WO2024142863A1 - Work vehicle, self-propelled tank, and harvesting system - Google Patents

Work vehicle, self-propelled tank, and harvesting system Download PDF

Info

Publication number
WO2024142863A1
WO2024142863A1 PCT/JP2023/044105 JP2023044105W WO2024142863A1 WO 2024142863 A1 WO2024142863 A1 WO 2024142863A1 JP 2023044105 W JP2023044105 W JP 2023044105W WO 2024142863 A1 WO2024142863 A1 WO 2024142863A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
propelled
tank
propelled tank
harvest
Prior art date
Application number
PCT/JP2023/044105
Other languages
French (fr)
Japanese (ja)
Inventor
孝文 藤井
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022211005A external-priority patent/JP2024094462A/en
Priority claimed from JP2022211006A external-priority patent/JP2024094463A/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2024142863A1 publication Critical patent/WO2024142863A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/02Self-propelled combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D43/00Mowers combined with apparatus performing additional operations while mowing
    • A01D43/06Mowers combined with apparatus performing additional operations while mowing with means for collecting, gathering or loading mown material
    • A01D43/063Mowers combined with apparatus performing additional operations while mowing with means for collecting, gathering or loading mown material in or into a container carried by the mower; Containers therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D45/00Harvesting of standing crops
    • A01D45/04Harvesting of standing crops of rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/60Grain tanks

Definitions

  • This disclosure relates to a work vehicle, a self-propelled tank, and a harvesting system used in harvesting crops.
  • Patent Document 1 discloses a harvester that travels autonomously while harvesting crops in a field.
  • the harvester can harvest crops by traveling along a preset travel route in the field.
  • a self-propelled tank is a self-propelled tank that receives and stores harvested crops from a work vehicle that harvests crops while traveling through a field, and includes a traveling device that causes the self-propelled tank to travel, and a control device that controls the operation of the traveling device to cause the self-propelled tank to travel, the control device moves the self-propelled tank onto the body of the work vehicle, the self-propelled tank on the body receives the harvested crops discharged by the harvesting device of the work vehicle, and after receiving the harvested crops, the control device detaches the self-propelled tank from the body and moves it toward the destination of the harvested crops.
  • the general or specific aspects of the present disclosure may be realized by an apparatus, a system, a method, an integrated circuit, a computer program, or a computer-readable non-transitory storage medium, or any combination thereof.
  • the computer-readable storage medium may include a volatile storage medium or a non-volatile storage medium.
  • the apparatus may be composed of multiple devices. When the apparatus is composed of two or more devices, the two or more devices may be arranged in one device, or may be arranged separately in two or more separate devices.
  • FIG. 2 is a block diagram showing a configuration example of a harvester.
  • FIG. 2 is a block diagram showing an example of the configuration of a self-propelled tank.
  • 2 is a block diagram showing an example of the configuration of a management device and a terminal device;
  • FIG. 1 is a diagram showing a harvesting operation in which a harvester and a self-propelled tank are used to harvest crops in a field.
  • FIG. 2 is a diagram showing a harvester and a self-propelled tank performing harvesting operations.
  • FIG. 2 shows the self-propelled tank resting on the platform of the harvester.
  • FIG. 1 is a diagram showing a self-propelled tank storing harvested products of a predetermined weight or more.
  • FIG. 1 shows a self-propelled tank descending a slope.
  • the agricultural machine of this embodiment is a machine that harvests crops in a field.
  • the agricultural machine of this embodiment may be a mobile agricultural machine that can perform harvesting work while moving.
  • the agricultural machine is, for example, a work vehicle and an agricultural mobile robot that can harvest crops in a field.
  • a work vehicle such as a tractor and an implement attached to or towed by the work vehicle may function as a single "agricultural machine.”
  • FIG. 1 is a diagram for explaining an overview of a harvesting system 1 according to an exemplary embodiment of the present disclosure.
  • the harvesting system 1 shown in FIG. 1 includes a work vehicle 100, a self-propelled tank 200, a terminal device 400, and a management device 600.
  • the work vehicle 100 is, for example, a harvester. Below, an example in which the work vehicle 100 is a harvester will be described.
  • the harvester 100 of this embodiment is, for example, a combine harvester.
  • the harvester 100 harvests crops in a field, threshes the harvested crops, and discharges the harvested crops after threshing.
  • the crops in the field may be harvestable plants such as rice, wheat, corn, and soybeans, but are not limited thereto.
  • the self-propelled tank 200 of this embodiment is a tank that receives and stores the harvested crops discharged by the harvester 100, and is equipped with a traveling device and can travel using power generated by the tank itself.
  • the self-propelled tank 200 of this embodiment receives the harvested crops from the harvester 100 while mounted on the harvester 100.
  • the operation of the self-propelled tank 200 receiving the harvested crops from the harvester 100 while mounted on the harvester 100 will be described in detail later.
  • the self-propelled tank 200 may be a component of the harvester 100, or may be a machine independent of the harvester 100.
  • the harvester 100 and the self-propelled tank 200 are equipped with devices used for positioning or self-location estimation, such as a GNSS receiver and a LiDAR sensor.
  • the control devices of the harvester 100 and the self-propelled tank 200 automatically drive the harvester 100 and the self-propelled tank 200 based on the positions of the harvester 100 and the self-propelled tank 200 and information on the target route.
  • the harvester 100 and the self-propelled tank 200 may automatically drive along a road outside the field (e.g., a farm road or a public road) along the target route. In that case, the harvester 100 and the self-propelled tank 200 automatically drive along the road while utilizing data output from sensing devices such as a camera, an obstacle sensor, and a LiDAR sensor.
  • the environmental map is data that represents the positions or areas of objects present in the environment in which the harvester 100 and the self-propelled tank 200 move using a specified coordinate system.
  • An environmental map may be referred to simply as a map or map data.
  • the coordinate system that defines the environmental map may be a world coordinate system, such as a geographic coordinate system fixed relative to the Earth.
  • the management device 600 transmits the generated work plan, target route, and environmental map data to the harvester 100 and the self-propelled tank 200.
  • the harvester 100 and the self-propelled tank 200 automatically move and perform various tasks based on that data.
  • the harvester 100 includes a vehicle body 101 and a traveling device 102.
  • the traveling device 102 shown in the example is a crawler type traveling device, but it may also be a traveling device equipped with wheels with tires.
  • a cabin 110 is provided above the vehicle body 101.
  • the threshing device 105 threshes the harvested crops. Behind the threshing device 105, a straw waste processing device 108 is provided.
  • the straw waste processing device 108 cuts the stalks and other parts of the crop after the grains and other harvested products have been removed into small pieces and releases them to the outside.
  • the harvester 100 in this embodiment can operate in both a manual operation mode and an automatic operation mode.
  • the harvester 100 can run unmanned.
  • the harvester 100 can run unmanned while performing the operation of harvesting crops in a field.
  • the harvester 100 includes a prime mover (engine) 111 and a transmission 112. Inside the cabin 110, a driver's seat, operating levers, an operating terminal, and a group of switches for operation are provided.
  • the harvester 100 may include at least one sensing device that senses the environment around the harvester 100, and a control device that processes sensing data output from the at least one sensing device.
  • the harvester 100 includes multiple sensing devices.
  • the sensing devices may be a LiDAR sensor 125, a camera 126, and an obstacle sensor 127.
  • the cameras 126 may be installed, for example, on the front, back, left and right sides of the harvester 100.
  • the cameras 126 capture images of the environment around the harvester 100 and generate image data.
  • the images captured by the cameras 126 may be output to a control device mounted on the harvester 100 and transmitted to a terminal device 400 for remote monitoring.
  • the images may also be used to monitor the harvester 100 and its surroundings during unmanned operation.
  • the LiDAR sensor 125 illustrated in FIG. 2 is disposed at the front and rear of the harvester 100.
  • the LiDAR sensor 125 may also be disposed at the side of the harvester 100.
  • the harvester 100 may be provided with a plurality of LiDAR sensors disposed at different positions and in different orientations.
  • the LiDAR sensor 125 may be a 3D-LiDAR sensor, but may also be a 2D-LiDAR sensor.
  • the LiDAR sensor 125 senses the environment around the harvester 100 and outputs sensing data.
  • the LiDAR sensor 125 repeatedly outputs sensor data indicating the distance and direction to each measurement point of an object present in the surrounding environment, or the three-dimensional or two-dimensional coordinate values of each measurement point.
  • the sensor data output from the LiDAR sensor 125 is processed by the control device of the harvester 100.
  • the control device can estimate the self-position of the harvester 100 by matching the sensor data with an environmental map.
  • the control device can further detect obstacles and other objects present in the vicinity of the harvester 100 based on the sensor data.
  • the control device can also generate or edit an environmental map using algorithms such as Simultaneous Localization and Mapping (SLAM).
  • SLAM Simultaneous Localization and Mapping
  • the obstacle sensor 127 illustrated in FIG. 2 is provided on the side of the harvester 100.
  • the obstacle sensor 127 may also be located in other locations.
  • the obstacle sensor 127 may be provided on the front and rear of the harvester 100.
  • the obstacle sensor 127 may include, for example, a laser scanner or ultrasonic sonar.
  • the obstacle sensor 127 is used to detect surrounding obstacles during automatic driving and to stop or detour the harvester 100.
  • the LiDAR sensor 125 may be used as one of the obstacle sensors 127.
  • the harvester 100 shown in FIG. 2 is capable of manned operation, but may also be capable of unmanned operation only. In that case, the harvester 100 may not be provided with components that are only required for manned operation, such as the cabin 110, steering device, and driver's seat.
  • the unmanned harvester 100 can travel autonomously or by remote control by a user.
  • Figure 7 is a left side view that shows a schematic example of a self-propelled tank 200.
  • the self-propelled tank 200 may be equipped with multiple LiDAR sensors arranged in different positions and with different orientations.
  • the LiDAR sensor 225 illustrated in FIG. 7 is provided on the front, rear, left and right sides of the self-propelled tank 200.
  • the LiDAR sensor 225 may be a 3D-LiDAR sensor, but may also be a 2D-LiDAR sensor.
  • the LiDAR sensor 225 senses the environment surrounding the self-propelled tank 200 and outputs sensing data.
  • the LiDAR sensor 225 repeatedly outputs sensor data indicating the distance and direction to each measurement point of an object present in the surrounding environment, or the three-dimensional or two-dimensional coordinate values of each measurement point.
  • the control device of the self-propelled tank 200 may use sensing data acquired by sensing devices such as the camera 226 and/or LiDAR sensor 225 for positioning, in addition to the positioning results from the GNSS unit 220. If there are features that function as characteristic points in the environment in which the self-propelled tank 200 travels, the position and orientation of the self-propelled tank 200 can be estimated with high accuracy based on the data acquired by the camera 226 and/or LiDAR sensor 225 and an environmental map pre-stored in a storage device. The position of the self-propelled tank 200 can be identified with higher accuracy by correcting or supplementing the position data based on satellite signals using the data acquired by the camera 226 and/or LiDAR sensor 225.
  • the processing circuit 124 of the GNSS unit 120 corrects the positioning result by the GNSS receiver 121 based on the correction signal.
  • RTK-GNSS By using RTK-GNSS, it is possible to perform positioning with an accuracy of, for example, an error of several centimeters.
  • Position data including latitude, longitude, and altitude information is obtained by high-precision positioning using RTK-GNSS.
  • the GNSS unit 120 calculates the position of the harvester 100 at a frequency of, for example, about 1 to 10 times per second.
  • the positioning method is not limited to RTK-GNSS, and any positioning method (such as interferometric positioning or relative positioning) that can obtain position data with the required accuracy can be used.
  • positioning may be performed using a Virtual Reference Station (VRS) or a Differential Global Positioning System (DGPS). If position data with the required accuracy can be obtained without using a correction signal transmitted from a reference station, the position data may be generated without using a correction signal. In that case, the GNSS unit 120 does not need to be equipped with an RTK receiver 122.
  • VRS Virtual Reference Station
  • DGPS Differential Global Positioning System
  • the processing circuit 124 can measure the position and orientation of the harvester 100 at a higher frequency (e.g., 10 Hz or more).
  • a higher frequency e.g. 10 Hz or more.
  • a three-axis acceleration sensor and a three-axis gyroscope may be provided separately.
  • the IMU 123 may be provided as a separate device from the GNSS unit 120.
  • RAM 162 provides a working area for temporarily expanding the control program stored in ROM 163 at boot time.
  • RAM 162 does not need to be a single storage medium, but may be a collection of multiple storage media.
  • the storage device 164 includes one or more storage media such as a flash memory or a magnetic disk.
  • the storage device 164 stores various data generated by the GNSS unit 120, the LiDAR sensor 125, the camera 126, the obstacle sensor 127, the sensor group 150, and the control device 160.
  • the data stored in the storage device 164 may include map data (environmental map) of the environment in which the harvester 100 travels, and data of a target route for automatic driving.
  • the environmental map includes information on multiple farm fields in which the harvester 100 performs agricultural work and the roads in the surrounding areas.
  • the environmental map and the target route may be generated by a processor in the management device 600.
  • the control device 160 may have a function of generating or editing the environmental map and the target route.
  • the control device 160 can edit the environmental map and the target route acquired from the management device 600 according to the travel environment of the harvester 100.
  • the storage device 164 also stores data on the work plan received by the communication device 190 from the management device 600.
  • the control device 160 includes multiple ECUs 165-167.
  • the ECU 165 controls the driving speed and turning operation of the harvester 100 by controlling the prime mover 111, the transmission 112, the traveling gear 102, and the like included in the drive device 140.
  • the ECU 166 may determine the destination of the harvester 100 based on the work plan stored in the memory device 164, and may determine a target route from the start point of the movement of the harvester 100 to the destination point.
  • the ECU 166 may perform a process to detect objects located around the harvester 100 based on data output from the LiDAR sensor 125, the camera 126, and the obstacle sensor 127.
  • control device 160 allows the control device 160 to realize automatic driving and crop harvesting operations.
  • control device 160 controls the drive device 140 based on the measured or estimated position of the harvester 100 and the target route. This allows the control device 160 to drive the harvester 100 along the target route.
  • the operation terminal 131 is a terminal through which the user performs operations related to the traveling of the harvester 100 and the operation of the self-propelled tank 200, and is also called a virtual terminal (VT).
  • the operation terminal 131 may have a display device such as a touch screen, and/or one or more buttons.
  • the display device may be, for example, a liquid crystal or organic light-emitting diode (OLED) display.
  • OLED organic light-emitting diode
  • the operation terminal 131 may be configured to be removable from the harvester 100.
  • a user located away from the harvester 100 may operate the detached operation terminal 131 to control the operation of the harvester 100.
  • the user may operate a computer on which necessary application software is installed, such as a terminal device 400, instead of the operation terminal 131 to control the operation of the harvester 100.
  • FIG. 10 is a block diagram showing an example configuration of the self-propelled tank 200.
  • the self-propelled tank 200 can communicate with the terminal device 400 and the management device 600 via the network 80.
  • the self-propelled tank 200 illustrated in FIG. 10 includes a GNSS unit 220, a LiDAR sensor 225, a camera 226, an obstacle sensor 227, a buzzer 233, a drive unit 240, a group of sensors 250, a control unit 260, and a communication unit 290. These components are connected to each other via a bus so that they can communicate with each other.
  • the GNSS receiver 221 provided in the GNSS unit 220 receives satellite signals transmitted from multiple GNSS satellites and generates GNSS data based on the satellite signals.
  • the positioning method is not limited to RTK-GNSS, and any positioning method (such as interferometric positioning or relative positioning) that can obtain position data with the required accuracy can be used.
  • positioning may be performed using VRS or DGPS. If position data with the required accuracy can be obtained without using a correction signal transmitted from a reference station, position data may be generated without using a correction signal. In that case, the GNSS unit 220 does not need to be equipped with an RTK receiver 222.
  • the position of the self-propelled tank 200 is estimated by other methods rather than relying on signals from the RTK receiver 222.
  • the position of the self-propelled tank 200 can be estimated by matching data output from the LiDAR sensor 225 and/or camera 226 with a high-precision environmental map.
  • the IMU 223 may include a three-axis acceleration sensor and a three-axis gyroscope.
  • the IMU 223 may include an orientation sensor such as a three-axis geomagnetic sensor.
  • the IMU 223 functions as a motion sensor and can output signals indicating various quantities such as the acceleration, speed, displacement, and attitude of the self-propelled tank 200.
  • the processing circuit 224 can estimate the position and orientation of the self-propelled tank 200 with higher accuracy based on the signal output from the IMU 223 in addition to the satellite signal and correction signal.
  • the signal output from the IMU 223 can be used to correct or complement the position calculated based on the satellite signal and correction signal.
  • the IMU 223 outputs signals at a higher frequency than the GNSS receiver 221.
  • the processing circuit 224 can measure the position and orientation of the self-propelled tank 200 at a higher frequency (e.g., 10 Hz or more).
  • a higher frequency e.g. 10 Hz or more.
  • a three-axis acceleration sensor and a three-axis gyroscope may be provided separately.
  • the IMU 223 may be provided as a device separate from the GNSS unit 220.
  • the camera 226 is an imaging device that captures the environment around the self-propelled tank 200.
  • the camera 226 includes an image sensor such as a CCD or CMOS.
  • the camera 226 may also include an optical system including one or more lenses, and a signal processing circuit.
  • the camera 226 captures the environment around the self-propelled tank 200 while the self-propelled tank 200 is traveling, and generates image (e.g., video) data.
  • the camera 226 can capture video at a frame rate of, for example, 3 (fps) or more.
  • the images generated by the camera 226 can be used, for example, when a remote observer uses the terminal device 400 to check the environment around the self-propelled tank 200.
  • the images generated by the camera 226 may be used for positioning or obstacle detection.
  • the rotation sensor 252 measures the rotation speed of the axle of the traveling device 203, i.e., the number of rotations per unit time.
  • the rotation sensor 252 may be, for example, a sensor that uses a magnetoresistive element (MR), a Hall element, or an electromagnetic pickup.
  • the rotation sensor 252 outputs, for example, a numerical value indicating the number of rotations per minute (unit: rpm) of the axle.
  • the rotation sensor 252 is used, for example, to measure the speed of the self-propelled tank 200.
  • the buzzer 233 is an audio output device that emits a warning sound to notify of an abnormality. For example, the buzzer 233 emits a warning sound when an obstacle is detected during automatic driving.
  • the buzzer 233 is controlled by the control device 260.
  • the processor 261 may be, for example, a semiconductor integrated circuit including a central processing unit (CPU).
  • the ROM 263 may be, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read-only memory.
  • the RAM 262 provides a working area for loading the control program stored in the ROM 263 once at boot time.
  • the detailed configurations of the processor 261, RAM 262, and ROM 263 are similar to those of the processor 161, RAM 162, and ROM 163, and therefore a detailed description thereof will be omitted here.
  • the ECU 265 performs calculations and control to realize autonomous driving based on data output from the GNSS unit 220, the camera 226, the obstacle sensor 227, the LiDAR sensor 225, the sensor group 250, and the processor 261. For example, the ECU 265 identifies the position of the self-propelled tank 200 based on data output from at least one of the GNSS unit 220, the camera 226, and the LiDAR sensor 225. In a field, the ECU 265 may determine the position of the self-propelled tank 200 based only on data output from the GNSS unit 220. The ECU 265 may estimate or correct the position of the self-propelled tank 200 based on data acquired by the camera 226 and/or the LiDAR sensor 225.
  • the ECU 266 may determine the destination of the self-propelled tank 200 based on the work plan stored in the memory device 264, and may determine a target route from the start point of the movement of the self-propelled tank 200 to the destination point.
  • the ECU 266 may perform a process to detect objects located in the vicinity of the self-propelled tank 200 based on data output from the LiDAR sensor 225, the camera 226, and the obstacle sensor 227.
  • the control device 260 realizes automatic driving through the operation of these ECUs 265, 266. During automatic driving, the control device 260 controls the drive device 240 based on the measured or estimated position of the self-propelled tank 200 and the target route. This allows the control device 260 to drive the self-propelled tank 200 along the target route.
  • the multiple ECUs included in the control device 260 can communicate with each other according to a vehicle bus standard such as CAN.
  • a faster communication method such as in-vehicle Ethernet (registered trademark) may be used instead of CAN.
  • each of the ECUs 265 and 266 is shown as an individual block, but the functions of each of these may be realized by multiple ECUs.
  • a computer that integrates at least some of the functions of the ECUs 265 and 266 may be provided.
  • the control device 260 may include ECUs other than the ECUs 265 and 266, and any number of ECUs may be provided depending on the functions.
  • Each ECU includes a processing circuit including one or more processors.
  • the processor 261 may be integrated with any of the ECUs included in the control device 260.
  • FIG. 11 is a block diagram illustrating the hardware configuration of the management device 600 and the terminal device 400.
  • the storage device 650 mainly functions as database storage.
  • the storage device 650 may be, for example, a magnetic storage device or a semiconductor storage device.
  • the storage device 650 may be a device independent of the management device 600.
  • the storage device 650 may be a storage device connected to the management device 600 via the network 80, such as a cloud storage device.
  • FIG. 12 is a diagram showing a harvesting operation in which a harvester 100 and a self-propelled tank 200 are used to harvest crops in a field 70.
  • FIG. 13 is an enlarged view of the harvester 100 and the self-propelled tank 200 performing the harvesting operation.
  • the harvester 100 of this embodiment harvests crops while traveling in an automatic manner in the field 70.
  • the harvester 100 performs an operation of harvesting crops while traveling along a preset target route 73.
  • the positioning of the harvester 100 is performed mainly based on data output from the GNSS unit 120.
  • the position of the harvester 100 may be estimated based on data output from the LiDAR sensor 125 and/or the camera 126.
  • the field 70 includes a work area 71 where the harvester 100 harvests crops, and a headland 72 located near the outer periphery of the field 70.
  • the user can set in advance which areas of the field 70 on the map correspond to the work area 71 and the headland 72.
  • the harvester 100 automatically travels from the start point of the work to the end point of the work along a target route 73 as shown in FIG. 12.
  • the target route 73 shown in FIG. 12 is merely an example, and the method of defining the target route 73 is arbitrary.
  • the target route 73 may be created based on a user's operation, or may be created automatically.
  • the target route 73 may be created, for example, so as to cover the entire work area 71 in the field 70.
  • the self-propelled tank 200 of this embodiment receives the harvested product discharged from the discharge device 107 while mounted on the platform 115 of the harvester 100 and stores it in the tank 201.
  • the processor 261 of the self-propelled tank 200 calculates the geographic coordinates of a position adjacent to the rear of the harvester 100 based on the geographic coordinates and orientation information of the harvester 100, and sets the calculated geographic coordinate position as the target position. Since the position of the traveling harvester 100 changes, the target position is updated as needed.
  • the processor 261 drives the self-propelled tank 200 to reach the latest target position. This allows the self-propelled tank 200 to reach a position adjacent to the rear of the harvester 100.
  • the processor 261 controls the driving of the self-propelled tank 200 via the ECU 265.
  • the processor 261 controls the operation of the driving device 203 via the ECU 265 to drive the self-propelled tank 200.
  • the three-dimensional point cloud data output by the LiDAR sensor 225 of the self-propelled tank 200 includes information about the positions of multiple points and information (attribute information) such as the reception intensity of the photodetector.
  • the information about the positions of multiple points is, for example, information about the emission direction of the laser pulse corresponding to the point and the distance between the LiDAR sensor and the point.
  • the information about the positions of multiple points is information about the coordinates of the points in a local coordinate system.
  • the local coordinate system is a coordinate system that moves together with the self-propelled tank 200, and is also referred to as the sensor coordinate system.
  • the coordinates of each point can be calculated from the emission direction of the laser pulse corresponding to the point and the distance between the LiDAR sensor and the point.
  • the processor 261 controls sensing of the slope 171 of the harvester 100 using a sensing device.
  • the slope 171 is sensed using the LiDAR sensor 225.
  • the three-dimensional point cloud data output by the LiDAR sensor 225 includes, for example, information on the coordinates of each of the multiple points in the local coordinate system.
  • the processor 261 causes the self-propelled tank 200 to travel up the slope 171. This allows the self-propelled tank 200 to stand on the platform 115.
  • the processor 261 changes the direction of the self-propelled tank 200a so that the self-propelled tank 200a can travel in the direction of the slope 172.
  • the self-propelled tank 200 shown in the example is equipped with a crawler-type running device 203.
  • the processor 261 can change the direction of the self-propelled tank 200 by making the rotational speeds of the left and right wheels equipped with endless tracks different from each other or by making the rotational directions of the left and right wheels different from each other.
  • the self-propelled tank 200 is changed in direction by rotating the left and right wheels equipped with endless tracks in opposite directions at the same rotational speed.
  • the processor 261 moves the self-propelled tank 200a back to the position of the harvester 100. Based on the geographic coordinates and orientation information of the harvester 100, the processor 261 sets a position adjacent to the rear of the harvester 100 as the target position, and drives the self-propelled tank 200a to reach the target position. This allows the self-propelled tank 200a to reach a position from which it can climb the slope 171 of the harvester 100.
  • the processor 161 When the processor 161 receives the permission information, it causes the discharge device 107 to discharge the harvested product 270.
  • the harvested product 270 discharged from the discharge port 117 enters the tank 201 of the self-propelled tank 200b and is stored in the tank 201.
  • FIG. 18 is a diagram showing a self-propelled tank 200b that has stored therein harvest 270 that is equal to or greater than a predetermined weight.
  • FIG. 20 is a diagram showing self-propelled tank 200c positioned at a receiving position to receive harvest 270, and self-propelled tank 200a positioned behind self-propelled tank 200c.
  • the self-propelled tank 200c that has been detached from the harvester 100 travels from the self-propelled tank 200c to the destination of the harvested product, similar to the self-propelled tanks 200a and 200b.
  • the processor 261 of the self-propelled tank 200c drives the self-propelled tank 200c through the field 70 to reach a position where the transport vehicle 300 is waiting.
  • the self-propelled tank 200c that has reached the position of the transport vehicle 300 transfers the harvested products to the transport vehicle 300.
  • the processor 261 of the self-propelled tank 200c moves the self-propelled tank 200c that has completed unloading the harvested products back to the position of the harvester 100.
  • FIG. 21 shows a self-propelled tank 200 moving to a storage shed 78 for storing harvested products.
  • a target route 77 for moving from the field 70 to the storage shed 78 is set in advance.
  • the target route 77 is stored in advance, for example, in the memory device 264 of the self-propelled tank 200.
  • the processor 261 automatically drives the self-propelled tank 200 along the target route 77.
  • the self-propelled tank 200 When the self-propelled tank 200 arrives at the storage facility 78, the harvested product in the tank 201 is transferred to the storage facility 78. With the tank 201 now empty, the self-propelled tank 200 may travel along the same route as the target route 77 to the position of the harvester 100 in the field 70. This allows the self-propelled tank 200 to receive the harvested product from the harvester 100 again.
  • FIG. 22 is a diagram showing a harvesting operation in which multiple harvesters 100 and multiple self-propelled tanks 200 are used to harvest crops in multiple fields 70.
  • a harvester 100 to which the self-propelled tank 200 is to be moved is selected from among the multiple harvesters 100.
  • FIG. 23 is a flowchart showing an example of a process for selecting a harvester 100 to which the self-propelled tank 200 is to be moved from among the multiple harvesters 100.
  • the harvesters 100a-100f shown in FIG. 22 are examples of harvesters 100.
  • the self-propelled tanks 200a-200h shown in FIG. 22 are examples of self-propelled tanks 200.
  • the process shown in FIG. 23 is mainly performed by the processor 660 of the management device 600, but may also be performed by the processor 460 of the terminal device 400 or the processor 261 of the self-propelled tank 200. These processors may work together to perform these processes.
  • the processor 261 of each of the multiple self-propelled tanks 200 transmits weight information indicating the weight of the harvested crop in the tank 201 detected by the load sensor 256 to the management device 600 via the communication device 290.
  • the processor 660 of the management device 600 can check the availability of the tank 201 of each of the multiple self-propelled tanks 200 based on the weight information.
  • the processor 660 determines the target self-propelled tank 200 to be moved among the multiple self-propelled tanks 200 (step S101).
  • the target self-propelled tank 200 to be moved is, for example, a self-propelled tank 200 that has free capacity to newly store harvested products.
  • the processor 660 selects from among the multiple self-propelled tanks 200 a self-propelled tank 200 whose free space for newly storing harvested goods is equal to or greater than a first predetermined amount.
  • the first predetermined amount is, for example, 50-100% of the maximum weight of harvested goods that can be stored in the tank 201, but is not limited to this value.
  • the processor 660 may select from among the multiple self-propelled tanks 200 a self-propelled tank 200 that already stores therein less than a second predetermined amount.
  • the second predetermined amount is, for example, 30-50% of the maximum weight of harvested goods that can be stored in the tank 201, but is not limited to this value.
  • the processor 660 selects one or more self-propelled tanks 200 that satisfy these conditions as the self-propelled tanks 200 to be moved.
  • the harvested goods harvested by the harvester 100 can be efficiently transferred to the self-propelled tank 200.
  • the processor 660 selects the self-propelled tanks 200a and 200d as the self-propelled tanks 200 to be moved.
  • the self-propelled tank 200a is a self-propelled tank that has just transferred the harvest to the transport vehicle 300.
  • the self-propelled tank 200d is a self-propelled tank that has just transferred the harvest to the storage facility 78.
  • the processor 660 acquires geographic coordinate information of the position of the self-propelled tank 200a as self-propelled tank position information indicating the position of the self-propelled tank 200a (step S102). In addition, it acquires geographic coordinate information of the positions of the multiple harvesters 100 as harvester position information indicating the positions of the multiple harvesters 100 (step S103).
  • the processor 660 uses the self-propelled tank position information and the harvester position information to calculate the distance between the self-propelled tank 200a and each of the multiple harvesters 100.
  • the areas in the field 70 and on the roads 76 in which the self-propelled tank 200 can travel are determined in advance.
  • the self-propelled tank 200 may also be allowed to travel in areas of the field 70 where crops have already been harvested.
  • the processor 660 sets multiple travel routes from the self-propelled tank 200a to each of the multiple harvesters 100 in the areas in the field 70 and on the roads 76 in which the self-propelled tank 200 can travel.
  • the processor 660 calculates the distance of each of the multiple travel routes. Note that the straight-line distance between the self-propelled tank 200a and each of the multiple harvesters 100 may also be calculated.
  • the processor 660 selects a harvester 100 that is closer to the self-propelled tank 200a than the harvester 100 that is farther away, and determines the selected harvester 100 as the destination of the self-propelled tank 200a (step S104). For example, the processor 660 determines the harvester 100b that is the closest distance from the self-propelled tank 200a as the destination of the self-propelled tank 200a. By determining the harvester 100 that is the closest distance from the self-propelled tank 200 to be moved as the destination of the self-propelled tank 200, the harvested product harvested by the harvester 100 can be efficiently transferred to the self-propelled tank 200.
  • the processor 660 transmits a command to the self-propelled tank 200a via the communication device 690 to move the self-propelled tank 200a to the position of the harvester 100b.
  • the processor 660 also transmits information indicating that the destination of the self-propelled tank 200a has been determined to be the harvester 100b via the communication device 690.
  • the processor 261 of the self-propelled tank 200a moves the self-propelled tank 200a to the position of the harvester 100b in response to the command received from the management device 600 (step S105).
  • the harvester 100b and the self-propelled tank 200a communicate data with each other via the communication devices 190 and 290.
  • the processor 161 of the harvester 100b transmits the geographic coordinate information of the position of the harvester 100b and the information of the direction in which the harvester 100b is facing, obtained from the GNSS unit 120, to the self-propelled tank 200a via the communication device 190.
