner surface of the first side wall portion 22. The middle inlet side guide fin 36b extends in the approximately diagonal direction of the first side wall portion 22, and the inlet side guide fins 36a and 36c extend at an angle to the inlet side guide fin 36b. As a result, the distance between the inlet side guide fins 36a and 36c and the inlet side guide fin 36b increases with increasing distance from the blood inlet port 32. In this embodiment, the inlet guide fin 36a extends vertically, and the inlet guide fin 36c extends at an upward incline as it moves away from the blood inlet port 32.
 入口側ガイドフィン36は、血液入口ポート32付近から連続的に傾斜角度が変化する湾曲形状で延びていても良いし、段階的に傾斜角度が変化する屈折形状で延びていても良いが、本実施形態では直線的に延びている。各入口側ガイドフィン36は、血液入口ポート32から離れるに従って第1側壁部22の内面からの突出高さが次第に小さくなっており、複数の入口側ガイドフィン36a~36cにおける第1側壁部22からの突出先端面が、同一の前後直交平面上に揃えられている。 The inlet guide fins 36 may extend from the blood inlet port 32 in a curved shape with a continuously changing inclination angle, or in a bent shape with a stepwise changing inclination angle, but in this embodiment they extend linearly. The protruding height of each inlet guide fin 36 from the inner surface of the first side wall 22 gradually decreases the further away from the blood inlet port 32 it is, and the protruding tip surfaces of the multiple inlet guide fins 36a to 36c from the first side wall 22 are aligned on the same front-to-rear orthogonal plane.
 第1連結壁部24の突出先端面には、周壁連結凸部38が突出して形成されている。本実施形態の周壁連結凸部38は、第1連結壁部24の突出先端面において上下方向に連続して延びて設けられている。また、第1壁部材14の上下両端面には、第1蓋連結凹部40と第1底連結凹部42とが周方向の全長に亘って開口して形成されている。 A peripheral wall connecting protrusion 38 is formed on the protruding tip surface of the first connecting wall portion 24. In this embodiment, the peripheral wall connecting protrusion 38 is provided so as to extend continuously in the up-down direction on the protruding tip surface of the first connecting wall portion 24. In addition, a first lid connecting recess 40 and a first bottom connecting recess 42 are formed on both upper and lower end surfaces of the first wall member 14 and open over the entire circumferential length.
 第2壁部材16は、図9,図10及び図13,図14に示すように、第1側壁部22と対向して配置される第2側壁部44の左右両端部から第1側壁部22に向けて第2連結壁部46,46が突出した構造を有している。第2側壁部44は前後方向視で略矩形とされており、第2連結壁部46,46は左右方向視で略矩形とされている。第2壁部材16における第2側壁部44と第2連結壁部46,46とがなす各隅部には、第2側壁部44から第1側壁部22との対向側(前側)へ向けて突出する挟持突起としての後方突出部48が一体形成されている。後方突出部48は、第2側壁部44の上下略全長に亘って略一定の断面形状で連続して形成されており、突出先端面が前後方向と直交して広がる平面状の後方当接面50とされている。 As shown in Figs. 9, 10, 13 and 14, the second wall member 16 has a structure in which second connecting walls 46, 46 protrude from both left and right ends of the second side wall portion 44 arranged opposite the first side wall portion 22 toward the first side wall portion 22. The second side wall portion 44 is generally rectangular when viewed in the front-rear direction, and the second connecting walls 46, 46 are generally rectangular when viewed in the left-right direction. At each corner formed by the second side wall portion 44 and the second connecting walls 46, 46 in the second wall member 16, a rear protrusion 48 is integrally formed as a clamping protrusion that protrudes from the second side wall portion 44 toward the opposing side (front side) of the first side wall portion 22. The rear protrusion 48 is continuously formed with a generally constant cross-sectional shape over approximately the entire length of the second side wall portion 44 in the vertical direction, and the protruding tip surface is a planar rear abutment surface 50 that extends perpendicular to the front-rear direction.
 第2側壁部44は、図4,図14に示すように、左右方向の他方(左方)の端部に出口側案内部52を備えている。出口側案内部52は、第2側壁部44の外側へ向けて突出しており、内面及び外面が突出先端に向けて収縮するテーパ形状とされている。出口側案内部52は、頂点54の位置が第2側壁部44の幅方向一方側である左方に偏倚した不等辺の略四角錘形状とされている。頂点54に対して左方に位置する出口側案内部52の出口側傾斜面(後述する第3傾斜面60)には、後述する血液出口ポート62が頂点54付近に開口している。 As shown in Figures 4 and 14, the second side wall 44 has an outlet side guide portion 52 at the other (left) end in the left-right direction. The outlet side guide portion 52 protrudes outward from the second side wall 44, and has a tapered shape in which the inner and outer surfaces contract toward the protruding tip. The outlet side guide portion 52 has a roughly scalene pyramid shape with an apex 54 biased to the left, which is one side of the width of the second side wall 44. A blood outlet port 62, which will be described later, opens near the apex 54 on the outlet side inclined surface (third inclined surface 60, which will be described later) of the outlet side guide portion 52 located to the left of the apex 54.
 出口側案内部52は、頂点54から右方へ向かって広がる第1傾斜面56と、頂点54から上下両側にそれぞれ広がる一対の第2傾斜面58,58と、頂点54から左方へ広がる第3傾斜面60とによって構成されている。第1~第3傾斜面56,58,60は、それぞれが略三角形とされており、本実施形態では、血液出口ポート62が形成された出口側傾斜面である第3傾斜面60の頂点54から底辺までの長さ寸法L3が、第1傾斜面56及び第2傾斜面58の頂点54から底辺までの長さ寸法L1,L2よりも小さくされている。なお、第1~第3傾斜面56,58,60の長さ寸法L1,L2,L3は、全て互いに同じであってもよく、それぞれ適宜に変更可能である。 The outlet side guide section 52 is composed of a first inclined surface 56 that spreads from the apex 54 to the right, a pair of second inclined surfaces 58, 58 that spread from the apex 54 to both the top and bottom, and a third inclined surface 60 that spreads from the apex 54 to the left. The first to third inclined surfaces 56, 58, 60 are each substantially triangular, and in this embodiment, the length dimension L3 from the apex 54 to the base of the third inclined surface 60, which is the outlet side inclined surface on which the blood outlet port 62 is formed, is smaller than the length dimensions L1, L2 from the apex 54 to the base of the first inclined surface 56 and the second inclined surface 58. The length dimensions L1, L2, L3 of the first to third inclined surfaces 56, 58, 60 may all be the same as each other, or may be changed as appropriate.
 第1~第3傾斜面56,58,60は、何れも第2側壁部44が広がる前後直交平面に対して後方外側へ向けて傾斜している。本実施形態の第1~第3傾斜面56,58,60は、何れも略一定の傾斜角度で広がっている。第1傾斜面56の前後直交平面に対する傾斜角度αは、5~15°の範囲内とされていることが望ましく、例えば10°程度とされている。第2傾斜面58の前後直交平面に対する傾斜角度βは、30~50°の範囲内とされていることが望ましく、例えば40°程度とされている。第3傾斜面60の前後直交平面に対する傾斜角度γは、60°以上とされていることが望ましく、例えば80°程度とされている。 The first to third inclined surfaces 56, 58, 60 are all inclined rearward and outward with respect to the front-rear orthogonal plane along which the second side wall portion 44 extends. In this embodiment, the first to third inclined surfaces 56, 58, 60 all extend at a substantially constant inclination angle. The inclination angle α of the first inclined surface 56 with respect to the front-rear orthogonal plane is preferably within a range of 5 to 15°, for example, approximately 10°. The inclination angle β of the second inclined surface 58 with respect to the front-rear orthogonal plane is preferably within a range of 30 to 50°, for example, approximately 40°. The inclination angle γ of the third inclined surface 60 with respect to the front-rear orthogonal plane is preferably 60° or more, for example, approximately 80°.
 出口側案内部52は、第2側壁部44の上部及び下部までは達しておらず、上下方向の中間部分にのみ設けられている。出口側案内部52は、図4に示すように、後述する血液出口ポート62の開口方向である左右方向の長さ寸法Lが、上下方向の幅寸法よりも大きくされており、左右方向が長尺の横長扁平形状とされている。出口側案内部52の上下幅寸法に対する左右長さ寸法の比は((L/W)×100)、150%以上であることが望ましく、好適には180%以上とされる。出口側案内部52は、左右長さ寸法が第2側壁部44の左右長さ寸法に対する70%以上の大きさとされていることが望ましく、本実施形態では図4,図14に示すように第2側壁部44の左右略全長に亘って設けられている。 The outlet side guide portion 52 does not reach the top and bottom of the second side wall portion 44, but is provided only in the middle portion in the vertical direction. As shown in FIG. 4, the outlet side guide portion 52 has a length L in the left-right direction, which is the opening direction of the blood outlet port 62 described later, that is larger than the width dimension in the up-down direction, and has a horizontally elongated flat shape with a long left-right dimension. The ratio of the left-right length dimension to the up-down width dimension of the outlet side guide portion 52 ((L/W)×100) is desirably 150% or more, and preferably 180% or more. The left-right length dimension of the outlet side guide portion 52 is desirably 70% or more of the left-right length dimension of the second side wall portion 44, and in this embodiment, it is provided over approximately the entire left-right length of the second side wall portion 44 as shown in FIG. 4 and FIG. 14.
 第2側壁部44における左右方向の他方の端部(左端部)には、血液出口ポート62が設けられている。血液出口ポート62は、図8,図13に示すように、出口側案内部52の突出先端部分を貫通しており、出口側案内部52が血液出口ポート62に向かって収束している。血液出口ポート62は、左方に向けて開口するように形成されており、出口側案内部52の突出先端部分から左右方向の他方側へ突出する筒状の出口管路接続部64を備えている。出口管路接続部64は、左右方向に直線的に延びているが、例えば、左右方向に対して上下方向や前後方向に傾斜して延びていても良い。また、出口管路接続部64は、途中で屈折して左右方向とは別の向きに直角に曲がっていてもよく、途中の屈曲部分から上下方向や前後方向に傾斜して血液出口ポート62が延びていても良い。 The second side wall 44 has a blood outlet port 62 at the other end (left end) in the left-right direction. As shown in Figs. 8 and 13, the blood outlet port 62 penetrates the protruding tip of the outlet guide 52, and the outlet guide 52 converges toward the blood outlet port 62. The blood outlet port 62 is formed to open to the left and has a cylindrical outlet pipe connection part 64 that protrudes from the protruding tip of the outlet guide 52 to the other side in the left-right direction. The outlet pipe connection part 64 extends linearly in the left-right direction, but may extend at an incline in the up-down direction or the front-back direction with respect to the left-right direction, for example. The outlet pipe connection part 64 may also be bent at a right angle in the middle and bent in a direction different from the left-right direction, and the blood outlet port 62 may extend at an incline in the up-down direction or the front-back direction from the bent part in the middle.
 血液入口ポート32は、第1側壁部22の下部に設けられている。また、血液出口ポート62は、第2側壁部44の上下方向の中央部分に設けられており、第2側壁部44の上下方向の両端から離れている。これらにより、血液出口ポート62が血液入口ポート32よりも上側に位置している。血液入口ポート32は、例えば、上下方向で血液出口ポート62と同じ高さに設けられていても良いし、血液出口ポート62よりも上側に設けられていても良い。血液出口ポート62は、上端部及び下端部を外れた上下方向の中間部分に設けられていれば良く、上下方向において中央を外れた中間部分に設けることもできる。 The blood inlet port 32 is provided at the bottom of the first side wall 22. The blood outlet port 62 is provided at the vertical center of the second side wall 44, and is away from both vertical ends of the second side wall 44. As a result, the blood outlet port 62 is located above the blood inlet port 32. The blood inlet port 32 may be provided, for example, at the same height as the blood outlet port 62 in the vertical direction, or may be provided above the blood outlet port 62. The blood outlet port 62 may be provided in a vertical middle portion away from the upper and lower ends, and may also be provided in a vertical middle portion away from the center.
 第2側壁部44の内面には、図13,14に示すように、出口側ガイドフィン66が設けられている。出口側ガイドフィン66は、第2側壁部44の内面に突出しており、第2側壁部44における血液出口ポート62の開口付近へ向けて左右方向に延びている。第2側壁部44には、5つの出口側ガイドフィン66a,66b,66c,66d,66eが設けられている。 As shown in Figures 13 and 14, an outlet side guide fin 66 is provided on the inner surface of the second side wall 44. The outlet side guide fin 66 protrudes from the inner surface of the second side wall 44 and extends in the left-right direction toward the opening of the blood outlet port 62 in the second side wall 44. Five outlet side guide fins 66a, 66b, 66c, 66d, and 66e are provided on the second side wall 44.