  • the processor 261 of the self-propelled tank 200a calculates the geographic coordinates of a position adjacent to the rear of the harvester 100b based on the geographic coordinates and orientation information of the harvester 100b, and sets the calculated geographic coordinate position as the target position. Since the position of the traveling harvester 100b changes, the target position is updated as needed.
  • the processor 261 drives the self-propelled tank 200a to reach the latest target position. This allows the self-propelled tank 200a to reach a position adjacent to the rear of the harvester 100b.
  • the processor 261 drives the self-propelled tank 200a to climb the slope 171 of the harvester 100b. This allows the self-propelled tank 200a to stand on the platform 115 of the harvester 100b and receive the harvest from the harvester 100b.
  • the processor 660 acquires geographic coordinate information of the position of the self-propelled tank 200d as self-propelled tank position information indicating the position of the self-propelled tank 200d (step S102). In addition, the processor 660 acquires geographic coordinate information of the positions of the multiple harvesters 100 as harvester position information indicating the positions of the multiple harvesters 100 (step S103).
  • the processor 660 uses the self-propelled tank position information and the harvester position information to calculate the distance between the self-propelled tank 200d and each of the multiple harvesters 100.
  • the processor 660 sets multiple driving routes from the self-propelled tank 200d to each of the multiple harvesters 100 in the areas of the field 70 and roads 76 where the self-propelled tank 200 can travel.
  • the processor 660 calculates the distance of each of the multiple driving routes.
  • the processor 660 selects a harvester 100 that is closer to the self-propelled tank 200d than a harvester 100 that is farther from the self-propelled tank 200d, and determines the selected harvester 100 as the destination of the self-propelled tank 200d (step S104). For example, the processor 660 determines the harvester 100c that is closest to the self-propelled tank 200d as the destination of the self-propelled tank 200d.
  • the processor 660 transmits a command to the self-propelled tank 200d via the communication device 690 to move the self-propelled tank 200d to the position of the harvester 100c.
  • the processor 660 also transmits information indicating that the destination of the self-propelled tank 200d has been determined to be the harvester 100c via the communication device 690.
  • the processor 261 of the self-propelled tank 200d moves the self-propelled tank 200d to the position of the harvester 100c in response to the command received from the management device 600 (step S105).
  • the processor 161 of the harvester 100c transmits the geographic coordinate information of the position of the harvester 100c obtained from the GNSS unit 120 and the information on the direction in which the harvester 100c is facing to the self-propelled tank 200d via the communication device 190.
  • the processor 261 of the self-propelled tank 200d calculates the geographic coordinates of a position adjacent to the rear of the harvester 100c based on the geographic coordinates and orientation information of the harvester 100c, and sets the calculated geographic coordinate position as the target position. Since the position of the traveling harvester 100c changes, the target position is updated as needed.
  • the processor 261 drives the self-propelled tank 200d to reach the latest target position. This allows the self-propelled tank 200d to reach a position adjacent to the rear of the harvester 100c.
  • the processor 261 drives the self-propelled tank 200d to climb the slope 171 of the harvester 100c. This allows the self-propelled tank 200d to stand on the platform 115 of the harvester 100c and receive the harvest from the harvester 100c.
  • the processor 660 may determine a harvester 100 that is a predetermined distance or less from the self-propelled tank 200 to be moved as the destination of the self-propelled tank 200.
  • the predetermined distance may be set appropriately depending on the size of the field 70 and the travelable distance of the self-propelled tank 200. This prevents the self-propelled tank 200 from heading toward a distant harvester 100, and directs the self-propelled tank 200 toward a harvester 100 that is relatively close to the self-propelled tank 200, thereby enabling efficient transfer of harvested products from the harvester 100 to the self-propelled tank 200.
  • the self-propelled tank position information described above includes information indicating the respective positions of the two or more selected self-propelled tanks 200.
  • the processor 660 determines one or more harvesters 100 to which each of the two or more selected self-propelled tanks 200 is to be moved, based on the self-propelled tank position information and the harvester position information. Depending on the conditions, the destination of two or more self-propelled tanks 200 may be the same harvester 100.
  • the harvested products harvested by the harvester 100 can be efficiently transferred to the self-propelled tanks 200.
  • the processor 161 of each of the multiple harvesters 100 transmits availability information indicating the availability of space on the platform 115 for the self-propelled tank 200 to the management device 600 via the communication device 190.
  • the processor 161 can check the availability of space on the platform 115 for the self-propelled tank 200, for example, using sensor data output from the camera 126 and/or LiDAR sensor 125.
  • the processor 660 of the management device 600 can check the availability of space on the platform 115 for each of the multiple self-propelled tanks 200 based on the availability information.
  • steps S101 and S102 shown in FIG. 24 is the same as the processing of steps S101 and S102 shown in FIG. 23.
  • the processor 660 selects one or more harvesters 100 that can newly accommodate the self-propelled tank 200a from among the multiple harvesters 100 based on the acquired availability information (step S110).
  • the processor 660 acquires geographic coordinate information of the positions of the one or more harvesters 100 selected in step S110 as harvester position information (step S111).
  • the processor 660 uses the self-propelled tank position information and the harvester position information to calculate the distance between the self-propelled tank 200a and each of the one or more selected harvesters 100.
  • the processing of steps S112 and S113 is the same as the processing of steps S104 and S105 shown in FIG. 23.
  • the harvester 100 to which the self-propelled tank 200 can be newly loaded is determined as the destination of the self-propelled tank 200. This makes it possible to prevent the self-propelled tank 200 from being moved to a harvester 100 to which the self-propelled tank 200 cannot be newly loaded.
  • the management device 600 determines the harvester 100 to which the self-propelled tank 200 to be moved is to be moved, but the self-propelled tank 200 itself may determine the harvester 100 to which it is to be moved.
  • the processor 161 of each of the multiple harvesters 100 transmits availability information indicating the availability of space on the platform 115 for the self-propelled tank 200 to the self-propelled tank 200 via the communication device 190.
  • the processor 261 of the self-propelled tank 200 can check the availability of space on the platform 115 for each of the multiple self-propelled tanks 200 based on the availability information.
  • That harvester 100 may be carrying a self-propelled tank 200 that has harvested goods stored up to halfway the capacity of the tank 201. Such a self-propelled tank 200 may be detached from that harvester 100 and directed toward the location of another harvester 100. The self-propelled tank 200 can receive new harvested goods from the other harvester 100, allowing for efficient harvesting operations.
  • processors 161 and 261 in harvesting system 1 may be performed by other devices.
  • Such other devices may be at least one of processor 660 of management device 600, processor 460 of terminal device 400, and operation terminal 131. In that case, the processor of such other devices may be included in the control device and processing device of harvesting system 1.
  • a harvesting device for harvesting crops from a field a plurality of self-propelled tanks capable of self-propelling and receiving and storing the harvested product from the harvesting device;
  • a vehicle body capable of mounting the plurality of self-propelled tanks; Equipped with A first self-propelled tank, which is one of the multiple self-propelled tanks, stops at a receiving position that is a position determined on the vehicle body and receives the harvest, receives the harvest discharged by the harvesting device, and after receiving the harvest, detaches from the vehicle body and moves toward the destination of the harvest.
  • the self-propelled tank that stores the harvested products detaches from the work vehicle and moves towards the destination of the harvested products. There is no need to move the work vehicle itself to the destination of the harvested products (such as a transport vehicle waiting at the outer edge of the field). There is no need to interrupt the harvesting work of the work vehicle, and crops can be harvested efficiently.
  • the control device of the second self-propelled tank controls the running device of the second self-propelled tank so that, when moving the second self-propelled tank toward the destination of the harvest, the second self-propelled tank detaches from the vehicle body and moves toward the destination.
  • the first self-propelled tank returns to the harvest receiving position to receive the harvest again, allowing the harvest to be efficiently discharged from the harvesting device.
  • the second self-propelled tank moves to the position of the vehicle body after discharging the harvest at the destination of the harvest,
  • the work vehicle according to item A3 which re-accepts the harvested material discharged by the harvesting device at the receiving position.
  • the first self-propelled tank receives the harvested product at the receiving position, and then moves to a position on the vehicle body other than the receiving position;
  • the work vehicle described in item A2 or A3 wherein the second self-propelled tank moves to the receiving position as the first self-propelled tank moves to the other position.
  • the harvested crop can be transferred to multiple self-propelled tanks in succession, allowing the harvested crop to be efficiently discharged from the harvesting device.
  • the self-propelled tank can be driven up a slope and mounted on and disembarked from a platform installed on the work vehicle.
  • the self-propelled tank returns to the work vehicle's body to pick up the harvest again, allowing the harvester to efficiently unload the harvest.
  • the processing device includes: Calculating a distance between the self-propelled tank to be moved and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information; A harvesting system as described in item B1 or B2, in which an agricultural machine that is a predetermined distance or less away from the self-propelled tank to be moved is determined as the destination of the self-propelled tank to be moved.
  • a self-propelled tank that receives and stores crops from at least one of a plurality of agricultural machines that harvest crops while traveling in a farm field, A traveling device for traveling the self-propelled tank; A control device that controls the operation of the traveling device to automatically travel the self-propelled tank; Equipped with The control device includes: determining an agricultural machine to which the self-propelled tank is to be moved from among the plurality of agricultural machines based on self-propelled tank position information indicating the position of the self-propelled tank and agricultural machine position information indicating the positions of the plurality of agricultural machines; A self-propelled tank that moves the self-propelled tank to the determined position of the agricultural machine.
  • the control device includes: selecting one or more agricultural machines on which the self-propelled tank can be newly mounted from among the plurality of agricultural machines; A self-propelled tank as described in item B17, which determines an agricultural machine to which the self-propelled tank is to be moved from among the one or more selected agricultural machines.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Harvesting Machines For Root Crops (AREA)

Abstract

A work vehicle according to one embodiment comprises a harvesting device for harvesting a crop from a field, a plurality of self-propelled tanks that are able to travel autonomously and are able to receive the harvested crop from the harvesting device and store the harvested crop, and a vehicle body on which the plurality of self-propelled tanks can be mounted. A first self-propelled tank that is one of the plurality of self-propelled tanks stops at a receiving position that is a predetermined position on the vehicle body for receiving the harvested crop and receives the harvested crop discharged from the harvesting device, and after receiving the harvested crop, withdraws from the vehicle body and moves toward a transport destination of the harvested crop.

Description

作業車両、自走式タンクおよび収穫システムWork vehicles, self-propelled tanks and harvesting systems
 本開示は、作物の収穫に用いられる作業車両、自走式タンクおよび収穫システムに関する。 This disclosure relates to a work vehicle, a self-propelled tank, and a harvesting system used in harvesting crops.
 次世代農業として、ICT(Information and Communication Technology)およびIoT(Internet of Things)を活用したスマート農業の研究開発が進められている。圃場で使用されるトラクタおよび収穫機などの農業機械の自動化および無人化に向けた研究開発も進められている。例えば、精密な測位が可能なGNSS(Global Navigation Satellite System)などの測位システムを利用して圃場内を自動運転で走行しながら農作業を行う農業機械が実用化されてきている。 As the next generation of agriculture, research and development is underway into smart agriculture that utilizes ICT (Information and Communication Technology) and IoT (Internet of Things). Research and development is also underway to automate and unmanned agricultural machinery such as tractors and harvesters used in fields. For example, agricultural machinery that uses positioning systems such as GNSS (Global Navigation Satellite System), which allows precise positioning, to drive autonomously within fields while performing agricultural work is now being put into practical use.
 特許文献1は、圃場の作物を収穫しながら自動運転で走行する収穫機を開示している。収穫機は、圃場内の予め設定された走行経路を走行することで、作物を収穫することができる。 Patent Document 1 discloses a harvester that travels autonomously while harvesting crops in a field. The harvester can harvest crops by traveling along a preset travel route in the field.
特開2018-073399号公報JP 2018-073399 A
 圃場の作物の収穫をより効率良く行うことが求められている。 There is a need to harvest crops in the fields more efficiently.
 本開示のある実施形態による作業車両は、圃場から作物を収穫する収穫装置と、自走可能で且つ前記収穫装置から収穫物を受け取って貯留可能な複数の自走式タンクと、前記複数の自走式タンクを搭載可能な車体とを備え、前記複数の自走式タンクのうちの1つである第1自走式タンクは、前記車体に定められた位置であって前記収穫物を受け入れる受け入れ位置で停止して、前記収穫装置が排出する前記収穫物を受け入れ、前記収穫物を受け入れた後は、前記車体から離脱して、前記収穫物の搬送先に向けて移動する。 A work vehicle according to one embodiment of the present disclosure includes a harvesting device that harvests crops from a field, a plurality of self-propelled tanks that are self-propelled and can receive and store the harvested material from the harvesting device, and a vehicle body on which the plurality of self-propelled tanks can be mounted, and a first self-propelled tank, one of the plurality of self-propelled tanks, stops at a position determined on the vehicle body for receiving the harvested material, receives the harvested material discharged by the harvesting device, and after receiving the harvested material, detaches from the vehicle body and moves toward the destination of the harvested material.
 本開示のある実施形態による自走式タンクは、圃場を走行しながら作物を収穫する作業車両から収穫物を受け取って貯留する自走式タンクであって、前記自走式タンクを走行させる走行装置と、前記走行装置の動作を制御して前記自走式タンクを走行させる制御装置とを備え、前記制御装置は、前記自走式タンクを前記作業車両の車体上に移動させ、前記車体上の前記自走式タンクは、前記作業車両の収穫装置が排出する前記収穫物を受け入れ、前記収穫物を受け入れた後、前記制御装置は、前記自走式タンクを前記車体から離脱させて前記収穫物の搬送先に向けて移動させる。 A self-propelled tank according to one embodiment of the present disclosure is a self-propelled tank that receives and stores harvested crops from a work vehicle that harvests crops while traveling through a field, and includes a traveling device that causes the self-propelled tank to travel, and a control device that controls the operation of the traveling device to cause the self-propelled tank to travel, the control device moves the self-propelled tank onto the body of the work vehicle, the self-propelled tank on the body receives the harvested crops discharged by the harvesting device of the work vehicle, and after receiving the harvested crops, the control device detaches the self-propelled tank from the body and moves it toward the destination of the harvested crops.
 本開示のある実施形態による収穫システムは、圃場を走行しながら作物を収穫する複数の農業機械と、前記複数の農業機械から収穫物を受け取って溜める複数の自走式タンクとを用いる収穫システムであって、前記複数の自走式タンクのうちの移動させる対象となる移動対象自走式タンクの位置を示す自走式タンク位置情報と、前記複数の農業機械の位置を示す農業機械位置情報とに基づいて、前記移動対象自走式タンクの移動先とする農業機械を前記複数の農業機械の中から決定する処理装置を備える。 A harvesting system according to one embodiment of the present disclosure is a harvesting system that uses a plurality of agricultural machines that harvest crops while traveling in a field, and a plurality of self-propelled tanks that receive and store the harvested material from the plurality of agricultural machines, and includes a processing device that determines, from among the plurality of agricultural machines, an agricultural machine to which the target self-propelled tank is to be moved, based on self-propelled tank position information indicating the position of a target self-propelled tank among the plurality of self-propelled tanks that is to be moved, and agricultural machine position information indicating the positions of the plurality of agricultural machines.
 本開示のある実施形態による自走式タンクは、圃場を走行しながら作物を収穫する複数の農業機械のうちの少なくとも一つから収穫物を受け取って溜める自走式タンクであって、前記自走式タンクを走行させる走行装置と、前記走行装置の動作を制御して前記自走式タンクを自動運転で走行させる制御装置とを備え、前記制御装置は、前記自走式タンクの位置を示す自走式タンク位置情報と、前記複数の農業機械の位置を示す農業機械位置情報とに基づいて、前記自走式タンクの移動先とする農業機械を前記複数の農業機械の中から決定し、決定した前記農業機械の位置に前記自走式タンクを移動させる。 A self-propelled tank according to one embodiment of the present disclosure is a self-propelled tank that receives and stores crops from at least one of a plurality of agricultural machines that harvest crops while traveling in a field, and includes a traveling device that causes the self-propelled tank to travel, and a control device that controls the operation of the traveling device to cause the self-propelled tank to travel in an automatic manner, and the control device determines an agricultural machine to which the self-propelled tank is to be moved from among the plurality of agricultural machines based on self-propelled tank position information indicating the position of the self-propelled tank and agricultural machine position information indicating the positions of the plurality of agricultural machines, and moves the self-propelled tank to the determined position of the agricultural machine.
 本開示の包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラム、もしくはコンピュータが読み取り可能な非一時的記憶媒体、またはこれらの任意の組み合わせによって実現され得る。コンピュータが読み取り可能な記憶媒体は、揮発性の記憶媒体を含んでいてもよいし、不揮発性の記憶媒体を含んでいてもよい。装置は、複数の装置で構成されていてもよい。装置が二つ以上の装置で構成される場合、当該二つ以上の装置は、一つの機器内に配置されてもよいし、分離した二つ以上の機器内に分かれて配置されていてもよい。 The general or specific aspects of the present disclosure may be realized by an apparatus, a system, a method, an integrated circuit, a computer program, or a computer-readable non-transitory storage medium, or any combination thereof. The computer-readable storage medium may include a volatile storage medium or a non-volatile storage medium. The apparatus may be composed of multiple devices. When the apparatus is composed of two or more devices, the two or more devices may be arranged in one device, or may be arranged separately in two or more separate devices.
 本開示のある実施形態によれば、自走式タンクが作業車両の車体に乗った状態で収穫物を受け取って貯留する。これにより、作業車両は、作物の収穫を行いながら収穫物を自走式タンクに移すことができる。 According to one embodiment of the present disclosure, the self-propelled tank receives and stores the harvested crops while mounted on the body of the work vehicle. This allows the work vehicle to transfer the harvested crops to the self-propelled tank while harvesting the crops.
 収穫物を貯留した自走式タンクは、作業車両から離脱して収穫物の搬送先に向けて移動する。作業車両本体を収穫物の搬送先(例えば圃場の外周縁部で待機する運搬車等)まで移動させる必要が無い。作業車両の収穫作業を中断する必要が無く、作物の収穫を効率良く行うことができる。 The self-propelled tank that stores the harvested products detaches from the work vehicle and moves towards the destination of the harvested products. There is no need to move the work vehicle itself to the destination of the harvested products (such as a transport vehicle waiting at the outer edge of the field). There is no need to interrupt the harvesting work of the work vehicle, and crops can be harvested efficiently.
 作業車両の車体に乗って停止した状態の自走式タンクに収穫物を排出することで、自走式タンクへ収穫物を排出するときに作業車両と自走式タンクとを圃場で並走させる制御を行う必要が無くなり、収穫作業の制御をシンプルにすることができる。 By discharging the harvest into a self-propelled tank that is stationary on the work vehicle's body, there is no need to control the work vehicle and the self-propelled tank to run side by side in the field when discharging the harvest into the self-propelled tank, simplifying the control of the harvesting operation.
 本開示のある実施形態によれば、自走式タンクの位置を示す自走式タンク位置情報と複数の農業機械の位置を示す農業機械位置情報とに基づいて、複数の農業機械の中から自走式タンクの移動先とする農業機械を決定する。これにより、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。例えば、自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械をその自走式タンクの移動先に決定することで、収穫物の自走式タンクへの移送を効率良く行うことができる。 According to an embodiment of the present disclosure, an agricultural machine to which the self-propelled tank is to be moved is determined from among a plurality of agricultural machines based on self-propelled tank position information indicating the position of the self-propelled tank and agricultural machine position information indicating the positions of a plurality of agricultural machines. This allows the harvested products harvested by the agricultural machine to be efficiently transferred to the self-propelled tank. For example, by determining an agricultural machine that is closer to the self-propelled tank than an agricultural machine that is farther away as the destination for the self-propelled tank, the harvested products can be efficiently transferred to the self-propelled tank.
本開示の例示的な実施形態による収穫システムの概要を説明するための図である。FIG. 1 is a diagram for explaining an overview of a harvesting system according to an exemplary embodiment of the present disclosure. 収穫機の例を模式的に示す左側面図である。FIG. 2 is a left side view illustrating a schematic example of a harvester. 収穫機の例を模式的に示す右側面図である。FIG. 2 is a right side view illustrating a schematic example of a harvester. 収穫機の例を模式的に示す上面図である。FIG. 1 is a top view illustrating a schematic example of a harvester. 台の上に三台の自走式タンクが乗った状態の収穫機の例を示す右側面図である。FIG. 1 is a right side view showing an example of a harvester with three self-propelled tanks mounted on a platform. 上方に跳ね上げた状態のスロープを示す図である。FIG. 13 is a diagram showing a slope in an upwardly lifted state. 自走式タンクの例を模式的に示す左側面図である。FIG. 2 is a left side view showing a schematic diagram of an example of a self-propelled tank. タンクの例を模式的に示す斜視図である。FIG. 2 is a perspective view showing a schematic example of a tank. 収穫機の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a harvester. 自走式タンクの構成例を示すブロック図である。FIG. 2 is a block diagram showing an example of the configuration of a self-propelled tank. 管理装置および端末装置の構成例を示すブロック図である。2 is a block diagram showing an example of the configuration of a management device and a terminal device; 収穫機および自走式タンクを用いて圃場の作物を収穫する収穫作業を示す図である。FIG. 1 is a diagram showing a harvesting operation in which a harvester and a self-propelled tank are used to harvest crops in a field. 収穫作業を行う収穫機および自走式タンクを示す図である。FIG. 2 is a diagram showing a harvester and a self-propelled tank performing harvesting operations. 自走式タンクが収穫機の台に乗っている状態を示す図である。FIG. 2 shows the self-propelled tank resting on the platform of the harvester. 所定重量以上の収穫物を貯留した自走式タンクを示す図である。FIG. 1 is a diagram showing a self-propelled tank storing harvested products of a predetermined weight or more. スロープを下る自走式タンクを示す図である。FIG. 1 shows a self-propelled tank descending a slope. 次の自走式タンクが収穫機の台に乗っている状態を示す図である。This figure shows the next self-propelled tank resting on the platform of the harvester. 所定重量以上の収穫物を貯留した自走式タンクを示す図である。FIG. 1 is a diagram showing a self-propelled tank storing harvested products of a predetermined weight or more. スロープを下る自走式タンクを示す図である。FIG. 1 shows a self-propelled tank descending a slope. 他のエリアから戻ってきた自走式タンクが収穫機の台に乗っている状態を示す図である。This shows a self-propelled tank returning from another area resting on the platform of a harvester. 収穫物を貯蔵する貯蔵庫に移動する自走式タンクを示す図である。FIG. 1 shows a self-propelled tank that moves to a storage shed for storing harvested products. 複数の収穫機および複数の自走式タンクを用いて複数の圃場の作物を収穫する収穫作業を示す図である。FIG. 1 illustrates a harvesting operation in which multiple harvesters and multiple self-propelled tanks are used to harvest crops in multiple fields. 自走式タンクの移動先とする収穫機を複数の収穫機の中から決定する処理の例を示すフローチャートである。13 is a flowchart showing an example of a process for determining, from among a plurality of harvesters, a harvester to which the self-propelled tank is to be moved. 自走式タンクの移動先とする収穫機を複数の収穫機の中から決定する処理の別の例を示すフローチャートである。13 is a flowchart showing another example of a process for determining, from among a plurality of harvesters, a harvester to which the self-propelled tank is to be moved.
 以下、本開示の実施形態を説明する。ただし、必要以上に詳細な説明は省略することがある。例えば、既によく知られた事項の詳細な説明および実質的に同一の構成に関する重複する説明を省略することがある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似の機能を有する構成要素については、同一の参照符号を付している。図面に付した符号F、Re、L、R、U、Dは、それぞれ前、後、左、右、上、下を表す。 Below, an embodiment of the present disclosure will be described. However, more detailed explanations than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations of substantially the same configurations may be omitted. This is to avoid the following explanation becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. Note that the inventor provides the attached drawings and the following explanation to enable those skilled in the art to fully understand the present disclosure, and does not intend for them to limit the subject matter described in the claims. In the following explanation, components having the same or similar functions are given the same reference symbols. The symbols F, Re, L, R, U, and D in the drawings represent front, rear, left, right, top, and bottom, respectively.
 以下の実施形態は例示であり、本開示の技術は以下の実施形態に限定されない。以下の実施形態の内容はあくまでも一例であり、技術的に矛盾が生じない限りにおいて種々の改変が可能である。また、技術的に矛盾が生じない限りにおいて、一の態様と他の態様とを組み合わせることが可能である。 The following embodiments are illustrative, and the technology disclosed herein is not limited to the following embodiments. The contents of the following embodiments are merely examples, and various modifications are possible as long as no technical contradictions arise. In addition, one aspect can be combined with another aspect as long as no technical contradictions arise.
 本実施形態の農業機械は、圃場の作物を収穫する機械である。本実施形態の農業機械は、移動しながら収穫作業を行うことが可能な移動型の農業機械(Mobile Agricultural Machine)であり得る。農業機械は、例えば圃場の作物を収穫することが可能な作業車両および農業用移動ロボットである。トラクタのような作業車両と、その作業車両に装着または牽引される作業機(インプルメント)との全体が一つの「農業機械」として機能する場合がある。 The agricultural machine of this embodiment is a machine that harvests crops in a field. The agricultural machine of this embodiment may be a mobile agricultural machine that can perform harvesting work while moving. The agricultural machine is, for example, a work vehicle and an agricultural mobile robot that can harvest crops in a field. A work vehicle such as a tractor and an implement attached to or towed by the work vehicle may function as a single "agricultural machine."
 図1は、本開示の例示的な実施形態による収穫システム1の概要を説明するための図である。図1に示す収穫システム1は、作業車両100と、自走式タンク200と、端末装置400と、管理装置600とを備える。 FIG. 1 is a diagram for explaining an overview of a harvesting system 1 according to an exemplary embodiment of the present disclosure. The harvesting system 1 shown in FIG. 1 includes a work vehicle 100, a self-propelled tank 200, a terminal device 400, and a management device 600.
 端末装置400は、作業車両100および自走式タンク200を遠隔で監視するユーザが使用するコンピュータである。管理装置600は、収穫システム1を運営する事業者が管理するコンピュータである。作業車両100、自走式タンク200、端末装置400、および管理装置600は、ネットワーク80を介して互いに通信することができる。図1には一台の作業車両100が例示されているが、収穫システム1は、複数の作業車両100を含んでいてもよい。図1には三台の自走式タンク200が例示されているが、自走式タンク200は、二台であってもよいし、四台以上であってもよい。収穫システム1は、他の農業機械を含んでいてもよい。収穫システム1は、作業車両100および自走式タンク200によって実現されてもよい。 The terminal device 400 is a computer used by a user to remotely monitor the work vehicle 100 and the self-propelled tank 200. The management device 600 is a computer managed by the business operator who operates the harvesting system 1. The work vehicle 100, the self-propelled tank 200, the terminal device 400, and the management device 600 can communicate with each other via a network 80. Although one work vehicle 100 is illustrated in FIG. 1, the harvesting system 1 may include multiple work vehicles 100. Although three self-propelled tanks 200 are illustrated in FIG. 1, the number of self-propelled tanks 200 may be two, or four or more. The harvesting system 1 may include other agricultural machinery. The harvesting system 1 may be realized by the work vehicle 100 and the self-propelled tank 200.
 作業車両100は、例えば収穫機(ハーベスタ)である。以下では、作業車両100が収穫機である場合の例を説明する。 The work vehicle 100 is, for example, a harvester. Below, an example in which the work vehicle 100 is a harvester will be described.
 本実施形態の収穫機100は、例えばコンバインハーベスタである。収穫機100は、圃場の作物の刈取り、刈取った作物の脱穀、脱穀後の収穫物の排出等を行う。圃場の作物は、稲、麦、トウモロコシ、大豆等の穀物が収穫可能な植物であり得るが、それに限定されない。本実施形態の自走式タンク200は、収穫機100が排出した収穫物を受け取って溜めるタンクであり、走行装置を備え、自身が発生させた動力で走行可能である。本実施形態の自走式タンク200は、収穫機100上に搭載された状態で、収穫機100から収穫物を受け取る。自走式タンク200が、収穫機100上に搭載された状態で収穫機100から収穫物を受け取る動作の詳細は後述する。自走式タンク200は、収穫機100の構成要素であってもよいし、収穫機100とは独立した機械であってもよい。 The harvester 100 of this embodiment is, for example, a combine harvester. The harvester 100 harvests crops in a field, threshes the harvested crops, and discharges the harvested crops after threshing. The crops in the field may be harvestable plants such as rice, wheat, corn, and soybeans, but are not limited thereto. The self-propelled tank 200 of this embodiment is a tank that receives and stores the harvested crops discharged by the harvester 100, and is equipped with a traveling device and can travel using power generated by the tank itself. The self-propelled tank 200 of this embodiment receives the harvested crops from the harvester 100 while mounted on the harvester 100. The operation of the self-propelled tank 200 receiving the harvested crops from the harvester 100 while mounted on the harvester 100 will be described in detail later. The self-propelled tank 200 may be a component of the harvester 100, or may be a machine independent of the harvester 100.
 収穫機100および自走式タンク200は、自動運転機能を備える。収穫機100および自走式タンク200は、ユーザによる手動操作によらず、制御装置の働きによって農業機械の移動を制御することができる。制御装置は、移動に必要な操舵、移動速度の調整、移動の開始および停止の少なくとも一つを制御し得る。自動運転中に農作業の動作も自動で制御されてもよい。自動運転よる移動中に、部分的にユーザの指示に基づいて移動してもよい。収穫機100および自走式タンク200は、自動運転モードに加えて、ユーザの手動操作によって移動する手動運転モードで動作してもよい。収穫機100および自走式タンク200は、圃場内に限らず、圃場外(例えば道路)を走行してもよい。 The harvester 100 and the self-propelled tank 200 have an automatic driving function. The harvester 100 and the self-propelled tank 200 can control the movement of the agricultural machinery by the action of a control device, without manual operation by the user. The control device can control at least one of the steering required for movement, adjustment of the movement speed, and starting and stopping of movement. Agricultural work operations may also be automatically controlled during automatic driving. Movement may be partially based on user instructions during movement by automatic driving. In addition to the automatic driving mode, the harvester 100 and the self-propelled tank 200 may operate in a manual driving mode in which movement is performed by manual operation by the user. The harvester 100 and the self-propelled tank 200 may travel not only within a farm field, but also outside the field (e.g., on a road).
 収穫機100および自走式タンク200は、GNSS受信機およびLiDARセンサなどの、測位あるいは自己位置推定のために利用される装置を備える。収穫機100および自走式タンク200の制御装置は、収穫機100および自走式タンク200の位置と、目標経路の情報とに基づいて、収穫機100および自走式タンク200を自動で走行させる。収穫機100および自走式タンク200は、圃場外の道(例えば、農道または一般道)を目標経路に沿って自動で走行してもよい。その場合、収穫機100および自走式タンク200は、カメラ、障害物センサおよびLiDARセンサなどのセンシング装置から出力されるデータを活用しながら、道に沿って自動走行を行う。 The harvester 100 and the self-propelled tank 200 are equipped with devices used for positioning or self-location estimation, such as a GNSS receiver and a LiDAR sensor. The control devices of the harvester 100 and the self-propelled tank 200 automatically drive the harvester 100 and the self-propelled tank 200 based on the positions of the harvester 100 and the self-propelled tank 200 and information on the target route. The harvester 100 and the self-propelled tank 200 may automatically drive along a road outside the field (e.g., a farm road or a public road) along the target route. In that case, the harvester 100 and the self-propelled tank 200 automatically drive along the road while utilizing data output from sensing devices such as a camera, an obstacle sensor, and a LiDAR sensor.