 5つの出口側ガイドフィン66a,66b,66c,66d,66eは、第2側壁部44の右端部分に形成された血液出口ポート62を中心とする放射状に延びて配置されている。即ち、左右方向に延びる上下中央の出口側ガイドフィン66cに対して、出口側ガイドフィン66a,66bが血液出口ポート62の開口付近から上側へ向けて延びていると共に、出口側ガイドフィン66d,66eが血液出口ポート62の開口付近から下側へ向けて延びている。第1出口側ガイドフィンとしての出口側ガイドフィン66a,66eは、第2側壁部44の右端縁部に沿って上下各一方の端縁部に向かって延びている。出口側ガイドフィン66a,66eは、第2側壁部44の右端縁部の延伸方向(上下方向)に対する相対的な傾斜角度が、0~10°の範囲内とされていることが望ましく、本実施形態では、略0°とされて略上下方向に延びている。第2出口側ガイドフィンとしての出口側ガイドフィン66b,66dは、上下方向で第3出口側ガイドフィンとしての出口側ガイドフィン66cに対して相対傾斜しながら左右方向に延びており、第2側壁部44の左側の隅部に向かって延びている。 The five outlet side guide fins 66a, 66b, 66c, 66d, 66e are arranged extending radially from the blood outlet port 62 formed in the right end portion of the second side wall 44. That is, with respect to the outlet side guide fin 66c located in the upper and lower center extending in the left-right direction, the outlet side guide fins 66a, 66b extend upward from near the opening of the blood outlet port 62, and the outlet side guide fins 66d, 66e extend downward from near the opening of the blood outlet port 62. The outlet side guide fins 66a, 66e as first outlet side guide fins extend along the right edge of the second side wall 44 toward either the upper or lower edge. The exit guide fins 66a, 66e desirably have a relative inclination angle with respect to the extension direction (vertical direction) of the right edge of the second side wall 44 within a range of 0 to 10 degrees, and in this embodiment, they extend in a substantially vertical direction at approximately 0°. The exit guide fins 66b, 66d as second exit guide fins extend in the left-right direction while being inclined relative to the exit guide fin 66c as the third exit guide fin in the vertical direction, and extend toward the left corner of the second side wall 44.
 左右方向に延びる出口側ガイドフィン66cは、全体が出口側案内部52に位置しており、第1傾斜面56において突出形成されている。出口側ガイドフィン66b,66dは、一端が出口側案内部52に位置していると共に、他端が出口側案内部52を外れて位置しており、出口側案内部52から出口側案内部52を外れた外方にまで連続して延びている。出口側ガイドフィン66a,66eは、全体が出口側案内部52を上下外方へ外れて位置している。 The exit side guide fin 66c, which extends in the left-right direction, is entirely located in the exit side guide section 52 and is formed to protrude from the first inclined surface 56. The exit side guide fins 66b and 66d have one end located in the exit side guide section 52 and the other end located outside the exit side guide section 52, and extend continuously from the exit side guide section 52 to the outside outside the exit side guide section 52. The exit side guide fins 66a and 66e are entirely located outside the exit side guide section 52 in the vertical direction.
 5つの出口側ガイドフィン66a,66b,66c,66d,66eは、第2側壁部44からの突出先端面が一つの前後直交平面上に揃えられている。出口側ガイドフィン66は、血液出口ポート62付近から連続的に傾斜角度が変化する湾曲形状で延びていても良いし、段階的に傾斜角度が変化する屈折形状で延びていても良いが、本実施形態では直線的に延びている。 The five outlet side guide fins 66a, 66b, 66c, 66d, 66e have their protruding tip surfaces aligned on a single front-rear orthogonal plane from the second side wall portion 44. The outlet side guide fins 66 may extend from the blood outlet port 62 in a curved shape with a continuously changing inclination angle, or in a bent shape with a stepwise changing inclination angle, but in this embodiment they extend linearly.
 第2連結壁部46には、突出先端面に開口する周壁連結凹部68が形成されている。本実施形態の周壁連結凹部68は、第2連結壁部46の突出先端面において上下方向に連続して延びて設けられている。また、第2壁部材16の上下両端面には、第2蓋連結凹部70と第2底連結凹部72とが周方向の全長に亘って開口して形成されている。 The second connecting wall portion 46 is formed with a peripheral wall connecting recess 68 that opens onto the protruding end surface. In this embodiment, the peripheral wall connecting recess 68 is provided so as to extend continuously in the up-down direction on the protruding end surface of the second connecting wall portion 46. In addition, a second lid connecting recess 70 and a second bottom connecting recess 72 are formed on both upper and lower end surfaces of the second wall member 16, opening along the entire circumferential length.
 そして、第1壁部材14と第2壁部材16は、図9に示すように、第1連結壁部24,24の突出先端部分と第2連結壁部46,46の突出先端部分とが機械的な係合、接着又は溶着などの手段で相互に連結されることにより四角筒状とされて、ハウジング12の周壁部を構成する。本実施形態では、第1連結壁部24,24の突出先端面に突設された周壁連結凸部38が、第2連結壁部46,46の突出先端面に開口する周壁連結凹部68に差し入れられて溶着されることにより、第1壁部材14と第2壁部材16が固定されて、ハウジング12の周壁部が構成される。ハウジング12には、前後方向の第1,第2側壁部22,44に対して、血液入口ポート32と血液出口ポート62の各一方が設けられている。 The first wall member 14 and the second wall member 16 are formed into a rectangular tube shape by mechanically engaging, gluing, welding, or other means of connecting the protruding tip portions of the first connecting wall portions 24 and 24 to the protruding tip portions of the second connecting wall portions 46 and 46, as shown in FIG. 9, to form the peripheral wall portion of the housing 12. In this embodiment, the peripheral wall connecting protrusions 38 protruding from the protruding tip surfaces of the first connecting wall portions 24 and 24 are inserted into the peripheral wall connecting recesses 68 opening into the protruding tip surfaces of the second connecting wall portions 46 and 46 and welded to each other, thereby fixing the first wall member 14 and the second wall member 16 to form the peripheral wall portion of the housing 12. The housing 12 is provided with one of the blood inlet port 32 and the blood outlet port 62 for each of the first and second side walls 22 and 44 in the front-rear direction.
 底部材18は、図1~図6に示すように、全体として浅底の四角皿形状とされている。底部材18には、上方へ向けて突出する底連結凸部74が一体形成されている。底部材18には、温調流体入口ポート部76と温調流体出口ポート部78が設けられている。 As shown in Figures 1 to 6, the bottom member 18 has an overall shallow rectangular dish shape. A bottom connecting protrusion 74 that protrudes upward is integrally formed with the bottom member 18. The bottom member 18 is provided with a temperature control fluid inlet port portion 76 and a temperature control fluid outlet port portion 78.
 温調流体入口ポート部76は、底部材18における前後方向の第1側壁部22側の端部に設けられて、底部材18の角部に貫通形成されている。温調流体入口ポート部76は、筒状とされており、左右方向の外側へ向けて延び出している。 The temperature control fluid inlet port 76 is provided at the end of the bottom member 18 on the first side wall portion 22 side in the front-rear direction, and is formed through a corner of the bottom member 18. The temperature control fluid inlet port 76 is cylindrical and extends outward in the left-right direction.
 温調流体出口ポート部78は、底部材18における前後方向の第1側壁部22側の端部に設けられて、底部材18における温調流体入口ポート部76の形成部分とは別の角部に貫通形成されている。温調流体出口ポート部78は、筒状とされており、左右方向の外側へ向けて、温調流体入口ポート部76と逆向きに延び出している。 The temperature control fluid outlet port 78 is provided at the end of the bottom member 18 on the first side wall 22 side in the front-rear direction, and is formed through a corner of the bottom member 18 different from the part where the temperature control fluid inlet port 76 is formed. The temperature control fluid outlet port 78 is cylindrical, and extends outward in the left-right direction in the opposite direction to the temperature control fluid inlet port 76.
 底部材18の底部には、図6に示すように、ガス出口ポート80が設けられている。ガス出口ポート80は、底部材18の底壁部分を上下方向に貫通する4つの孔によって構成されている。ガス出口ポート80は、温調流体入口ポート部76及び温調流体出口ポート部78よりも前後方向で第2側壁部44側に設けられている。 As shown in FIG. 6, a gas outlet port 80 is provided at the bottom of the bottom member 18. The gas outlet port 80 is composed of four holes that penetrate the bottom wall portion of the bottom member 18 in the vertical direction. The gas outlet port 80 is provided closer to the second side wall portion 44 in the front-rear direction than the temperature control fluid inlet port portion 76 and the temperature control fluid outlet port portion 78.
 蓋部材20は、図1~図5に示すように、全体として上下逆向きの浅底四角皿形状とされている。蓋部材20には、図10に示すように、下方へ向けて突出する蓋連結凸部82が一体形成されている。蓋部材20には、ガス入口ポート部84が設けられている。ガス入口ポート部84は、蓋部材20から上方へ延び出してから左右方向の一方側へ向けて延び出して設けられており、ガス入口ポートを構成する内腔が蓋部材20を上下方向に貫通して形成されている。 As shown in Figures 1 to 5, the lid member 20 is shaped like an upside-down shallow rectangular dish overall. As shown in Figure 10, a lid connecting protrusion 82 that protrudes downward is integrally formed with the lid member 20. The lid member 20 is provided with a gas inlet port portion 84. The gas inlet port portion 84 extends upward from the lid member 20 and then extends toward one side in the left-right direction, and the inner cavity that constitutes the gas inlet port is formed by penetrating the lid member 20 in the vertical direction.
 そして、図10に示すように、第1壁部材14と第2壁部材16によって構成されたハウジング12の周壁部の下側に底部材18が固定されると共に、上側に蓋部材20が固定されることにより、中空ボックス状のハウジング12が構成される。より具体的には、第1壁部材14の第1底連結凹部42と第2壁部材16の第2底連結凹部72とに対して、底部材18の底連結凸部74が差し入れられて接着されることにより、底部材18が第1,第2壁部材14,16で構成されたハウジング12の周壁部に固定される。同様に、第1壁部材14の第1蓋連結凹部40と第2壁部材16の第2蓋連結凹部70とに対して、蓋部材20の蓋連結凸部82が差し入れられて接着されることにより、蓋部材20が第1,第2壁部材14,16で構成されたハウジング12の周壁部に固定される。 As shown in FIG. 10, the bottom member 18 is fixed to the lower side of the peripheral wall of the housing 12 formed by the first wall member 14 and the second wall member 16, and the lid member 20 is fixed to the upper side, thereby forming a hollow box-shaped housing 12. More specifically, the bottom connecting protrusion 74 of the bottom member 18 is inserted and bonded to the first bottom connecting recess 42 of the first wall member 14 and the second bottom connecting recess 72 of the second wall member 16, thereby fixing the bottom member 18 to the peripheral wall of the housing 12 formed by the first and second wall members 14 and 16. Similarly, the lid connecting protrusion 82 of the lid member 20 is inserted and bonded to the first lid connecting recess 40 of the first wall member 14 and the second lid connecting recess 70 of the second wall member 16, thereby fixing the lid member 20 to the peripheral wall of the housing 12 formed by the first and second wall members 14 and 16.
 第1壁部材14と第2壁部材16と底部材18と蓋部材20は、相互に流体密に組み付けられており、ハウジング12内に導入される血液や後述する伝熱管112を流れる水、後述するガス流路118を流れる酸素のハウジング12内からの漏出及び外部からのハウジング12内への異物の侵入が防止される。第1壁部材14と第2壁部材16と底部材18と蓋部材20は、シリコーンやゴムなどでシールされて非接着で嵌め合わされていても良いが、接着や熱溶着などの手段によって固着されていることが望ましい。 The first wall member 14, the second wall member 16, the bottom member 18, and the cover member 20 are assembled together in a fluid-tight manner, preventing leakage of blood introduced into the housing 12, water flowing through the heat transfer tube 112 described below, and oxygen flowing through the gas flow path 118 described below from within the housing 12, and preventing entry of foreign matter into the housing 12 from the outside. The first wall member 14, the second wall member 16, the bottom member 18, and the cover member 20 may be fitted together without bonding, sealed with silicone or rubber, but are preferably fixed together by means of adhesion, heat welding, or the like.
 ハウジング12は、後述するガス交換膜116のガス流路118の流路長方向(上下方向)に延在する第3側壁部88を備えている。第3側壁部88は、第1壁部材14の第1連結壁部24と第2壁部材16の第2連結壁部46によって構成されている。第3側壁部88は、第1,第2側壁部22,44と略直交して広がっていると共に、後述するガス流路118の流路長方向である上下方向に延びている。なお、第3側壁部88は、左右方向で相互に対向する一対が設けられている。 The housing 12 has a third side wall portion 88 that extends in the flow path length direction (vertical direction) of the gas flow path 118 of the gas exchange membrane 116 described later. The third side wall portion 88 is formed by the first connecting wall portion 24 of the first wall member 14 and the second connecting wall portion 46 of the second wall member 16. The third side wall portion 88 spreads out approximately perpendicular to the first and second side wall portions 22, 44, and extends in the vertical direction, which is the flow path length direction of the gas flow path 118 described later. Note that a pair of third side wall portions 88 are provided that face each other in the left-right direction.
 ハウジング12の内部には、図9,図10に示すように、支持部材90が配されている。支持部材90は、図15,図16にも示すように、上下方向に延びる左右枠部が上下両端において左右方向に延びる上下枠部で連結された四角枠状とされており、内周には前後方向に貫通する枠内領域92が形成されている。 As shown in Figures 9 and 10, a support member 90 is disposed inside the housing 12. As also shown in Figures 15 and 16, the support member 90 is in the shape of a rectangular frame with left and right frame parts extending in the vertical direction connected at both the top and bottom ends by upper and lower frame parts extending in the horizontal direction, and an inner frame area 92 is formed on the inner periphery, penetrating in the front-to-rear direction.