 管理装置600は、収穫機100および自走式タンク200による農作業を管理するコンピュータである。管理装置600は、例えば圃場に関する情報をクラウド上で一元管理し、クラウド上のデータを活用して農業を支援するサーバコンピュータであり得る。管理装置600は、例えば、収穫機100および自走式タンク200の作業計画を作成し、その作業計画に従って、収穫機100および自走式タンク200に農作業を実行させる。管理装置600は、例えば、ユーザが端末装置400または他のデバイスを用いて入力した情報に基づいて圃場内の目標経路を生成する。管理装置600は、さらに、収穫機100、自走式タンク200、他の移動体等がLiDARセンサなどのセンシング装置を用いて収集したデータに基づいて、環境地図の生成および編集を行ってもよい。環境地図は、収穫機100および自走式タンク200が移動する環境に存在する物の位置または領域を所定の座標系によって表現したデータである。環境地図を単に地図または地図データと称することがある。環境地図を規定する座標系は、例えば、地球に対して固定された地理座標系などのワールド座標系であり得る。 The management device 600 is a computer that manages agricultural work performed by the harvester 100 and the self-propelled tank 200. The management device 600 may be, for example, a server computer that centrally manages information about a farm field on the cloud and supports agriculture by utilizing data on the cloud. The management device 600, for example, creates a work plan for the harvester 100 and the self-propelled tank 200, and causes the harvester 100 and the self-propelled tank 200 to perform agricultural work according to the work plan. The management device 600 generates a target route in the farm field based on information input by a user using the terminal device 400 or another device. The management device 600 may further generate and edit an environmental map based on data collected by the harvester 100, the self-propelled tank 200, other moving objects, etc. using a sensing device such as a LiDAR sensor. The environmental map is data that represents the positions or areas of objects present in the environment in which the harvester 100 and the self-propelled tank 200 move using a specified coordinate system. An environmental map may be referred to simply as a map or map data. The coordinate system that defines the environmental map may be a world coordinate system, such as a geographic coordinate system fixed relative to the Earth.
 管理装置600は、生成した作業計画、目標経路、および環境地図のデータを収穫機100および自走式タンク200に送信する。収穫機100および自走式タンク200は、それらのデータに基づいて、移動および各種作業を自動で行う。 The management device 600 transmits the generated work plan, target route, and environmental map data to the harvester 100 and the self-propelled tank 200. The harvester 100 and the self-propelled tank 200 automatically move and perform various tasks based on that data.
 端末装置400は、収穫機100および自走式タンク200から離れた場所にいるユーザが使用するコンピュータである。図1に示す端末装置400はラップトップコンピュータであるが、これに限定されない。端末装置400は、デスクトップPC(Personal Computer)などの据え置き型のコンピュータであってもよいし、スマートフォンまたはタブレットコンピュータなどのモバイル端末でもよい。端末装置400は、収穫機100および自走式タンク200を遠隔監視したり、収穫機100および自走式タンク200を遠隔操作したりするために用いられ得る。例えば、端末装置400は、収穫機100および自走式タンク200のそれぞれが備えるカメラ(撮像装置)が撮影した映像をディスプレイに表示させることができる。端末装置400は、さらに、収穫機100の作業計画(例えば各農作業のスケジュール)を作成するために必要な情報をユーザが入力するための設定画面をディスプレイに表示することもできる。ユーザが設定画面上で必要な情報を入力し送信の操作を行うと、端末装置400は、入力された情報を管理装置600に送信する。管理装置600は、その情報に基づいて作業計画を作成する。端末装置400は、さらに、目標経路を設定するために必要な情報をユーザが入力するための設定画面をディスプレイに表示する機能を備えていてもよい。 The terminal device 400 is a computer used by a user located away from the harvester 100 and the self-propelled tank 200. The terminal device 400 shown in FIG. 1 is a laptop computer, but is not limited to this. The terminal device 400 may be a stationary computer such as a desktop PC (Personal Computer), or a mobile terminal such as a smartphone or tablet computer. The terminal device 400 can be used to remotely monitor the harvester 100 and the self-propelled tank 200, or to remotely operate the harvester 100 and the self-propelled tank 200. For example, the terminal device 400 can display on the display images captured by the cameras (imaging devices) provided on each of the harvester 100 and the self-propelled tank 200. The terminal device 400 can also display on the display a setting screen for the user to input information required to create a work plan for the harvester 100 (e.g., a schedule for each agricultural work). When the user inputs the required information on the setting screen and performs a transmission operation, the terminal device 400 transmits the input information to the management device 600. The management device 600 creates a work plan based on that information. The terminal device 400 may further have a function of displaying a setting screen on the display for the user to input information necessary to set the target route.
 以下、本実施形態におけるシステムの構成および動作をより詳細に説明する。 The configuration and operation of the system in this embodiment will be explained in more detail below.
 [1.構成]
 図2は、収穫機100の例を模式的に示す左側面図である。図3は、収穫機100の例を模式的に示す右側面図である。図4は、収穫機100の例を模式的に示す上面図である。
[1. Configuration]
Fig. 2 is a left side view that typically illustrates an example of the harvester 100. Fig. 3 is a right side view that typically illustrates an example of the harvester 100. Fig. 4 is a top view that typically illustrates the example of the harvester 100.
 収穫機100は、車体101および走行装置102を備える。例示する走行装置102は、クローラ式の走行装置であるが、タイヤ付き車輪を備える走行装置であってもよい。車体101の上方には、キャビン110が設けられている。 The harvester 100 includes a vehicle body 101 and a traveling device 102. The traveling device 102 shown in the example is a crawler type traveling device, but it may also be a traveling device equipped with wheels with tires. A cabin 110 is provided above the vehicle body 101.
 収穫機100は、圃場から作物を収穫する収穫装置90を備える。収穫装置90は収穫する作物の種類に応じて様々な形態をとり得る。図2に示す例では、収穫装置90は、刈取装置103、搬送装置104、脱穀装置105、排出装置107、排藁処理装置108、リール109を備える。 The harvester 100 is equipped with a harvesting device 90 that harvests crops from a field. The harvesting device 90 can take various forms depending on the type of crop to be harvested. In the example shown in FIG. 2, the harvesting device 90 is equipped with a reaping device 103, a transport device 104, a threshing device 105, a discharge device 107, a straw waste treatment device 108, and a reel 109.
 走行装置102の前方には、作物を刈り取る刈取装置103が高さ調整可能に設けられている。刈取装置103の上方には、作物の茎部分を起こすリール109が高さ調節可能に設けられている。キャビン110の後方には、脱穀装置105が設けられている。刈取装置103と脱穀装置105との間には、刈り取った作物を搬送する搬送装置104が設けられている。刈取装置103、搬送装置104、リール109の構成および動作は公知であるため、ここではそれらの詳細な説明は省略する。 In front of the traveling device 102, a harvesting device 103 that harvests crops is provided, the height of which can be adjusted. Above the harvesting device 103, a reel 109 that raises the stalks of the crops is provided, the height of which can be adjusted. A threshing device 105 is provided behind the cabin 110. Between the harvesting device 103 and the threshing device 105, a transport device 104 that transports the harvested crops is provided. The configurations and operations of the harvesting device 103, the transport device 104, and the reel 109 are well known, so detailed explanations thereof will be omitted here.
 脱穀装置105は刈り取られた作物の脱穀を行う。脱穀装置105の後方には、排藁処理装置108が設けられている。排藁処理装置108は、穀粒等の収穫物が取り除かれた後の茎部分等を細かく切断して外部に放出する。 The threshing device 105 threshes the harvested crops. Behind the threshing device 105, a straw waste processing device 108 is provided. The straw waste processing device 108 cuts the stalks and other parts of the crop after the grains and other harvested products have been removed into small pieces and releases them to the outside.
 車体101は、複数の自走式タンク200が乗ることができる台115を備える。台115は、収穫機100の脱穀装置105の右側方の位置に配置されている。図5は、台115の上に三台の自走式タンク200が乗った状態の収穫機100の例を示す右側面図である。収穫機100が台115を備えることで、自走式タンク200を収穫機100に安定して乗せることができる。 The vehicle body 101 is provided with a platform 115 on which multiple self-propelled tanks 200 can rest. The platform 115 is located to the right of the threshing device 105 of the harvester 100. Figure 5 is a right side view showing an example of the harvester 100 with three self-propelled tanks 200 resting on the platform 115. By providing the harvester 100 with the platform 115, the self-propelled tanks 200 can be stably placed on the harvester 100.
 収穫機100は、台115の後部から後方斜め下方向に延びるスロープ171、および台115の右前部から右方斜め下方向に延びるスロープ172を備える。自走式タンク200は、スロープ171、172を走行することで収穫機100に設けられた台115に対して乗り降りすることができる。例えば、自走式タンク200は、収穫機100の後方から収穫機100に近づいてきて、スロープ171を上って台115の上に乗ることできる。例えば、台115に乗っている自走式タンク200は、スロープ172を下ることで台115から降りて収穫機100から離脱することができる。 The harvester 100 is equipped with a slope 171 that extends diagonally downward and rearward from the rear of the platform 115, and a slope 172 that extends diagonally downward and rightward from the right front of the platform 115. The self-propelled tank 200 can get on and off the platform 115 provided on the harvester 100 by traveling on the slopes 171, 172. For example, the self-propelled tank 200 can approach the harvester 100 from the rear of the harvester 100, climb the slope 171, and get on top of the platform 115. For example, the self-propelled tank 200 on the platform 115 can get off the platform 115 and detach from the harvester 100 by descending the slope 172.
 スロープ171、172は、例えば跳ね上げ式スロープであり、スロープ171、172の不使用時および収穫機100の旋回時等のときに上方に跳ね上げておくことができる。図6は、上方に跳ね上げた状態のスロープ171、172を示す図である。例えば、収穫機100はスロープ171、172を昇降させるアクチュエータ173、174を備え、アクチュエータ173、174を駆動させることで、スロープ171、172を上方へ上げたり下方へ下ろしたりすることができる。 The slopes 171, 172 are, for example, flip-up slopes, and can be flipped up when the slopes 171, 172 are not in use or when the harvester 100 is turning. FIG. 6 is a diagram showing the slopes 171, 172 in a flipped-up state. For example, the harvester 100 is provided with actuators 173, 174 that raise and lower the slopes 171, 172, and by driving the actuators 173, 174, the slopes 171, 172 can be raised up or lowered down.
 自走式タンク200は、穀粒等の脱穀により得られた収穫物を貯留する。脱穀装置105には、脱穀装置105から収穫物を排出する排出装置107が設けられている。筒形状を有する排出装置107の先端部にある排出口117から収穫物は外部に排出される。排出装置107は起伏動作および回動動作が可能であり、排出口117の位置を変更することができる。排出装置107は、例えばスクリューコンベアなどの搬送装置を備え、脱穀装置105内の収穫物を上方へ移動させ、収穫物を排出口117から外部に排出することができる。自走式タンク200は、排出口117から排出される収穫物を受け取って貯留する。 The self-propelled tank 200 stores the harvest obtained by threshing grains and the like. The threshing device 105 is provided with a discharge device 107 that discharges the harvest from the threshing device 105. The harvest is discharged to the outside from a discharge outlet 117 at the tip of the cylindrical discharge device 107. The discharge device 107 is capable of raising and lowering and rotating, and the position of the discharge outlet 117 can be changed. The discharge device 107 is equipped with a transport device such as a screw conveyor, and can move the harvest inside the threshing device 105 upward and discharge the harvest to the outside from the discharge outlet 117. The self-propelled tank 200 receives and stores the harvest discharged from the discharge outlet 117.
 本実施形態における収穫機100は、手動運転モードと自動運転モードの両方で動作することができる。自動運転モードにおいて、収穫機100は無人で走行することができる。また、自動運転モードにおいて、収穫機100は圃場の作物を収穫する動作を行いながら無人で走行することができる。 The harvester 100 in this embodiment can operate in both a manual operation mode and an automatic operation mode. In the automatic operation mode, the harvester 100 can run unmanned. Also, in the automatic operation mode, the harvester 100 can run unmanned while performing the operation of harvesting crops in a field.
 図2に示すように、収穫機100は、原動機(エンジン)111と、変速装置(トランスミッション)112とを備える。キャビン110の内部には運転席、操作レバー、操作端末、および操作のためのスイッチ群が設けられている。 As shown in FIG. 2, the harvester 100 includes a prime mover (engine) 111 and a transmission 112. Inside the cabin 110, a driver's seat, operating levers, an operating terminal, and a group of switches for operation are provided.
 収穫機100は、収穫機100の周辺の環境をセンシングする少なくとも1つのセンシング装置と、少なくとも1つのセンシング装置から出力されるセンシングデータを処理する制御装置とを備え得る。収穫機100は複数のセンシング装置を備える。センシング装置は、LiDARセンサ125、カメラ126、障害物センサ127であり得る。 The harvester 100 may include at least one sensing device that senses the environment around the harvester 100, and a control device that processes sensing data output from the at least one sensing device. The harvester 100 includes multiple sensing devices. The sensing devices may be a LiDAR sensor 125, a camera 126, and an obstacle sensor 127.
 カメラ126は、例えば収穫機100の前後左右に設けられ得る。カメラ126は、収穫機100の周辺の環境を撮影し、画像データを生成する。カメラ126が取得した画像は、収穫機100に搭載された制御装置に出力され、遠隔監視を行うための端末装置400に送信され得る。また、当該画像は、無人運転時に収穫機100およびその周囲を監視するために用いられ得る。 The cameras 126 may be installed, for example, on the front, back, left and right sides of the harvester 100. The cameras 126 capture images of the environment around the harvester 100 and generate image data. The images captured by the cameras 126 may be output to a control device mounted on the harvester 100 and transmitted to a terminal device 400 for remote monitoring. The images may also be used to monitor the harvester 100 and its surroundings during unmanned operation.
 図2に例示するLiDARセンサ125は、収穫機100の前方部および後方部に配置されている。LiDARセンサ125は、収穫機100の側方部にさらに設けられていてもよい。収穫機100は、異なる位置に異なる向きで配置された複数のLiDARセンサを備え得る。LiDARセンサ125は、3D-LiDARセンサであり得るが、2D-LiDARセンサであってもよい。LiDARセンサ125は、収穫機100の周辺の環境をセンシングして、センシングデータを出力する。LiDARセンサ125は、周辺の環境に存在する物体の各計測点までの距離および方向、または各計測点の3次元もしくは2次元の座標値を示すセンサデータを繰り返し出力する。LiDARセンサ125から出力されたセンサデータは、収穫機100の制御装置によって処理される。制御装置は、センサデータと環境地図とのマッチングにより、収穫機100の自己位置推定を行うことができる。制御装置は、さらに、センサデータに基づいて、収穫機100の周辺に存在する障害物などの物体を検出することができる。制御装置は、例えばSLAM(Simultaneous Localization and Mapping)などのアルゴリズムを利用して、環境地図を生成または編集することもできる。 The LiDAR sensor 125 illustrated in FIG. 2 is disposed at the front and rear of the harvester 100. The LiDAR sensor 125 may also be disposed at the side of the harvester 100. The harvester 100 may be provided with a plurality of LiDAR sensors disposed at different positions and in different orientations. The LiDAR sensor 125 may be a 3D-LiDAR sensor, but may also be a 2D-LiDAR sensor. The LiDAR sensor 125 senses the environment around the harvester 100 and outputs sensing data. The LiDAR sensor 125 repeatedly outputs sensor data indicating the distance and direction to each measurement point of an object present in the surrounding environment, or the three-dimensional or two-dimensional coordinate values of each measurement point. The sensor data output from the LiDAR sensor 125 is processed by the control device of the harvester 100. The control device can estimate the self-position of the harvester 100 by matching the sensor data with an environmental map. The control device can further detect obstacles and other objects present in the vicinity of the harvester 100 based on the sensor data. The control device can also generate or edit an environmental map using algorithms such as Simultaneous Localization and Mapping (SLAM).
 図2に例示する障害物センサ127は、収穫機100の側方部に設けられている。障害物センサ127は、他の部位にも配置され得る。例えば、障害物センサ127は、収穫機100の前方部および後方部に設けられてもよい。障害物センサ127は、例えばレーザスキャナまたは超音波ソナーを含み得る。障害物センサ127は、自動走行時に周辺の障害物を検出して収穫機100を停止したり迂回したりするために用いられる。LiDARセンサ125が障害物センサ127の一つとして利用されてもよい。 The obstacle sensor 127 illustrated in FIG. 2 is provided on the side of the harvester 100. The obstacle sensor 127 may also be located in other locations. For example, the obstacle sensor 127 may be provided on the front and rear of the harvester 100. The obstacle sensor 127 may include, for example, a laser scanner or ultrasonic sonar. The obstacle sensor 127 is used to detect surrounding obstacles during automatic driving and to stop or detour the harvester 100. The LiDAR sensor 125 may be used as one of the obstacle sensors 127.
 収穫機100は、GNSSユニット120を備える。GNSSユニット120は、GNSS受信機を含む。GNSS受信機は、GNSS衛星からの信号を受信するアンテナと、アンテナが受信した信号に基づいて収穫機100の位置を計算するプロセッサとを備え得る。GNSSユニット120は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいて測位を行う。GNSSは、GPS(Global Positioning System)、QZSS(Quasi-Zenith Satellite System、例えばみちびき)、GLONASS、Galileo、およびBeiDouなどの衛星測位システムの総称である。本実施形態におけるGNSSユニット120は、キャビン110の上部に設けられているが、他の位置に設けられていてもよい。 The harvester 100 includes a GNSS unit 120. The GNSS unit 120 includes a GNSS receiver. The GNSS receiver may include an antenna for receiving signals from GNSS satellites and a processor for calculating the position of the harvester 100 based on the signals received by the antenna. The GNSS unit 120 receives satellite signals transmitted from multiple GNSS satellites and performs positioning based on the satellite signals. GNSS is a general term for satellite positioning systems such as GPS (Global Positioning System), QZSS (Quasi-Zenith Satellite System, e.g., Michibiki), GLONASS, Galileo, and BeiDou. In this embodiment, the GNSS unit 120 is provided on the top of the cabin 110, but may be provided in other locations.
 GNSSユニット120は、慣性計測装置(IMU)を含み得る。IMUからの信号を利用して位置データを補完することができる。IMUは、収穫機100の傾きおよび微小な動きを計測することができる。IMUによって取得されたデータを用いて、衛星信号に基づく位置データを補完することにより、測位の性能を向上させることができる。 The GNSS unit 120 may include an inertial measurement unit (IMU). Signals from the IMU may be used to supplement the position data. The IMU may measure the tilt and minute movements of the harvester 100. Data acquired by the IMU may be used to supplement position data based on satellite signals, improving positioning performance.
 収穫機100の制御装置は、GNSSユニット120による測位結果に加えて、カメラ126および/またはLiDARセンサ125などのセンシング装置が取得したセンシングデータを測位に利用してもよい。収穫機100が走行する環境内に特徴点として機能する地物が存在する場合、カメラ126および/またはLiDARセンサ125によって取得されたデータと、予め記憶装置に格納された環境地図とに基づいて、収穫機100の位置および向きを高い精度で推定することができる。カメラ126および/またはLiDARセンサ125が取得したデータを用いて、衛星信号に基づく位置データを補正または補完することで、より高い精度で収穫機100の位置を特定できる。 The control device of the harvester 100 may use sensing data acquired by sensing devices such as the camera 126 and/or LiDAR sensor 125 for positioning, in addition to the positioning results from the GNSS unit 120. If there are features that function as feature points in the environment in which the harvester 100 travels, the position and orientation of the harvester 100 can be estimated with high accuracy based on the data acquired by the camera 126 and/or LiDAR sensor 125 and an environmental map pre-stored in a storage device. The position of the harvester 100 can be identified with higher accuracy by correcting or complementing the position data based on satellite signals using the data acquired by the camera 126 and/or LiDAR sensor 125.
 原動機111は、例えばディーゼルエンジンであり得る。ディーゼルエンジンに代えて電動モータが使用されてもよい。変速装置112は、変速によって収穫機100の推進力および移動速度を変化させることができる。変速装置112は、収穫機100の前進と後進とを切り換えることもできる。 The prime mover 111 may be, for example, a diesel engine. An electric motor may be used instead of a diesel engine. The transmission 112 can change the propulsive force and travel speed of the harvester 100 by changing the speed. The transmission 112 can also switch the harvester 100 between forward and reverse.
 収穫機100がクローラ式の走行装置102を備える形態では、無限軌道(track)を装着した左車輪および右車輪の回転速度を互いに異ならせたり、それら左車輪および右車輪の回転方向を互いに異ならせたりすることで、収穫機100の走行方向を変化させることができる。収穫機100がタイヤ付き車輪を備える走行装置を備える形態では、収穫機100はパワーステアリング装置を備え、パワーステアリング装置を制御して操舵輪の切れ角(「操舵角」とも称する。)を変化させることにより、収穫機100の走行方向を変化させることができる。 In a configuration in which the harvester 100 is equipped with a crawler-type running device 102, the running direction of the harvester 100 can be changed by varying the rotational speeds of the left and right wheels equipped with tracks and by varying the rotational directions of the left and right wheels. In a configuration in which the harvester 100 is equipped with a running device equipped with tires, the harvester 100 is equipped with a power steering device, and the running direction of the harvester 100 can be changed by controlling the power steering device to change the turning angle of the steering wheels (also referred to as the "steering angle").
 図2に示す収穫機100は、有人運転が可能であるが、無人運転のみに対応していてもよい。その場合には、キャビン110、操舵装置および運転席などの、有人運転にのみ必要な構成要素は、収穫機100に設けられていなくてもよい。無人の収穫機100は、自律走行、またはユーザによる遠隔操作によって走行することができる。 The harvester 100 shown in FIG. 2 is capable of manned operation, but may also be capable of unmanned operation only. In that case, the harvester 100 may not be provided with components that are only required for manned operation, such as the cabin 110, steering device, and driver's seat. The unmanned harvester 100 can travel autonomously or by remote control by a user.
 図7は、自走式タンク200の例を模式的に示す左側面図である。 Figure 7 is a left side view that shows a schematic example of a self-propelled tank 200.
 自走式タンク200は、収穫物を貯留するタンク201と、タンク201下部の筐体202に設けられた走行装置203を備える。自走式タンク200は、原動機204、減速機205をさらに備える。例示する走行装置203は、クローラ式の走行装置であるが、タイヤ付き車輪を備える走行装置であってもよい。原動機204、減速機205は、走行装置203に含まれていてもよい。 The self-propelled tank 200 comprises a tank 201 for storing the harvested product, and a running device 203 provided on a housing 202 at the bottom of the tank 201. The self-propelled tank 200 further comprises a prime mover 204 and a reduction gear 205. The illustrated running device 203 is a crawler type running device, but it may also be a running device equipped with wheels with tires. The prime mover 204 and the reduction gear 205 may be included in the running device 203.
 図8は、タンク201の例を模式的に示す斜視図である。タンク201は上方に開口しており、収穫機100の排出装置107から排出されて落下する収穫物を、タンク201の開口部201aから内部に取り込むことができる。 FIG. 8 is a perspective view showing a schematic example of the tank 201. The tank 201 is open at the top, and the harvested product discharged from the discharge device 107 of the harvester 100 and falling can be taken into the tank 201 through the opening 201a.
 自走式タンク200は、自走式タンク200の周辺の環境をセンシングするセンシング装置と、センシング装置から出力されるセンシングデータを処理する制御装置とを備え得る。自走式タンク200は複数のセンシング装置を備える。センシング装置は、LiDARセンサ225、カメラ226、障害物センサ227であり得る。 The self-propelled tank 200 may be equipped with a sensing device that senses the environment around the self-propelled tank 200, and a control device that processes sensing data output from the sensing device. The self-propelled tank 200 is equipped with multiple sensing devices. The sensing devices may be a LiDAR sensor 225, a camera 226, and an obstacle sensor 227.
 カメラ226は、例えば自走式タンク200の前後左右に設けられ得る。カメラ226は、自走式タンク200の周辺の環境を撮影し、画像データを生成する。カメラ226が取得した画像は、自走式タンク200に搭載された制御装置に出力され、遠隔監視を行うための端末装置400に送信され得る。また、当該画像は、自動運転時に自走式タンク200およびその周囲を監視するために用いられ得る。 Camera 226 may be installed, for example, on the front, back, left and right sides of self-propelled tank 200. Camera 226 captures the environment around self-propelled tank 200 and generates image data. Images captured by camera 226 may be output to a control device mounted on self-propelled tank 200 and transmitted to terminal device 400 for remote monitoring. Furthermore, the images may be used to monitor self-propelled tank 200 and its surroundings during autonomous driving.
 自走式タンク200は、異なる位置に異なる向きで配置された複数のLiDARセンサを備え得る。図7に例示するLiDARセンサ225は、自走式タンク200の前後左右に設けられている。LiDARセンサ225は、3D-LiDARセンサであり得るが、2D-LiDARセンサであってもよい。LiDARセンサ225は、自走式タンク200の周辺の環境をセンシングして、センシングデータを出力する。LiDARセンサ225は、周辺の環境に存在する物体の各計測点までの距離および方向、または各計測点の3次元もしくは2次元の座標値を示すセンサデータを繰り返し出力する。LiDARセンサ225から出力されたセンサデータは、自走式タンク200の制御装置によって処理される。制御装置は、センサデータと、環境地図とのマッチングにより、自走式タンク200の自己位置推定を行うことができる。制御装置は、さらに、センサデータに基づいて、自走式タンク200の周辺に存在する障害物などの物体を検出することができる。制御装置は、例えばSLAMなどのアルゴリズムを利用して、環境地図を生成または編集することもできる。 The self-propelled tank 200 may be equipped with multiple LiDAR sensors arranged in different positions and with different orientations. The LiDAR sensor 225 illustrated in FIG. 7 is provided on the front, rear, left and right sides of the self-propelled tank 200. The LiDAR sensor 225 may be a 3D-LiDAR sensor, but may also be a 2D-LiDAR sensor. The LiDAR sensor 225 senses the environment surrounding the self-propelled tank 200 and outputs sensing data. The LiDAR sensor 225 repeatedly outputs sensor data indicating the distance and direction to each measurement point of an object present in the surrounding environment, or the three-dimensional or two-dimensional coordinate values of each measurement point. The sensor data output from the LiDAR sensor 225 is processed by the control device of the self-propelled tank 200. The control device can estimate the self-position of the self-propelled tank 200 by matching the sensor data with an environmental map. The control device can further detect objects such as obstacles present around the self-propelled tank 200 based on the sensor data. The control device can also generate or edit an environmental map using an algorithm such as SLAM.
 図7に例示する障害物センサ227は、自走式タンク200の側方部に設けられている。障害物センサ227は、他の部位にも配置され得る。例えば、障害物センサ227は、自走式タンク200の前方部および後方部に設けられてもよい。障害物センサ227は、例えばレーザスキャナまたは超音波ソナーを含み得る。障害物センサ227は、自動走行時に周辺の障害物を検出して自走式タンク200を停止したり迂回したりするために用いられる。LiDARセンサ225が障害物センサ227の一つとして利用されてもよい。 The obstacle sensor 227 illustrated in FIG. 7 is provided on the side of the self-propelled tank 200. The obstacle sensor 227 may also be located in other locations. For example, the obstacle sensor 227 may be provided on the front and rear of the self-propelled tank 200. The obstacle sensor 227 may include, for example, a laser scanner or ultrasonic sonar. The obstacle sensor 227 is used to detect surrounding obstacles during autonomous driving and to stop or detour the self-propelled tank 200. The LiDAR sensor 225 may be used as one of the obstacle sensors 227.
 自走式タンク200は、さらに、GNSSユニット220を備える。GNSSユニット220は、GNSS受信機を含む。GNSS受信機は、GNSS衛星からの信号を受信するアンテナと、アンテナが受信した信号に基づいて自走式タンク200の位置を計算するプロセッサとを備え得る。GNSSユニット220は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいて測位を行う。本実施形態におけるGNSSユニット220は、自走式タンク200の前方の上部に設けられているが、他の位置に設けられていてもよい。 The self-propelled tank 200 further includes a GNSS unit 220. The GNSS unit 220 includes a GNSS receiver. The GNSS receiver may include an antenna for receiving signals from GNSS satellites and a processor for calculating the position of the self-propelled tank 200 based on the signals received by the antenna. The GNSS unit 220 receives satellite signals transmitted from multiple GNSS satellites and performs positioning based on the satellite signals. In this embodiment, the GNSS unit 220 is provided at the top front of the self-propelled tank 200, but may be provided in other positions.
 GNSSユニット220はIMUを含み得、IMUからの信号を利用して位置データを補完することができる。IMUは、自走式タンク200の傾きおよび微小な動きを計測することができる。IMUによって取得されたデータを用いて、衛星信号に基づく位置データを補完することにより、測位の性能を向上させることができる。 The GNSS unit 220 may include an IMU, and may utilize signals from the IMU to supplement position data. The IMU may measure the tilt and minute movements of the self-propelled tank 200. By using data acquired by the IMU to supplement position data based on satellite signals, positioning performance may be improved.
 自走式タンク200の制御装置は、GNSSユニット220による測位結果に加えて、カメラ226および/またはLiDARセンサ225などのセンシング装置が取得したセンシングデータを測位に利用してもよい。自走式タンク200が走行する環境内に特徴点として機能する地物が存在する場合、カメラ226および/またはLiDARセンサ225によって取得されたデータと、予め記憶装置に格納された環境地図とに基づいて、自走式タンク200の位置および向きを高い精度で推定することができる。カメラ226および/またはLiDARセンサ225が取得したデータを用いて、衛星信号に基づく位置データを補正または補完することで、より高い精度で自走式タンク200の位置を特定できる。 The control device of the self-propelled tank 200 may use sensing data acquired by sensing devices such as the camera 226 and/or LiDAR sensor 225 for positioning, in addition to the positioning results from the GNSS unit 220. If there are features that function as characteristic points in the environment in which the self-propelled tank 200 travels, the position and orientation of the self-propelled tank 200 can be estimated with high accuracy based on the data acquired by the camera 226 and/or LiDAR sensor 225 and an environmental map pre-stored in a storage device. The position of the self-propelled tank 200 can be identified with higher accuracy by correcting or supplementing the position data based on satellite signals using the data acquired by the camera 226 and/or LiDAR sensor 225.
 原動機204は、例えば電動モータであり得る。電動モータに代えて内燃機関が使用されてもよい。減速機205は、原動機204が発生させた回転を減速させて走行装置203に伝達する。減速機205は、自走式タンク200の前進と後進とを切り換えることができてもよい。 The prime mover 204 may be, for example, an electric motor. An internal combustion engine may be used instead of an electric motor. The reduction gear 205 reduces the rotation generated by the prime mover 204 and transmits it to the running device 203. The reduction gear 205 may be capable of switching between forward and reverse movement of the self-propelled tank 200.
 自走式タンク200がクローラ式の走行装置203を備える形態では、無限軌道を装着した左車輪および右車輪の回転速度を互いに異ならせたり、それら左車輪および右車輪の回転方向を互いに異ならせたりすることで、自走式タンク200の走行方向を変化させることができる。自走式タンク200がタイヤ付き車輪を備える走行装置を備える形態では、自走式タンク200はパワーステアリング装置を備え、パワーステアリング装置を制御して操舵輪の切れ角を変化させることにより、自走式タンク200の走行方向を変化させることができる。自走式タンク200は自動運転で走行するが、ユーザによる遠隔操作によって走行してもよい。 In a configuration in which the self-propelled tank 200 is equipped with a crawler-type running device 203, the running direction of the self-propelled tank 200 can be changed by varying the rotational speed of the left and right wheels equipped with caterpillars, or by varying the rotational direction of the left and right wheels. In a configuration in which the self-propelled tank 200 is equipped with a running device equipped with tires, the self-propelled tank 200 is equipped with a power steering device, and the running direction of the self-propelled tank 200 can be changed by controlling the power steering device to change the turning angle of the steering wheels. The self-propelled tank 200 runs autonomously, but may also run under remote control by a user.