 支持部材90の左右両外側面には、左右方向の外方へ向けて突出する位置決め突起94が形成されている。位置決め突起94は、上下方向に連続して延びており、長さ方向で部分的に幅広とされた誤組付け防止部96が一体的に設けられている。支持部材90の左右両側の位置決め突起94,94に設けられた各誤組付け防止部96は、上下方向の位置が相互に異ならされている。  Positioning protrusions 94 that protrude outward in the left-right direction are formed on both the left and right outer surfaces of the support member 90. The positioning protrusions 94 extend continuously in the vertical direction and are integrally provided with misassembly prevention sections 96 that are partially wider in the length direction. The misassembly prevention sections 96 provided on the positioning protrusions 94, 94 on both the left and right sides of the support member 90 are positioned differently in the vertical direction.
 支持部材90は、左右両側部分に後方へ向けて突出する挟持突起としての中間突出部98を備えている。中間突出部98は、支持部材90の左右両側端部に設けられており、支持部材90の左右側部の上下略全長に亘って略一定の断面形状で連続して延びている。中間突出部98の突出先端面は、左右方向で所定の幅を有する中間当接面100とされている。本実施形態の中間当接面100は、前後方向に対して略直交して広がる平面状とされている。また、支持部材90の左右両側部分には、前方へ向けて突出する中間突出部102が形成されている。中間突出部102は、支持部材90の左右両側端部に設けられており、支持部材90の左右側部の上下略全長に亘って略一定の断面形状で連続して延びている。中間突出部102の突出先端面は、左右方向で所定の幅を有する中間当接面104とされている。本実施形態の中間当接面104は、前後方向に対して略直交して広がる平面状とされている。後方へ突出する中間突出部98と前方へ突出する中間突出部102は、本実施形態では互いに同一の形状及び大きさを有する表裏対称構造とされているが、互いに異なる形状や大きさとされていてもよい。 The support member 90 has intermediate protrusions 98 as clamping protrusions that protrude rearward on both left and right sides. The intermediate protrusions 98 are provided on both left and right end portions of the support member 90, and extend continuously with an approximately constant cross-sectional shape over the entire vertical length of the left and right side portions of the support member 90. The protruding tip surface of the intermediate protrusion 98 is an intermediate abutment surface 100 having a predetermined width in the left and right direction. The intermediate abutment surface 100 in this embodiment is a flat surface that extends approximately perpendicular to the front-rear direction. In addition, intermediate protrusions 102 that protrude forward are formed on both left and right side portions of the support member 90. The intermediate protrusions 102 are provided on both left and right end portions of the support member 90, and extend continuously with an approximately constant cross-sectional shape over the entire vertical length of the left and right side portions of the support member 90. The protruding tip surface of the intermediate protrusion 102 is an intermediate abutment surface 104 having a predetermined width in the left and right direction. In this embodiment, the intermediate contact surface 104 is a flat surface that extends approximately perpendicular to the front-rear direction. In this embodiment, the intermediate protrusion 98 that protrudes rearward and the intermediate protrusion 102 that protrudes forward are symmetrical on the front and back and have the same shape and size, but they may be different shapes and sizes.
 支持部材90には、上下両端面に開口する支持凹溝106,106が形成されている。そして、支持部材90は、支持凹溝106,106が底部材18と蓋部材20とに凹凸嵌合されることにより、ハウジング12の前後中間部分に取り付けられている。 The support member 90 has support grooves 106, 106 that open on both the top and bottom end faces. The support member 90 is attached to the front-rear middle part of the housing 12 by fitting the support grooves 106, 106 into the bottom member 18 and the cover member 20.
 また、支持部材90の位置決め突起94,94は、第1壁部材14の第1連結壁部24と第2壁部材16の第2連結壁部46との先端面間で挟み込まれており、それによって、支持部材90のハウジング12に対する前後方向での位置が規定されていると共に、支持部材90の左右部分の撓み等が制限されて形状の安定化が図られている。第1連結壁部24と第2連結壁部46の先端部分には、左右の位置決め突起94,94において上下方向の異なる位置で部分的に設けられた幅広の誤組付け防止部96,96と対応する部分に切欠きが形成されており、当該切欠きに誤組付け防止部96が差し入れられることで、支持部材90がハウジング12に対して表裏或いは上下逆向きに取り付けられる誤組付けが防止されている。 The positioning protrusions 94, 94 of the support member 90 are sandwiched between the tip surfaces of the first connecting wall portion 24 of the first wall member 14 and the second connecting wall portion 46 of the second wall member 16, thereby defining the position of the support member 90 in the front-to-rear direction relative to the housing 12 and limiting the bending of the left and right portions of the support member 90 to stabilize its shape. The tip portions of the first connecting wall portion 24 and the second connecting wall portion 46 have notches formed in portions corresponding to the wide misassembly prevention portions 96, 96 that are partially provided at different positions in the up-down direction on the left and right positioning protrusions 94, 94, and the misassembly prevention portions 96 are inserted into the notches to prevent misassembly of the support member 90 being attached to the housing 12 upside down or upside down.
 ハウジング12に支持部材90が取り付けられることによって、ハウジング12の内部における支持部材90の前後両側には、温度調節領域108とガス交換領域110が形成されている。温度調節領域108とガス交換領域110は、扁平なハウジング12の短軸方向である前後方向に並んで設けられており、それら温度調節領域108とガス交換領域110の間に配された支持部材90の枠内領域92によって相互に連通されている。このように、本実施形態では、温度調節領域108とガス交換領域110とを連通する接続領域が、枠状とされた支持部材90の内周領域である枠内領域92によって構成されている。枠内領域92による温度調節領域108とガス交換領域110との離隔距離dは、5~20mmの範囲内とされていることが望ましく、より好適には10~15mmの範囲内とされている。 By attaching the support member 90 to the housing 12, a temperature control area 108 and a gas exchange area 110 are formed on both the front and rear sides of the support member 90 inside the housing 12. The temperature control area 108 and the gas exchange area 110 are arranged side by side in the front-to-rear direction, which is the short axis direction of the flat housing 12, and are connected to each other by an inner-frame area 92 of the support member 90 arranged between the temperature control area 108 and the gas exchange area 110. Thus, in this embodiment, the connection area connecting the temperature control area 108 and the gas exchange area 110 is formed by the inner-frame area 92, which is the inner peripheral area of the frame-shaped support member 90. The separation distance d between the temperature control area 108 and the gas exchange area 110 by the inner-frame area 92 is preferably within a range of 5 to 20 mm, and more preferably within a range of 10 to 15 mm.
 温度調節領域108には、複数の伝熱管112によって構成された温度調節器114が収容されている。温度調節器114は、ポリウレタンやポリエチレンテレフタレートなどの合成樹脂によって形成された伝熱管112の複数が、互いに平行に延びるように配された構造を有している。温度調節器114を構成する伝熱管112の内腔が延びる管軸方向は、ハウジング12の厚さ方向と直交する上下方向とされている。温度調節器114は、例えば、上下両端部分がハウジング12に接着されることにより、ハウジング12に対して位置決めされている。 The temperature adjustment area 108 houses a temperature regulator 114 composed of multiple heat transfer tubes 112. The temperature regulator 114 has a structure in which multiple heat transfer tubes 112 made of synthetic resin such as polyurethane or polyethylene terephthalate are arranged to extend parallel to one another. The axial direction of the inner cavity of the heat transfer tubes 112 that make up the temperature regulator 114 extends in the up-down direction perpendicular to the thickness direction of the housing 12. The temperature regulator 114 is positioned relative to the housing 12, for example, by bonding both upper and lower end portions to the housing 12.
 温度調節器114を構成する伝熱管112の内腔は、下端の開口部が温調流体入口ポート部76と温調流体出口ポート部78に接続されている。冷水又は温水といった温度調節用流体が、温調流体入口ポート部76から導入されて伝熱管112の内腔を流れた後、温調流体出口ポート部78から外部へ導出される。温調流体出口ポート部78から導出された温度調節用流体は、加熱器(ヒーター)又は放熱器などによって適温まで加温又は冷却された後、温調流体入口ポート部76から温度調節器114へ再び導入される。 The inner cavity of the heat transfer tube 112 that constitutes the temperature regulator 114 has an opening at the lower end that is connected to a temperature control fluid inlet port 76 and a temperature control fluid outlet port 78. A temperature control fluid such as cold water or hot water is introduced from the temperature control fluid inlet port 76, flows through the inner cavity of the heat transfer tube 112, and is then discharged to the outside from the temperature control fluid outlet port 78. The temperature control fluid discharged from the temperature control fluid outlet port 78 is heated or cooled to an appropriate temperature by a heater or radiator, and then reintroduced into the temperature regulator 114 from the temperature control fluid inlet port 76.
 なお、図10に示すように、ハウジング12の底部材18には、温度調節領域108へ向けて突出する仕切片115が左右方向の中間の一部に設けられている。仕切片115は、温調流体入口ポート部76と温調流体出口ポート部78との間に設けられており、温調流体入口ポート部76から導入された温度調節用流体が、伝熱管112の内腔を経由せずに温調流体出口ポート部78へ流れるのを抑制している。要するに、温調流体入口ポート部76から温度調節領域108内へ導入された温度調節用流体は、仕切片115よりも左方に位置する伝熱管112の内腔を通じて上方へ流れた後、仕切片115よりも右方に位置する伝熱管112の内腔を通じて下方へ流れて、温調流体出口ポート部78から排出され易く、伝熱管112の内腔を流れることで、血液との間での熱交換が有効に実行される。本実施形態では、例えば、仕切片115よりも左方の伝熱管112の下端開口部が温調流体入口ポート部76に接続されており、仕切片115よりも右方の伝熱管112の下端開口部が温調流体出口ポート部78に接続されている。 10, a partition piece 115 that protrudes toward the temperature control region 108 is provided in a part of the middle in the left-right direction on the bottom member 18 of the housing 12. The partition piece 115 is provided between the temperature control fluid inlet port 76 and the temperature control fluid outlet port 78, and prevents the temperature control fluid introduced from the temperature control fluid inlet port 76 from flowing to the temperature control fluid outlet port 78 without passing through the inner cavity of the heat transfer tube 112. In other words, the temperature control fluid introduced from the temperature control fluid inlet port 76 into the temperature control region 108 flows upward through the inner cavity of the heat transfer tube 112 located to the left of the partition piece 115, and then flows downward through the inner cavity of the heat transfer tube 112 located to the right of the partition piece 115, and is easily discharged from the temperature control fluid outlet port 78, and by flowing through the inner cavity of the heat transfer tube 112, heat exchange with the blood is effectively performed. In this embodiment, for example, the lower end opening of the heat transfer tube 112 to the left of the partition piece 115 is connected to the temperature control fluid inlet port 76, and the lower end opening of the heat transfer tube 112 to the right of the partition piece 115 is connected to the temperature control fluid outlet port 78.
 温度調節器114は、図9に示すように、左右両側縁部が第1壁部材14の第1側壁部22と支持部材90とによって血液の流動方向に圧縮された状態で、ハウジング12に固定されている。即ち、温度調節器114は、第1側壁部22の前方突出部26と支持部材90の中間突出部102との対向面間に位置する周縁端部(左右側縁部)において、ハウジング12に固定された後の方が、ハウジング12に固定される前よりも、前後方向の厚さ寸法が小さくなっており、前後方向で圧縮状態とされている。このように構成されることで、温度調節器114の外面とハウジング12の内面とが密着し、温度調節器114とハウジング12との間の隙間が小さくされて、ハウジング12の内面に沿った血液の流れを抑えることができる。その結果、血液が複数の伝熱管112で構成された温度調節器114内部の全体を流れやすくなり、短絡する部分に血液が流れないことにより、血液の流れが全体として均一となる。それゆえ、熱交換効率の向上などが図られる。本実施形態では、第1側壁部22と支持部材90との対向面間を外れた内周部分において、温度調節器114が圧縮されていない。 As shown in FIG. 9, the temperature regulator 114 is fixed to the housing 12 with both left and right side edges compressed in the blood flow direction by the first side wall portion 22 of the first wall member 14 and the support member 90. That is, the temperature regulator 114 is in a compressed state in the front-to-rear direction at the peripheral end portion (left and right side edges) located between the opposing surfaces of the forward protrusion 26 of the first side wall portion 22 and the intermediate protrusion 102 of the support member 90, and the thickness dimension in the front-to-rear direction is smaller after being fixed to the housing 12 than before being fixed to the housing 12. By configuring in this way, the outer surface of the temperature regulator 114 and the inner surface of the housing 12 are in close contact with each other, the gap between the temperature regulator 114 and the housing 12 is reduced, and the flow of blood along the inner surface of the housing 12 can be suppressed. As a result, blood flows easily throughout the entire interior of the temperature regulator 114, which is composed of multiple heat transfer tubes 112, and blood does not flow in the short-circuited parts, so that the blood flow is uniform overall. Therefore, the heat exchange efficiency is improved. In this embodiment, the temperature regulator 114 is not compressed in the inner peripheral portion that is outside the area between the opposing surfaces of the first side wall portion 22 and the support member 90.
 温度調節器114は、左右両側面がハウジング12の内周面に対して非接着とされた状態で温度調節領域108に収容されており、上述のように第1側壁部22と支持部材90との間で圧縮支持されることで、ハウジング12に対して非接着で取り付けられている。従って、温度調節器114の左右両側面とハウジング12の間には、それら温度調節器114とハウジング12とを接着するための接着剤層は形成されていない。本実施形態では、第1側壁部22の前方突出部26と支持部材90の中間突出部102とが、それぞれ上下方向に連続して延びており、温度調節器114の左右側縁部が上下方向の広い範囲に亘って圧縮支持されている。 The temperature regulator 114 is housed in the temperature adjustment area 108 with both left and right side surfaces not bonded to the inner circumferential surface of the housing 12, and is attached to the housing 12 in a non-adhesive manner by being compressed and supported between the first side wall portion 22 and the support member 90 as described above. Therefore, no adhesive layer is formed between the left and right side surfaces of the temperature regulator 114 and the housing 12 to bond the temperature regulator 114 to the housing 12. In this embodiment, the forward protrusion 26 of the first side wall portion 22 and the intermediate protrusion 102 of the support member 90 each extend continuously in the vertical direction, and the left and right side edges of the temperature regulator 114 are compressed and supported over a wide range in the vertical direction.
 ガス交換領域110には、ガス交換膜116が収容されている。ガス交換膜116は、ガス透過性を有する多数の中空糸が並列的に束ねられた構造を有している。本実施形態のガス交換膜116は、多数の中空糸を簾状に束ねた中空糸膜が、積層状に折り重ねられることによって、全体として略矩形ブロック状とされている。ガス交換膜116は、例えばポリプロピレン、ポリメチルペンテンなどの合成樹脂によって形成されている。中空糸膜を構成する中空糸の内腔(後述するガス流路118)が延びる管軸方向は、ハウジング12の厚さ方向と直交する上下方向とされている。なお、複数層の中空糸膜で構成されたガス交換膜116は、例えば、上下両端部が接着されることによって略矩形ブロック状に保持されていることが望ましい。ガス交換膜116は、必ずしも膜状体の積層構造には限定されず、例えば、多数の中空糸を並列的に束ねて接着剤で相互に連結することによって形成することもできる。 The gas exchange region 110 contains a gas exchange membrane 116. The gas exchange membrane 116 has a structure in which a large number of hollow fibers having gas permeability are bundled in parallel. In the present embodiment, the gas exchange membrane 116 is formed in a generally rectangular block shape by folding a hollow fiber membrane, which is a bundle of a large number of hollow fibers in a blind shape, into a laminated shape. The gas exchange membrane 116 is formed of a synthetic resin such as polypropylene or polymethylpentene. The tube axis direction in which the inner cavity of the hollow fiber constituting the hollow fiber membrane (gas flow path 118 described later) extends is the vertical direction perpendicular to the thickness direction of the housing 12. Note that the gas exchange membrane 116 composed of multiple layers of hollow fiber membranes is preferably held in a generally rectangular block shape by, for example, bonding both upper and lower ends. The gas exchange membrane 116 is not necessarily limited to a laminated structure of a membrane body, and can also be formed, for example, by bundling a large number of hollow fibers in parallel and connecting them to each other with an adhesive.
 ガス交換膜116を構成する中空糸の内腔は、ガス流路118とされており、両端の開口部がガス入口ポート部84とガス出口ポート80に接続されている。ガス入口ポート部84からガス交換領域110へ導入された酸素を含む供給ガスが、ガス交換膜116のガス流路118を流れ、ガス交換膜116に接する血液との間で酸素と二酸化炭素のガス交換が行われた後、二酸化炭素を含む排出ガスがガス出口ポート80から外部へ導出される。このように、酸素と二酸化炭素が流れるガス流路118が、中空糸膜で構成されたガス交換膜116によって形成されている。なお、ガス出口ポート80がハウジング12の底部材18を上下方向に貫通して形成されていることから、例えばガス流路118に結露が生じたとしても、水滴がガス出口ポート80から外部へ速やかに排出されて、ガス流路118の水滴による目詰まりが防止される。 The inner cavity of the hollow fiber that constitutes the gas exchange membrane 116 is a gas flow path 118, and the openings at both ends are connected to the gas inlet port 84 and the gas outlet port 80. The supply gas containing oxygen introduced into the gas exchange region 110 from the gas inlet port 84 flows through the gas flow path 118 of the gas exchange membrane 116, and after gas exchange of oxygen and carbon dioxide occurs between the blood in contact with the gas exchange membrane 116, the exhaust gas containing carbon dioxide is discharged to the outside from the gas outlet port 80. In this way, the gas flow path 118 through which oxygen and carbon dioxide flow is formed by the gas exchange membrane 116 composed of a hollow fiber membrane. In addition, since the gas outlet port 80 is formed by penetrating the bottom member 18 of the housing 12 in the vertical direction, even if condensation occurs in the gas flow path 118, for example, the water droplets are quickly discharged to the outside from the gas outlet port 80, and clogging of the gas flow path 118 by water droplets is prevented.
 ガス交換膜116は、図9,図10に示すように、ハウジング12内に収容されており、ハウジング12と支持部材90とによって、ハウジング12に対して位置決めされている。ガス交換膜116は、上下両端部分がハウジング12と支持部材90で囲まれて支持されていると共に、上下中間部分がガス交換領域110に収容されている。 As shown in Figures 9 and 10, the gas exchange membrane 116 is housed within the housing 12 and is positioned relative to the housing 12 by the housing 12 and the support member 90. The upper and lower end portions of the gas exchange membrane 116 are surrounded and supported by the housing 12 and the support member 90, and the upper and lower middle portions are housed in the gas exchange region 110.
 ガス交換膜116は、図10に示すように、上下両端部分が周囲に配されたハウジング12及び支持部材90に対して接着された接着部分119とされており、接着部分119とハウジング12及び支持部材90との重ね合わせ面間が液密に封止されている。ガス交換膜116は、ハウジング12の周壁内面及び支持部材90に対して、従来公知の遠心ポッティング等の手段で接着されている。即ち、ガス交換膜116がハウジング12の周壁部の内周にセットされた状態で、中空糸の軸方向(上下方向)に遠心力を作用させながらガス交換膜116の上下両端部分に接着剤を流し込むことによって、ガス交換膜116の上下両端部分を接着部分119として、接着部分119をハウジング12の周壁内面及び支持部材90に接着する。その後、ガス交換膜116の接着部分119において中空糸の内腔が接着剤で閉塞された部位を切除することにより、ハウジング12の周壁部と支持部材90とに接着されたガス交換膜116において、中空糸の内腔を軸方向に貫通した状態とすることができる。なお、ガス交換膜116のハウジング12に対する固定方法は、このような遠心ポッティングによる接着固定に限定されるものではなく、例えば、ガス交換膜116とハウジング12及び支持部材90との重ね合わせ面間のシール性能が確保可能であれば、非接着で固定されていてもよい。 As shown in FIG. 10, the upper and lower end portions of the gas exchange membrane 116 are bonded to the surrounding housing 12 and support member 90 as adhesive parts 119, and the overlapping surfaces between the adhesive parts 119 and the housing 12 and support member 90 are liquid-tightly sealed. The gas exchange membrane 116 is bonded to the inner peripheral surface of the peripheral wall of the housing 12 and the support member 90 by a conventionally known method such as centrifugal potting. That is, with the gas exchange membrane 116 set on the inner periphery of the peripheral wall of the housing 12, centrifugal force is applied in the axial direction (up and down direction) of the hollow fibers while an adhesive is poured into the upper and lower end portions of the gas exchange membrane 116, and the upper and lower end portions of the gas exchange membrane 116 are bonded to the inner peripheral wall of the housing 12 and the support member 90 as adhesive parts 119. Thereafter, the portion of the gas exchange membrane 116 where the hollow fiber lumen is blocked by adhesive is removed, so that the gas exchange membrane 116 adhered to the peripheral wall of the housing 12 and the support member 90 has the lumen of the hollow fiber penetrated in the axial direction. Note that the method of fixing the gas exchange membrane 116 to the housing 12 is not limited to adhesive fixation by centrifugal potting, and for example, the gas exchange membrane 116 may be fixed without adhesive as long as the sealing performance between the overlapping surfaces of the gas exchange membrane 116, the housing 12, and the support member 90 can be ensured.
 本実施形態において、ガス交換膜116の接着部分119は、ガス交換膜116とハウジング12を固定するための接着剤が多数の中空糸の間に入り込んで充填されており、中空糸の間を血液が通過しないことから、実質的にガス交換性能に寄与しない。そして、支持部材90の上下両端部(上下枠部)は、ガス交換膜116における接着部分119に対して上下方向の内方へ突出することなく、接着部分119に重ね合わされている。これにより、ガス交換性能を有するガス交換膜116の上下中間部分が支持部材90の上下枠部で覆われておらず、血液が通過し易い状態とされており、ガス交換膜116の有効面積が大きく確保されている。 In this embodiment, the adhesive portion 119 of the gas exchange membrane 116 is filled between the numerous hollow fibers with adhesive for fixing the gas exchange membrane 116 to the housing 12, and blood does not pass between the hollow fibers, so it does not substantially contribute to gas exchange performance. Furthermore, both the upper and lower ends (upper and lower frame portions) of the support member 90 are overlapped with the adhesive portion 119 of the gas exchange membrane 116 without protruding inward in the vertical direction from the adhesive portion 119. As a result, the upper and lower middle portions of the gas exchange membrane 116, which has gas exchange performance, are not covered by the upper and lower frame portions of the support member 90, making it easy for blood to pass through, and ensuring a large effective area of the gas exchange membrane 116.
 なお、温度調節器114の上下両端部は、ガス交換膜116と同様に、ハウジング12の周壁部に対して接着されている。温度調節器114の上下両端部は、例えば、上記したガス交換膜116の上下両端部のハウジング12に対する接着方法と同様のポッティングによって、ハウジング12の周壁部に接着される。温度調節器114の上下両端部とハウジング12の周壁部との接着は、ガス交換膜116の接着部分119と同じ接着工程で行うことも可能である。 The upper and lower ends of the temperature regulator 114 are bonded to the peripheral wall of the housing 12 in the same manner as the gas exchange membrane 116. The upper and lower ends of the temperature regulator 114 are bonded to the peripheral wall of the housing 12, for example, by potting, which is the same method of bonding the upper and lower ends of the gas exchange membrane 116 to the housing 12 as described above. The upper and lower ends of the temperature regulator 114 can also be bonded to the peripheral wall of the housing 12 using the same bonding process as the bonding portion 119 of the gas exchange membrane 116.
 また、ガス交換膜116は、図9に示すように、左右側縁部が第2壁部材16の第2側壁部44と支持部材90との間において血液の流動方向である前後方向に圧縮された状態で、ハウジング12に取り付けられている。即ち、ガス交換膜116は、第2側壁部44の後方突出部48と支持部材90の中間突出部98との突出先端面間(後方当接面50と中間当接面100の対向面間)で周縁端部(左右側縁部)が挟み込まれて圧縮されている。そして、ガス交換膜116の左右側縁部は、ハウジング12に取り付けられた後の方が、ハウジング12に取り付けられる前よりも、前後方向の厚さ寸法が小さくなっており、前後方向で圧縮状態とされている。このように構成されることで、ガス交換膜116の左右側縁部において、中空糸間の隙間が小さくなって血液の流通が制限される。また、ガス交換膜116の左右外面とハウジング12の内面とが密着して、ガス交換膜116とハウジング12との間の隙間が小さくなることから、ハウジング12の内面に沿った血液の流れを抑えることができる。その結果、血液がガス交換膜116における積層型構造体内部の全体を流れやすくなり、ガス交換効率の向上などが図られる。本実施形態では、第2側壁部44と支持部材90との対向面間を外れた内周部分において、ガス交換膜116が圧縮されていない。 Also, as shown in FIG. 9, the gas exchange membrane 116 is attached to the housing 12 with its left and right side edges compressed in the front-rear direction, which is the direction of blood flow, between the second side wall portion 44 of the second wall member 16 and the support member 90. That is, the gas exchange membrane 116 is compressed by having its peripheral ends (left and right side edges) sandwiched between the protruding tip surfaces of the rear protruding portion 48 of the second side wall portion 44 and the intermediate protruding portion 98 of the support member 90 (between the opposing surfaces of the rear abutment surface 50 and the intermediate abutment surface 100). The left and right side edges of the gas exchange membrane 116 are smaller in thickness in the front-rear direction after being attached to the housing 12 than before being attached to the housing 12, and are in a compressed state in the front-rear direction. By being configured in this way, the gaps between the hollow fibers are reduced at the left and right side edges of the gas exchange membrane 116, restricting the flow of blood. In addition, the left and right outer surfaces of the gas exchange membrane 116 are in close contact with the inner surface of the housing 12, reducing the gap between the gas exchange membrane 116 and the housing 12, thereby suppressing the flow of blood along the inner surface of the housing 12. As a result, blood flows more easily throughout the entire interior of the laminated structure of the gas exchange membrane 116, improving gas exchange efficiency. In this embodiment, the gas exchange membrane 116 is not compressed in the inner peripheral portion outside the area between the opposing surfaces of the second side wall portion 44 and the support member 90.