 図9は、収穫機100の構成例を示すブロック図である。収穫機100は、ネットワーク80を介して、端末装置400および管理装置600と通信することができる。収穫機100と自走式タンク200とは、ネットワーク80を介して通信を行ってもよいし、ネットワーク80を介さずに直接通信を行ってもよい。 FIG. 9 is a block diagram showing an example configuration of the harvester 100. The harvester 100 can communicate with the terminal device 400 and the management device 600 via the network 80. The harvester 100 and the self-propelled tank 200 may communicate with each other via the network 80, or may communicate directly without using the network 80.
 図9に例示する収穫機100は、GNSSユニット120、LiDARセンサ125、カメラ126、障害物センサ127、操作端末131、操作スイッチ群132、ブザー133、駆動装置140、動力伝達機構141、センサ群150、制御装置160、通信装置190を備える。これらの構成要素は、バスを介して相互に通信可能に接続される。 The harvester 100 illustrated in FIG. 9 includes a GNSS unit 120, a LiDAR sensor 125, a camera 126, an obstacle sensor 127, an operation terminal 131, an operation switch group 132, a buzzer 133, a drive unit 140, a power transmission mechanism 141, a sensor group 150, a control unit 160, and a communication unit 190. These components are connected to each other via a bus so that they can communicate with each other.
 GNSSユニット120は、GNSS受信機121、RTK受信機122、慣性計測装置(IMU)123、処理回路124を備える。センサ群150は、収穫機100の各種状態を検出する。センサ群150は、操作レバーセンサ151、回転センサ152を含む。制御装置160は、プロセッサ161、RAM(Random Access Memory)162、ROM(Read Only Memory)163、記憶装置164、複数の電子制御ユニット(ECU)165から167を備える。自走式タンク200は、駆動装置240と、制御装置260と、通信装置290とを備える。図9には、収穫機100による自動運転の動作との関連性が相対的に高い構成要素が示されており、それ以外の構成要素の図示は省略されている。 The GNSS unit 120 includes a GNSS receiver 121, an RTK receiver 122, an inertial measurement unit (IMU) 123, and a processing circuit 124. The sensor group 150 detects various states of the harvester 100. The sensor group 150 includes an operation lever sensor 151 and a rotation sensor 152. The control device 160 includes a processor 161, a RAM (Random Access Memory) 162, a ROM (Read Only Memory) 163, a storage device 164, and multiple electronic control units (ECUs) 165 to 167. The self-propelled tank 200 includes a drive unit 240, a control device 260, and a communication device 290. Figure 9 shows components that are relatively closely related to the operation of the automatic driving of the harvester 100, and other components are not shown.
 GNSSユニット120が備えるGNSS受信機121は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいてGNSSデータを生成する。GNSSデータは、例えばNMEA-0183フォーマットなどの所定のフォーマットで生成される。GNSSデータは、例えば、衛星信号が受信されたそれぞれの衛星の識別番号、仰角、方位角、および受信強度を示す値を含み得る。 The GNSS receiver 121 included in the GNSS unit 120 receives satellite signals transmitted from multiple GNSS satellites and generates GNSS data based on the satellite signals. The GNSS data is generated in a predetermined format, such as the NMEA-0183 format. The GNSS data may include, for example, values indicating the identification number, elevation angle, azimuth angle, and reception strength of each satellite from which the satellite signal is received.
 図9に例示するGNSSユニット120は、RTK(Real Time Kinematic)-GNSSを利用して収穫機100の測位を行う。RTK-GNSSによる測位では、複数のGNSS衛星から送信される衛星信号に加えて、基準局から送信される補正信号が利用される。基準局は、収穫機100が作業走行を行う圃場の付近(例えば、収穫機100から10km以内の位置)に設置され得る。基準局は、複数のGNSS衛星から受信した衛星信号に基づいて、例えばRTCMフォーマットの補正信号を生成し、GNSSユニット120に送信する。RTK受信機122は、アンテナおよびモデムを含み、基準局から送信される補正信号を受信する。GNSSユニット120の処理回路124は、補正信号に基づき、GNSS受信機121による測位結果を補正する。RTK-GNSSを用いることにより、例えば誤差数cmの精度で測位を行うことが可能である。緯度、経度、および高度の情報を含む位置データが、RTK-GNSSによる高精度の測位によって取得される。GNSSユニット120は、例えば1秒間に1回から10回程度の頻度で、収穫機100の位置を計算する。 The GNSS unit 120 illustrated in FIG. 9 uses RTK (Real Time Kinematic)-GNSS to position the harvester 100. In positioning using RTK-GNSS, in addition to satellite signals transmitted from multiple GNSS satellites, correction signals transmitted from a reference station are used. The reference station may be installed near the field where the harvester 100 performs work travel (for example, within 10 km of the harvester 100). The reference station generates a correction signal, for example, in RTCM format, based on the satellite signals received from multiple GNSS satellites and transmits it to the GNSS unit 120. The RTK receiver 122 includes an antenna and a modem, and receives the correction signal transmitted from the reference station. The processing circuit 124 of the GNSS unit 120 corrects the positioning result by the GNSS receiver 121 based on the correction signal. By using RTK-GNSS, it is possible to perform positioning with an accuracy of, for example, an error of several centimeters. Position data including latitude, longitude, and altitude information is obtained by high-precision positioning using RTK-GNSS. The GNSS unit 120 calculates the position of the harvester 100 at a frequency of, for example, about 1 to 10 times per second.
 なお、測位方法はRTK-GNSSに限らず、必要な精度の位置データが得られる任意の測位方法(干渉測位法または相対測位法など)を用いることができる。例えば、VRS(Virtual Reference Station)またはDGPS(Differential Global Positioning System)を利用した測位を行ってもよい。基準局から送信される補正信号を用いなくても必要な精度の位置データが得られる場合は、補正信号を用いずに位置データを生成してもよい。その場合、GNSSユニット120は、RTK受信機122を備えていなくてもよい。 Note that the positioning method is not limited to RTK-GNSS, and any positioning method (such as interferometric positioning or relative positioning) that can obtain position data with the required accuracy can be used. For example, positioning may be performed using a Virtual Reference Station (VRS) or a Differential Global Positioning System (DGPS). If position data with the required accuracy can be obtained without using a correction signal transmitted from a reference station, the position data may be generated without using a correction signal. In that case, the GNSS unit 120 does not need to be equipped with an RTK receiver 122.
 RTK-GNSSを利用する場合であっても、基準局からの補正信号が得られない場所(例えば圃場から遠く離れた道路上)では、RTK受信機122からの信号によらず、他の方法で収穫機100の位置が推定される。例えば、LiDARセンサ125および/またはカメラ126から出力されたデータと、高精度の環境地図とのマッチングによって、収穫機100の位置が推定され得る。 Even when RTK-GNSS is used, in places where correction signals from a reference station cannot be obtained (e.g., on a road far from a field), the position of the harvester 100 is estimated by other methods rather than relying on signals from the RTK receiver 122. For example, the position of the harvester 100 can be estimated by matching data output from the LiDAR sensor 125 and/or camera 126 with a high-precision environmental map.
 IMU123は、3軸加速度センサおよび3軸ジャイロスコープを備え得る。IMU123は、3軸地磁気センサなどの方位センサを備えていてもよい。IMU123は、モーションセンサとして機能し、収穫機100の加速度、速度、変位、および姿勢などの諸量を示す信号を出力することができる。処理回路124は、衛星信号および補正信号に加えて、IMU123から出力された信号に基づいて、収穫機100の位置および向きをより高い精度で推定することができる。IMU123から出力された信号は、衛星信号および補正信号に基づいて計算される位置の補正または補完に用いられ得る。IMU123は、GNSS受信機121よりも高い頻度で信号を出力する。その高頻度の信号を利用して、処理回路124は、収穫機100の位置および向きをより高い頻度(例えば、10Hz以上)で計測することができる。IMU123に代えて、3軸加速度センサおよび3軸ジャイロスコープを別々に設けてもよい。IMU123は、GNSSユニット120とは別の装置として設けられていてもよい。 The IMU 123 may include a three-axis acceleration sensor and a three-axis gyroscope. The IMU 123 may include an orientation sensor such as a three-axis geomagnetic sensor. The IMU 123 functions as a motion sensor and can output signals indicating various quantities such as the acceleration, speed, displacement, and attitude of the harvester 100. The processing circuit 124 can estimate the position and orientation of the harvester 100 with higher accuracy based on the signal output from the IMU 123 in addition to the satellite signal and the correction signal. The signal output from the IMU 123 can be used to correct or complement the position calculated based on the satellite signal and the correction signal. The IMU 123 outputs signals at a higher frequency than the GNSS receiver 121. Using the high-frequency signal, the processing circuit 124 can measure the position and orientation of the harvester 100 at a higher frequency (e.g., 10 Hz or more). Instead of the IMU 123, a three-axis acceleration sensor and a three-axis gyroscope may be provided separately. The IMU 123 may be provided as a separate device from the GNSS unit 120.
 カメラ126は、収穫機100の周辺の環境を撮影する撮像装置である。カメラ126は、例えば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサを備える。カメラ126は、他にも、一つ以上のレンズを含む光学系、および信号処理回路を備え得る。カメラ126は、収穫機100の走行中、収穫機100の周辺の環境を撮影し、画像(例えば動画)のデータを生成する。カメラ126は、例えば、3フレーム/秒(fps: frames per second)以上のフレームレートで動画を撮影することができる。カメラ126によって生成された画像は、例えば遠隔の監視者が端末装置400を用いて収穫機100の周辺の環境を確認するときに利用され得る。カメラ126によって生成された画像は、測位または障害物の検出に利用されてもよい。複数のカメラ126が収穫機100の異なる位置に設けられていてもよいし、単数のカメラが設けられていてもよい。可視光画像を生成する可視カメラと、赤外線画像を生成する赤外カメラとが別々に設けられていてもよい。可視カメラと赤外カメラの両方が監視用の画像を生成するカメラとして設けられていてもよい。赤外カメラは、夜間において障害物の検出にも用いられ得る。 The camera 126 is an imaging device that captures the environment around the harvester 100. The camera 126 includes an image sensor, such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The camera 126 may also include an optical system including one or more lenses, and a signal processing circuit. The camera 126 captures the environment around the harvester 100 while the harvester 100 is traveling, and generates image (e.g., video) data. The camera 126 can capture video at a frame rate of, for example, 3 frames per second (fps) or more. The images generated by the camera 126 can be used, for example, when a remote monitor uses the terminal device 400 to check the environment around the harvester 100. The images generated by the camera 126 may be used for positioning or obstacle detection. Multiple cameras 126 may be provided at different positions on the harvester 100, or a single camera may be provided. A visible camera that generates a visible light image and an infrared camera that generates an infrared image may be provided separately. Both a visible camera and an infrared camera may be provided as cameras that generate images for surveillance. The infrared camera may also be used to detect obstacles at night.
 障害物センサ127は、収穫機100の周辺に存在する物体を検出する。障害物センサ127は、例えばレーザスキャナまたは超音波ソナーを含み得る。障害物センサ127は、障害物センサ127から所定の距離よりも近くに物体が存在する場合に、障害物が存在することを示す信号を出力する。複数の障害物センサ127が収穫機100の異なる位置に設けられていてもよい。例えば、複数のレーザスキャナと、複数の超音波ソナーとが、収穫機100の異なる位置に配置されていてもよい。障害物センサ127を複数個備えることにより、収穫機100の周辺の障害物の監視における死角を減らすことができる。 The obstacle sensor 127 detects objects present in the vicinity of the harvester 100. The obstacle sensor 127 may include, for example, a laser scanner or an ultrasonic sonar. When an object is present closer than a predetermined distance from the obstacle sensor 127, the obstacle sensor 127 outputs a signal indicating the presence of an obstacle. Multiple obstacle sensors 127 may be provided at different positions on the harvester 100. For example, multiple laser scanners and multiple ultrasonic sonars may be disposed at different positions on the harvester 100. By providing multiple obstacle sensors 127, blind spots in monitoring obstacles around the harvester 100 can be reduced.
 操作レバーセンサ151は、キャビン110内のユーザによる操作レバーの操作を検出する。操作レバーセンサ151の出力信号は、制御装置160による運転制御に利用される。回転センサ152は、走行装置102の車軸の回転速度、すなわち単位時間あたりの回転数を計測する。回転センサ152は、例えば磁気抵抗素子(MR)、ホール素子、または電磁ピックアップを利用したセンサであり得る。回転センサ152は、例えば、車軸の1分あたりの回転数(単位:rpm)を示す数値を出力する。回転センサ152は、例えば収穫機100の速度を計測するために使用される。 The operation lever sensor 151 detects the operation of the operation lever by the user in the cabin 110. The output signal of the operation lever sensor 151 is used for operation control by the control device 160. The rotation sensor 152 measures the rotation speed of the axle of the traveling device 102, i.e., the number of rotations per unit time. The rotation sensor 152 may be, for example, a sensor using a magnetoresistive element (MR), a Hall element, or an electromagnetic pickup. The rotation sensor 152 outputs, for example, a numerical value indicating the number of rotations per minute (unit: rpm) of the axle. The rotation sensor 152 is used, for example, to measure the speed of the harvester 100.
 ブザー133は、異常を報知するための警告音を発する音声出力装置である。ブザー133は、例えば、自動運転時に、障害物が検出された場合に警告音を発する。ブザー133は、制御装置160によって制御される。 The buzzer 133 is an audio output device that emits a warning sound to notify of an abnormality. For example, the buzzer 133 emits a warning sound when an obstacle is detected during automatic driving. The buzzer 133 is controlled by the control device 160.
 駆動装置140は、原動機111、変速装置112等の収穫機100の走行のための駆動に必要な各種の装置を含む。原動機111は、例えばディーゼル機関などの内燃機関を備え得る。駆動装置140は、内燃機関に代えて、あるいは内燃機関とともに、トラクション用の電動モータを備えていてもよい。 The drive unit 140 includes various devices necessary for driving the harvester 100 to travel, such as the prime mover 111 and the transmission 112. The prime mover 111 may be equipped with an internal combustion engine, such as a diesel engine. The drive unit 140 may be equipped with an electric motor for traction instead of or in addition to the internal combustion engine.
 動力伝達機構141は、原動機111が発生させた動力を、収穫動作を行う各種装置に伝達する。収穫動作を行う装置は、刈取装置103、搬送装置104、脱穀装置105、排出装置107、排藁処理装置108、リール109等である。収穫機100は、これら収穫動作を行う装置の少なくとも一つに動力を供給する動力源(電動モータ等)を原動機111とは別に備えていてもよい。 The power transmission mechanism 141 transmits the power generated by the prime mover 111 to various devices that perform the harvesting operation. The devices that perform the harvesting operation are the reaping device 103, the transport device 104, the threshing device 105, the discharge device 107, the straw waste processing device 108, the reel 109, etc. The harvester 100 may also be provided with a power source (such as an electric motor) separate from the prime mover 111 that supplies power to at least one of these devices that perform the harvesting operation.
 プロセッサ161は、例えば中央演算処理装置(CPU)を含む半導体集積回路であり得る。プロセッサ161は、マイクロプロセッサまたはマイクロコントローラによって実現され得る。あるいは、プロセッサ161は、CPUを搭載したFPGA(Field Programmable Gate Array)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、ASSP(Application Specific Standard Product)、または、これら回路の中から選択される二つ以上の回路の組み合わせによっても実現され得る。プロセッサ161は、ROM163に格納された、少なくとも一つの処理を実行するための命令群を記述したコンピュータプログラムを逐次実行し、所望の処理を実現する。 Processor 161 may be, for example, a semiconductor integrated circuit including a central processing unit (CPU). Processor 161 may be realized by a microprocessor or a microcontroller. Alternatively, processor 161 may be realized by an FPGA (Field Programmable Gate Array) equipped with a CPU, a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), an ASSP (Application Specific Standard Product), or a combination of two or more circuits selected from among these circuits. Processor 161 sequentially executes a computer program stored in ROM 163, which describes a set of instructions for executing at least one process, to realize the desired process.
 ROM163は、例えば、書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)、または読み出し専用のメモリである。ROM163は、プロセッサ161の動作を制御するプログラムを記憶する。ROM163は、単一の記憶媒体である必要はなく、複数の記憶媒体の集合体であってもよい。複数の記憶媒体の集合体の一部は、取り外し可能なメモリであってもよい。 ROM 163 is, for example, a writable memory (e.g., a PROM), a rewritable memory (e.g., a flash memory), or a read-only memory. ROM 163 stores a program that controls the operation of processor 161. ROM 163 does not have to be a single storage medium, but may be a collection of multiple storage media. Part of the collection of multiple storage media may be a removable memory.
 RAM162は、ROM163に格納された制御プログラムをブート時に一旦展開するための作業領域を提供する。RAM162は、単一の記憶媒体である必要はなく、複数の記憶媒体の集合体であってもよい。 RAM 162 provides a working area for temporarily expanding the control program stored in ROM 163 at boot time. RAM 162 does not need to be a single storage medium, but may be a collection of multiple storage media.
 記憶装置164は、フラッシュメモリまたは磁気ディスクなどの一つ以上の記憶媒体を含む。記憶装置164は、GNSSユニット120、LiDARセンサ125、カメラ126、障害物センサ127、センサ群150、および制御装置160が生成する各種のデータを記憶する。記憶装置164が記憶するデータには、収穫機100が走行する環境内の地図データ(環境地図)、および自動運転のための目標経路のデータが含まれ得る。環境地図は、収穫機100が農作業を行う複数の圃場およびその周辺の道の情報を含む。環境地図および目標経路は、管理装置600のプロセッサによって生成され得る。なお、制御装置160が、環境地図および目標経路を生成または編集する機能を備えていてもよい。制御装置160は、管理装置600から取得した環境地図および目標経路を、収穫機100の走行環境に応じて編集することができる。記憶装置164は、通信装置190が管理装置600から受信した作業計画のデータも記憶する。 The storage device 164 includes one or more storage media such as a flash memory or a magnetic disk. The storage device 164 stores various data generated by the GNSS unit 120, the LiDAR sensor 125, the camera 126, the obstacle sensor 127, the sensor group 150, and the control device 160. The data stored in the storage device 164 may include map data (environmental map) of the environment in which the harvester 100 travels, and data of a target route for automatic driving. The environmental map includes information on multiple farm fields in which the harvester 100 performs agricultural work and the roads in the surrounding areas. The environmental map and the target route may be generated by a processor in the management device 600. The control device 160 may have a function of generating or editing the environmental map and the target route. The control device 160 can edit the environmental map and the target route acquired from the management device 600 according to the travel environment of the harvester 100. The storage device 164 also stores data on the work plan received by the communication device 190 from the management device 600.
 記憶装置164は、プロセッサ161、ECU165-167に、後述する各種の動作を実行させるコンピュータプログラムも記憶する。そのようなコンピュータプログラムは、記憶媒体(例えば半導体メモリまたは光ディスク等)または電気通信回線(例えばインターネット)を介して収穫機100に提供され得る。そのようなコンピュータプログラムが、商用ソフトウェアとして販売されてもよい。 The storage device 164 also stores computer programs that cause the processor 161 and the ECUs 165-167 to execute various operations, which will be described later. Such computer programs may be provided to the harvester 100 via a storage medium (e.g., a semiconductor memory or an optical disk) or a telecommunications line (e.g., the Internet). Such computer programs may be sold as commercial software.
 制御装置160は、複数のECU165-167を含む。ECU165は、駆動装置140に含まれる原動機111、変速装置112、および走行装置102等を制御することによって収穫機100の走行速度および旋回動作を制御する。 The control device 160 includes multiple ECUs 165-167. The ECU 165 controls the driving speed and turning operation of the harvester 100 by controlling the prime mover 111, the transmission 112, the traveling gear 102, and the like included in the drive device 140.
 ECU165は、GNSSユニット120、LiDARセンサ125、カメラ126、障害物センサ127、センサ群150、およびプロセッサ161から出力されたデータに基づいて、自動運転を実現するための演算および制御を行う。例えば、ECU165は、GNSSユニット120、カメラ126、およびLiDARセンサ125の少なくとも1つから出力されたデータに基づいて、収穫機100の位置を特定する。圃場内においては、ECU165は、GNSSユニット120から出力されたデータのみに基づいて収穫機100の位置を決定してもよい。ECU165は、LiDARセンサ125および/またはカメラ126が取得したデータに基づいて収穫機100の位置を推定または補正してもよい。LiDARセンサ125および/またはカメラ126が取得したデータを利用することにより、測位の精度をさらに高めることができる。例えば、ECU165は、LiDARセンサ125および/またはカメラ126から出力されるデータと、環境地図とのマッチングにより、収穫機100の位置を推定してもよい。自動運転中、ECU165は、推定された収穫機100の位置に基づいて、目標経路に沿って収穫機100が走行するために必要な演算を行う。 The ECU 165 performs calculations and control to realize autonomous driving based on data output from the GNSS unit 120, the LiDAR sensor 125, the camera 126, the obstacle sensor 127, the sensor group 150, and the processor 161. For example, the ECU 165 identifies the position of the harvester 100 based on data output from at least one of the GNSS unit 120, the camera 126, and the LiDAR sensor 125. In the field, the ECU 165 may determine the position of the harvester 100 based only on data output from the GNSS unit 120. The ECU 165 may estimate or correct the position of the harvester 100 based on data acquired by the LiDAR sensor 125 and/or the camera 126. By utilizing the data acquired by the LiDAR sensor 125 and/or the camera 126, the accuracy of positioning can be further improved. For example, the ECU 165 may estimate the position of the harvester 100 by matching data output from the LiDAR sensor 125 and/or the camera 126 with an environmental map. During autonomous driving, the ECU 165 performs calculations necessary for the harvester 100 to travel along the target route based on the estimated position of the harvester 100.
 ECU166は、記憶装置164に格納された作業計画に基づいて収穫機100の移動先を決定し、収穫機100の移動の開始地点から目的地点までの目標経路を決定し得る。ECU166は、LiDARセンサ125、カメラ126および障害物センサ127から出力されたデータに基づいて、収穫機100の周辺に位置する物体を検出する処理を行ってもよい。 The ECU 166 may determine the destination of the harvester 100 based on the work plan stored in the memory device 164, and may determine a target route from the start point of the movement of the harvester 100 to the destination point. The ECU 166 may perform a process to detect objects located around the harvester 100 based on data output from the LiDAR sensor 125, the camera 126, and the obstacle sensor 127.
 ECU167は、上述の収穫動作を行う各種装置に所望の動作を実行させるために、動力伝達機構141等の動作を制御する。 The ECU 167 controls the operation of the power transmission mechanism 141 and other components to cause the various devices performing the harvesting operations described above to perform the desired operations.
 これらのECUの働きにより、制御装置160は、自動運転および作物の収穫動作を実現する。自動運転時において、制御装置160は、計測または推定された収穫機100の位置と、目標経路とに基づいて、駆動装置140を制御する。これにより、制御装置160は、収穫機100を目標経路に沿って走行させることができる。 These ECUs allow the control device 160 to realize automatic driving and crop harvesting operations. During automatic driving, the control device 160 controls the drive device 140 based on the measured or estimated position of the harvester 100 and the target route. This allows the control device 160 to drive the harvester 100 along the target route.
 制御装置160に含まれる複数のECUは、例えばCAN(Controller Area Network)などのビークルバス規格に従って、相互に通信することができる。CANに代えて、車載イーサネット(登録商標)などの、より高速の通信方式が用いられてもよい。図9において、ECU165から167のそれぞれは、個別のブロックとして示されているが、これらのそれぞれの機能が、複数のECUによって実現されていてもよい。ECU165から167の少なくとも一部の機能を統合した車載コンピュータが設けられていてもよい。制御装置160は、ECU165から167以外のECUを備えていてもよく、機能に応じて任意の個数のECUが設けられ得る。各ECUは、一つ以上のプロセッサを含む処理回路を備える。プロセッサ161は、制御装置160が含むECUのいずれかと統合されていてもよい。 The multiple ECUs included in the control device 160 can communicate with each other according to a vehicle bus standard such as CAN (Controller Area Network). A faster communication method such as in-vehicle Ethernet (registered trademark) may be used instead of CAN. In FIG. 9, each of the ECUs 165 to 167 is shown as an individual block, but each of these functions may be realized by multiple ECUs. An in-vehicle computer that integrates at least some of the functions of the ECUs 165 to 167 may be provided. The control device 160 may include ECUs other than the ECUs 165 to 167, and any number of ECUs may be provided depending on the functions. Each ECU includes a processing circuit including one or more processors. The processor 161 may be integrated with any of the ECUs included in the control device 160.
 通信装置190は、自走式タンク200、端末装置400、および管理装置600と通信を行う回路を含む装置である。通信装置190は、自走式タンク200の通信装置290との間で無線通信を行う回路を含む。これにより、自走式タンク200に所望の動作を実行させたり、自走式タンク200から情報を取得したりすることができる。通信装置190は、さらに、ネットワーク80を介した信号の送受信を、端末装置400および管理装置600のそれぞれの通信装置との間で実行するためのアンテナおよび通信回路を含み得る。ネットワーク80は、例えば、3G、4Gもしくは5Gなどのセルラー移動体通信網およびインターネットを含み得る。通信装置190は、収穫機100の近くにいる監視者が使用する携帯端末と通信する機能を備えていてもよい。そのような携帯端末との間では、Wi-Fi(登録商標)、3G、4Gもしくは5Gなどのセルラー移動体通信、またはBluetooth(登録商標)などの、任意の無線通信規格に準拠した通信が行われ得る。 The communication device 190 is a device including circuits for communicating with the self-propelled tank 200, the terminal device 400, and the management device 600. The communication device 190 includes a circuit for wireless communication with the communication device 290 of the self-propelled tank 200. This allows the self-propelled tank 200 to perform a desired operation and to obtain information from the self-propelled tank 200. The communication device 190 may further include an antenna and communication circuits for transmitting and receiving signals via the network 80 between the communication devices of the terminal device 400 and the management device 600. The network 80 may include, for example, a cellular mobile communication network such as 3G, 4G, or 5G, and the Internet. The communication device 190 may have a function for communicating with a mobile terminal used by an observer near the harvester 100. Communication may be performed between such a mobile terminal in accordance with any wireless communication standard, such as Wi-Fi (registered trademark), cellular mobile communication such as 3G, 4G, or 5G, or Bluetooth (registered trademark).
 操作端末131は、収穫機100の走行および自走式タンク200の動作に関する操作をユーザが実行するための端末であり、バーチャルターミナル(VT)とも称される。操作端末131は、タッチスクリーンなどの表示装置、および/または一つ以上のボタンを備え得る。表示装置は、例えば液晶または有機発光ダイオード(OLED)などのディスプレイであり得る。ユーザは、操作端末131を操作することにより、例えば自動運転モードのオン/オフの切り替え、環境地図の記録または編集、目標経路の設定などの種々の操作を実行することができる。これらの操作の少なくとも一部は、操作スイッチ群132を操作することによっても実現され得る。操作端末131は、収穫機100から取り外せるように構成されていてもよい。収穫機100から離れた場所にいるユーザが、取り外された操作端末131を操作して収穫機100の動作を制御してもよい。ユーザは、操作端末131の代わりに、端末装置400などの、必要なアプリケーションソフトウェアがインストールされたコンピュータを操作して収穫機100の動作を制御してもよい。 The operation terminal 131 is a terminal through which the user performs operations related to the traveling of the harvester 100 and the operation of the self-propelled tank 200, and is also called a virtual terminal (VT). The operation terminal 131 may have a display device such as a touch screen, and/or one or more buttons. The display device may be, for example, a liquid crystal or organic light-emitting diode (OLED) display. By operating the operation terminal 131, the user can perform various operations such as switching the automatic driving mode on/off, recording or editing an environmental map, and setting a target route. At least some of these operations can also be realized by operating the operation switch group 132. The operation terminal 131 may be configured to be removable from the harvester 100. A user located away from the harvester 100 may operate the detached operation terminal 131 to control the operation of the harvester 100. The user may operate a computer on which necessary application software is installed, such as a terminal device 400, instead of the operation terminal 131 to control the operation of the harvester 100.
 図10は、自走式タンク200の構成例を示すブロック図である。自走式タンク200は、ネットワーク80を介して、端末装置400および管理装置600と通信することができる。 FIG. 10 is a block diagram showing an example configuration of the self-propelled tank 200. The self-propelled tank 200 can communicate with the terminal device 400 and the management device 600 via the network 80.
 図10に例示する自走式タンク200は、GNSSユニット220、LiDARセンサ225、カメラ226、障害物センサ227、ブザー233、駆動装置240、センサ群250、制御装置260、通信装置290を備える。これらの構成要素は、バスを介して相互に通信可能に接続される。 The self-propelled tank 200 illustrated in FIG. 10 includes a GNSS unit 220, a LiDAR sensor 225, a camera 226, an obstacle sensor 227, a buzzer 233, a drive unit 240, a group of sensors 250, a control unit 260, and a communication unit 290. These components are connected to each other via a bus so that they can communicate with each other.
 GNSSユニット220は、GNSS受信機221、RTK受信機222、IMU223、処理回路224を備える。センサ群250は、自走式タンク200の各種状態を検出する。センサ群250は、回転センサ252、荷重センサ256を含む。制御装置260は、プロセッサ261、RAM262、ROM263、記憶装置264、電子制御ユニット(ECU)265および266を備える。図10には、自走式タンク200による自動運転の動作との関連性が相対的に高い構成要素が示されており、それ以外の構成要素の図示は省略されている。 The GNSS unit 220 includes a GNSS receiver 221, an RTK receiver 222, an IMU 223, and a processing circuit 224. The sensor group 250 detects various conditions of the self-propelled tank 200. The sensor group 250 includes a rotation sensor 252 and a load sensor 256. The control device 260 includes a processor 261, a RAM 262, a ROM 263, a storage device 264, and electronic control units (ECUs) 265 and 266. Figure 10 shows components that are relatively closely related to the automatic driving operation of the self-propelled tank 200, and other components are not shown.
 GNSSユニット220が備えるGNSS受信機221は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいてGNSSデータを生成する。 The GNSS receiver 221 provided in the GNSS unit 220 receives satellite signals transmitted from multiple GNSS satellites and generates GNSS data based on the satellite signals.
 図10に例示するGNSSユニット220は、RTK-GNSSを利用して自走式タンク200の測位を行う。RTK-GNSSを用いることにより、例えば誤差数cmの精度で測位を行うことが可能である。緯度、経度、および高度の情報を含む位置データが、RTK-GNSSによる高精度の測位によって取得される。GNSSユニット220は、例えば1秒間に1回から10回程度の頻度で、自走式タンク200の位置を計算する。 The GNSS unit 220 illustrated in FIG. 10 uses RTK-GNSS to determine the position of the self-propelled tank 200. By using RTK-GNSS, it is possible to perform positioning with an accuracy of, for example, a few centimeters. Position data including latitude, longitude, and altitude information is obtained through high-precision positioning using RTK-GNSS. The GNSS unit 220 calculates the position of the self-propelled tank 200 at a frequency of, for example, about 1 to 10 times per second.
 なお、測位方法はRTK-GNSSに限らず、必要な精度の位置データが得られる任意の測位方法(干渉測位法または相対測位法など)を用いることができる。例えば、VRSまたはDGPSを利用した測位を行ってもよい。基準局から送信される補正信号を用いなくても必要な精度の位置データが得られる場合は、補正信号を用いずに位置データを生成してもよい。その場合、GNSSユニット220は、RTK受信機222を備えていなくてもよい。 Note that the positioning method is not limited to RTK-GNSS, and any positioning method (such as interferometric positioning or relative positioning) that can obtain position data with the required accuracy can be used. For example, positioning may be performed using VRS or DGPS. If position data with the required accuracy can be obtained without using a correction signal transmitted from a reference station, position data may be generated without using a correction signal. In that case, the GNSS unit 220 does not need to be equipped with an RTK receiver 222.