 ガス交換膜116は、ハウジング12の内周面に対して左右の両側面が非接着とされた状態でガス交換領域110に収容されており、上述のように第2側壁部44と支持部材90との間で左右の両側縁部が圧縮支持されることで、左右両側縁部がハウジング12に対して非接着で固定されている。本実施形態では、ガス交換膜116の左右の両側面が上下方向の両端部分(接着部分119,119)においてハウジング12の内周面に接着されており、上下方向の中間部分において左右の両側面がハウジング12の内周面に対して非接着とされている。従って、ガス交換膜116の上下中間部分の両側面とハウジング12の左右両側内面との間には、それらガス交換膜116とハウジング12とを接着するための接着剤層は形成されていない。第2側壁部44の後方突出部48と支持部材90の中間突出部98は、それぞれ上下方向に連続して延びており、ガス交換膜116の左右側縁部が上下方向の広い範囲に亘ってそれら後方突出部48と中間突出部98との間で圧縮支持されている。本実施形態では、ガス交換膜116の左右側縁部が、上下方向の全長に亘って後方突出部48と中間突出部98との間で挟持されている。 The gas exchange membrane 116 is accommodated in the gas exchange area 110 with both left and right side surfaces not bonded to the inner surface of the housing 12, and as described above, both left and right side edges are compressed and supported between the second side wall portion 44 and the support member 90, so that the left and right side edges are fixed to the housing 12 in a non-bonded manner. In this embodiment, both left and right side surfaces of the gas exchange membrane 116 are bonded to the inner surface of the housing 12 at both ends in the vertical direction (bonded portions 119, 119), and both left and right side surfaces are not bonded to the inner surface of the housing 12 in the vertical middle portion. Therefore, no adhesive layer is formed between both sides of the vertical middle portions of the gas exchange membrane 116 and both left and right inner surfaces of the housing 12 to bond the gas exchange membrane 116 to the housing 12. The rear protrusion 48 of the second side wall 44 and the intermediate protrusion 98 of the support member 90 each extend continuously in the vertical direction, and the left and right side edges of the gas exchange membrane 116 are compressed and supported between the rear protrusion 48 and the intermediate protrusion 98 over a wide range in the vertical direction. In this embodiment, the left and right side edges of the gas exchange membrane 116 are sandwiched between the rear protrusion 48 and the intermediate protrusion 98 over the entire length in the vertical direction.
 ガス交換膜116の左右両側縁部における後方突出部48と中間突出部98との間で圧縮支持される部分は、前後方向の投影において、ガス交換領域110全体の面積の5~15%の範囲内に設定されることが望ましい。ガス交換膜116における圧縮支持部分の前後投影面積が上記範囲内に設定されることにより、ガス交換膜116の安定した支持やガス交換膜116とハウジング12内面との間のシール性能の確保等を図りつつ、ガス交換が行われる非圧縮部分の面積を大きく確保することができる。 The portion of the gas exchange membrane 116 that is compressed and supported between the rear protrusion 48 and the middle protrusion 98 on both left and right side edges is desirably set within a range of 5 to 15% of the area of the entire gas exchange region 110 when projected in the front-to-rear direction. By setting the front-to-rear projected area of the compressed support portion of the gas exchange membrane 116 within the above range, it is possible to ensure a large area of the non-compressed portion where gas exchange takes place while ensuring stable support of the gas exchange membrane 116 and sealing performance between the gas exchange membrane 116 and the inner surface of the housing 12.
 また、ガス交換膜116の左右両側縁部における後方突出部48と中間突出部98による前後方向での圧縮率は、5~20%の範囲内に設定されることが望ましい。ガス交換膜116における前後方向の圧縮率が上記範囲内に設定されることにより、ガス交換膜116の安定した支持や圧縮によるガス交換膜116とハウジング12内面との間のシール性能の確保等を図りつつ、過度な圧縮によるガス交換膜116の歪な変形によってガス交換膜116とハウジング12内面との間に隙間が形成されるのを防ぐことができる。 Furthermore, it is desirable that the compression rate in the front-to-rear direction by the rear protrusions 48 and the intermediate protrusions 98 on both the left and right side edges of the gas exchange membrane 116 is set within the range of 5 to 20%. By setting the compression rate in the front-to-rear direction of the gas exchange membrane 116 within the above range, it is possible to ensure stable support of the gas exchange membrane 116 and sealing performance between the gas exchange membrane 116 and the inner surface of the housing 12 due to compression, while preventing the formation of gaps between the gas exchange membrane 116 and the inner surface of the housing 12 due to distortion of the gas exchange membrane 116 caused by excessive compression.
 本実施形態では、ガス交換膜116が矩形ブロック状とされていることから、ガス交換膜116の幅方向の両側縁部である左右両側縁部が、ハウジング12と支持部材90とによってガス交換膜116の厚さ方向で圧縮支持されることにより、ガス交換膜116の左右両側縁部がハウジング12に対して非接着で安定して取り付けられる。 In this embodiment, the gas exchange membrane 116 is in the shape of a rectangular block, and the left and right side edges of the gas exchange membrane 116 in the width direction are compressed and supported in the thickness direction of the gas exchange membrane 116 by the housing 12 and the support member 90, so that the left and right side edges of the gas exchange membrane 116 are stably attached to the housing 12 without adhesive.
 矩形ブロック状とされたガス交換膜116は、左右両端部においてハウジング12と支持部材90の左右枠部との間で挟持されていると共に、上下両端部に形成された接着部分119,119において支持部材90の上下枠部に重ね合わされている。これにより、ガス交換膜116は、左右両端部において非接着でハウジング12に組み付けられていると共に、接着部分119を外れた上下方向の広い領域が、支持部材90で覆われることなく枠内領域92に露出している。これにより、上下両側の接着部分119,119を外れた上下中間部分が上下方向の広い範囲で血液と接触し易く、ガス交換膜116を通過する血液のガス交換効率が有利に確保されている。なお、本実施形態において、枠状とされた支持部材90は、ガス交換膜116に対して、全周に亘って連続的に重ね合わされている。 The rectangular block-shaped gas exchange membrane 116 is sandwiched between the housing 12 and the left and right frame parts of the support member 90 at both left and right ends, and is overlapped with the upper and lower frame parts of the support member 90 at the adhesive parts 119, 119 formed at both top and bottom ends. As a result, the gas exchange membrane 116 is assembled to the housing 12 without adhesive at both left and right ends, and a wide area in the vertical direction outside the adhesive parts 119 is exposed to the frame area 92 without being covered by the support member 90. As a result, the upper and lower middle parts outside the adhesive parts 119, 119 on both the top and bottom sides are easily in contact with blood over a wide area in the vertical direction, and the gas exchange efficiency of blood passing through the gas exchange membrane 116 is advantageously ensured. In this embodiment, the frame-shaped support member 90 is continuously overlapped with the gas exchange membrane 116 all around.
 また、枠状の支持部材90は、左右枠部が上下枠部で連結されていることから、左右枠部が独立している場合に比して、一体的に取り回すことができて、例えば、ハウジング12への組付け作業性に優れている。更に、枠状の支持部材90は、左右枠部が上下枠部で連結されていることによって、変形剛性が高く、ガス交換膜116のハウジング12に対する位置決めの安定化を実現し易くなる。 In addition, because the left and right frame portions of the frame-shaped support member 90 are connected by upper and lower frame portions, they can be handled as a single unit compared to when the left and right frame portions are independent, and, for example, are easier to assemble to the housing 12. Furthermore, because the left and right frame portions of the frame-shaped support member 90 are connected by upper and lower frame portions, they have high deformation rigidity, making it easier to stabilize the positioning of the gas exchange membrane 116 relative to the housing 12.
 温度調節器114とガス交換膜116は、互いに異なる構造や材質であっても良く、例えば金属製の伝熱管112からなる温度調節器114と、合成樹脂製の中空糸からなるガス交換膜116とを組み合わせて採用することもできる。本実施形態では、温度調節器114とガス交換膜116が何れも合成樹脂製の中空糸膜で形成されており、互いに略同じ構造とされている。なお、図9では、見易さのために、伝熱管112及び中空糸の径寸法が誇張されている。 The temperature regulator 114 and the gas exchange membrane 116 may be of different structures or materials. For example, a combination of a temperature regulator 114 made of a metal heat transfer tube 112 and a gas exchange membrane 116 made of synthetic resin hollow fibers may be used. In this embodiment, both the temperature regulator 114 and the gas exchange membrane 116 are made of synthetic resin hollow fiber membranes and have approximately the same structure. Note that in FIG. 9, the diameters of the heat transfer tube 112 and the hollow fibers are exaggerated for ease of viewing.
 1つの前後直交平面上に揃えられた入口側ガイドフィン36a~36cの突出先端面は、ガス交換膜116に対して前方に離隔しており、温度調節器114の前面に重ね合わされている。また、1つの前後直交平面上に揃えられた出口側ガイドフィン66a~66eの突出先端面は、ガス交換膜116の後面に重ね合わされている。 The protruding tip surfaces of the inlet guide fins 36a to 36c, which are aligned on a single front-to-rear orthogonal plane, are spaced forward from the gas exchange membrane 116 and overlap the front surface of the temperature regulator 114. In addition, the protruding tip surfaces of the outlet guide fins 66a to 66e, which are aligned on a single front-to-rear orthogonal plane, overlap the rear surface of the gas exchange membrane 116.
 温度調節器114とガス交換膜116は、支持部材90を挟んだ前後両側に配置されており、前後方向で相互に離隔位置している。このように、支持部材90は、温度調節器114とガス交換膜116を前後方向で相互に離隔した所定の位置に位置決めするスペーサとしての機能を備えている。 The temperature regulator 114 and the gas exchange membrane 116 are disposed on both the front and rear sides of the support member 90, and are spaced apart from each other in the front-to-rear direction. In this way, the support member 90 functions as a spacer that positions the temperature regulator 114 and the gas exchange membrane 116 at predetermined positions spaced apart from each other in the front-to-rear direction.
 支持部材90の枠内領域(接続領域)92によって相互に連通された温度調節領域108とガス交換領域110は、何れも血液が導入されており、ガス交換膜116に対する血液の通過方向である前後方向に並んで設けられている。即ち、温度調節領域108が第1側壁部22側に位置していると共に、ガス交換領域110が第2側壁部44側に位置しており、温度調節器114がガス交換膜116よりも第1側壁部22側に配置されている。温度調節領域108とガス交換領域110には、血液入口ポート32が入口側案内部30を介して連通されていると共に、血液出口ポート62が出口側案内部52を介して連通されている。 The temperature control area 108 and the gas exchange area 110, which are connected to each other by the frame area (connection area) 92 of the support member 90, both have blood introduced therein and are arranged side by side in the front-to-back direction, which is the direction in which blood passes through the gas exchange membrane 116. That is, the temperature control area 108 is located on the first side wall 22 side, while the gas exchange area 110 is located on the second side wall 44 side, and the temperature regulator 114 is disposed on the first side wall 22 side of the gas exchange membrane 116. The temperature control area 108 and the gas exchange area 110 are connected to each other by the blood inlet port 32 via the inlet side guide 30, and the blood outlet port 62 via the outlet side guide 52.
 そして、血液は、血液入口ポート32からハウジング12内へ導入されて、温度調節領域108とガス交換領域110を順に通過した後、血液出口ポート62から外部へ導出される。血液は、温度調節領域108において温度調節器114における伝熱管112の外側を流れて、伝熱管112を介して温度調節用流体との間で間接的な熱交換が行われる。これにより、血液が適温まで加温又は冷却される。温度調節された血液は、ガス交換領域110においてガス交換膜116における中空糸の外側を流れることによって、中空糸の内腔であるガス流路118に導入された供給ガスから酸素を受け取って酸素化される。なお、血液は、ガス流路118から酸素を受け取ると共に、二酸化炭素をガス流路118へ排出する。 Then, blood is introduced into the housing 12 from the blood inlet port 32, passes through the temperature control area 108 and the gas exchange area 110 in order, and is then discharged to the outside from the blood outlet port 62. In the temperature control area 108, the blood flows outside the heat transfer tube 112 in the temperature regulator 114, and indirect heat exchange occurs between the blood and the temperature control fluid via the heat transfer tube 112. This causes the blood to be heated or cooled to an appropriate temperature. The temperature-controlled blood flows outside the hollow fibers in the gas exchange membrane 116 in the gas exchange area 110, and is oxygenated by receiving oxygen from the supply gas introduced into the gas flow path 118, which is the inner cavity of the hollow fibers. The blood receives oxygen from the gas flow path 118 and expels carbon dioxide to the gas flow path 118.
 血液入口ポート32は、温度調節器114及びガス交換膜116の前面に対して略平行に左右方向で延びており、血液入口ポート32から導入される血液が、温度調節器114及びガス交換膜116に対して左右方向の広い範囲に分散し易くなっている。それ故、血液が温度調節器114及びガス交換膜116に広範囲で接して、温度調節やガス交換の効率向上が図られている。 The blood inlet port 32 extends in the left-right direction approximately parallel to the front surface of the temperature regulator 114 and the gas exchange membrane 116, making it easier for blood introduced from the blood inlet port 32 to disperse over a wide range in the left-right direction relative to the temperature regulator 114 and the gas exchange membrane 116. Therefore, the blood comes into contact with the temperature regulator 114 and the gas exchange membrane 116 over a wide area, improving the efficiency of temperature regulation and gas exchange.
 血液入口ポート32から導入される血液は、入口側案内部30によって、温度調節領域108の左右方向一端側の下部から左右方向他端側の上部に向かって対角方向に広がるように案内される。それ故、血液が温度調節領域108及びガス交換領域110において広範囲で流動して、血液の熱交換とガス交換が効率的に実現される。 The blood introduced from the blood inlet port 32 is guided by the inlet guide section 30 so that it spreads diagonally from the bottom at one left-right end of the temperature control area 108 to the top at the other left-right end. Therefore, the blood flows over a wide area in the temperature control area 108 and the gas exchange area 110, and heat exchange and gas exchange of the blood are efficiently achieved.
 血液入口ポート32が開口する第1側壁部22には、血液入口ポート32から上方へ向けて放射状に延びる入口側ガイドフィン36が設けられていることから、血液入口ポート32から温度調節領域108に導入された血液は、入口側ガイドフィン36によっても広範囲に広がるように案内される。それ故、血液と温度調節用流体との間での熱交換と、血液と供給ガスとの間でのガス交換において、それぞれ効率の向上が図られる。 The first side wall portion 22, where the blood inlet port 32 opens, is provided with inlet guide fins 36 that extend radially upward from the blood inlet port 32, so that the blood introduced into the temperature control area 108 from the blood inlet port 32 is also guided by the inlet guide fins 36 so that it spreads over a wide area. This improves the efficiency of both heat exchange between the blood and the temperature control fluid and gas exchange between the blood and the supplied gas.
 しかも、3つの入口側ガイドフィン36a,36b,36cが、血液入口ポート32から遠ざかるに従って相互に離れるように相対傾斜して延びていることから、血液が温度調節領域108のより広い範囲へ導かれて熱交換効率の向上が図られる。入口側ガイドフィン36によって広範囲に導かれた血液は、入口側ガイドフィン36の突出先端がガス交換膜116から離隔していることにより、ガス交換膜116の全体に接するように流れ易い。 Furthermore, the three inlet guide fins 36a, 36b, 36c extend at a relative incline so that they move away from each other as they move away from the blood inlet port 32, so that the blood is guided to a wider range of the temperature control area 108, improving the heat exchange efficiency. The blood guided over a wide range by the inlet guide fins 36 tends to flow in contact with the entire gas exchange membrane 116 because the protruding tips of the inlet guide fins 36 are separated from the gas exchange membrane 116.
 このように、血液入口ポート32が温度調節領域108の下部に設けられており、血液入口ポート32から導入された血液が、入口側案内部30や入口側ガイドフィン36によって温度調節領域108の上部へ導かれる。それ故、血液入口ポート32から温度調節領域108へ血液を導入することによって、温度調節領域108内で血液が広範囲に広がるように、血液の流れが形成され易い。 In this way, the blood inlet port 32 is provided at the bottom of the temperature regulated area 108, and blood introduced from the blood inlet port 32 is guided to the top of the temperature regulated area 108 by the inlet side guide section 30 and the inlet side guide fins 36. Therefore, by introducing blood from the blood inlet port 32 into the temperature regulated area 108, a blood flow is easily formed so that the blood spreads over a wide area within the temperature regulated area 108.
 また、血液入口ポート32が温度調節領域108の下部に位置していることによって、温度調節領域108とガス交換領域110を生理食塩水などのプライミング液で満たす際に、プライミング液が血液入口ポート32から温度調節領域108に入る際の落下高さが小さくなる。それ故、落下による空気の巻き込みが生じ難くなって、温度調節領域108及びガス交換領域110における血液の流動部分に空気が残留し難く、血液への気泡の混入が防止される。 In addition, because the blood inlet port 32 is located at the bottom of the temperature control area 108, when the temperature control area 108 and the gas exchange area 110 are filled with a priming solution such as saline, the drop height of the priming solution when it enters the temperature control area 108 from the blood inlet port 32 is small. Therefore, air is less likely to be entrained when it falls, and air is less likely to remain in the blood flow areas in the temperature control area 108 and the gas exchange area 110, preventing air bubbles from being mixed into the blood.
 温度調節領域108の広い範囲に拡散して導入された血液は、温度調節領域108を通過した後、枠内領域92を通じてガス交換領域110へ導入される。温度調節領域108の各部位を通過した血液は、枠内領域92において合流することによって、流速のばらつきが抑制されて、流速の安定化が図られる。これにより、枠内領域92からガス交換領域110へ流れ込む血液が、局所的に流れ易く又は流れ難くなるのを防いで、ガス交換領域110においても広い範囲に亘って安定した流速分布で流動せしめられる。それ故、ガス交換膜116の供給ガスから血液に対して酸素が効率的に供給されると共に、血液が保持する二酸化炭素がガス交換膜116内へ効率的に受け渡される。 The blood that has been diffused and introduced into the wide area of the temperature control area 108 passes through the temperature control area 108 and is then introduced into the gas exchange area 110 through the framed area 92. The blood that has passed through each part of the temperature control area 108 joins together in the framed area 92, suppressing the variation in flow rate and stabilizing the flow rate. This prevents the blood flowing from the framed area 92 into the gas exchange area 110 from flowing easily or difficultly locally, and allows the blood to flow with a stable flow rate distribution over a wide area in the gas exchange area 110. Therefore, oxygen is efficiently supplied to the blood from the supply gas of the gas exchange membrane 116, and carbon dioxide held by the blood is efficiently transferred into the gas exchange membrane 116.
 本実施形態では、枠内領域92の前後方向の長さが5~20mmの範囲内とされている。これにより、ハウジング12内における血液の充填領域の容積が、枠内領域92の形成によって過度に増大するのを防ぎつつ、温度調節領域108とガス交換領域110の間において枠内領域92による流速分布の均一化が有効に実現される。 In this embodiment, the length of the inner-frame area 92 in the front-to-rear direction is set within the range of 5 to 20 mm. This prevents the volume of the blood filling area in the housing 12 from increasing excessively due to the formation of the inner-frame area 92, while effectively realizing a uniform flow velocity distribution between the temperature control area 108 and the gas exchange area 110 by the inner-frame area 92.
 ガス交換領域110において酸素化された血液は、出口側案内部52によって血液出口ポート62へ導かれることから、血液出口ポート62から離れた位置の血液も血液出口ポート62から導出され易くなる。これにより、ガス交換領域110内の血液が混ぜ合わされた状態で血液出口ポート62から導出されて、血液出口ポート62から導出される血液の酸素化の度合いが安定する。ガス交換領域110内の血液は、ガス入口ポート部84に近い上部とガス入口ポート部84から遠い下部とにおいて酸素化の度合いにムラが生じ易いが、出口側案内部52において上部の血液と下部の血液が混ぜ合わされることから、血液出口ポート62から導出される血液の酸素化の度合いが安定する。 Since the oxygenated blood in the gas exchange region 110 is guided to the blood outlet port 62 by the outlet side guide 52, blood located away from the blood outlet port 62 can also be easily discharged from the blood outlet port 62. As a result, the blood in the gas exchange region 110 is discharged from the blood outlet port 62 in a mixed state, and the degree of oxygenation of the blood discharged from the blood outlet port 62 is stabilized. The blood in the gas exchange region 110 is prone to unevenness in the degree of oxygenation between the upper part close to the gas inlet port 84 and the lower part far from the gas inlet port 84, but since the upper blood and the lower blood are mixed at the outlet side guide 52, the degree of oxygenation of the blood discharged from the blood outlet port 62 is stabilized.
 血液出口ポート62は、血液入口ポート32と略平行に設けられて、血液入口ポート32とは左右方向で反対側に向けて開口している。それ故、血液入口ポート32から導入されて血液出口ポート62から導出される血液の流れがスムーズに形成される。また、入口管路接続部34と出口管路接続部64が左右方向に延びていることから、入口管路接続部34と出口管路接続部64の前後方向の突出が抑えられて、人工肺10の前後方向のサイズが小さくされる。しかも、入口管路接続部34と出口管路接続部64に接続されるチューブも左右方向に延び出すことから、使用状態において前後方向で必要となるスペースが低減される。 The blood outlet port 62 is provided approximately parallel to the blood inlet port 32 and opens in the opposite direction from the blood inlet port 32 in the left-right direction. This allows for a smooth flow of blood introduced from the blood inlet port 32 and discharged from the blood outlet port 62. In addition, because the inlet line connection part 34 and the outlet line connection part 64 extend in the left-right direction, the protrusion of the inlet line connection part 34 and the outlet line connection part 64 in the front-rear direction is suppressed, and the front-rear size of the oxygenator 10 is reduced. Moreover, because the tubes connected to the inlet line connection part 34 and the outlet line connection part 64 also extend in the left-right direction, the space required in the front-rear direction when in use is reduced.
 血液出口ポート62は、ハウジング12の左端部分で上下方向の略中央に配置されており、血液入口ポート32に対して上下方向及び左右方向でずれて位置している。それゆえ、血液入口ポート32から血液出口ポート62への血液の短絡的な流れが生じ難く、血液がハウジング12内の広い範囲を流動し易くされている。 The blood outlet port 62 is located approximately in the vertical center of the left end portion of the housing 12, and is offset in the vertical and horizontal directions from the blood inlet port 32. This makes it difficult for blood to short-circuit from the blood inlet port 32 to the blood outlet port 62, making it easier for blood to flow over a wide area within the housing 12.
 血液出口ポート62が連通する出口側案内部52がハウジング12の左右方向の略全長に亘って設けられていることから、血液が左右方向の広い範囲で出口側案内部52に導入され得ると共に、出口側案内部52を構成する第1,第2傾斜面56,58の傾斜角度が比較的に小さくされて、局所的な流速の増大を防ぐことができる。特に第1傾斜面56の傾斜角度が5~15°の範囲内とされており、第2傾斜面58の傾斜角度が30~50°の範囲内とされており、第3傾斜面60の傾斜角度が60°以上とされていることにより、出口側案内部52の必要な深さが確保されると共に、出口側案内部52における左右方向で血液出口ポート62に向かう血液の流れの速さがコントロールされる。 The outlet side guide 52, which communicates with the blood outlet port 62, is provided over substantially the entire length of the housing 12 in the left-right direction, so that blood can be introduced into the outlet side guide 52 over a wide range in the left-right direction, and the inclination angles of the first and second inclined surfaces 56, 58 constituting the outlet side guide 52 are relatively small, preventing local increases in flow rate. In particular, the inclination angle of the first inclined surface 56 is within the range of 5 to 15°, the inclination angle of the second inclined surface 58 is within the range of 30 to 50°, and the inclination angle of the third inclined surface 60 is 60° or more, thereby ensuring the necessary depth of the outlet side guide 52 and controlling the speed of blood flow in the left-right direction in the outlet side guide 52 toward the blood outlet port 62.
 出口側案内部52は、上下方向において部分的に設けられており、上下方向の全長には設けられていない。これにより、後方へ突出する出口側案内部52の形成によるハウジング12内の容積の増大が抑えられており、ハウジング12内を満たすために必要となる血液量を比較的に少なくすることができる。特に、出口側案内部52は、左右方向の長さ寸法Lが上下方向の幅寸法Wよりも小さくされていることから、左右方向の広い範囲において血液を導き入れることが可能な出口側案内部52を、比較的に小さな容積で実現することができる。 The outlet side guide portion 52 is provided partially in the vertical direction, and not along the entire vertical length. This prevents the increase in volume inside the housing 12 caused by the formation of the outlet side guide portion 52 protruding rearward, and makes it possible to relatively reduce the amount of blood required to fill the inside of the housing 12. In particular, because the length dimension L of the outlet side guide portion 52 in the left-right direction is smaller than the width dimension W in the up-down direction, the outlet side guide portion 52 that is capable of guiding blood over a wide range in the left-right direction can be realized with a relatively small volume.
 本実施形態では、ハウジング12の第2側壁部44が前後方向視で略四角形(矩形)とされており、第2側壁部44に形成される出口側案内部52が四角錘形状とされて、出口側案内部52が前後方向視で略四角形とされている。これにより、ハウジング12の内部領域において出口側案内部52から著しく遠い部分が生じ難く、ハウジング12内の血液が出口側案内部52へ効率的に導き入れられる。 In this embodiment, the second side wall 44 of the housing 12 is generally quadrangular (rectangular) when viewed from the front-to-rear direction, and the outlet side guide 52 formed on the second side wall 44 is generally pyramidal, so that the outlet side guide 52 is generally quadrangular when viewed from the front-to-rear direction. This makes it difficult for any part of the interior area of the housing 12 to be significantly far from the outlet side guide 52, and blood within the housing 12 is efficiently guided into the outlet side guide 52.
 血液出口ポート62が開口する第2側壁部44には、出口側ガイドフィン66が設けられていることから、ガス交換領域110内の血液は、出口側ガイドフィン66によってガス交換領域110内の広い範囲から出口側案内部52へ案内される。それ故、血液出口ポート62から導出される血液の酸素化の度合いが安定する。 The second side wall portion 44, where the blood outlet port 62 opens, is provided with an outlet side guide fin 66, so that the blood in the gas exchange area 110 is guided by the outlet side guide fin 66 from a wide area within the gas exchange area 110 to the outlet side guide portion 52. Therefore, the degree of oxygenation of the blood drawn out from the blood outlet port 62 is stabilized.
 5つの出口側ガイドフィン66a~66eは、血液出口ポート62から離れるに従って相互に離れるように放射状に傾斜して延びていることから、血液がガス交換領域110のより広い範囲から出口側案内部52へ導かれる。それ故、血液出口ポート62から導出される血液の酸素化の度合いが安定する。 The five outlet side guide fins 66a-66e extend radially at an angle so that they move away from each other as they move away from the blood outlet port 62, so that blood is guided to the outlet side guide section 52 from a wider range of the gas exchange area 110. Therefore, the degree of oxygenation of the blood drawn out from the blood outlet port 62 is stabilized.