 RTK-GNSSを利用する場合であっても、基準局からの補正信号が得られない場所(例えば圃場から遠く離れた道路上)では、RTK受信機222からの信号によらず、他の方法で自走式タンク200の位置が推定される。例えば、LiDARセンサ225および/またはカメラ226から出力されたデータと、高精度の環境地図とのマッチングによって、自走式タンク200の位置が推定され得る。 Even when RTK-GNSS is used, in locations where correction signals from a reference station cannot be obtained (e.g., on a road far from a field), the position of the self-propelled tank 200 is estimated by other methods rather than relying on signals from the RTK receiver 222. For example, the position of the self-propelled tank 200 can be estimated by matching data output from the LiDAR sensor 225 and/or camera 226 with a high-precision environmental map.
 IMU223は、3軸加速度センサおよび3軸ジャイロスコープを備え得る。IMU223は、3軸地磁気センサなどの方位センサを備えていてもよい。IMU223は、モーションセンサとして機能し、自走式タンク200の加速度、速度、変位、および姿勢などの諸量を示す信号を出力することができる。処理回路224は、衛星信号および補正信号に加えて、IMU223から出力された信号に基づいて、自走式タンク200の位置および向きをより高い精度で推定することができる。IMU223から出力された信号は、衛星信号および補正信号に基づいて計算される位置の補正または補完に用いられ得る。IMU223は、GNSS受信機221よりも高い頻度で信号を出力する。その高頻度の信号を利用して、処理回路224は、自走式タンク200の位置および向きをより高い頻度(例えば、10Hz以上)で計測することができる。IMU223に代えて、3軸加速度センサおよび3軸ジャイロスコープを別々に設けてもよい。IMU223は、GNSSユニット220とは別の装置として設けられていてもよい。 The IMU 223 may include a three-axis acceleration sensor and a three-axis gyroscope. The IMU 223 may include an orientation sensor such as a three-axis geomagnetic sensor. The IMU 223 functions as a motion sensor and can output signals indicating various quantities such as the acceleration, speed, displacement, and attitude of the self-propelled tank 200. The processing circuit 224 can estimate the position and orientation of the self-propelled tank 200 with higher accuracy based on the signal output from the IMU 223 in addition to the satellite signal and correction signal. The signal output from the IMU 223 can be used to correct or complement the position calculated based on the satellite signal and correction signal. The IMU 223 outputs signals at a higher frequency than the GNSS receiver 221. Using the high-frequency signal, the processing circuit 224 can measure the position and orientation of the self-propelled tank 200 at a higher frequency (e.g., 10 Hz or more). Instead of the IMU 223, a three-axis acceleration sensor and a three-axis gyroscope may be provided separately. The IMU 223 may be provided as a device separate from the GNSS unit 220.
 カメラ226は、自走式タンク200の周辺の環境を撮影する撮像装置である。カメラ226は、例えば、CCDまたはCMOSなどのイメージセンサを備える。カメラ226は、他にも、一つ以上のレンズを含む光学系、および信号処理回路を備え得る。カメラ226は、自走式タンク200の走行中、自走式タンク200の周辺の環境を撮影し、画像(例えば動画)のデータを生成する。カメラ226は、例えば、3(fps)以上のフレームレートで動画を撮影することができる。カメラ226によって生成された画像は、例えば遠隔の監視者が端末装置400を用いて自走式タンク200の周辺の環境を確認するときに利用され得る。カメラ226によって生成された画像は、測位または障害物の検出に利用されてもよい。複数のカメラ226が自走式タンク200の異なる位置に設けられていてもよいし、単数のカメラが設けられていてもよい。可視光画像を生成する可視カメラと、赤外線画像を生成する赤外カメラとが別々に設けられていてもよい。可視カメラと赤外カメラの両方が監視用の画像を生成するカメラとして設けられていてもよい。赤外カメラは、夜間において障害物の検出にも用いられ得る。 The camera 226 is an imaging device that captures the environment around the self-propelled tank 200. The camera 226 includes an image sensor such as a CCD or CMOS. The camera 226 may also include an optical system including one or more lenses, and a signal processing circuit. The camera 226 captures the environment around the self-propelled tank 200 while the self-propelled tank 200 is traveling, and generates image (e.g., video) data. The camera 226 can capture video at a frame rate of, for example, 3 (fps) or more. The images generated by the camera 226 can be used, for example, when a remote observer uses the terminal device 400 to check the environment around the self-propelled tank 200. The images generated by the camera 226 may be used for positioning or obstacle detection. Multiple cameras 226 may be provided at different positions on the self-propelled tank 200, or a single camera may be provided. A visible camera that generates a visible light image and an infrared camera that generates an infrared image may be provided separately. Both visible and infrared cameras may be provided as cameras that generate images for surveillance. The infrared camera may also be used to detect obstacles at night.
 障害物センサ227は、自走式タンク200の周辺に存在する物体を検出する。障害物センサ227は、例えばレーザスキャナまたは超音波ソナーを含み得る。複数の障害物センサ227が自走式タンク200の異なる位置に設けられていてもよい。例えば、複数のレーザスキャナと、複数の超音波ソナーとが、自走式タンク200の異なる位置に配置されていてもよい。障害物センサ227を複数個備えることにより、自走式タンク200の周辺の障害物の監視における死角を減らすことができる。 The obstacle sensor 227 detects objects present in the vicinity of the self-propelled tank 200. The obstacle sensor 227 may include, for example, a laser scanner or an ultrasonic sonar. Multiple obstacle sensors 227 may be provided at different positions on the self-propelled tank 200. For example, multiple laser scanners and multiple ultrasonic sonars may be arranged at different positions on the self-propelled tank 200. By providing multiple obstacle sensors 227, it is possible to reduce blind spots in monitoring obstacles around the self-propelled tank 200.
 回転センサ252は、走行装置203の車軸の回転速度、すなわち単位時間あたりの回転数を計測する。回転センサ252は、例えば磁気抵抗素子(MR)、ホール素子、または電磁ピックアップを利用したセンサであり得る。回転センサ252は、例えば、車軸の1分あたりの回転数(単位:rpm)を示す数値を出力する。回転センサ252は、例えば自走式タンク200の速度を計測するために使用される。 The rotation sensor 252 measures the rotation speed of the axle of the traveling device 203, i.e., the number of rotations per unit time. The rotation sensor 252 may be, for example, a sensor that uses a magnetoresistive element (MR), a Hall element, or an electromagnetic pickup. The rotation sensor 252 outputs, for example, a numerical value indicating the number of rotations per minute (unit: rpm) of the axle. The rotation sensor 252 is used, for example, to measure the speed of the self-propelled tank 200.
 荷重センサ256は、収穫物を溜めるタンク201の下部に設けられ、タンク201内の収穫物の重量を検出する。タンク201内の収穫物の重量を検出することで、制御装置260は、タンク201内の収穫物の貯留状態を認識することができる。 The load sensor 256 is provided at the bottom of the tank 201 that stores the harvest, and detects the weight of the harvest in the tank 201. By detecting the weight of the harvest in the tank 201, the control device 260 can recognize the storage status of the harvest in the tank 201.
 ブザー233は、異常を報知するための警告音を発する音声出力装置である。ブザー233は、例えば、自動運転時に、障害物が検出された場合に警告音を発する。ブザー233は、制御装置260によって制御される。 The buzzer 233 is an audio output device that emits a warning sound to notify of an abnormality. For example, the buzzer 233 emits a warning sound when an obstacle is detected during automatic driving. The buzzer 233 is controlled by the control device 260.
 駆動装置240は、原動機204、減速機205等の収穫機100の走行のための駆動に必要な各種の装置を含む。駆動装置240は、複数の原動機204を備えていてもよい。 The drive unit 240 includes various devices necessary for driving the harvester 100 to travel, such as the prime mover 204 and the reduction gear 205. The drive unit 240 may be equipped with multiple prime movers 204.
 プロセッサ261は、例えば中央演算処理装置(CPU)を含む半導体集積回路であり得る。ROM263は、例えば、書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)、または読み出し専用のメモリである。RAM262は、ROM263に格納された制御プログラムをブート時に一旦展開するための作業領域を提供する。プロセッサ261、RAM262、ROM263の構成の詳細は、プロセッサ161、RAM162、ROM163と同様であるため、ここではそれらの詳細な説明は省略する。 The processor 261 may be, for example, a semiconductor integrated circuit including a central processing unit (CPU). The ROM 263 may be, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read-only memory. The RAM 262 provides a working area for loading the control program stored in the ROM 263 once at boot time. The detailed configurations of the processor 261, RAM 262, and ROM 263 are similar to those of the processor 161, RAM 162, and ROM 163, and therefore a detailed description thereof will be omitted here.
 記憶装置264は、フラッシュメモリまたは磁気ディスクなどの一つ以上の記憶媒体を含む。記憶装置264は、GNSSユニット220、LiDARセンサ225、カメラ226、障害物センサ227、センサ群250、および制御装置260が生成する各種のデータを記憶する。記憶装置264が記憶するデータには、自走式タンク200が走行する環境内の地図データ(環境地図)、および自動運転のための目標経路のデータが含まれ得る。環境地図は、自走式タンク200が作業を行う複数の圃場およびその周辺の道の情報を含む。環境地図および目標経路は、管理装置600のプロセッサによって生成され得る。なお、制御装置260が、環境地図および目標経路を生成または編集する機能を備えていてもよい。制御装置260は、管理装置600から取得した環境地図および目標経路を、自走式タンク200の走行環境に応じて編集することができる。記憶装置264は、通信装置290が管理装置600から受信した作業計画のデータも記憶する。 The storage device 264 includes one or more storage media such as a flash memory or a magnetic disk. The storage device 264 stores various data generated by the GNSS unit 220, the LiDAR sensor 225, the camera 226, the obstacle sensor 227, the sensor group 250, and the control device 260. The data stored in the storage device 264 may include map data (environmental map) of the environment in which the self-propelled tank 200 travels, and data of a target route for automatic driving. The environmental map includes information on multiple fields in which the self-propelled tank 200 works and the roads in the surrounding areas. The environmental map and the target route may be generated by a processor of the management device 600. The control device 260 may have a function of generating or editing the environmental map and the target route. The control device 260 can edit the environmental map and the target route acquired from the management device 600 according to the traveling environment of the self-propelled tank 200. The storage device 264 also stores the work plan data received by the communication device 290 from the management device 600.
 記憶装置264は、プロセッサ261、ECU265、266に、後述する各種の動作を実行させるコンピュータプログラムも記憶する。そのようなコンピュータプログラムは、記憶媒体(例えば半導体メモリまたは光ディスク等)または電気通信回線(例えばインターネット)を介して自走式タンク200に提供され得る。そのようなコンピュータプログラムが、商用ソフトウェアとして販売されてもよい。 The storage device 264 also stores computer programs that cause the processor 261, ECUs 265, and 266 to execute various operations, which will be described later. Such computer programs may be provided to the self-propelled tank 200 via a storage medium (e.g., a semiconductor memory or an optical disk) or a telecommunications line (e.g., the Internet). Such computer programs may be sold as commercial software.
 制御装置260は、ECU265、266を含む。ECU265は、駆動装置240に含まれる原動機204、減速機205等を制御することによって自走式タンク200の走行速度および旋回動作を制御する。 The control device 260 includes ECUs 265 and 266. The ECU 265 controls the driving speed and turning operation of the self-propelled tank 200 by controlling the prime mover 204, the reduction gear 205, and the like included in the drive device 240.
 ECU265は、GNSSユニット220、カメラ226、障害物センサ227、LiDARセンサ225、センサ群250、およびプロセッサ261から出力されたデータに基づいて、自動運転を実現するための演算および制御を行う。例えば、ECU265は、GNSSユニット220、カメラ226、およびLiDARセンサ225の少なくとも1つから出力されたデータに基づいて、自走式タンク200の位置を特定する。圃場内においては、ECU265は、GNSSユニット220から出力されたデータのみに基づいて自走式タンク200の位置を決定してもよい。ECU265は、カメラ226および/またはLiDARセンサ225が取得したデータに基づいて自走式タンク200の位置を推定または補正してもよい。カメラ226および/またはLiDARセンサ225が取得したデータを利用することにより、測位の精度をさらに高めることができる。例えば、ECU265は、LiDARセンサ225および/またはカメラ226から出力されるデータと、環境地図とのマッチングにより、自走式タンク200の位置を推定してもよい。自動運転中、ECU265は、推定された自走式タンク200の位置に基づいて、目標経路に沿って自走式タンク200が走行するために必要な演算を行う。 The ECU 265 performs calculations and control to realize autonomous driving based on data output from the GNSS unit 220, the camera 226, the obstacle sensor 227, the LiDAR sensor 225, the sensor group 250, and the processor 261. For example, the ECU 265 identifies the position of the self-propelled tank 200 based on data output from at least one of the GNSS unit 220, the camera 226, and the LiDAR sensor 225. In a field, the ECU 265 may determine the position of the self-propelled tank 200 based only on data output from the GNSS unit 220. The ECU 265 may estimate or correct the position of the self-propelled tank 200 based on data acquired by the camera 226 and/or the LiDAR sensor 225. By utilizing the data acquired by the camera 226 and/or the LiDAR sensor 225, the accuracy of positioning can be further improved. For example, the ECU 265 may estimate the position of the self-propelled tank 200 by matching data output from the LiDAR sensor 225 and/or the camera 226 with an environmental map. During autonomous driving, the ECU 265 performs the calculations necessary for the self-propelled tank 200 to travel along the target route based on the estimated position of the self-propelled tank 200.
 ECU266は、記憶装置264に格納された作業計画に基づいて自走式タンク200の移動先を決定し、自走式タンク200の移動の開始地点から目的地点までの目標経路を決定し得る。ECU266は、LiDARセンサ225、カメラ226、障害物センサ227から出力されたデータに基づいて、自走式タンク200の周辺に位置する物体を検出する処理を行ってもよい。 The ECU 266 may determine the destination of the self-propelled tank 200 based on the work plan stored in the memory device 264, and may determine a target route from the start point of the movement of the self-propelled tank 200 to the destination point. The ECU 266 may perform a process to detect objects located in the vicinity of the self-propelled tank 200 based on data output from the LiDAR sensor 225, the camera 226, and the obstacle sensor 227.
 これらECU265、266の働きにより、制御装置260は、自動運転を実現する。自動運転時において、制御装置260は、計測または推定された自走式タンク200の位置と、目標経路とに基づいて、駆動装置240を制御する。これにより、制御装置260は、自走式タンク200を目標経路に沿って走行させることができる。 The control device 260 realizes automatic driving through the operation of these ECUs 265, 266. During automatic driving, the control device 260 controls the drive device 240 based on the measured or estimated position of the self-propelled tank 200 and the target route. This allows the control device 260 to drive the self-propelled tank 200 along the target route.
 制御装置260に含まれる複数のECUは、例えばCANなどのビークルバス規格に従って、相互に通信することができる。CANに代えて、車載イーサネット(登録商標)などの、より高速の通信方式が用いられてもよい。図10において、ECU265、266のそれぞれは、個別のブロックとして示されているが、これらのそれぞれの機能が、複数のECUによって実現されていてもよい。ECU265、266の少なくとも一部の機能を統合したコンピュータが設けられていてもよい。制御装置260は、ECU265、266以外のECUを備えていてもよく、機能に応じて任意の個数のECUが設けられ得る。各ECUは、一つ以上のプロセッサを含む処理回路を備える。プロセッサ261は、制御装置260が含むECUのいずれかと統合されていてもよい。 The multiple ECUs included in the control device 260 can communicate with each other according to a vehicle bus standard such as CAN. A faster communication method such as in-vehicle Ethernet (registered trademark) may be used instead of CAN. In FIG. 10, each of the ECUs 265 and 266 is shown as an individual block, but the functions of each of these may be realized by multiple ECUs. A computer that integrates at least some of the functions of the ECUs 265 and 266 may be provided. The control device 260 may include ECUs other than the ECUs 265 and 266, and any number of ECUs may be provided depending on the functions. Each ECU includes a processing circuit including one or more processors. The processor 261 may be integrated with any of the ECUs included in the control device 260.
 通信装置290は、収穫機100、端末装置400、および管理装置600と通信を行う回路を含む装置である。通信装置290は、収穫機100の通信装置190との間で無線通信を行う回路を含む。これにより、収穫機100に所望の動作を実行させたり、収穫機100から情報を取得したりすることができる。通信装置290は、さらに、ネットワーク80を介した信号の送受信を、端末装置400および管理装置600のそれぞれの通信装置との間で実行するためのアンテナおよび通信回路を含み得る。通信装置290は、自走式タンク200の近くにいる監視者が使用する携帯端末と通信する機能を備えていてもよい。そのような携帯端末との間では、Wi-Fi(登録商標)、3G、4Gもしくは5Gなどのセルラー移動体通信、またはBluetooth(登録商標)などの、任意の無線通信規格に準拠した通信が行われ得る。 The communication device 290 is a device including circuits for communicating with the harvester 100, the terminal device 400, and the management device 600. The communication device 290 includes circuits for wireless communication with the communication device 190 of the harvester 100. This allows the harvester 100 to perform a desired operation and to obtain information from the harvester 100. The communication device 290 may further include an antenna and communication circuits for transmitting and receiving signals via the network 80 between the communication devices of the terminal device 400 and the management device 600. The communication device 290 may have a function for communicating with a mobile terminal used by an observer located near the self-propelled tank 200. Communication may be performed between such a mobile terminal in accordance with any wireless communication standard, such as cellular mobile communication such as Wi-Fi (registered trademark), 3G, 4G, or 5G, or Bluetooth (registered trademark).
 次に、図11を参照しながら、管理装置600および端末装置400の構成を説明する。図11は、管理装置600および端末装置400のハードウェア構成を例示するブロック図である。 Next, the configuration of the management device 600 and the terminal device 400 will be described with reference to FIG. 11. FIG. 11 is a block diagram illustrating the hardware configuration of the management device 600 and the terminal device 400.
 管理装置600は、記憶装置650と、プロセッサ660と、ROM670と、RAM680と、通信装置690とを備える。これらの構成要素は、バスを介して相互に通信可能に接続される。管理装置600は、収穫機100および自走式タンク200が実行する圃場における農作業のスケジュール管理を行い、管理するデータを活用して農業を支援するクラウドサーバとして機能し得る。ユーザは、端末装置400を用いて作業計画の作成に必要な情報を入力し、その情報を、ネットワーク80を介して管理装置600にアップロードすることが可能である。管理装置600は、その情報に基づき、農作業のスケジュール、すなわち作業計画を作成することができる。管理装置600は、さらに、環境地図の生成または編集を実行することができる。環境地図は、管理装置600の外部のコンピュータから配信されてもよい。 The management device 600 includes a storage device 650, a processor 660, a ROM 670, a RAM 680, and a communication device 690. These components are connected to each other via a bus so that they can communicate with each other. The management device 600 manages the schedule of agricultural work in the field performed by the harvester 100 and the self-propelled tank 200, and can function as a cloud server that supports agriculture by utilizing the data it manages. A user can input information required for creating a work plan using the terminal device 400 and upload the information to the management device 600 via the network 80. The management device 600 can create a schedule of agricultural work, i.e., a work plan, based on the information. The management device 600 can also generate or edit an environmental map. The environmental map may be distributed from a computer external to the management device 600.
 通信装置690は、ネットワーク80を介して収穫機100、自走式タンク200、端末装置400と通信するための通信モジュールである。通信装置690は、例えば、IEEE1394(登録商標)またはイーサネット(登録商標)などの通信規格に準拠した有線通信を行うことができる。通信装置690は、Bluetooth(登録商標)規格もしくはWi-Fi規格に準拠した無線通信、または、3G、4Gもしくは5Gなどのセルラー移動体通信を行ってもよい。 The communication device 690 is a communication module for communicating with the harvester 100, the self-propelled tank 200, and the terminal device 400 via the network 80. The communication device 690 can perform wired communication conforming to a communication standard such as IEEE 1394 (registered trademark) or Ethernet (registered trademark). The communication device 690 may perform wireless communication conforming to the Bluetooth (registered trademark) standard or the Wi-Fi standard, or cellular mobile communication such as 3G, 4G, or 5G.
 プロセッサ660は、例えば中央演算処理装置(CPU)を含む半導体集積回路であり得る。ROM670は、例えば、書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)、または読み出し専用のメモリである。RAM680は、ROM670に格納された制御プログラムをブート時に一旦展開するための作業領域を提供する。プロセッサ660、ROM670、RAM680の構成の詳細は、プロセッサ161、ROM163、RAM162と同様であるため、ここでは詳細な説明は省略する。 Processor 660 may be, for example, a semiconductor integrated circuit including a central processing unit (CPU). ROM 670 may be, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read-only memory. RAM 680 provides a working area for loading the control program stored in ROM 670 once at boot time. The detailed configurations of processor 660, ROM 670, and RAM 680 are similar to those of processor 161, ROM 163, and RAM 162, and therefore will not be described in detail here.
 記憶装置650は、主としてデータベースのストレージとして機能する。記憶装置650は、例えば、磁気記憶装置または半導体記憶装置であり得る。記憶装置650は、管理装置600とは独立した装置であってもよい。例えば、記憶装置650は、管理装置600にネットワーク80を介して接続される記憶装置、例えばクラウドストレージであってもよい。 The storage device 650 mainly functions as database storage. The storage device 650 may be, for example, a magnetic storage device or a semiconductor storage device. The storage device 650 may be a device independent of the management device 600. For example, the storage device 650 may be a storage device connected to the management device 600 via the network 80, such as a cloud storage device.
 端末装置400は、入力装置420と、表示装置430と、記憶装置450と、プロセッサ460と、ROM470と、RAM480と、通信装置490とを備える。これらの構成要素は、バスを介して相互に通信可能に接続される。入力装置420は、ユーザからの指示をデータに変換してコンピュータに入力するための装置である。入力装置420は、例えば、キーボード、マウス、またはタッチパネルであり得る。表示装置430は、例えば液晶ディスプレイまたは有機ELディスプレイであり得る。プロセッサ460、ROM470、RAM480、記憶装置450、および通信装置490のそれぞれに関する説明は、収穫機100、自走式タンク200、管理装置600のハードウェア構成例において記載したとおりであり、それらの説明を省略する。 The terminal device 400 includes an input device 420, a display device 430, a storage device 450, a processor 460, a ROM 470, a RAM 480, and a communication device 490. These components are connected to each other via a bus so that they can communicate with each other. The input device 420 is a device for converting instructions from a user into data and inputting the data to a computer. The input device 420 may be, for example, a keyboard, a mouse, or a touch panel. The display device 430 may be, for example, a liquid crystal display or an organic EL display. The processor 460, ROM 470, RAM 480, storage device 450, and communication device 490 are described in the hardware configuration examples of the harvester 100, the self-propelled tank 200, and the management device 600, and therefore their description will be omitted.
 [2.動作]
 次に、収穫機100および自走式タンク200を用いて圃場の作物を収穫する動作を説明する。
2. Operation
Next, the operation of harvesting crops in a field using the harvester 100 and the self-propelled tank 200 will be described.
 図12は、収穫機100および自走式タンク200を用いて圃場70の作物を収穫する収穫作業を示す図である。図13は、収穫作業を行う収穫機100および自走式タンク200を拡大して示す図である。本実施形態の収穫機100は、圃場70を自動運転で走行しながら作物を収穫する。圃場70内において、収穫機100は、予め設定された目標経路73に沿って走行しながら、作物を収穫する動作を実行する。圃場70内において、収穫機100の測位は、主にGNSSユニット120から出力されるデータに基づいて行われる。GNSSユニット120から出力される測位データに加え、LiDARセンサ125および/またはカメラ126から出力されるデータに基づいて収穫機100の位置を推定してもよい。 12 is a diagram showing a harvesting operation in which a harvester 100 and a self-propelled tank 200 are used to harvest crops in a field 70. FIG. 13 is an enlarged view of the harvester 100 and the self-propelled tank 200 performing the harvesting operation. The harvester 100 of this embodiment harvests crops while traveling in an automatic manner in the field 70. In the field 70, the harvester 100 performs an operation of harvesting crops while traveling along a preset target route 73. In the field 70, the positioning of the harvester 100 is performed mainly based on data output from the GNSS unit 120. In addition to the positioning data output from the GNSS unit 120, the position of the harvester 100 may be estimated based on data output from the LiDAR sensor 125 and/or the camera 126.
 図12に示す例では、圃場70は、収穫機100が作物の収穫を行う作業領域71と、圃場70の外周縁付近に位置する枕地72とを含む。地図上で圃場70のどの領域が作業領域71および枕地72に該当するかは、ユーザによって事前に設定され得る。収穫機100は、図12に示すような目標経路73に沿って、作業の開始地点から作業の終了地点まで、自動で走行する。なお、図12に示す目標経路73は一例に過ぎず、目標経路73の定め方は任意である。目標経路73は、ユーザの操作に基づいて作成されてもよいし、自動で作成されてもよい。目標経路73は、例えば圃場70内の作業領域71の全体をカバーするように作成され得る。 In the example shown in FIG. 12, the field 70 includes a work area 71 where the harvester 100 harvests crops, and a headland 72 located near the outer periphery of the field 70. The user can set in advance which areas of the field 70 on the map correspond to the work area 71 and the headland 72. The harvester 100 automatically travels from the start point of the work to the end point of the work along a target route 73 as shown in FIG. 12. Note that the target route 73 shown in FIG. 12 is merely an example, and the method of defining the target route 73 is arbitrary. The target route 73 may be created based on a user's operation, or may be created automatically. The target route 73 may be created, for example, so as to cover the entire work area 71 in the field 70.
 収穫機100は、目標経路73に沿って自動運転で走行しながら作物を収穫する。収穫機100のプロセッサ161(図9)は、ECU165に収穫機100を目標経路73に沿って自動運転で走行させる制御を実行させるとともに、ECU167に作物の収穫動作の制御を実行させる。ECU165は、駆動装置140の動作を制御し、収穫機100を自動運転で走行させる。ECU167は、動力伝達機構141の動作を制御し、作物の収穫動作を行う各種装置に所望の動作を実行させる。刈取装置103は圃場70内の作物を刈り取る。脱穀装置105は刈り取られた作物の脱穀を行う。排藁処理装置108は、穀粒等の収穫物が取り除かれた後の茎部分等を細かく切断して外部に放出する。排出装置107は、脱穀装置105から収穫物を排出する。 The harvester 100 harvests crops while traveling automatically along the target route 73. The processor 161 (FIG. 9) of the harvester 100 causes the ECU 165 to execute control for automatically driving the harvester 100 along the target route 73, and causes the ECU 167 to execute control for the crop harvesting operation. The ECU 165 controls the operation of the drive unit 140 to drive the harvester 100 automatically. The ECU 167 controls the operation of the power transmission mechanism 141 to cause various devices that perform the crop harvesting operation to perform the desired operation. The reaping device 103 reaps the crops in the field 70. The threshing device 105 threshes the harvested crops. The straw waste processing device 108 finely cuts the stalks and other parts after the harvested products such as grains have been removed, and discharges them to the outside. The discharge device 107 discharges the harvested products from the threshing device 105.
 本実施形態の自走式タンク200は、収穫機100の台115に乗った状態で、排出装置107から排出された収穫物を受け取ってタンク201に溜める。 The self-propelled tank 200 of this embodiment receives the harvested product discharged from the discharge device 107 while mounted on the platform 115 of the harvester 100 and stores it in the tank 201.
 自走式タンク200が収穫機100の台115に乗る動作を説明する。収穫機100と自走式タンク200とは、通信装置190および290を介して互いにデータ通信を行う。収穫機100のプロセッサ161は、GNSSユニット120から取得した収穫機100の位置の地理座標の情報および収穫機100が向いている方向の情報を、通信装置190を介して自走式タンク200に送信する。 The operation of the self-propelled tank 200 mounting on the platform 115 of the harvester 100 will be described. The harvester 100 and the self-propelled tank 200 communicate data with each other via communication devices 190 and 290. The processor 161 of the harvester 100 transmits information on the geographic coordinates of the position of the harvester 100 and information on the direction in which the harvester 100 is facing, obtained from the GNSS unit 120, to the self-propelled tank 200 via the communication device 190.
 自走式タンク200のプロセッサ261は、収穫機100の地理座標および向きの情報に基づいて、収穫機100の後方に隣接する位置の地理座標を演算し、その演算した地理座標の位置を目標位置に設定する。走行する収穫機100の位置は変化するため、目標位置は随時更新される。 The processor 261 of the self-propelled tank 200 calculates the geographic coordinates of a position adjacent to the rear of the harvester 100 based on the geographic coordinates and orientation information of the harvester 100, and sets the calculated geographic coordinate position as the target position. Since the position of the traveling harvester 100 changes, the target position is updated as needed.
 プロセッサ261は、最新の目標位置に到達するように自走式タンク200を走行させる。これにより、収穫機100の後方に隣接する位置に自走式タンク200を到達させることができる。プロセッサ261が自走式タンク200を走行させる制御は、ECU265を介して行われ得る。プロセッサ261は、ECU265を介して走行装置203の動作を制御して自走式タンク200を走行させる。 The processor 261 drives the self-propelled tank 200 to reach the latest target position. This allows the self-propelled tank 200 to reach a position adjacent to the rear of the harvester 100. The processor 261 controls the driving of the self-propelled tank 200 via the ECU 265. The processor 261 controls the operation of the driving device 203 via the ECU 265 to drive the self-propelled tank 200.
 自走式タンク200のLiDARセンサ225が出力する3次元点群データは、複数の点の位置に関する情報および光検出器の受信強度などの情報(属性情報)を含んでいる。複数の点の位置に関する情報は、例えば、点に対応するレーザパルスの出射方向と、LiDARセンサと点との間の距離の情報である。また例えば、複数の点の位置に関する情報は、ローカル座標系における点の座標の情報である。ローカル座標系は、自走式タンク200とともに移動する座標系であり、センサ座標系とも称される。点に対応するレーザパルスの出射方向と、LiDARセンサと点との間の距離とから、各点の座標を算出することができる。 The three-dimensional point cloud data output by the LiDAR sensor 225 of the self-propelled tank 200 includes information about the positions of multiple points and information (attribute information) such as the reception intensity of the photodetector. The information about the positions of multiple points is, for example, information about the emission direction of the laser pulse corresponding to the point and the distance between the LiDAR sensor and the point. In addition, for example, the information about the positions of multiple points is information about the coordinates of the points in a local coordinate system. The local coordinate system is a coordinate system that moves together with the self-propelled tank 200, and is also referred to as the sensor coordinate system. The coordinates of each point can be calculated from the emission direction of the laser pulse corresponding to the point and the distance between the LiDAR sensor and the point.
 プロセッサ261は、センシング装置を用いて収穫機100のスロープ171をセンシングする制御を行う。例えば、LiDARセンサ225を用いてスロープ171をセンシングする。LiDARセンサ225が出力する3次元点群データは、例えば、複数の点それぞれのローカル座標系における座標の情報を含んでいる。 The processor 261 controls sensing of the slope 171 of the harvester 100 using a sensing device. For example, the slope 171 is sensed using the LiDAR sensor 225. The three-dimensional point cloud data output by the LiDAR sensor 225 includes, for example, information on the coordinates of each of the multiple points in the local coordinate system.