 出口側ガイドフィン66a,66eは、第2側壁部44の左側縁部に沿って上下方向に延びており、第2側壁部44の左端部付近に開口する血液出口ポート62への流れが形成され難く血液の滞留が発生し易い上下の左隅部から血液出口ポート62まで血液が案内され易くなる。特に本実施形態では、出口側ガイドフィン66a,66eの第2側壁部44の左側縁部に対する相対傾斜角度が0~10°の範囲内とされていることから、上下左隅部から血液出口ポート62へ血液を有効に導くことができる。 The outlet guide fins 66a, 66e extend vertically along the left edge of the second side wall 44, making it easier to guide blood from the upper and lower left corners, where it is difficult for a flow to form and blood is likely to stagnate, to the blood outlet port 62, which opens near the left end of the second side wall 44. In particular, in this embodiment, the relative inclination angle of the outlet guide fins 66a, 66e with respect to the left edge of the second side wall 44 is within the range of 0 to 10°, so that blood can be effectively guided from the upper and lower left corners to the blood outlet port 62.
 出口側ガイドフィン66b,66dは、一方の端部が出口側案内部52に位置していると共に、他方の端部が出口側案内部52から外れた外方に位置していることから、出口側案内部52から外れた領域の血液を出口側案内部52まで効率的に案内して導き入れることができる。 The outlet side guide fins 66b, 66d have one end located at the outlet side guide section 52 and the other end located outside the outlet side guide section 52, so that blood in the area outside the outlet side guide section 52 can be efficiently guided and introduced to the outlet side guide section 52.
 出口側ガイドフィン66a~66eの第2側壁部44からの突出先端面が、1つの平面上に揃えられて、ガス交換膜116の後面に重ね合わされていることから、第2側壁部44とガス交換膜116との間に出口側ガイドフィン66で仕切られた複数の流路が形成されて、血液が当該流路を通じて血液出口ポート62へ効率的に導かれる。 The protruding tip surfaces of the outlet side guide fins 66a to 66e from the second side wall portion 44 are aligned on a single plane and overlap the rear surface of the gas exchange membrane 116, so that multiple flow paths separated by the outlet side guide fins 66 are formed between the second side wall portion 44 and the gas exchange membrane 116, and blood is efficiently guided through these flow paths to the blood outlet port 62.
 このように、血液出口ポート62がガス交換領域110の上下中間部分に設けられており、ガス交換領域110の上下両側部分を含む広範囲の血液が、出口側案内部52や出口側ガイドフィン66によって血液出口ポート62へ導かれる。しかも、ガス交換領域110内の広い範囲から導かれた血液は、血液出口ポート62から導出される前に出口側案内部52において撹拌されることから、血液出口ポート62から導出される血液の酸素化にばらつきが生じ難い。なお、入口側案内部30と出口側案内部52を含むハウジング12内において、血液の撹拌は、出口側案内部52の形状や血液の流速などを調節することによって、血球の損傷が問題にならない程度にコントロールされる。 In this way, the blood outlet port 62 is provided in the upper and lower middle parts of the gas exchange area 110, and a wide range of blood, including both the upper and lower parts of the gas exchange area 110, is guided to the blood outlet port 62 by the outlet side guide part 52 and the outlet side guide fins 66. Moreover, since blood guided from a wide range within the gas exchange area 110 is stirred in the outlet side guide part 52 before being discharged from the blood outlet port 62, there is little variation in the oxygenation of the blood discharged from the blood outlet port 62. Furthermore, within the housing 12 including the inlet side guide part 30 and the outlet side guide part 52, the stirring of the blood is controlled to a degree that does not cause damage to blood cells by adjusting the shape of the outlet side guide part 52 and the blood flow rate, etc.
 血液出口ポート62がガス交換領域110の上端ではなく上下方向の中間に開口していることにより、万が一、血液に気泡が混入したとしても、気泡が血液出口ポート62の開口よりも上側まで浮上して、血液出口ポート62に入り難い。 Because the blood outlet port 62 opens in the vertical middle of the gas exchange area 110 rather than at the top end, even if air bubbles get mixed in with the blood, the air bubbles will rise above the opening of the blood outlet port 62 and are less likely to enter the blood outlet port 62.
 また、人工肺10の使用状態において、血液入口ポート32と血液出口ポート62は、何れも温調流体入口ポート部76及び温調流体出口ポート部78よりも上側に位置している。それ故、万が一、温度調節用流体が温調流体入口ポート部76や温調流体出口ポート部78から漏れたとしても、温度調節用流体が血液入口ポート32と血液出口ポート62に触れ難い。従って、血液入口ポート32と血液出口ポート62が、温度調節用流体によって汚染されることなく清潔に保たれる。 In addition, when the oxygenator 10 is in use, the blood inlet port 32 and the blood outlet port 62 are both located above the temperature control fluid inlet port 76 and the temperature control fluid outlet port 78. Therefore, even if the temperature control fluid leaks from the temperature control fluid inlet port 76 or the temperature control fluid outlet port 78, the temperature control fluid is unlikely to come into contact with the blood inlet port 32 and the blood outlet port 62. Therefore, the blood inlet port 32 and the blood outlet port 62 are kept clean and not contaminated by the temperature control fluid.
 以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、ハウジング12の構造は、必ずしも互いに独立した周壁部と下壁部と上壁部を組み合わせる構造に限定されない。具体的には、周壁部と下壁部が一体形成されていると共に、下壁部が周壁部と同様に二分割構造とされていても良い。また、例えば、周壁部において入口側案内部30と出口側案内部52をそれぞれ別部品とすることもできる。 Although the embodiments of the present invention have been described above in detail, the present invention is not limited to the specific description. For example, the structure of the housing 12 is not necessarily limited to a structure that combines a peripheral wall portion, a lower wall portion, and an upper wall portion that are independent of each other. Specifically, the peripheral wall portion and the lower wall portion may be integrally formed, and the lower wall portion may have a two-part structure like the peripheral wall portion. Also, for example, the inlet side guide portion 30 and the outlet side guide portion 52 in the peripheral wall portion may each be separate parts.
 ハウジングは、必ずしも扁平な形状に限定されず、例えば、中空の立方体のような短軸方向を持たない形状であっても良い。また、ハウジングは、中空の矩形箱状に限定されず、例えば中空円板状などであっても良い。なお、ハウジングにおいて、互いに対向する第1側壁部と第2側壁部は、ハウジングにおける血液流通方向の両側に位置する側壁であって、ハウジング内に伝熱管などが収容配置されることから、直接に対向している必要はない。また、第1側壁部と第2側壁部は、互いに平行である必要はないし、互いに対称な形状である必要もない。 The housing is not necessarily limited to a flat shape, and may be, for example, a shape that has no minor axis direction, such as a hollow cube. Furthermore, the housing is not limited to a hollow rectangular box shape, and may be, for example, a hollow disk shape. Note that the first and second side walls facing each other in the housing are side walls located on both sides of the housing in the direction of blood flow, and do not need to face each other directly because a heat transfer tube and the like are housed and arranged within the housing. Furthermore, the first and second side walls do not need to be parallel to each other, and do not need to be symmetrical to each other.
 出口側案内部52は、略四角錘形状に限らず、例えばドーム状の丸みを帯びた形状でもよく、形状は限定されない。出口側案内部52がドーム状である場合は、第1~第3の傾斜面56,58,60に分かれることなく連続的に湾曲する壁面を備えた略半球状(円形ドーム状)の形態でもよい。 The outlet side guide section 52 is not limited to a substantially quadrangular pyramid shape, and may be, for example, a rounded dome shape, and the shape is not limited. If the outlet side guide section 52 is dome-shaped, it may be in the form of a substantially hemisphere (circular dome) with a wall surface that is continuously curved without being divided into the first to third inclined surfaces 56, 58, and 60.
 ガス交換膜116は、全体が非接着でハウジング12に組み付けられていてもよいが、少なくとも両側面においてハウジング12に対して非接着であればよい。 The gas exchange membrane 116 may be attached to the housing 12 in a non-adhered manner throughout, but it is sufficient that at least both sides are non-adhered to the housing 12.
 ガス交換膜116の両側縁部は、必ずしもハウジング12と支持部材90との間で圧縮支持されている必要はなく、例えば、ハウジング12だけによって圧縮支持されていてもよい。具体的には、例えば、ハウジング12の周壁部を構成する第2側壁部44において、第2連結壁部46,46の前端に支持部材の左右枠部に相当する突起を左右内方へ向けて突出するように設けることにより、ガス交換膜116の両側縁部を当該突起と後方突出部48,48とによって圧縮支持させることもできる。 The side edges of the gas exchange membrane 116 do not necessarily need to be compressed and supported between the housing 12 and the support member 90, and may be compressed and supported only by the housing 12. Specifically, for example, in the second side wall portion 44 constituting the peripheral wall portion of the housing 12, protrusions corresponding to the left and right frame portions of the support member can be provided at the front ends of the second connecting walls 46, 46 so as to protrude inwardly to the left and right, so that the side edges of the gas exchange membrane 116 can be compressed and supported by the protrusions and the rear protrusions 48, 48.
 前記実施形態では、ガス交換膜116の上下両端部分に接着部分119,119が設けられて、接着部分119,119においてガス交換膜116の両側面がハウジング12に接着されており、接着部分119,119を外れた上下方向の中間部分においてガス交換膜116の両側面がハウジング12に対して非接着とされた構造を例示したが、ガス交換膜116の両側面は、例えば、上下方向の全長に亘ってハウジング12に対して非接着とされていても良い。また、ガス交換膜116の両側面は、例えば中間部分が部分的にハウジング12に接着されていても良く、上下方向の少なくとも一部において非接着とされていれば良い。なお、ガス交換膜116の両側面は、ガス交換領域110における血液の流通領域と対応する上下位置において、ハウジング12に対して非接着とされていることが望ましい。 In the above embodiment, adhesive portions 119, 119 are provided at both upper and lower end portions of the gas exchange membrane 116, both sides of the gas exchange membrane 116 are adhered to the housing 12 at the adhesive portions 119, 119, and both sides of the gas exchange membrane 116 are not adhered to the housing 12 in the vertical middle portion outside the adhesive portions 119, 119. However, both sides of the gas exchange membrane 116 may be not adhered to the housing 12 over, for example, the entire length in the vertical direction. In addition, both sides of the gas exchange membrane 116 may be partially adhered to the housing 12 at, for example, the middle portion, as long as they are not adhered in at least a portion in the vertical direction. It is preferable that both sides of the gas exchange membrane 116 are not adhered to the housing 12 at the vertical positions corresponding to the blood circulation region in the gas exchange region 110.
 温度調節器114において、図17に示すような構造の伝熱管120を採用することもできる。伝熱管120は、内腔に撹拌板122が挿入された構造とされている。撹拌板122は、細長い板材であって、長手方向で複数の波形が連続して設けられた波板状とされている。撹拌板122は、伝熱管120の内腔に差し入れられている。そして、伝熱管120の内腔を流れる温度調節用流体が撹拌板122によって乱流を生じて、温度調節用流体が撹拌されることで伝熱管120内の温度が平均化される。これにより、より効率的な熱交換を実現することができる。なお、図17に示す構造の伝熱管120及び撹拌板122は、ポリウレタンやナイロン、PETなどの合成樹脂製やステンレスなどの金属製であることが望ましい。 In the temperature regulator 114, a heat transfer tube 120 having a structure as shown in FIG. 17 can also be used. The heat transfer tube 120 has a structure in which an agitator plate 122 is inserted into the inner cavity. The agitator plate 122 is a long and thin plate material, and has a corrugated shape with multiple corrugations continuously provided in the longitudinal direction. The agitator plate 122 is inserted into the inner cavity of the heat transfer tube 120. The temperature control fluid flowing through the inner cavity of the heat transfer tube 120 is turbulent due to the agitator plate 122, and the temperature control fluid is agitated, thereby averaging the temperature inside the heat transfer tube 120. This makes it possible to realize more efficient heat exchange. The heat transfer tube 120 and the agitator plate 122 having the structure shown in FIG. 17 are preferably made of synthetic resin such as polyurethane, nylon, or PET, or metal such as stainless steel.
 撹拌板の波板状とは、湾曲した波形が連続する形状だけに限定されず、例えば、複数箇所で角をなしてジグザグに折れ曲がった形状であっても良いし、複数の溝状断面が連続する形状であっても良い。要するに、撹拌板は、例えば、伝熱管を流れる温度調節用流体の流動方向と交差する凹凸を表面に有することによって、温度調節用流体に乱流を生ぜしめるものとされる。 The corrugated shape of the stirring plate is not limited to a shape with a continuous curved wave shape, but may be, for example, a shape with zigzag bends at multiple corners, or a shape with multiple continuous groove-like cross sections. In short, the stirring plate is intended to generate turbulence in the temperature control fluid by having, for example, irregularities on its surface that intersect with the flow direction of the temperature control fluid flowing through the heat transfer tube.
 例えば、血液の温度を検出する温度センサを挿し入れるための温度検出ポートや、血液を取り出すためのサンプリングポートなどを、ハウジング12、血液入口ポート32、血液出口ポート62などに追加で設けることもできる。 For example, a temperature detection port for inserting a temperature sensor to detect the temperature of the blood, a sampling port for extracting blood, etc. can be additionally provided on the housing 12, blood inlet port 32, blood outlet port 62, etc.