 プロセッサ261は、例えば、機械学習により生成した推定モデルを用いて、LiDARセンサ225が出力する3次元点群データからスロープ171を表す点群データを特定する。プロセッサ261は、スロープ171を表す点群データに含まれる複数の点のそれぞれの座標の情報を取得する。推定モデルは、記憶装置264に予め記憶されている。 The processor 261 identifies point cloud data representing the slope 171 from the three-dimensional point cloud data output by the LiDAR sensor 225, for example, using an estimation model generated by machine learning. The processor 261 acquires information on the coordinates of each of the multiple points included in the point cloud data representing the slope 171. The estimation model is pre-stored in the storage device 264.
 プロセッサ261は、自走式タンク200にスロープ171を上るように走行させる。これにより、自走式タンク200は台115の上に乗ることできる。 The processor 261 causes the self-propelled tank 200 to travel up the slope 171. This allows the self-propelled tank 200 to stand on the platform 115.
 なお、LiDARセンサ225のセンシングデータ以外のセンシングデータを用いて、スロープ171の位置を検出してもよい。例えば、カメラ226が出力したセンシングデータを用いて、スロープ171の位置を検出してもよい。 Note that the position of the slope 171 may be detected using sensing data other than the sensing data of the LiDAR sensor 225. For example, the position of the slope 171 may be detected using sensing data output by the camera 226.
 プロセッサ261は、台115上の定められた位置であって、排出口117から排出される収穫物を受け入れる受け入れ位置に自走式タンク200を移動させる。台115上の受け入れ位置は、排出口117から排出される収穫物を受け取り可能な位置であり、例えば排出口117の直下の位置である。その受け入れ位置に別の自走式タンク200が位置しているときは、その別の自走式タンク200の後方の位置で待機する。 The processor 261 moves the self-propelled tank 200 to a receiving position, which is a predetermined position on the platform 115 and which receives the harvested product discharged from the discharge port 117. The receiving position on the platform 115 is a position that can receive the harvested product discharged from the discharge port 117, for example, a position directly below the discharge port 117. When another self-propelled tank 200 is positioned at that receiving position, the processor 261 waits in a position behind the other self-propelled tank 200.
 プロセッサ261は、センシング装置を用いて排出口117をセンシングする制御を行う。例えば、LiDARセンサ225を用いて排出口117をセンシングする。 The processor 261 controls sensing of the exhaust port 117 using a sensing device. For example, the exhaust port 117 is sensed using a LiDAR sensor 225.
 プロセッサ261は、例えば、機械学習により生成した推定モデルを用いて、LiDARセンサ225が出力する3次元点群データから排出口117を表す点群データを特定する。プロセッサ261は、排出口117を表す点群データに含まれる複数の点のそれぞれの座標の情報を取得する。推定モデルは、記憶装置264に予め記憶されている。 The processor 261 identifies point cloud data representing the exhaust outlet 117 from the three-dimensional point cloud data output by the LiDAR sensor 225, for example, using an estimation model generated by machine learning. The processor 261 acquires information on the coordinates of each of the multiple points included in the point cloud data representing the exhaust outlet 117. The estimation model is pre-stored in the storage device 264.
 ローカル座標系におけるタンク201の開口部201aの各部の座標値は、記憶装置264に予め記憶されている。プロセッサ261は、排出口117の座標値と開口部201aの座標値とを比較することで、排出口117の位置が開口部201aの範囲内にあるか否か判断することができる。 The coordinate values of each part of the opening 201a of the tank 201 in the local coordinate system are stored in advance in the storage device 264. The processor 261 can determine whether the position of the outlet 117 is within the range of the opening 201a by comparing the coordinate values of the outlet 117 and the coordinate values of the opening 201a.
 なお、LiDARセンサ225のセンシングデータ以外のセンシングデータを用いて、排出口117と開口部201aとの位置関係を判断してもよい。例えば、カメラ226が排出口117およびタンク201を撮影して出力したセンシングデータを用いて、排出口117の位置が開口部201aの範囲内にあるか否か判断してもよい。 The positional relationship between the outlet 117 and the opening 201a may be determined using sensing data other than the sensing data of the LiDAR sensor 225. For example, the position of the outlet 117 may be determined to be within the range of the opening 201a using sensing data output by the camera 226 after photographing the outlet 117 and the tank 201.
 台115上の上記受け入れ位置に自走式タンク200が位置している状態で、排出装置107から収穫物が排出されることで、収穫物をタンク201内に受け入れることができる。 When the self-propelled tank 200 is positioned at the receiving position on the platform 115, the harvest is discharged from the discharge device 107, allowing the harvest to be received into the tank 201.
 収穫機100が収穫物を複数の自走式タンク200に順に連続して移す動作を説明する。図14は、自走式タンク200の一例である自走式タンク200a、200bが台115に乗っている状態を示す図である。図14に示す例では、自走式タンク200aは、台115上の収穫物を受け取り可能な受け入れ位置に位置している。自走式タンク200bは、その受け入れ位置の後方に位置している。 The operation of the harvester 100 to successively transfer the harvest to multiple self-propelled tanks 200 will be described. Figure 14 is a diagram showing the state in which self-propelled tanks 200a and 200b, which are examples of self-propelled tanks 200, are placed on a platform 115. In the example shown in Figure 14, the self-propelled tank 200a is located at a receiving position where it can receive the harvest on the platform 115. The self-propelled tank 200b is located behind the receiving position.
 自走式タンク200aのプロセッサ261は、排出口117の位置が開口部201aの範囲内にある場合、排出装置107からの収穫物の排出を許可することを示す許可情報を、通信装置290を介して収穫機100に送信する。 If the position of the discharge outlet 117 is within the range of the opening 201a, the processor 261 of the self-propelled tank 200a transmits permission information indicating that discharge of the harvested product from the discharge device 107 is permitted to the harvester 100 via the communication device 290.
 プロセッサ161は、許可情報を受け取ると、ECU167に排出装置107から収穫物を排出させる動作の制御を実行させる。ECU167は、動力伝達機構141の動作を制御し、脱穀装置105内の収穫物を排出装置107に排出させる。排出口117から排出された収穫物はタンク201内に入り、タンク201内に貯留される。 When the processor 161 receives the permission information, it causes the ECU 167 to execute control of the operation of discharging the harvest from the discharge device 107. The ECU 167 controls the operation of the power transmission mechanism 141, and causes the harvest in the threshing device 105 to be discharged to the discharge device 107. The harvest discharged from the discharge port 117 enters the tank 201 and is stored in the tank 201.
 排出装置107が排出する収穫物をタンク201が受け取っている間、自走式タンク200aのプロセッサ261は、タンク201内に溜まった収穫物が所定量以上であるか否か判断する。例えば、プロセッサ261は、荷重センサ256が検出したタンク201内の収穫物の重量の値が、所定重量以上であるか否か判断する。所定重量は、例えば、タンク201内に貯留可能な収穫物の最大重量に対する80-100%の大きさであるが、その値に限定されない。 While the tank 201 is receiving the harvest discharged by the discharge device 107, the processor 261 of the self-propelled tank 200a determines whether the amount of harvest accumulated in the tank 201 is equal to or greater than a predetermined amount. For example, the processor 261 determines whether the value of the weight of the harvest in the tank 201 detected by the load sensor 256 is equal to or greater than a predetermined weight. The predetermined weight is, for example, 80-100% of the maximum weight of the harvest that can be stored in the tank 201, but is not limited to this value.
 タンク201に溜まった収穫物が所定重量未満の間は、収穫物の受け取りを継続する。プロセッサ261は、タンク201内に溜まった収穫物が所定重量以上になったと判断した場合、排出装置107からの収穫物の排出を停止させる停止指令を、通信装置190を介して収穫機100に送信する。プロセッサ161は、停止指令を受け取ると、ECU167に排出装置107からの収穫物の排出を停止させる制御を実行させる。図15は、所定重量以上の収穫物270を貯留した自走式タンク200aを示す図である。 The harvest continues to be received while the harvest accumulated in the tank 201 is below the predetermined weight. When the processor 261 determines that the harvest accumulated in the tank 201 is equal to or greater than the predetermined weight, it transmits a stop command to the harvester 100 via the communication device 190 to stop the discharge of the harvest from the discharge device 107. When the processor 161 receives the stop command, it causes the ECU 167 to execute control to stop the discharge of the harvest from the discharge device 107. Figure 15 is a diagram showing a self-propelled tank 200a that stores harvest 270 that is equal to or greater than the predetermined weight.
 所定重量以上の収穫物270を貯留した自走式タンク200aは、スロープ172を下ることで台115から降りて収穫機100から離脱する。図16は、スロープ172を下る自走式タンク200aを示す図である。 The self-propelled tank 200a that has stored a predetermined weight or more of harvested product 270 descends the slope 172, descends from the platform 115, and is detached from the harvester 100. Figure 16 is a diagram showing the self-propelled tank 200a descending the slope 172.
 自走式タンク200aのプロセッサ261は、タンク201内に溜まった収穫物270が所定重量以上になると、収穫物270を受け取る受け入れ位置とは別の位置に、自走式タンク200aを移動させる。本実施形態では、台115における受け入れ位置よりも前方の位置に自走式タンク200aを移動させる。台115の前部からは右側方にスロープ172が延びている。 When the harvest 270 accumulated in the tank 201 reaches or exceeds a predetermined weight, the processor 261 of the self-propelled tank 200a moves the self-propelled tank 200a to a position other than the receiving position for receiving the harvest 270. In this embodiment, the processor 261 moves the self-propelled tank 200a to a position forward of the receiving position on the platform 115. A slope 172 extends to the right side from the front of the platform 115.
 プロセッサ261は、自走式タンク200aがスロープ172の方向に走行できるように、自走式タンク200aを方向転換させる。例示する自走式タンク200は、クローラ式の走行装置203を備える。プロセッサ261は、無限軌道を装着した左車輪および右車輪の回転速度を互いに異ならせたり、それら左車輪および右車輪の回転方向を互いに異ならせたりすることで、自走式タンク200を方向転換させることができる。例えば、無限軌道を装着した左車輪および右車輪を同じ回転速度で互いに反対方向に回転させることにより、自走式タンク200を方向転換させる。自走式タンク200がタイヤ付き車輪を備える走行装置203を備える形態では、操舵輪の切れ角を調整して、自走式タンク200を方向転換させることができる。また、台115がターンテーブルを備え、ターンテーブル上に自走式タンク200が乗った状態でターンテーブルを回転させることにより、自走式タンク200を方向転換させてもよい。 The processor 261 changes the direction of the self-propelled tank 200a so that the self-propelled tank 200a can travel in the direction of the slope 172. The self-propelled tank 200 shown in the example is equipped with a crawler-type running device 203. The processor 261 can change the direction of the self-propelled tank 200 by making the rotational speeds of the left and right wheels equipped with endless tracks different from each other or by making the rotational directions of the left and right wheels different from each other. For example, the self-propelled tank 200 is changed in direction by rotating the left and right wheels equipped with endless tracks in opposite directions at the same rotational speed. In a form in which the self-propelled tank 200 is equipped with a running device 203 equipped with tires, the turning angle of the steering wheel can be adjusted to change the direction of the self-propelled tank 200. In addition, the platform 115 may be equipped with a turntable, and the turntable may be rotated with the self-propelled tank 200 placed on it, to change the direction of the self-propelled tank 200.
 自走式タンク200aのプロセッサ261は、LiDARセンサ225および/またはカメラ226が出力したセンシングデータを用いてスロープ172の位置を検出し、自走式タンク200aにスロープ172を下るように走行させる。スロープ172を下ることで台115から降りて車体101から離脱することができる。 The processor 261 of the self-propelled tank 200a detects the position of the slope 172 using the sensing data output by the LiDAR sensor 225 and/or the camera 226, and causes the self-propelled tank 200a to travel down the slope 172. By descending the slope 172, the self-propelled tank 200a can dismount from the platform 115 and leave the vehicle body 101.
 収穫機100から離脱した自走式タンク200aは、自走式タンク200aから収穫物を排出する位置、すなわち収穫物の搬送先まで走行する。例えば、図12に示すように、圃場70の所定エリア(例えば枕地72)に、自走式タンク200aから収穫物を受け取って貯留する運搬車300が待機している。プロセッサ261は、自走式タンク200aを、運搬車300が待機する位置に到達するように圃場70内を走行させる。 The self-propelled tank 200a detached from the harvester 100 travels to a position where the harvest is discharged from the self-propelled tank 200a, i.e., to the destination of the harvest. For example, as shown in FIG. 12, a transport vehicle 300 that receives and stores the harvest from the self-propelled tank 200a is waiting in a specified area of the field 70 (e.g., headland 72). The processor 261 drives the self-propelled tank 200a through the field 70 so as to reach the position where the transport vehicle 300 is waiting.
 自走式タンク200aは、運搬車300または管理装置600から、運搬車300の位置の地理座標の情報を受け取る。プロセッサ261は、運搬車300の地理座標の位置を目標位置に設定する。プロセッサ261は、その目標位置に到達するように自走式タンク200aを走行させる。これにより、自走式タンク200aは運搬車300の位置に到達することができる。 The self-propelled tank 200a receives information on the geographic coordinates of the location of the transport vehicle 300 from the transport vehicle 300 or the management device 600. The processor 261 sets the geographic coordinate position of the transport vehicle 300 as the target position. The processor 261 drives the self-propelled tank 200a to reach the target position. This allows the self-propelled tank 200a to reach the location of the transport vehicle 300.
 自走式タンク200aから運搬車300へ収穫物を移送する方法については、例えば吸引装置を用いて自走式タンク200aのタンク201内の収穫物を吸引し、吸引した収穫物を運搬車300の荷台に排出することで収穫物の移送を行うことができる。また、タンク201が開閉可能な排出口を備え、その排出口からタンク201の外部へ収穫物を排出してもよい。 The harvest can be transferred from the self-propelled tank 200a to the transport vehicle 300, for example, by using a suction device to suck up the harvest in the tank 201 of the self-propelled tank 200a and discharging the sucked up harvest onto the bed of the transport vehicle 300. The tank 201 may also be provided with an outlet that can be opened and closed, and the harvest may be discharged from the outlet to the outside of the tank 201.
 タンク201内の収穫物の排出を完了すると、プロセッサ261は、自走式タンク200aを収穫機100の位置に再び移動させる。プロセッサ261は、収穫機100の地理座標および向きの情報に基づいて、収穫機100の後方に隣接する位置を目標位置に設定し、目標位置に到達するように自走式タンク200aを走行させる。これにより、収穫機100のスロープ171を上がることが可能な位置に自走式タンク200aを到達させることができる。 When the harvest has been discharged from the tank 201, the processor 261 moves the self-propelled tank 200a back to the position of the harvester 100. Based on the geographic coordinates and orientation information of the harvester 100, the processor 261 sets a position adjacent to the rear of the harvester 100 as the target position, and drives the self-propelled tank 200a to reach the target position. This allows the self-propelled tank 200a to reach a position from which it can climb the slope 171 of the harvester 100.
 再び図16を参照して、自走式タンク200bの動作を説明する。台115の上記受け入れ位置で収穫物を貯留した自走式タンク200aが、台115におけるその受け入れ位置よりも前方の位置に移動するのに伴い、図16に示すように、自走式タンク200aの後方で待機していた自走式タンク200bが、収穫物を受け取る受け入れ位置に移動する。さらに別の自走式タンク200cが、スロープ171を上がってその受け入れ位置の後方に移動する。自走式タンク200cは、自走式タンク200の一例である。図17は、収穫物270を受け取る受け入れ位置に位置する自走式タンク200b、および自走式タンク200bの後方に位置する自走式タンク200cを示す図である。 Referring again to FIG. 16, the operation of self-propelled tank 200b will be described. As self-propelled tank 200a, which has stored the harvest at the receiving position of platform 115, moves to a position forward of that receiving position on platform 115, self-propelled tank 200b, which has been waiting behind self-propelled tank 200a, moves to a receiving position to receive the harvest, as shown in FIG. 16. Furthermore, another self-propelled tank 200c moves up slope 171 to the rear of that receiving position. Self-propelled tank 200c is an example of a self-propelled tank 200. FIG. 17 is a diagram showing self-propelled tank 200b positioned at a receiving position to receive harvest 270, and self-propelled tank 200c positioned rearward of self-propelled tank 200b.
 自走式タンク200bのプロセッサ261は、排出口117の位置が開口部201bの範囲内にある場合、排出装置107からの収穫物270の排出を許可することを示す許可情報を、通信装置290を介して収穫機100に送信する。 If the position of the discharge outlet 117 is within the range of the opening 201b, the processor 261 of the self-propelled tank 200b transmits permission information to the harvester 100 via the communication device 290, indicating that discharge of the harvested product 270 from the discharge device 107 is permitted.
 プロセッサ161は、許可情報を受け取ると、排出装置107から収穫物270を排出させる。排出口117から排出された収穫物270は自走式タンク200bのタンク201内に入り、タンク201内に貯留される。 When the processor 161 receives the permission information, it causes the discharge device 107 to discharge the harvested product 270. The harvested product 270 discharged from the discharge port 117 enters the tank 201 of the self-propelled tank 200b and is stored in the tank 201.
 自走式タンク200bのプロセッサ261は、タンク201内に溜まった収穫物270が所定重量以上になったと判断した場合、排出装置107からの収穫物270の排出を停止させる停止指令を、通信装置190を介して収穫機100に送信する。プロセッサ161は、停止指令を受け取ると、排出装置107からの収穫物270の排出を停止させる。図18は、所定重量以上の収穫物270を貯留した自走式タンク200bを示す図である。 When the processor 261 of the self-propelled tank 200b determines that the harvest 270 accumulated in the tank 201 has reached or exceeded a predetermined weight, it transmits a stop command to the harvester 100 via the communication device 190 to stop the discharge of the harvest 270 from the discharge device 107. When the processor 161 receives the stop command, it stops the discharge of the harvest 270 from the discharge device 107. Figure 18 is a diagram showing a self-propelled tank 200b that has stored therein harvest 270 that is equal to or greater than a predetermined weight.
 所定重量以上の収穫物270を貯留した自走式タンク200bは、収穫物270を受け取る受け入れ位置よりも前方の位置に移動するとともに方向転換を行い、スロープ172を下ることで台115から降りて車体101から離脱する。図19は、スロープ172を下る自走式タンク200bを示す図である。 The self-propelled tank 200b, which has stored a predetermined weight or more of harvest 270, moves to a position forward of the receiving position for receiving the harvest 270, changes direction, and descends the slope 172 to descend from the platform 115 and detach from the vehicle body 101. Figure 19 shows the self-propelled tank 200b descending the slope 172.
 収穫機100から離脱した自走式タンク200bは、自走式タンク200aと同様に、自走式タンク200bから収穫物の搬送先まで走行する。例えば、自走式タンク200bのプロセッサ261は、自走式タンク200bを、運搬車300が待機する位置に到達するように圃場70内を走行させる。 The self-propelled tank 200b that has been detached from the harvester 100 travels from the self-propelled tank 200b to the destination of the harvested product, similar to the self-propelled tank 200a. For example, the processor 261 of the self-propelled tank 200b drives the self-propelled tank 200b through the field 70 to reach a position where the transport vehicle 300 is waiting.
 自走式タンク200aと同様に、運搬車300の位置に到達した自走式タンク200bから運搬車300へ収穫物の移送を行う。プロセッサ261は、収穫物の排出を完了した自走式タンク200bを収穫機100の位置に再び移動させる。 Similar to the self-propelled tank 200a, when the self-propelled tank 200b reaches the position of the transport vehicle 300, the harvest is transferred to the transport vehicle 300. The processor 261 moves the self-propelled tank 200b, which has completed unloading the harvest, back to the position of the harvester 100.
 再び図19を参照して、台115の上記受け入れ位置で収穫物を貯留した自走式タンク200bが、台115におけるその受け入れ位置よりも前方の位置に移動するのに伴い、図19に示すように、自走式タンク200bの後方で待機していた自走式タンク200cが、収穫物を受け取る受け入れ位置に移動する。さらに収穫機100の位置まで戻ってきた自走式タンク200aが、スロープ171を上がってその受け入れ位置の後方に移動する。図20は、収穫物270を受け取る受け入れ位置に位置する自走式タンク200c、および自走式タンク200cの後方に位置する自走式タンク200aを示す図である。 Referring again to FIG. 19, as self-propelled tank 200b, which has stored the harvest at the receiving position of platform 115, moves to a position forward of that receiving position on platform 115, self-propelled tank 200c, which has been waiting behind self-propelled tank 200b, moves to a receiving position to receive the harvest, as shown in FIG. 19. Furthermore, self-propelled tank 200a, which has returned to the position of harvester 100, moves up slope 171 to a position behind that receiving position. FIG. 20 is a diagram showing self-propelled tank 200c positioned at a receiving position to receive harvest 270, and self-propelled tank 200a positioned behind self-propelled tank 200c.
 自走式タンク200a、200bと同様に、自走式タンク200cは、排出装置107の排出口117から排出される収穫物270を受け取る。所定重量以上の収穫物270を貯留した自走式タンク200cは、収穫物270を受け取る受け入れ位置よりも前方の位置に移動するとともに方向転換を行い、スロープ172を下ることで台115から降りて車体101から離脱する。 Similar to self-propelled tanks 200a and 200b, self-propelled tank 200c receives harvest 270 discharged from discharge port 117 of discharge device 107. When self-propelled tank 200c has stored harvest 270 of a predetermined weight or more, it moves to a position forward of the receiving position for receiving harvest 270, changes direction, and descends slope 172 to descend from platform 115 and detach from vehicle body 101.
 収穫機100から離脱した自走式タンク200cは、自走式タンク200a、200bと同様に、自走式タンク200cから収穫物の搬送先まで走行する。例えば、自走式タンク200cのプロセッサ261は、自走式タンク200cを、運搬車300が待機する位置に到達するように圃場70内を走行させる。 The self-propelled tank 200c that has been detached from the harvester 100 travels from the self-propelled tank 200c to the destination of the harvested product, similar to the self-propelled tanks 200a and 200b. For example, the processor 261 of the self-propelled tank 200c drives the self-propelled tank 200c through the field 70 to reach a position where the transport vehicle 300 is waiting.
 自走式タンク200a、200bと同様に、運搬車300の位置に到達した自走式タンク200cから運搬車300へ収穫物の移送を行う。自走式タンク200cのプロセッサ261は、収穫物の排出を完了した自走式タンク200cを収穫機100の位置に再び移動させる。 Similar to the self-propelled tanks 200a and 200b, the self-propelled tank 200c that has reached the position of the transport vehicle 300 transfers the harvested products to the transport vehicle 300. The processor 261 of the self-propelled tank 200c moves the self-propelled tank 200c that has completed unloading the harvested products back to the position of the harvester 100.
 台115の上記受け入れ位置で収穫物を貯留した自走式タンク200cが、台115におけるその受け入れ位置よりも前方の位置に移動するのに伴い、自走式タンク200cの後方で待機していた自走式タンク200aが、収穫物を受け取る受け入れ位置に移動する。さらに収穫機100の位置まで戻ってきた自走式タンク200bが、スロープ171を上がってその受け入れ位置の後方に移動する。自走式タンク200aは、排出装置107の排出口117から排出される収穫物を再び受け取る。 As self-propelled tank 200c, which has stored the harvest at the above-mentioned receiving position on platform 115, moves to a position forward of that receiving position on platform 115, self-propelled tank 200a, which has been waiting behind self-propelled tank 200c, moves to the receiving position to receive the harvest. Furthermore, self-propelled tank 200b, which has returned to the position of harvester 100, moves up slope 171 to the rear of that receiving position. Self-propelled tank 200a again receives the harvest discharged from discharge outlet 117 of discharge device 107.
 自走式タンク200aの収穫物の受け取りに続いて、自走式タンク200bは、排出装置107の排出口117から排出される収穫物を再び受け取る。収穫機100の位置まで戻ってきた自走式タンク200cも、スロープ171を上がって自走式タンク200bの後方で待機する。自走式タンク200bの収穫物の受け取りに続いて、自走式タンク200cは、排出装置107の排出口117から排出される収穫物を再び受け取ることができる。 Following self-propelled tank 200a receiving the harvest, self-propelled tank 200b again receives the harvest discharged from discharge outlet 117 of discharge device 107. Self-propelled tank 200c, which has returned to the position of harvester 100, also climbs slope 171 and waits behind self-propelled tank 200b. Following self-propelled tank 200b receiving the harvest, self-propelled tank 200c can again receive the harvest discharged from discharge outlet 117 of discharge device 107.
 本実施形態によれば、自走式タンク200が収穫機100に乗った状態で収穫物を受け取って貯留する。これにより、収穫機100は、作物の収穫を行いながら収穫物を自走式タンク200に移すことができる。 In this embodiment, the self-propelled tank 200 receives and stores the harvested crops while mounted on the harvester 100. This allows the harvester 100 to transfer the harvested crops to the self-propelled tank 200 while harvesting the crops.
 収穫物を貯留した自走式タンク200は、収穫機100から離脱して圃場70を自動運転で走行する。収穫機100内に溜まった収穫物を圃場70の外周縁部で待機する運搬車300等に移すために、収穫機100をその運搬車300等の待機位置まで走行させる必要が無い。収穫機100の収穫作業を中断する必要が無く、作物の収穫を効率良く行うことができる。 The self-propelled tank 200 that stores the harvested products is detached from the harvester 100 and travels autonomously through the field 70. In order to transfer the harvested products stored inside the harvester 100 to a transport vehicle 300 or the like waiting at the outer periphery of the field 70, there is no need to drive the harvester 100 to the waiting position of the transport vehicle 300 or the like. There is no need to interrupt the harvesting operation of the harvester 100, and crops can be harvested efficiently.
 収穫機100が収穫物を複数の自走式タンク200に順に連続して移すことで、収穫機100からの収穫物の排出を効率良く行うことができる。 The harvester 100 transfers the harvested crop to multiple self-propelled tanks 200 in succession, allowing the harvested crop to be efficiently discharged from the harvester 100.
 収穫機100に乗った状態の自走式タンク200に収穫物を排出することで、自走式タンク200へ収穫物を排出するときに収穫機100と自走式タンク200とを並走させる制御を行う必要が無くなり、収穫作業の制御をシンプルにすることができる。 By discharging the harvest into the self-propelled tank 200 while the harvester 100 is mounted on it, there is no need to control the harvester 100 and the self-propelled tank 200 to run side by side when discharging the harvest into the self-propelled tank 200, simplifying the control of the harvesting operation.
 上記の説明では、収穫機100から三台の自走式タンク200a、200b、200cに収穫物を移していたが、収穫機100から収穫物を受け取る自走式タンク200の台数は二台であってもよいし、四台以上であってもよい。収穫機100が収穫物を複数の自走式タンク200に順に連続して移すことで、収穫機100からの収穫物の排出を効率良く行うことができる。 In the above explanation, the harvest is transferred from the harvester 100 to three self-propelled tanks 200a, 200b, and 200c, but the number of self-propelled tanks 200 that receive the harvest from the harvester 100 may be two, or four or more. By having the harvester 100 transfer the harvest to multiple self-propelled tanks 200 in succession in sequence, the harvest can be efficiently discharged from the harvester 100.
 収穫機100から離脱した自走式タンク200が収穫物を排出する位置は、運搬車300の位置以外であってもよい。例えば、自走式タンク200が収穫物を排出する位置は、収穫物を貯蔵する建造物の位置であってもよい。 The position at which the self-propelled tank 200 detached from the harvester 100 discharges the harvest may be other than the position of the transport vehicle 300. For example, the position at which the self-propelled tank 200 discharges the harvest may be the position of a structure that stores the harvest.
 図21は、収穫物を貯蔵する貯蔵庫78に移動する自走式タンク200を示す図である。圃場70から貯蔵庫78に移動するための目標経路77は予め設定されている。目標経路77は、例えば自走式タンク200の記憶装置264に予め記憶されている。プロセッサ261は、目標経路77に沿って自走式タンク200を自動で走行させる。 FIG. 21 shows a self-propelled tank 200 moving to a storage shed 78 for storing harvested products. A target route 77 for moving from the field 70 to the storage shed 78 is set in advance. The target route 77 is stored in advance, for example, in the memory device 264 of the self-propelled tank 200. The processor 261 automatically drives the self-propelled tank 200 along the target route 77.
 自走式タンク200が貯蔵庫78に到着すると、タンク201内の収穫物は貯蔵庫78に移される。タンク201が空になった自走式タンク200は、目標経路77と同じ経路に沿って、圃場70内の収穫機100の位置まで走行してもよい。これにより、自走式タンク200は、収穫機100から収穫物を再び受け取ることができる。 When the self-propelled tank 200 arrives at the storage facility 78, the harvested product in the tank 201 is transferred to the storage facility 78. With the tank 201 now empty, the self-propelled tank 200 may travel along the same route as the target route 77 to the position of the harvester 100 in the field 70. This allows the self-propelled tank 200 to receive the harvested product from the harvester 100 again.
 上述した例では、収穫機100は、スロープ171、172を備えていたが、スロープ172のみを備えていてもよい。この場合、スロープ172は、台115の右前部から右後部に亘る右側部全体から、右方斜め下方向に延びる。スロープ172は、前後方向に長い形状を有するため、図5に示すような前後方向に並ぶ複数の自走式タンク200のそれぞれがスロープ172を通って台115に対して乗り降りすることができる。排出装置107は起伏動作および回動動作が可能であり、排出口117の位置を変更することができる。台115の上で前後方向に並ぶ複数の自走式タンク200のうちの収穫物を移そうとする自走式タンク200の開口部201aの位置に、排出口117を移動させることで、その自走式タンク200に収穫物を移すことができる。排出口117の位置を変更することで、台115の上で前後方向に並ぶ複数の自走式タンク200に順に収穫物を移すことができる。収穫物を受け取った自走式タンク200は、スロープ172を下ることで台115から降りて収穫機100から離脱することができる。タンク201が空の別の自走式タンク200がスロープ172を上がって台115上の空いたスペースに収まることができる。 In the above example, the harvester 100 is provided with the slopes 171 and 172, but it may be provided with only the slope 172. In this case, the slope 172 extends diagonally downward to the right from the entire right side of the platform 115, from the right front to the right rear. Since the slope 172 has a long shape in the front-rear direction, each of the multiple self-propelled tanks 200 lined up in the front-rear direction as shown in FIG. 5 can get on and off the platform 115 through the slope 172. The discharge device 107 can perform raising and lowering operations, and can change the position of the discharge port 117. By moving the discharge port 117 to the position of the opening 201a of the self-propelled tank 200 to which the harvest is to be transferred among the multiple self-propelled tanks 200 lined up in the front-rear direction on the platform 115, the harvest can be transferred to that self-propelled tank 200. By changing the position of the discharge port 117, the harvest can be transferred in sequence to the multiple self-propelled tanks 200 lined up in the front-rear direction on the platform 115. After receiving the harvest, the self-propelled tank 200 can descend the platform 115 by descending the slope 172 and detach from the harvester 100. Another self-propelled tank 200 with an empty tank 201 can ascend the slope 172 and fit into the vacant space on the platform 115.
 次に、複数の収穫機100および複数の自走式タンク200を用いて圃場70の作物を収穫する動作を説明する。この例では、複数の自走式タンク200のそれぞれは、複数の収穫機100から収穫物を受け取ることが可能である。 Next, the operation of harvesting crops in a field 70 using multiple harvesters 100 and multiple self-propelled tanks 200 will be described. In this example, each of the multiple self-propelled tanks 200 is capable of receiving the harvested products from the multiple harvesters 100.
 図22は、複数の収穫機100および複数の自走式タンク200を用いて複数の圃場70の作物を収穫する収穫作業を示す図である。この例では、自走式タンク200の移動先とする収穫機100を複数の収穫機100の中から決定する。図23は、自走式タンク200の移動先とする収穫機100を複数の収穫機100の中から決定する処理の一例を示すフローチャートである。図22に示す収穫機100a-100fは、収穫機100の一例である。図22に示す自走式タンク200a-200hは、自走式タンク200の一例である。図23に示す処理は主に管理装置600のプロセッサ660が行うが、端末装置400のプロセッサ460または自走式タンク200のプロセッサ261が行ってもよい。これらのプロセッサが協働してこれらの処理を行ってもよい。 22 is a diagram showing a harvesting operation in which multiple harvesters 100 and multiple self-propelled tanks 200 are used to harvest crops in multiple fields 70. In this example, a harvester 100 to which the self-propelled tank 200 is to be moved is selected from among the multiple harvesters 100. FIG. 23 is a flowchart showing an example of a process for selecting a harvester 100 to which the self-propelled tank 200 is to be moved from among the multiple harvesters 100. The harvesters 100a-100f shown in FIG. 22 are examples of harvesters 100. The self-propelled tanks 200a-200h shown in FIG. 22 are examples of self-propelled tanks 200. The process shown in FIG. 23 is mainly performed by the processor 660 of the management device 600, but may also be performed by the processor 460 of the terminal device 400 or the processor 261 of the self-propelled tank 200. These processors may work together to perform these processes.
 複数の収穫機100のそれぞれのプロセッサ161は、GNSSユニット120から取得した収穫機100の位置の地理座標の情報および収穫機100が向いている方向の情報を、通信装置190を介して管理装置600に送信する。複数の自走式タンク200のそれぞれのプロセッサ261は、GNSSユニット220から取得した自走式タンク200の位置の地理座標の情報を、通信装置290を介して管理装置600に送信する。管理装置600のプロセッサ660は、これらの地理座標の情報を受け取ることで、複数の収穫機100および複数の自走式タンク200それぞれの位置を示す位置情報を取得することができる。 The processor 161 of each of the multiple harvesters 100 transmits the geographic coordinate information of the position of the harvester 100 and the information of the direction in which the harvester 100 is facing, obtained from the GNSS unit 120, to the management device 600 via the communication device 190. The processor 261 of each of the multiple self-propelled tanks 200 transmits the geographic coordinate information of the position of the self-propelled tank 200, obtained from the GNSS unit 220, to the management device 600 via the communication device 290. By receiving this geographic coordinate information, the processor 660 of the management device 600 can obtain position information indicating the positions of each of the multiple harvesters 100 and the multiple self-propelled tanks 200.
 複数の自走式タンク200のそれぞれのプロセッサ261は、荷重センサ256が検出したタンク201内の収穫物の重量を示す重量情報を、通信装置290を介して管理装置600に送信する。管理装置600のプロセッサ660は、重量情報に基づいて複数の自走式タンク200それぞれのタンク201の空き状況を確認することができる。 The processor 261 of each of the multiple self-propelled tanks 200 transmits weight information indicating the weight of the harvested crop in the tank 201 detected by the load sensor 256 to the management device 600 via the communication device 290. The processor 660 of the management device 600 can check the availability of the tank 201 of each of the multiple self-propelled tanks 200 based on the weight information.
 まず、プロセッサ660は、複数の自走式タンク200のうちの移動させる対象となる移動対象自走式タンク200を決定する(ステップS101)。移動対象自走式タンク200は、例えば収穫物を新たに収容可能な空き容量がある自走式タンク200である。 First, the processor 660 determines the target self-propelled tank 200 to be moved among the multiple self-propelled tanks 200 (step S101). The target self-propelled tank 200 to be moved is, for example, a self-propelled tank 200 that has free capacity to newly store harvested products.
 例えば、プロセッサ660は、収穫物を新たに収容可能な空き容量が第1所定量以上である自走式タンク200を、複数の自走式タンク200の中から選択する。第1所定量は、例えば、タンク201内に貯留可能な収穫物の最大重量に対する50-100%の大きさであるが、その値に限定されない。プロセッサ660は、既に収容している収穫物の量が第2所定量未満である自走式タンク200を、複数の自走式タンク200の中から選択してもよい。第2所定量は、例えば、タンク201内に貯留可能な収穫物の最大重量に対する30-50%の大きさであるが、その値に限定されない。プロセッサ660は、このような条件を満たす一台以上の自走式タンク200を移動対象自走式タンク200として選択する。 For example, the processor 660 selects from among the multiple self-propelled tanks 200 a self-propelled tank 200 whose free space for newly storing harvested goods is equal to or greater than a first predetermined amount. The first predetermined amount is, for example, 50-100% of the maximum weight of harvested goods that can be stored in the tank 201, but is not limited to this value. The processor 660 may select from among the multiple self-propelled tanks 200 a self-propelled tank 200 that already stores therein less than a second predetermined amount. The second predetermined amount is, for example, 30-50% of the maximum weight of harvested goods that can be stored in the tank 201, but is not limited to this value. The processor 660 selects one or more self-propelled tanks 200 that satisfy these conditions as the self-propelled tanks 200 to be moved.
 収穫物を新たに収容可能な空き容量がある自走式タンク200を選択し、その選択した自走式タンク200を収穫機100の位置に移動させることにより、収穫機100が収穫した収穫物の自走式タンク200への移送を効率良く行うことができる。 By selecting a self-propelled tank 200 with free capacity to newly store harvested goods and moving the selected self-propelled tank 200 to the position of the harvester 100, the harvested goods harvested by the harvester 100 can be efficiently transferred to the self-propelled tank 200.
 一例として、プロセッサ660は、自走式タンク200aおよび200dを移動対象自走式タンク200として選択する。自走式タンク200aは、運搬車300へ収穫物を移した直後の自走式タンクである。自走式タンク200dは、貯蔵庫78へ収穫物を移した直後の自走式タンクである。 As an example, the processor 660 selects the self-propelled tanks 200a and 200d as the self-propelled tanks 200 to be moved. The self-propelled tank 200a is a self-propelled tank that has just transferred the harvest to the transport vehicle 300. The self-propelled tank 200d is a self-propelled tank that has just transferred the harvest to the storage facility 78.
 まず、自走式タンク200aの移動先とする収穫機100を複数の収穫機100の中から決定する処理を説明する。プロセッサ660は、自走式タンク200aの位置の地理座標の情報を、自走式タンク200aの位置を示す自走式タンク位置情報として取得する(ステップS102)。また、複数の収穫機100の位置の地理座標の情報を、複数の収穫機100の位置を示す収穫機位置情報として取得する(ステップS103)。 First, the process of determining the harvester 100 to which the self-propelled tank 200a is to be moved from among multiple harvesters 100 will be described. The processor 660 acquires geographic coordinate information of the position of the self-propelled tank 200a as self-propelled tank position information indicating the position of the self-propelled tank 200a (step S102). In addition, it acquires geographic coordinate information of the positions of the multiple harvesters 100 as harvester position information indicating the positions of the multiple harvesters 100 (step S103).
 プロセッサ660は、自走式タンク位置情報および収穫機位置情報を用いて、自走式タンク200aと複数の収穫機100それぞれとの間の距離を演算する。 The processor 660 uses the self-propelled tank position information and the harvester position information to calculate the distance between the self-propelled tank 200a and each of the multiple harvesters 100.
 圃場70および道路76における自走式タンク200が走行可能なエリアは予め決められている。また、圃場70内の作物の収穫済みのエリアは自走式タンク200が走行可能としてもよい。プロセッサ660は、圃場70および道路76における自走式タンク200が走行可能なエリアに、自走式タンク200aから複数の収穫機100それぞれに向かう複数の走行ルートを設定する。プロセッサ660は、その複数の走行ルートそれぞれの距離を演算する。なお、自走式タンク200aと複数の収穫機100それぞれとの間の直線距離を演算してもよい。 The areas in the field 70 and on the roads 76 in which the self-propelled tank 200 can travel are determined in advance. The self-propelled tank 200 may also be allowed to travel in areas of the field 70 where crops have already been harvested. The processor 660 sets multiple travel routes from the self-propelled tank 200a to each of the multiple harvesters 100 in the areas in the field 70 and on the roads 76 in which the self-propelled tank 200 can travel. The processor 660 calculates the distance of each of the multiple travel routes. Note that the straight-line distance between the self-propelled tank 200a and each of the multiple harvesters 100 may also be calculated.
 プロセッサ660は、自走式タンク200aからの距離が大きい収穫機100よりも距離が小さい収穫機100を選択して、その選択した収穫機100を自走式タンク200aの移動先に決定する(ステップS104)。例えば、プロセッサ660は、自走式タンク200aからの距離が最も小さい収穫機100bを、自走式タンク200aの移動先に決定する。移動対象の自走式タンク200からの距離が最も小さい収穫機100をその自走式タンク200の移動先に決定することで、収穫機100が収穫した収穫物の自走式タンク200への移送を効率良く行うことができる。 The processor 660 selects a harvester 100 that is closer to the self-propelled tank 200a than the harvester 100 that is farther away, and determines the selected harvester 100 as the destination of the self-propelled tank 200a (step S104). For example, the processor 660 determines the harvester 100b that is the closest distance from the self-propelled tank 200a as the destination of the self-propelled tank 200a. By determining the harvester 100 that is the closest distance from the self-propelled tank 200 to be moved as the destination of the self-propelled tank 200, the harvested product harvested by the harvester 100 can be efficiently transferred to the self-propelled tank 200.
 プロセッサ660は、自走式タンク200aを収穫機100bの位置に移動させる指令を、通信装置690を介して自走式タンク200aに送信する。また、プロセッサ660は、自走式タンク200aの移動先に決定したことを示す情報を、通信装置690を介して収穫機100bに送信する。 The processor 660 transmits a command to the self-propelled tank 200a via the communication device 690 to move the self-propelled tank 200a to the position of the harvester 100b. The processor 660 also transmits information indicating that the destination of the self-propelled tank 200a has been determined to be the harvester 100b via the communication device 690.
 自走式タンク200aのプロセッサ261は、管理装置600から受け取った指令に応じて、収穫機100bの位置に自走式タンク200aを移動させる(ステップS105)。収穫機100bと自走式タンク200aとは、通信装置190および290を介して互いにデータ通信を行う。収穫機100bのプロセッサ161は、GNSSユニット120から取得した収穫機100bの位置の地理座標の情報および収穫機100bが向いている方向の情報を、通信装置190を介して自走式タンク200aに送信する。 The processor 261 of the self-propelled tank 200a moves the self-propelled tank 200a to the position of the harvester 100b in response to the command received from the management device 600 (step S105). The harvester 100b and the self-propelled tank 200a communicate data with each other via the communication devices 190 and 290. The processor 161 of the harvester 100b transmits the geographic coordinate information of the position of the harvester 100b and the information of the direction in which the harvester 100b is facing, obtained from the GNSS unit 120, to the self-propelled tank 200a via the communication device 190.
 自走式タンク200aのプロセッサ261は、収穫機100bの地理座標および向きの情報に基づいて、収穫機100bの後方に隣接する位置の地理座標を演算し、その演算した地理座標の位置を目標位置に設定する。走行する収穫機100bの位置は変化するため、目標位置は随時更新される。 The processor 261 of the self-propelled tank 200a calculates the geographic coordinates of a position adjacent to the rear of the harvester 100b based on the geographic coordinates and orientation information of the harvester 100b, and sets the calculated geographic coordinate position as the target position. Since the position of the traveling harvester 100b changes, the target position is updated as needed.
 プロセッサ261は、最新の目標位置に到達するように自走式タンク200aを走行させる。これにより、収穫機100bの後方に隣接する位置に自走式タンク200aを到達させることができる。プロセッサ261は、収穫機100bのスロープ171を上るように自走式タンク200aを走行させる。これにより、自走式タンク200aは、収穫機100bの台115の上に乗ることでき、収穫機100bから収穫物を受け取ることができる。 The processor 261 drives the self-propelled tank 200a to reach the latest target position. This allows the self-propelled tank 200a to reach a position adjacent to the rear of the harvester 100b. The processor 261 drives the self-propelled tank 200a to climb the slope 171 of the harvester 100b. This allows the self-propelled tank 200a to stand on the platform 115 of the harvester 100b and receive the harvest from the harvester 100b.
 次に、自走式タンク200dの移動先とする収穫機100を複数の収穫機100の中から決定する処理を説明する。プロセッサ660は、自走式タンク200dの位置の地理座標の情報を、自走式タンク200dの位置を示す自走式タンク位置情報として取得する(ステップS102)。また、複数の収穫機100の位置の地理座標の情報を、複数の収穫機100の位置を示す収穫機位置情報として取得する(ステップS103)。 Next, the process of determining the harvester 100 to which the self-propelled tank 200d is to be moved from among the multiple harvesters 100 will be described. The processor 660 acquires geographic coordinate information of the position of the self-propelled tank 200d as self-propelled tank position information indicating the position of the self-propelled tank 200d (step S102). In addition, the processor 660 acquires geographic coordinate information of the positions of the multiple harvesters 100 as harvester position information indicating the positions of the multiple harvesters 100 (step S103).
 プロセッサ660は、自走式タンク位置情報および収穫機位置情報を用いて、自走式タンク200dと複数の収穫機100それぞれとの間の距離を演算する。プロセッサ660は、圃場70および道路76における自走式タンク200が走行可能なエリアに、自走式タンク200dから複数の収穫機100それぞれに向かう複数の走行ルートを設定する。プロセッサ660は、その複数の走行ルートそれぞれの距離を演算する。 The processor 660 uses the self-propelled tank position information and the harvester position information to calculate the distance between the self-propelled tank 200d and each of the multiple harvesters 100. The processor 660 sets multiple driving routes from the self-propelled tank 200d to each of the multiple harvesters 100 in the areas of the field 70 and roads 76 where the self-propelled tank 200 can travel. The processor 660 calculates the distance of each of the multiple driving routes.
 プロセッサ660は、自走式タンク200dからの距離が大きい収穫機100よりも距離が小さい収穫機100を選択して、その選択した収穫機100を自走式タンク200dの移動先に決定する(ステップS104)。例えば、プロセッサ660は、自走式タンク200dからの距離が最も小さい収穫機100cを、自走式タンク200dの移動先に決定する。 The processor 660 selects a harvester 100 that is closer to the self-propelled tank 200d than a harvester 100 that is farther from the self-propelled tank 200d, and determines the selected harvester 100 as the destination of the self-propelled tank 200d (step S104). For example, the processor 660 determines the harvester 100c that is closest to the self-propelled tank 200d as the destination of the self-propelled tank 200d.
 プロセッサ660は、自走式タンク200dを収穫機100cの位置に移動させる指令を、通信装置690を介して自走式タンク200dに送信する。また、プロセッサ660は、自走式タンク200dの移動先に決定したことを示す情報を、通信装置690を介して収穫機100cに送信する。 The processor 660 transmits a command to the self-propelled tank 200d via the communication device 690 to move the self-propelled tank 200d to the position of the harvester 100c. The processor 660 also transmits information indicating that the destination of the self-propelled tank 200d has been determined to be the harvester 100c via the communication device 690.
 自走式タンク200dのプロセッサ261は、管理装置600から受け取った指令に応じて、収穫機100cの位置に自走式タンク200dを移動させる(ステップS105)。収穫機100cのプロセッサ161は、GNSSユニット120から取得した収穫機100cの位置の地理座標の情報および収穫機100cが向いている方向の情報を、通信装置190を介して自走式タンク200dに送信する。 The processor 261 of the self-propelled tank 200d moves the self-propelled tank 200d to the position of the harvester 100c in response to the command received from the management device 600 (step S105). The processor 161 of the harvester 100c transmits the geographic coordinate information of the position of the harvester 100c obtained from the GNSS unit 120 and the information on the direction in which the harvester 100c is facing to the self-propelled tank 200d via the communication device 190.
 自走式タンク200dのプロセッサ261は、収穫機100cの地理座標および向きの情報に基づいて、収穫機100cの後方に隣接する位置の地理座標を演算し、その演算した地理座標の位置を目標位置に設定する。走行する収穫機100cの位置は変化するため、目標位置は随時更新される。 The processor 261 of the self-propelled tank 200d calculates the geographic coordinates of a position adjacent to the rear of the harvester 100c based on the geographic coordinates and orientation information of the harvester 100c, and sets the calculated geographic coordinate position as the target position. Since the position of the traveling harvester 100c changes, the target position is updated as needed.
 プロセッサ261は、最新の目標位置に到達するように自走式タンク200dを走行させる。これにより、収穫機100cの後方に隣接する位置に自走式タンク200dを到達させることができる。プロセッサ261は、収穫機100cのスロープ171を上るように自走式タンク200dを走行させる。これにより、自走式タンク200dは、収穫機100cの台115の上に乗ることでき、収穫機100cから収穫物を受け取ることができる。 The processor 261 drives the self-propelled tank 200d to reach the latest target position. This allows the self-propelled tank 200d to reach a position adjacent to the rear of the harvester 100c. The processor 261 drives the self-propelled tank 200d to climb the slope 171 of the harvester 100c. This allows the self-propelled tank 200d to stand on the platform 115 of the harvester 100c and receive the harvest from the harvester 100c.
 本実施形態によれば、自走式タンク200の位置を示す自走式タンク位置情報と複数の収穫機100の位置を示す農業機械位置情報とに基づいて、複数の収穫機100の中から自走式タンク200の移動先とする収穫機100を決定する。これにより、収穫機100が収穫した収穫物の自走式タンク200への移送を効率良く行うことができる。例えば、自走式タンク200からの距離が大きい収穫機100よりも距離が小さい収穫機100をその自走式タンク200の移動先に決定することで、収穫物の自走式タンク200への移送を効率良く行うことができる。 According to this embodiment, a harvester 100 to which the self-propelled tank 200 is to be moved is determined from among the multiple harvesters 100, based on self-propelled tank position information indicating the position of the self-propelled tank 200 and agricultural machinery position information indicating the positions of the multiple harvesters 100. This allows the harvested products harvested by the harvester 100 to be efficiently transferred to the self-propelled tank 200. For example, by determining a harvester 100 that is closer to the self-propelled tank 200 than a harvester 100 that is farther away as the destination of the self-propelled tank 200, the harvested products can be efficiently transferred to the self-propelled tank 200.
 プロセッサ660は、移動対象の自走式タンク200からの距離が所定距離以下の収穫機100を、その自走式タンク200の移動先に決定してもよい。所定距離は、圃場70の広さおよび自走式タンク200の走行可能距離等に応じて適宜設定され得る。これにより、自走式タンク200が遠方の収穫機100に向かうことを抑制し、自走式タンク200から比較的近い位置にある収穫機100に自走式タンク200を向かわせることで、収穫機100から自走式タンク200への収穫物の移送を効率良く行うことができる。 The processor 660 may determine a harvester 100 that is a predetermined distance or less from the self-propelled tank 200 to be moved as the destination of the self-propelled tank 200. The predetermined distance may be set appropriately depending on the size of the field 70 and the travelable distance of the self-propelled tank 200. This prevents the self-propelled tank 200 from heading toward a distant harvester 100, and directs the self-propelled tank 200 toward a harvester 100 that is relatively close to the self-propelled tank 200, thereby enabling efficient transfer of harvested products from the harvester 100 to the self-propelled tank 200.
 二台以上の自走式タンク200を移動対象の自走式タンク200として選択した場合、上述した自走式タンク位置情報は、選択した二台以上の自走式タンク200それぞれの位置を示す情報を含む。プロセッサ660は、自走式タンク位置情報と収穫機位置情報とに基づいて、選択した二台以上の自走式タンク200それぞれの移動先とする一台以上の収穫機100を決定する。条件によっては、二台以上の自走式タンク200の移動先が同じ収穫機100となる場合がある。収穫物を新たに収容可能な容量に余裕がある自走式タンク200を二台以上選択し、その選択した二台以上の自走式タンク200を一台以上の収穫機100の位置に移動させることにより、収穫機100が収穫した収穫物の自走式タンク200への移送を効率良く行うことができる。 When two or more self-propelled tanks 200 are selected as the self-propelled tanks 200 to be moved, the self-propelled tank position information described above includes information indicating the respective positions of the two or more selected self-propelled tanks 200. The processor 660 determines one or more harvesters 100 to which each of the two or more selected self-propelled tanks 200 is to be moved, based on the self-propelled tank position information and the harvester position information. Depending on the conditions, the destination of two or more self-propelled tanks 200 may be the same harvester 100. By selecting two or more self-propelled tanks 200 that have a spare capacity for newly storing harvested products and moving the selected two or more self-propelled tanks 200 to the positions of one or more harvesters 100, the harvested products harvested by the harvester 100 can be efficiently transferred to the self-propelled tanks 200.
 図24は、自走式タンク200の移動先とする収穫機100を複数の収穫機100の中から決定する処理の別の例を示すフローチャートである。この例では、プロセッサ660は、自走式タンク200を新たに乗せることが可能な一台以上の収穫機100を複数の収穫機100の中から選択する。そして、プロセッサ660は、その選択した一台以上の収穫機100の中から、移動対象の自走式タンク200の移動先とする収穫機100を決定する。 FIG. 24 is a flowchart showing another example of a process for determining, from among a plurality of harvesters 100, a harvester 100 to which the self-propelled tank 200 is to be moved. In this example, the processor 660 selects, from among the plurality of harvesters 100, one or more harvesters 100 to which the self-propelled tank 200 can be newly loaded. The processor 660 then determines, from the one or more selected harvesters 100, a harvester 100 to which the self-propelled tank 200 to be moved is to be moved.
 複数の収穫機100のそれぞれのプロセッサ161は、台115上の自走式タンク200が乗るスペースの空き状況を示す空き状況情報を、通信装置190を介して管理装置600に送信する。プロセッサ161は、例えば、カメラ126および/またはLiDARセンサ125から出力されるセンサデータを用いて、台115上の自走式タンク200が乗るスペースの空き状況を確認することができる。管理装置600のプロセッサ660は、空き状況情報に基づいて複数の自走式タンク200それぞれの台115上のスペースの空き状況を確認することができる。 The processor 161 of each of the multiple harvesters 100 transmits availability information indicating the availability of space on the platform 115 for the self-propelled tank 200 to the management device 600 via the communication device 190. The processor 161 can check the availability of space on the platform 115 for the self-propelled tank 200, for example, using sensor data output from the camera 126 and/or LiDAR sensor 125. The processor 660 of the management device 600 can check the availability of space on the platform 115 for each of the multiple self-propelled tanks 200 based on the availability information.
 図24に示すステップS101およびS102の処理は、図23に示すステップS101およびS102の処理と同じである。ここでは、自走式タンク200aの移動先とする収穫機100を決定するとする。プロセッサ660は、取得した空き状況情報に基づいて、自走式タンク200aを新たに乗せることが可能な一台以上の収穫機100を複数の収穫機100の中から選択する(ステップS110)。プロセッサ660は、ステップS110で選択した一台以上の収穫機100の位置の地理座標の情報を収穫機位置情報として取得する(ステップS111)。プロセッサ660は、自走式タンク位置情報および収穫機位置情報を用いて、自走式タンク200aと、選択した一台以上の収穫機100それぞれとの間の距離を演算する。ステップS112およびS113の処理は、図23に示すステップS104およびS105の処理と同じである。 The processing of steps S101 and S102 shown in FIG. 24 is the same as the processing of steps S101 and S102 shown in FIG. 23. Here, it is assumed that the harvester 100 to which the self-propelled tank 200a is to be moved is determined. The processor 660 selects one or more harvesters 100 that can newly accommodate the self-propelled tank 200a from among the multiple harvesters 100 based on the acquired availability information (step S110). The processor 660 acquires geographic coordinate information of the positions of the one or more harvesters 100 selected in step S110 as harvester position information (step S111). The processor 660 uses the self-propelled tank position information and the harvester position information to calculate the distance between the self-propelled tank 200a and each of the one or more selected harvesters 100. The processing of steps S112 and S113 is the same as the processing of steps S104 and S105 shown in FIG. 23.
 自走式タンク200を新たに乗せることが可能な収穫機100を、自走式タンク200の移動先として決定する。これにより、自走式タンク200を新たに乗せることができない収穫機100に自走式タンク200を移動させることを抑制できる。 The harvester 100 to which the self-propelled tank 200 can be newly loaded is determined as the destination of the self-propelled tank 200. This makes it possible to prevent the self-propelled tank 200 from being moved to a harvester 100 to which the self-propelled tank 200 cannot be newly loaded.
 上述の説明では、移動対象の自走式タンク200の移動先とする収穫機100を管理装置600が決定していたが、自走式タンク200自身が、移動先とする収穫機100を決定してもよい。 In the above explanation, the management device 600 determines the harvester 100 to which the self-propelled tank 200 to be moved is to be moved, but the self-propelled tank 200 itself may determine the harvester 100 to which it is to be moved.
 複数の収穫機100のそれぞれのプロセッサ161は、GNSSユニット120から取得した収穫機100の位置の地理座標の情報および収穫機100が向いている方向の情報を、通信装置190を介して自走式タンク200に送信する。自走式タンク200のプロセッサ261は、複数の収穫機100の地理座標の情報を受け取ることで、複数の収穫機100それぞれの位置を示す位置情報を取得することができる。自走式タンク200のプロセッサ261は、GNSSユニット220から取得した自走式タンク200の位置の地理座標の情報を取得する。 The processor 161 of each of the multiple harvesters 100 transmits the geographic coordinate information of the position of the harvester 100 and the information of the direction in which the harvester 100 is facing, obtained from the GNSS unit 120, to the self-propelled tank 200 via the communication device 190. By receiving the geographic coordinate information of the multiple harvesters 100, the processor 261 of the self-propelled tank 200 can obtain position information indicating the position of each of the multiple harvesters 100. The processor 261 of the self-propelled tank 200 obtains the geographic coordinate information of the position of the self-propelled tank 200 obtained from the GNSS unit 220.
 複数の収穫機100のそれぞれのプロセッサ161は、台115上の自走式タンク200が乗るスペースの空き状況を示す空き状況情報を、通信装置190を介して自走式タンク200に送信する。自走式タンク200のプロセッサ261は、空き状況情報に基づいて複数の自走式タンク200それぞれの台115上のスペースの空き状況を確認することができる。 The processor 161 of each of the multiple harvesters 100 transmits availability information indicating the availability of space on the platform 115 for the self-propelled tank 200 to the self-propelled tank 200 via the communication device 190. The processor 261 of the self-propelled tank 200 can check the availability of space on the platform 115 for each of the multiple self-propelled tanks 200 based on the availability information.
 自走式タンク200は、自身の移動先とする収穫機100を複数の収穫機100の中から決定する。プロセッサ261は、自走式タンク200の位置の地理座標の情報を、自走式タンク200の位置を示す自走式タンク位置情報として取得する。また、複数の収穫機100の位置の地理座標の情報を、複数の収穫機100の位置を示す収穫機位置情報として取得する。図22-図24を用いて説明した管理装置600のプロセッサ660が行う処理を、自走式タンク200のプロセッサ261が行うことで、自走式タンク200の移動先の収穫機100を決定するとともに、その収穫機100の位置に自走式タンク200を移動させることができる。 The self-propelled tank 200 determines which harvester 100 it will move to from among the multiple harvesters 100. The processor 261 acquires geographic coordinate information of the position of the self-propelled tank 200 as self-propelled tank position information indicating the position of the self-propelled tank 200. It also acquires geographic coordinate information of the positions of the multiple harvesters 100 as harvester position information indicating the positions of the multiple harvesters 100. The processor 261 of the self-propelled tank 200 performs the processing performed by the processor 660 of the management device 600 described using Figures 22-24, thereby determining the harvester 100 to which the self-propelled tank 200 will move and moving the self-propelled tank 200 to the position of that harvester 100.
 なお、圃場70で作業を行う複数の収穫機100のうちの一台が何らかの事情で作業を長時間停止する場合がある。その収穫機100には、タンク201の容量の途中まで収穫物を貯留した自走式タンク200が乗っている場合がある。そのような自走式タンク200を、その収穫機100から離脱させ、別の収穫機100の位置に向かわせてもよい。自走式タンク200は、その別の収穫機100から収穫物を新たに受け取ることで、収穫作業を効率良く行うことができる。 It should be noted that there may be cases where one of the multiple harvesters 100 working in the field 70 stops working for an extended period of time for some reason. That harvester 100 may be carrying a self-propelled tank 200 that has harvested goods stored up to halfway the capacity of the tank 201. Such a self-propelled tank 200 may be detached from that harvester 100 and directed toward the location of another harvester 100. The self-propelled tank 200 can receive new harvested goods from the other harvester 100, allowing for efficient harvesting operations.
 本実施形態の収穫システム1は、それらの機能を有しない農業機械に後から取り付けることもできる。そのようなシステムは、農業機械とは独立して製造および販売され得る。そのようなシステムで使用されるコンピュータプログラムも、農業機械とは独立して製造および販売され得る。コンピュータプログラムは、例えばコンピュータが読み取り可能な非一時的な記憶媒体に格納されて提供され得る。コンピュータプログラムは、電気通信回線(例えばインターネット)を介したダウンロードによっても提供され得る。 The harvesting system 1 of this embodiment can also be retrofitted to agricultural machinery that does not have these functions. Such a system can be manufactured and sold independently of the agricultural machinery. The computer program used in such a system can also be manufactured and sold independently of the agricultural machinery. The computer program can be provided, for example, by being stored in a computer-readable non-transitory storage medium. The computer program can also be provided by downloading via a telecommunications line (for example, the Internet).
 上述した収穫システム1は、収穫機100および自走式タンク200によって実現されてもよい。 The above-described harvesting system 1 may be realized by a harvester 100 and a self-propelled tank 200.
 収穫システム1においてプロセッサ161および261が実行する処理の一部または全部は、他の装置によって実行されてもよい。そのような他の装置は、管理装置600のプロセッサ660、端末装置400のプロセッサ460および操作端末131の少なくとも一つであってもよい。その場合、そのような他の装置のプロセッサが収穫システム1の制御装置および処理装置に含まれ得る。 Some or all of the processing performed by processors 161 and 261 in harvesting system 1 may be performed by other devices. Such other devices may be at least one of processor 660 of management device 600, processor 460 of terminal device 400, and operation terminal 131. In that case, the processor of such other devices may be included in the control device and processing device of harvesting system 1.
 以上のように、本開示は、以下に記載の作業車両、自走式タンクおよび収穫システムを含む。 As described above, the present disclosure includes the work vehicles, self-propelled tanks and harvesting systems described below.
 [項目A1]
 圃場から作物を収穫する収穫装置と、
 自走可能で且つ前記収穫装置から収穫物を受け取って貯留可能な複数の自走式タンクと、
 前記複数の自走式タンクを搭載可能な車体と、
 を備え、
 前記複数の自走式タンクのうちの1つである第1自走式タンクは、前記車体に定められた位置であって前記収穫物を受け入れる受け入れ位置で停止して、前記収穫装置が排出する前記収穫物を受け入れ、前記収穫物を受け入れた後は、前記車体から離脱して、前記収穫物の搬送先に向けて移動する、作業車両。
[Item A1]
A harvesting device for harvesting crops from a field;
a plurality of self-propelled tanks capable of self-propelling and receiving and storing the harvested product from the harvesting device;
A vehicle body capable of mounting the plurality of self-propelled tanks;
Equipped with
A first self-propelled tank, which is one of the multiple self-propelled tanks, stops at a receiving position that is a position determined on the vehicle body and receives the harvest, receives the harvest discharged by the harvesting device, and after receiving the harvest, detaches from the vehicle body and moves toward the destination of the harvest.
 本開示のある実施形態によれば、自走式タンクが作業車両の車体に乗った状態で収穫物を受け取って貯留する。これにより、作業車両は、作物の収穫を行いながら収穫物を自走式タンクに移すことができる。 According to one embodiment of the present disclosure, the self-propelled tank receives and stores the harvested crops while mounted on the body of the work vehicle. This allows the work vehicle to transfer the harvested crops to the self-propelled tank while harvesting the crops.