 前記実施形態で説明した人工肺10の向きは、使用状態における向きであって、例えば、使用前のプライミングを別の向きで行うことなども可能である。従って、患者の体外循環を実行する使用状態以外では、各ポート32,62,76,78,80,84の位置などは、特に限定されない。 The orientation of the oxygenator 10 described in the above embodiment is the orientation in the use state, and for example, priming before use can be performed in a different orientation. Therefore, the positions of the ports 32, 62, 76, 78, 80, 84 are not particularly limited except in the use state in which the patient's extracorporeal circulation is performed.
10 人工肺(第1実施形態)
12 ハウジング
14 第1壁部材
16 第2壁部材
18 底部材
20 蓋部材
22 第1側壁部
24 第1連結壁部
26 前方突出部
28 前方当接面
30 入口側案内部
32 血液入口ポート
34 入口管路接続部
36(36a~36c) 入口側ガイドフィン
38 周壁連結凸部
40 第1蓋連結凹部
42 第1底連結凹部
44 第2側壁部
46 第2連結壁部
48 後方突出部(挟持突起)
50 後方当接面
52 出口側案内部
54 頂点
56 第1傾斜面
58 第2傾斜面
60 第3傾斜面
62 血液出口ポート
64 出口管路接続部
66(66a~66e) 出口側ガイドフィン
68 周壁連結凹部
70 第2蓋連結凹部
72 第2底連結凹部
74 底連結凸部
76 温調流体入口ポート部
78 温調流体出口ポート部
80 ガス出口ポート
82 蓋連結凸部
84 ガス入口ポート部
88 第3側壁部
90 支持部材
92 枠内領域(接続領域)
94 位置決め突起
96 誤組付け防止部
98 中間突出部(挟持突起)
100 中間当接面
102 中間突出部
104 中間当接面
106 支持凹溝
108 温度調節領域
110 ガス交換領域
112 伝熱管
114 温度調節器
115 仕切片
116 ガス交換膜
118 ガス流路
119 接着部分
120 伝熱管(別実施形態)
122 撹拌板
10. Oxygenator (First embodiment)
12 Housing 14 First wall member 16 Second wall member 18 Bottom member 20 Lid member 22 First side wall portion 24 First connecting wall portion 26 Forward protrusion portion 28 Front abutment surface 30 Inlet side guide portion 32 Blood inlet port 34 Inlet pipeline connection portion 36 (36a to 36c) Inlet side guide fin 38 Peripheral wall connecting protrusion portion 40 First lid connecting recess 42 First bottom connecting recess 44 Second side wall portion 46 Second connecting wall portion 48 Rear protrusion portion (clamping protrusion)
50 Rear abutment surface 52 Outlet side guide portion 54 Vertex 56 First inclined surface 58 Second inclined surface 60 Third inclined surface 62 Blood outlet port 64 Outlet pipeline connection portion 66 (66a to 66e) Outlet side guide fin 68 Peripheral wall connecting recess 70 Second lid connecting recess 72 Second bottom connecting recess 74 Bottom connecting protrusion 76 Temperature regulating fluid inlet port portion 78 Temperature regulating fluid outlet port portion 80 Gas outlet port 82 Lid connecting protrusion 84 Gas inlet port portion 88 Third side wall portion 90 Support member 92 In-frame area (connection area)
94 Positioning protrusion 96 Misassembly prevention portion 98 Intermediate protrusion (clamping protrusion)
100 Intermediate contact surface 102 Intermediate protrusion 104 Intermediate contact surface 106 Support groove 108 Temperature adjustment area 110 Gas exchange area 112 Heat transfer tube 114 Temperature regulator 115 Partition piece 116 Gas exchange membrane 118 Gas flow path 119 Bonding portion 120 Heat transfer tube (another embodiment)
122 Stirring plate

Claims (10)

  1.  内部にガス交換領域を有するハウジングと、
     該ハウジングの該ガス交換領域に収容されてガス流路を形成するガス交換膜と、
     該ガス流路へ酸素を含む供給ガスを導入するガス入口ポートと、
     該ガス流路から二酸化炭素を含む排出ガスを導出するガス出口ポートと、
     該ハウジングの該ガス交換領域に血液を導入する血液入口ポートと、
     該ハウジングの該ガス交換領域から血液を導出する血液出口ポートと
    を、備えており、
     該ガス交換膜の両側面が該ハウジングに対して非接着で該ガス交換領域に収容され、
     該ガス交換膜の両側縁部は、該ガス交換膜に対する血液の通過方向において圧縮された状態で該ハウジングに取り付けられている人工肺。
    a housing having a gas exchange area therein;
    a gas exchange membrane that is accommodated in the gas exchange region of the housing and forms a gas flow path;
    a gas inlet port for introducing a feed gas comprising oxygen into the gas flow path;
    a gas outlet port for discharging exhaust gas containing carbon dioxide from the gas flow path;
    a blood inlet port for introducing blood into the gas exchange region of the housing;
    a blood outlet port for conducting blood from the gas exchange region of the housing;
    Both sides of the gas exchange membrane are accommodated in the gas exchange region without being attached to the housing;
    The oxygenator has both side edges of the gas exchange membrane attached to the housing in a compressed state in the direction in which blood passes through the gas exchange membrane.
  2.  前記ハウジングには、前記ガス交換膜を該ハウジング内で位置決めする支持部材が収容されており、
     該ガス交換膜の両側縁部は、該ガス交換膜に対する血液の通過方向で該ハウジングと該支持部材との間で圧縮支持されることにより該ハウジングに取り付けられている請求項1に記載の人工肺。
    The housing contains a support member for positioning the gas exchange membrane within the housing;
    2. The oxygenator of claim 1, wherein both side edges of said gas exchange membrane are attached to said housing by being compressed and supported between said housing and said support member in the direction of blood passage through said gas exchange membrane.
  3.  前記支持部材が枠状とされて、前記ガス交換膜の外周端部に全周に亘って重ね合わされている請求項2に記載の人工肺。 The artificial lung according to claim 2, wherein the support member is frame-shaped and overlaps the outer peripheral end of the gas exchange membrane over its entire circumference.
  4.  前記ガス交換膜は、多数の中空糸が並列的に束ねられた構造を有しており、
     該ガス交換膜は、各該中空糸の長さ方向の両端部分において前記ハウジングの周壁内面に接着されており、
     枠状とされた前記支持部材は、各該中空糸の長さ方向の両側において該ガス交換膜の接着部分に重ね合わされている請求項3に記載の人工肺。
    The gas exchange membrane has a structure in which a large number of hollow fibers are bundled in parallel,
    the gas exchange membrane is bonded to the inner surface of the peripheral wall of the housing at both end portions in the longitudinal direction of each of the hollow fibers;
    4. The oxygenator according to claim 3, wherein the frame-shaped support member is overlapped with the adhesive portion of the gas exchange membrane on both sides in the longitudinal direction of each of the hollow fibers.
  5.  前記ハウジングと前記支持部材には挟持突起がそれぞれ設けられて、前記ガス交換膜の両側縁部が該挟持突起の突出先端間で圧縮されており、
     該挟持突起の突出方向の投影における面積が前記ガス交換領域の同方向における面積に対して5~15%の範囲内とされている請求項2又は3に記載の人工肺。
    The housing and the support member are provided with clamping protrusions, and both side edges of the gas exchange membrane are compressed between the protruding tips of the clamping protrusions.
    4. The artificial lung according to claim 2, wherein the area of said clamping protrusions as projected in the protruding direction is within the range of 5 to 15% of the area of said gas exchange region in the same direction.
  6.  前記ハウジングと前記支持部材には挟持突起がそれぞれ設けられて、前記ガス交換膜の両側縁部が該挟持突起の突出先端間で圧縮されており、
     該挟持突起による該ガス交換膜の両側縁部の圧縮率が5~20%の範囲内とされている請求項2又は3に記載の人工肺。
    The housing and the support member are provided with clamping protrusions, and both side edges of the gas exchange membrane are compressed between the protruding tips of the clamping protrusions.
    4. The artificial lung according to claim 2 or 3, wherein the compression rate of both side edges of said gas exchange membrane by said pinching protrusions is within the range of 5 to 20%.
  7.  前記ハウジングと前記支持部材には前記ガス交換膜の側縁部を圧縮する挟持突起がそれぞれ設けられており、
     該挟持突起が突出方向に対する直交方向に連続して延びており、
     該ガス交換膜の側縁部が該挟持突起によって全長に亘って連続して圧縮されている請求項2又は3に記載の人工肺。
    The housing and the support member are each provided with a clamping protrusion for compressing a side edge portion of the gas exchange membrane,
    The clamping protrusion extends continuously in a direction perpendicular to the protruding direction,
    4. The artificial lung according to claim 2, wherein the side edges of said gas exchange membrane are continuously compressed over their entire length by said pinching protrusions.
  8.  前記ハウジングの内部に温度調節領域が設けられて、血液の温度を調節する温度調節器が該温度調節領域に収容されており、
     前記ガス交換領域と該温度調節領域とが前記ガス交換膜に対する血液の通過方向に並んで設けられており、
     該ガス交換領域と該温度調節領域との間に枠状の前記支持部材が配されており、
     該ガス交換領域と該温度調節領域を相互に接続する接続領域が、該支持部材の枠内領域によって形成されている請求項3又は4に記載の人工肺。
    a temperature control area is provided inside the housing, and a temperature regulator that controls the temperature of blood is accommodated in the temperature control area;
    the gas exchange region and the temperature control region are arranged side by side in a direction in which blood passes through the gas exchange membrane,
    The frame-shaped support member is disposed between the gas exchange area and the temperature control area,
    5. The oxygenator according to claim 3, wherein a connection region interconnecting said gas exchange region and said temperature control region is formed by an inner frame region of said support member.
  9.  前記接続領域による前記ガス交換領域と前記温度調節領域との離隔距離が5~20mmの範囲内とされている請求項8に記載の人工肺。 The artificial lung according to claim 8, wherein the separation distance between the gas exchange region and the temperature control region by the connection region is within a range of 5 to 20 mm.
  10.  前記ガス交換膜は、多数の中空糸が並列的に束ねられて所定の幅寸法及び厚さ寸法の矩形ブロック状とされており、各該中空糸の長さ方向に直交する該矩形ブロック状の該ガス交換膜の幅方向の両側縁部が厚さ方向で圧縮支持されることにより、該ガス交換膜の両側縁部が該ハウジングに対して非接着状態で取り付けられている請求項1又は2に記載の人工肺。 The oxygenator according to claim 1 or 2, wherein the gas exchange membrane is a rectangular block of a predetermined width and thickness, formed by bundling a large number of hollow fibers in parallel, and both side edges of the rectangular block-shaped gas exchange membrane in the width direction perpendicular to the length direction of each hollow fiber are compressed and supported in the thickness direction, so that both side edges of the gas exchange membrane are attached to the housing in a non-adhesive manner.
PCT/JP2023/046653 2023-01-06 2023-12-26 Artificial lung WO2024147315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-001299 2023-01-06
JP2023001299 2023-01-06

Publications (1)

Publication Number Publication Date
WO2024147315A1 true WO2024147315A1 (en) 2024-07-11

Family

ID=91803927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/046653 WO2024147315A1 (en) 2023-01-06 2023-12-26 Artificial lung

Country Status (1)

Country Link
WO (1) WO2024147315A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500139A (en) * 2001-08-23 2005-01-06 ミシガン クリティカル ケア コンサルタント,インコーポレイテッド Device for exchanging gas in liquid
WO2021075466A1 (en) * 2019-10-15 2021-04-22 ニプロ株式会社 Artificial lung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500139A (en) * 2001-08-23 2005-01-06 ミシガン クリティカル ケア コンサルタント,インコーポレイテッド Device for exchanging gas in liquid
WO2021075466A1 (en) * 2019-10-15 2021-04-22 ニプロ株式会社 Artificial lung

Similar Documents

Publication Publication Date Title
US5312589A (en) Gas transfer apparatus
EP0876170B1 (en) Blood oxygenator with heat exchanger
US5823987A (en) Compact membrane-type blood oxygenator with concentric heat exchanger
US5162101A (en) Oxygenator wedge configuration
US5195527A (en) Respiratory filters
EP0394221B1 (en) Outside perfusion type blood oxygenator
CA1191415A (en) Rigid shell expansible blood reservoir, heater and hollow fiber membrane oxygenator assembly
JPH0286817A (en) Hollow yarn-type fluid treating device
US5762869A (en) Blood oxygenator
JPS6339262B2 (en)
WO2021075466A1 (en) Artificial lung
WO2024147315A1 (en) Artificial lung
WO2024147316A1 (en) Artificial lung
EP2797682A1 (en) System for controlling the temperature of a bioreactor
JPH02213356A (en) Fluid treatment apparatus
CN114556030A (en) Frame for a 3D fabric through which liquid can flow, and assembly of such a frame and fabric
AU733288B2 (en) Blood oxygenator with heat exchanger
WO2019043722A1 (en) Oxygenator without integrated heat exchanger, with common heat exchanger for patient's systemic blood circulation and cardioplegia delivery system and methods thereof
US20130101465A1 (en) Device for treating blood in an extracorporeal circulation
CN220541266U (en) Float and humidifier with same
WO1999052621A1 (en) Integrated modular oxygenator
JPH0126983Y2 (en)
WO1985004002A1 (en) Heat exchanger for mass transfer device
AU4622601A (en) Blood oxygenator with heat exchanger