 収穫物を貯留した自走式タンクは、作業車両から離脱して収穫物の搬送先に向けて移動する。作業車両本体を収穫物の搬送先(例えば圃場の外周縁部で待機する運搬車等)まで移動させる必要が無い。作業車両の収穫作業を中断する必要が無く、作物の収穫を効率良く行うことができる。 The self-propelled tank that stores the harvested products detaches from the work vehicle and moves towards the destination of the harvested products. There is no need to move the work vehicle itself to the destination of the harvested products (such as a transport vehicle waiting at the outer edge of the field). There is no need to interrupt the harvesting work of the work vehicle, and crops can be harvested efficiently.
 作業車両の車体に乗って停止した状態の自走式タンクに収穫物を排出することで、自走式タンクへ収穫物を排出するときに作業車両と自走式タンクとを圃場で並走させる制御を行う必要が無くなり、収穫作業の制御をシンプルにすることができる。 By discharging the harvest into a self-propelled tank that is stationary on the work vehicle's body, there is no need to control the work vehicle and the self-propelled tank to run side by side in the field when discharging the harvest into the self-propelled tank, simplifying the control of the harvesting operation.
 [項目A2]
 前記第1自走式タンク以外であって且つ前記複数の自走式タンクのうちの少なくとも1つである第2自走式タンクは、前記第1自走式タンクの前記受け入れ位置からの移動に伴い、前記受け入れ位置に移動し、前記受け入れ位置で前記収穫物を受け入れる、項目A1に記載の作業車両。
[Item A2]
A work vehicle as described in item A1, in which a second self-propelled tank other than the first self-propelled tank and which is at least one of the plurality of self-propelled tanks moves to the receiving position following movement of the first self-propelled tank from the receiving position, and receives the harvest at the receiving position.
 収穫装置が第1自走式タンクへの収穫物の排出に続いて第2自走式タンクに収穫物を排出することにより、収穫物を複数の自走式タンクに順に連続して移すことができ、収穫装置からの収穫物の排出を効率良く行うことができる。 By having the harvesting device discharge the harvest into the first self-propelled tank and then the second self-propelled tank, the harvest can be transferred to multiple self-propelled tanks in succession, allowing the harvesting device to efficiently discharge the harvest.
 [項目A3]
 前記第2自走式タンクは、前記収穫物を受け入れた後は、前記車体から離脱して、前記収穫物の搬送先に向けて移動する、項目A2に記載の作業車両。
[Item A3]
The work vehicle described in item A2, wherein after receiving the harvest, the second self-propelled tank detaches from the vehicle body and moves toward the destination of the harvest.
 作業車両本体を収穫物の搬送先まで移動させる必要が無い。作業車両の収穫作業を中断する必要が無く、作物の収穫を効率良く行うことができる。 There is no need to move the work vehicle itself to the destination of the harvested crops. There is no need to interrupt the work vehicle's harvesting operations, and crops can be harvested efficiently.
 [項目A4]
 前記第1自走式タンクは、前記第1自走式タンクを走行させる走行装置および前記第1自走式タンクの前記走行装置の動作を制御する制御装置を備え、
 前記第1自走式タンクの前記制御装置は、
  前記収穫物を受け入れるときは、前記第1自走式タンクが前記受け入れ位置で停止するよう、前記第1自走式タンクの前記走行装置を制御し、
  前記収穫物の搬送先に向けて移動させるときは、前記第1自走式タンクが前記車体から離脱して前記搬送先に向けて移動するよう前記第1自走式タンクの前記走行装置を制御する、項目A1からA3のいずれかに記載の作業車両。
[Item A4]
The first self-propelled tank includes a traveling device that causes the first self-propelled tank to travel and a control device that controls the operation of the traveling device of the first self-propelled tank,
The control device of the first self-propelled tank,
When receiving the harvested product, the traveling device of the first self-propelled tank is controlled so that the first self-propelled tank stops at the receiving position;
A work vehicle described in any one of items A1 to A3, which controls the running device of the first self-propelled tank so that, when the harvest is to be moved toward its destination, the first self-propelled tank is detached from the vehicle body and moved toward the destination.
 これにより、収穫物の受け取りおよび収穫物の搬送先への移動を自動で行うことができる。 This allows the harvest to be received and transported to its destination automatically.
 [項目A5]
 前記第2自走式タンクは、前記第2自走式タンクを走行させる走行装置および前記第2自走式タンクの前記走行装置の動作を制御する制御装置を備え、
 前記第2自走式タンクの前記制御装置は、前記収穫物を受け入れるときは、前記第2自走式タンクが前記受け入れ位置に向けて移動し、前記受け入れ位置で停止するよう、前記第2自走式タンクの前記走行装置を制御する、項目A2またはA3に記載の作業車両。
[Item A5]
The second self-propelled tank includes a traveling device that causes the second self-propelled tank to travel and a control device that controls the operation of the traveling device of the second self-propelled tank,
The control device of the second self-propelled tank controls the running device of the second self-propelled tank so that, when receiving the harvest, the second self-propelled tank moves toward the receiving position and stops at the receiving position. The work vehicle described in item A2 or A3.
 これにより、収穫物の受け取りを自動で行うことができる。 This allows you to receive your harvest automatically.
 [項目A6]
 前記第2自走式タンクの前記制御装置は、前記収穫物の搬送先に向けて移動させるときは、前記第2自走式タンクが前記車体から離脱して前記搬送先に向けて移動するよう、前記第2自走式タンクの前記走行装置を制御する、項目A3に記載の作業車両。
[Item A6]
The control device of the second self-propelled tank controls the running device of the second self-propelled tank so that, when moving the second self-propelled tank toward the destination of the harvest, the second self-propelled tank detaches from the vehicle body and moves toward the destination.
 これにより、収穫物の搬送先への移動を自動で行うことができる。 This allows harvested products to be transported automatically to their destination.
 [項目A7]
 前記第1自走式タンクは、前記収穫物の搬送先で前記収穫物を排出した後、前記車体の位置に移動し、
 前記受け入れ位置で前記収穫装置が排出する前記収穫物を再び受け入れる、項目A1からA6いずれかに記載の作業車両。
[Item A7]
the first self-propelled tank moves to the position of the vehicle body after discharging the harvest at the destination of the harvest,
The work vehicle according to any one of items A1 to A6, wherein the work vehicle re-receives the harvested material discharged by the harvesting device at the receiving position.
 第1自走式タンクが、収穫物を受け入れる受け付け位置に戻って収穫物を再び受け取ることで、収穫装置からの収穫物の排出を効率良く行うことができる。 The first self-propelled tank returns to the harvest receiving position to receive the harvest again, allowing the harvest to be efficiently discharged from the harvesting device.
 [項目A8]
 前記第2自走式タンクは、前記収穫物の搬送先で前記収穫物を排出した後、前記車体の位置に移動し、
 前記受け入れ位置で前記収穫装置が排出する前記収穫物を再び受け入れる、項目A3に記載の作業車両。
[Item A8]
the second self-propelled tank moves to the position of the vehicle body after discharging the harvest at the destination of the harvest,
The work vehicle according to item A3, which re-accepts the harvested material discharged by the harvesting device at the receiving position.
 第2自走式タンクが、収穫物を受け入れる受け付け位置に戻って収穫物を再び受け取ることで、収穫装置からの収穫物の排出を効率良く行うことができる。 The second self-propelled tank returns to the harvest receiving position to receive the harvest again, allowing the harvest to be efficiently discharged from the harvesting device.
 [項目A9]
 前記第1自走式タンクは、前記受け入れ位置で前記収穫物を受け入れた後、前記車体上の前記受け入れ位置とは別の位置に移動し、
 前記第1自走式タンクの前記別の位置への移動に伴い、前記第2自走式タンクは、前記受け入れ位置に移動する、項目A2またはA3に記載の作業車両。
[Item A9]
the first self-propelled tank receives the harvested product at the receiving position, and then moves to a position on the vehicle body other than the receiving position;
The work vehicle described in item A2 or A3, wherein the second self-propelled tank moves to the receiving position as the first self-propelled tank moves to the other position.
 収穫物を複数の自走式タンクに順に連続して移すことができ、収穫装置からの収穫物の排出を効率良く行うことができる。 The harvested crop can be transferred to multiple self-propelled tanks in succession, allowing the harvested crop to be efficiently discharged from the harvesting device.
 [項目A10]
 前記車体は、前記複数の自走式タンクが乗る台を備える、項目A1からA9のいずれかに記載の作業車両。
[Item A10]
The work vehicle according to any one of items A1 to A9, wherein the vehicle body is provided with a platform on which the plurality of self-propelled tanks are mounted.
 これにより、自走式タンクを車体に安定して乗せることができる。 This allows the self-propelled tank to be mounted stably on the vehicle body.
 [項目A11]
 前記作業車両は、前記複数の自走式タンクが前記台に対して乗り降りするためのスロープを備える、項目A10に記載の作業車両。
[Item A11]
The work vehicle according to item A10, wherein the work vehicle is provided with a ramp for the plurality of self-propelled tanks to get on and off the platform.
 自走式タンクは、スロープを走行することで作業車両に設けられた台に対して乗り降りすることができる。 The self-propelled tank can be driven up a slope and mounted on and disembarked from a platform installed on the work vehicle.
 [項目A12]
 前記第1および第2自走式タンク以外であって且つ前記複数の自走式タンクのうちの1つである第3自走式タンクは、前記第2自走式タンクの前記受け入れ位置からの移動に伴い、前記受け入れ位置に移動し、前記受け入れ位置で前記収穫物を受け入れる、項目A3に記載の作業車両。
[Item A12]
A work vehicle as described in item A3, in which a third self-propelled tank other than the first and second self-propelled tanks and which is one of the plurality of self-propelled tanks moves to the receiving position following the movement of the second self-propelled tank from the receiving position, and receives the harvest at the receiving position.
 収穫装置が第2自走式タンクへの収穫物の排出に続いて第3自走式タンクに収穫物を排出することにより、収穫物を複数の自走式タンクに順に連続して移すことができ、収穫装置からの収穫物の排出を効率良く行うことができる。 By having the harvesting device discharge the harvest into the second self-propelled tank and then the third self-propelled tank, the harvest can be transferred to multiple self-propelled tanks in succession, allowing the harvesting device to efficiently discharge the harvest.
 [項目A13]
 前記第3自走式タンクは、前記収穫物を受け入れた後は、前記車体から離脱して、前記収穫物の搬送先に向けて移動する、項目A12に記載の作業車両。
[Item A13]
The work vehicle described in item A12, wherein after receiving the harvest, the third self-propelled tank detaches from the vehicle body and moves toward the destination of the harvest.
 作業車両本体を収穫物の搬送先まで移動させる必要が無い。作業車両の収穫作業を中断する必要が無く、作物の収穫を効率良く行うことができる。 There is no need to move the work vehicle itself to the destination of the harvested crops. There is no need to interrupt the work vehicle's harvesting operations, and crops can be harvested efficiently.
 [項目A14]
 前記第3自走式タンクは、前記収穫物の搬送先で前記収穫物を排出した後、前記車体の位置に移動し、
 前記受け入れ位置で前記収穫装置が排出する前記収穫物を再び受け入れる、項目A13に記載の作業車両。
[Item A14]
the third self-propelled tank moves to the position of the vehicle body after discharging the harvest at the destination of the harvest,
The work vehicle according to item A13, which re-accepts the harvested material discharged by the harvesting device at the receiving position.
 第3自走式タンクが、収穫物を受け入れる受け付け位置に戻って収穫物を再び受け取ることで、収穫装置からの収穫物の排出を効率良く行うことができる。 The third self-propelled tank returns to the harvest receiving position to receive the harvest again, allowing the harvest to be efficiently discharged from the harvesting device.
 [項目A15]
 前記複数の自走式タンクのそれぞれは、上方に開口した開口部を有し、前記収穫装置から排出されて落下する前記収穫物を受け取る、項目A1からA14のいずれかに記載の作業車両。
[Item A15]
A work vehicle described in any one of items A1 to A14, wherein each of the plurality of self-propelled tanks has an opening that opens upward and receives the harvested product that is discharged and dropped from the harvesting device.
 これにより、シンプルな構造で収穫装置から自走式タンクへ収穫物を移すことができる。 This allows the harvested crop to be transferred from the harvesting device to the self-propelled tank with a simple structure.
 [項目A16]
 前記作業車両は、前記作業車両を走行させる走行装置および前記走行装置の動作を制御して前記作業車両を自動運転で走行させる制御装置を備える、項目A1からA15のいずれかに記載の作業車両。
[Item A16]
The work vehicle according to any one of items A1 to A15, wherein the work vehicle is equipped with a travel device for traveling the work vehicle and a control device for controlling the operation of the travel device to travel the work vehicle in an automatic driving manner.
 これにより、人間が作業車両を運転して走行させる必要がなく、作物の収穫を効率良く行うことができる。 This eliminates the need for a human to drive the work vehicle and allows for efficient crop harvesting.
 [項目A17]
 圃場を走行しながら作物を収穫する作業車両から収穫物を受け取って貯留する自走式タンクであって、
 前記自走式タンクを走行させる走行装置と、
 前記走行装置の動作を制御して前記自走式タンクを走行させる制御装置と、
 を備え、
 前記制御装置は、前記自走式タンクを前記作業車両の車体上に移動させ、
 前記車体上の前記自走式タンクは、前記作業車両の収穫装置が排出する前記収穫物を受け入れ、
 前記収穫物を受け入れた後、前記制御装置は、前記自走式タンクを前記車体から離脱させて前記収穫物の搬送先に向けて移動させる、自走式タンク。
[Item A17]
A self-propelled tank that receives and stores crops from a work vehicle that harvests crops while traveling in a field,
A traveling device for traveling the self-propelled tank;
A control device that controls the operation of the traveling device to travel the self-propelled tank;
Equipped with
The control device moves the self-propelled tank onto a body of the work vehicle,
The self-propelled tank on the vehicle body receives the harvested product discharged by the harvesting device of the work vehicle,
After receiving the harvest, the control device detaches the self-propelled tank from the vehicle body and moves it toward the destination of the harvest.
 本開示のある実施形態によれば、自走式タンクが作業車両の車体に乗った状態で収穫物を受け取って貯留する。これにより、作業車両は、作物の収穫を行いながら収穫物を自走式タンクに移すことができる。 According to one embodiment of the present disclosure, the self-propelled tank receives and stores the harvested crops while mounted on the body of the work vehicle. This allows the work vehicle to transfer the harvested crops to the self-propelled tank while harvesting the crops.
 収穫物を貯留した自走式タンクは、作業車両から離脱して収穫物の搬送先に向けて移動する。作業車両本体を収穫物の搬送先(例えば圃場の外周縁部で待機する運搬車等)まで移動させる必要が無い。作業車両の収穫作業を中断する必要が無く、作物の収穫を効率良く行うことができる。 The self-propelled tank that stores the harvested products detaches from the work vehicle and moves towards the destination of the harvested products. There is no need to move the work vehicle itself to the destination of the harvested products (such as a transport vehicle waiting at the outer edge of the field). There is no need to interrupt the harvesting work of the work vehicle, and crops can be harvested efficiently.
 作業車両の車体に乗った状態の自走式タンクに収穫物を排出することで、自走式タンクへ収穫物を排出するときに作業車両と自走式タンクとを圃場で並走させる制御を行う必要が無くなり、収穫作業の制御をシンプルにすることができる。 By discharging the harvest into a self-propelled tank mounted on the body of the work vehicle, there is no need to control the work vehicle and the self-propelled tank to run side by side in the field when discharging the harvest into the self-propelled tank, simplifying the control of the harvesting operation.
 [項目A18]
 前記収穫物の搬送先で前記自走式タンクから前記収穫物を排出した後、前記制御装置は、前記自走式タンクを前記車体の位置に移動させ、
 前記車体上で前記収穫装置が排出する前記収穫物を再び受け入れる、項目A17に記載の作業車両。
[Item A18]
After the harvest is discharged from the self-propelled tank at the destination of the harvest, the control device moves the self-propelled tank to the position of the vehicle body,
The work vehicle according to item A17, which receives back onto the vehicle body the harvesting material discharged by the harvesting device.
 自走式タンクが作業車両の車体上に戻って収穫物を再び受け取ることで、収穫装置からの収穫物の排出を効率良く行うことができる。 The self-propelled tank returns to the work vehicle's body to pick up the harvest again, allowing the harvester to efficiently unload the harvest.
 [項目B1]
 圃場を走行しながら作物を収穫する複数の農業機械と、前記複数の農業機械から収穫物を受け取って溜める複数の自走式タンクとを用いる収穫システムであって、
 前記複数の自走式タンクのうちの移動させる対象となる移動対象自走式タンクの位置を示す自走式タンク位置情報と、前記複数の農業機械の位置を示す農業機械位置情報とに基づいて、前記移動対象自走式タンクの移動先とする農業機械を前記複数の農業機械の中から決定する処理装置を備える、収穫システム。
[Item B1]
A harvesting system using a plurality of agricultural machines that harvest crops while traveling in a field, and a plurality of self-propelled tanks that receive and store harvested products from the plurality of agricultural machines,
A harvesting system comprising a processing device that determines an agricultural machine to which the target self-propelled tank is to be moved from among the plurality of agricultural machines, based on self-propelled tank position information that indicates the position of a target self-propelled tank to be moved among the plurality of self-propelled tanks, and agricultural machinery position information that indicates the positions of the plurality of agricultural machines.
 本開示のある実施形態によれば、自走式タンクの位置を示す自走式タンク位置情報と複数の農業機械の位置を示す農業機械位置情報とに基づいて、複数の農業機械の中から自走式タンクの移動先とする農業機械を決定する。これにより、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。例えば、自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械をその自走式タンクの移動先に決定することで、収穫物の自走式タンクへの移送を効率良く行うことができる。 According to an embodiment of the present disclosure, an agricultural machine to which the self-propelled tank is to be moved is determined from among a plurality of agricultural machines based on self-propelled tank position information indicating the position of the self-propelled tank and agricultural machine position information indicating the positions of a plurality of agricultural machines. This allows the harvested products harvested by the agricultural machine to be efficiently transferred to the self-propelled tank. For example, by determining an agricultural machine that is closer to the self-propelled tank than an agricultural machine that is farther away as the destination for the self-propelled tank, the harvested products can be efficiently transferred to the self-propelled tank.
 [項目B2]
 前記移動対象自走式タンクは、前記処理装置が決定した移動先である前記農業機械の位置情報を取得し、前記移動先である農業機械の位置に向けて移動する、項目B1に記載の収穫システム。
[Item B2]
The harvesting system described in item B1, wherein the self-propelled tank to be moved acquires position information of the agricultural machine that is the destination determined by the processing device, and moves toward the position of the agricultural machine that is the destination.
 移動先として決定した農業機械に自走式タンクを移動させることにより、収穫物の自走式タンクへの移送を効率良く行うことができる。 By moving the self-propelled tank to the agricultural machinery that has been selected as the destination, the harvested products can be efficiently transferred to the self-propelled tank.
 [項目B3]
 前記処理装置は、
  前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記移動対象自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
  前記移動対象自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械を前記移動対象自走式タンクの移動先に決定する、項目B1またはB2に記載の収穫システム。
[Item B3]
The processing device includes:
Calculating a distance between the self-propelled tank to be moved and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
A harvesting system as described in item B1 or B2, in which an agricultural machine that is closer to the target self-propelled tank than an agricultural machine that is farther from the target self-propelled tank is determined as the destination of the target self-propelled tank.
 自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械をその自走式タンクの移動先に決定することで、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By determining the destination of the self-propelled tank to be an agricultural machine that is closer to the self-propelled tank than an agricultural machine that is farther away, the harvested produce from the agricultural machine can be transported to the self-propelled tank efficiently.
 [項目B4]
 前記処理装置は、
  前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記移動対象自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
  前記移動対象自走式タンクからの距離が所定距離以下の農業機械を、前記移動対象自走式タンクの移動先に決定する、項目B1またはB2に記載の収穫システム。
[Item B4]
The processing device includes:
Calculating a distance between the self-propelled tank to be moved and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
A harvesting system as described in item B1 or B2, in which an agricultural machine that is a predetermined distance or less away from the self-propelled tank to be moved is determined as the destination of the self-propelled tank to be moved.
 自走式タンクが遠方の農業機械に向かうことを抑制し、自走式タンクから比較的近い位置にある農業機械に自走式タンクを向かわせることで、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By preventing the self-propelled tank from heading towards distant agricultural machinery and directing the self-propelled tank towards agricultural machinery that is relatively close to the self-propelled tank, it is possible to efficiently transport the produce harvested by the agricultural machinery to the self-propelled tank.
 [項目B5]
 前記処理装置は、
  前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記移動対象自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
  前記移動対象自走式タンクからの距離が最も小さい農業機械を、前記移動対象自走式タンクの移動先に決定する、項目B1またはB2に記載の収穫システム。
[Item B5]
The processing device includes:
Calculating a distance between the self-propelled tank to be moved and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
The harvesting system according to item B1 or B2, wherein the agricultural machine that is the shortest distance from the target self-propelled tank is determined as the destination of the target self-propelled tank.
 自走式タンクからの距離が最も小さい農業機械をその自走式タンクの移動先に決定することで、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By determining the agricultural machine that is the closest distance from the self-propelled tank as the destination for the self-propelled tank, the harvested produce from the agricultural machine can be efficiently transported to the self-propelled tank.
 [項目B6]
 前記処理装置は、
  前記収穫物を新たに収容可能な空き容量がある自走式タンクを、前記複数の自走式タンクの中から選択し、
  選択した前記自走式タンクを前記移動対象自走式タンクに設定する、項目B1からB5のいずれかに記載の収穫システム。
[Item B6]
The processing device includes:
selecting a self-propelled tank having free capacity capable of newly accommodating the harvested product from among the plurality of self-propelled tanks;
A harvesting system described in any one of items B1 to B5, which sets the selected self-propelled tank as the target self-propelled tank.
 収穫物を新たに収容可能な空き容量がある自走式タンクを選択し、その選択した自走式タンクを農業機械の位置に移動させることにより、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By selecting a self-propelled tank with free capacity to newly store the harvested goods and moving the selected self-propelled tank to the position of the agricultural machinery, the harvested goods harvested by the agricultural machinery can be efficiently transferred to the self-propelled tank.
 [項目B7]
 前記処理装置は、
  前記収穫物を新たに収容可能な空き容量が第1所定量以上、または既に収容している前記収穫物の量が第2所定量未満である自走式タンクを、前記複数の自走式タンクの中から選択し、
  選択した前記自走式タンクを前記移動対象自走式タンクに設定する、項目B1からB6のいずれかに記載の収穫システム。
[Item B7]
The processing device includes:
selecting a self-propelled tank from among the plurality of self-propelled tanks, the self-propelled tank having a free capacity for newly storing the harvested product that is equal to or greater than a first predetermined amount, or the amount of the harvested product already stored therein that is less than a second predetermined amount;
A harvesting system described in any one of items B1 to B6, which sets the selected self-propelled tank as the target self-propelled tank.
 収穫物を新たに収容可能な容量に余裕がある自走式タンクを選択し、その選択した自走式タンクを農業機械の位置に移動させることにより、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By selecting a self-propelled tank with sufficient capacity to accommodate new harvested goods and moving the selected self-propelled tank to the position of the agricultural machinery, the harvested goods harvested by the agricultural machinery can be efficiently transferred to the self-propelled tank.
 [項目B8]
 前記処理装置は、前記収穫物を新たに収容可能な空き容量が第1所定量以上、または既に収容している前記収穫物の量が第2所定量未満である自走式タンクを、前記複数の自走式タンクの中から二台以上選択し、
  選択した前記二台以上の自走式タンクのそれぞれを前記移動対象自走式タンクに設定し、
 前記自走式タンク位置情報は、選択した前記二台以上の自走式タンクそれぞれの位置を示す情報を含み、
 前記処理装置は、前記自走式タンク位置情報と前記農業機械位置情報とに基づいて、選択した前記二台以上の自走式タンクそれぞれの移動先とする一台以上の農業機械を決定する、項目B1またはB2に記載の収穫システム。
[Item B8]
The processing device selects two or more self-propelled tanks from among the plurality of self-propelled tanks, the self-propelled tanks having a free capacity for newly storing the harvested product that is equal to or greater than a first predetermined amount, or an amount of the harvested product already stored therein that is less than a second predetermined amount,
Setting each of the two or more selected self-propelled tanks as the target self-propelled tanks to be moved;
The self-propelled tank position information includes information indicating the positions of each of the two or more selected self-propelled tanks,
The harvesting system described in item B1 or B2, wherein the processing device determines one or more agricultural machines to which each of the two or more selected self-propelled tanks is to be moved based on the self-propelled tank position information and the agricultural machinery position information.
 収穫物を新たに収容可能な容量に余裕がある自走式タンクを二台以上選択し、その選択した二台以上の自走式タンクを一台以上の農業機械の位置に移動させることにより、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By selecting two or more self-propelled tanks that have sufficient capacity to accommodate new harvested goods and moving the two or more selected self-propelled tanks to the position of one or more agricultural machines, the harvested goods harvested by the agricultural machines can be efficiently transferred to the self-propelled tanks.
 [項目B9]
 前記複数の自走式タンクのそれぞれは、前記農業機械に乗った状態で前記農業機械が排出する前記収穫物を受け取る、項目B1からB8のいずれかに記載の収穫システム。
[Item B9]
A harvesting system described in any of items B1 to B8, wherein each of the plurality of self-propelled tanks receives the harvested material discharged by the agricultural machine while mounted on the agricultural machine.
 自走式タンクが農業機械に乗った状態で収穫物を受け取って貯留することにより、農業機械は、作物の収穫を行いながら収穫物を自走式タンクに移すことができる。 The self-propelled tank receives and stores the harvested crops while mounted on the agricultural machinery, allowing the agricultural machinery to transfer the harvested crops to the self-propelled tank while harvesting.
 農業機械に乗った状態の自走式タンクに収穫物を排出することで、自走式タンクへ収穫物を排出するときに農業機械と自走式タンクとを並走させる制御を行う必要が無くなり、収穫作業の制御をシンプルにすることができる。 By discharging the harvest into a self-propelled tank mounted on the agricultural machinery, there is no need to control the agricultural machinery and the self-propelled tank to run side by side when discharging the harvest into the self-propelled tank, simplifying the control of the harvesting operation.
 [項目B10]
 前記処理装置は、
  前記自走式タンクを新たに乗せることが可能な一台以上の農業機械を前記複数の農業機械の中から選択し、
  選択した前記一台以上の農業機械の中から、前記移動対象自走式タンクの移動先とする農業機械を決定する、項目B9に記載の収穫システム。
[Item B10]
The processing device includes:
selecting one or more agricultural machines on which the self-propelled tank can be newly mounted from among the plurality of agricultural machines;
A harvesting system as described in item B9, which determines an agricultural machine to which the self-propelled tank to be moved is to be moved from among the one or more selected agricultural machines.
 自走式タンクを新たに乗せることが可能な農業機械を、自走式タンクの移動先として決定する。これにより、自走式タンクを新たに乗せることができない農業機械に自走式タンクを移動させることを抑制できる。 The agricultural machinery that can newly mount the self-propelled tank is determined as the destination for the self-propelled tank. This makes it possible to prevent the self-propelled tank from being moved to an agricultural machinery that cannot newly mount the self-propelled tank.
 [項目B11]
 前記処理装置は、
  前記複数の農業機械のそれぞれの前記自走式タンクが乗るスペースの空き状況を示す空き状況情報を取得し、
  前記空き状況情報に基づいて、前記自走式タンクを新たに乗せることが可能な一台以上の農業機械を前記複数の農業機械の中から選択する、項目B10に記載の収穫システム。
[Item B11]
The processing device includes:
Acquire availability information indicating availability of a space for carrying the self-propelled tank of each of the plurality of agricultural machines;
The harvesting system described in item B10, wherein one or more agricultural machines capable of newly mounting the self-propelled tank are selected from among the plurality of agricultural machines based on the availability information.
 自走式タンクを新たに乗せることが可能な農業機械を、自走式タンクの移動先として決定することができる。 The agricultural machinery that can accommodate the self-propelled tank can be determined as the destination for the self-propelled tank.
 [項目B12]
 前記処理装置は、前記移動対象自走式タンクに設けられている、項目B1からB11のいずれかに記載の収穫システム。
[Item B12]
A harvesting system described in any one of items B1 to B11, wherein the processing device is provided in the mobile target self-propelled tank.
 移動させる対象となる自走式タンクが単独で移動先とする農業機械を決定することができる。 The self-propelled tank to be moved can independently decide which agricultural machinery to move it to.
 [項目B13]
 圃場を走行しながら作物を収穫する複数の農業機械のうちの少なくとも一つから収穫物を受け取って溜める自走式タンクであって、
 前記自走式タンクを走行させる走行装置と、
 前記走行装置の動作を制御して前記自走式タンクを自動運転で走行させる制御装置と、
 を備え、
 前記制御装置は、
  前記自走式タンクの位置を示す自走式タンク位置情報と、前記複数の農業機械の位置を示す農業機械位置情報とに基づいて、前記自走式タンクの移動先とする農業機械を前記複数の農業機械の中から決定し、
  決定した前記農業機械の位置に前記自走式タンクを移動させる、自走式タンク。
[Item B13]
A self-propelled tank that receives and stores crops from at least one of a plurality of agricultural machines that harvest crops while traveling in a farm field,
A traveling device for traveling the self-propelled tank;
A control device that controls the operation of the traveling device to automatically travel the self-propelled tank;
Equipped with
The control device includes:
determining an agricultural machine to which the self-propelled tank is to be moved from among the plurality of agricultural machines based on self-propelled tank position information indicating the position of the self-propelled tank and agricultural machine position information indicating the positions of the plurality of agricultural machines;
A self-propelled tank that moves the self-propelled tank to the determined position of the agricultural machine.
 本開示のある実施形態によれば、自走式タンクの位置を示す自走式タンク位置情報と複数の農業機械の位置を示す農業機械位置情報とに基づいて、複数の農業機械の中から自走式タンクの移動先とする農業機械を決定する。これにより、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。例えば、自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械を自走式タンクの移動先に決定することで、収穫物の自走式タンクへの移送を効率良く行うことができる。 According to an embodiment of the present disclosure, an agricultural machine to which the self-propelled tank is to be moved is determined from among a plurality of agricultural machines based on self-propelled tank position information indicating the position of the self-propelled tank and agricultural machine position information indicating the positions of a plurality of agricultural machines. This allows the harvested products harvested by the agricultural machine to be efficiently transferred to the self-propelled tank. For example, by determining an agricultural machine that is closer to the self-propelled tank than an agricultural machine that is farther away as the destination of the self-propelled tank, the harvested products can be efficiently transferred to the self-propelled tank.
 [項目B14]
 前記制御装置は、
  前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
  前記自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械を前記自走式タンクの移動先に決定する、項目B13に記載の自走式タンク。
[Item B14]
The control device includes:
Calculating a distance between the self-propelled tank and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
A self-propelled tank as described in item B13, which determines an agricultural machine that is closer to the self-propelled tank than an agricultural machine that is farther from the self-propelled tank as the destination of the self-propelled tank.
 自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械を自走式タンクの移動先に決定することで、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By determining the destination of the self-propelled tank to be an agricultural machine that is closer to the self-propelled tank than an agricultural machine that is farther away, the harvested produce from the agricultural machine can be transported to the self-propelled tank more efficiently.
 [項目B15]
 前記制御装置は、
  前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
  前記自走式タンクからの距離が所定距離以下の農業機械を、前記自走式タンクの移動先に決定する、項目B13に記載の自走式タンク。
[Item B15]
The control device includes:
Calculating a distance between the self-propelled tank and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
A self-propelled tank as described in item B13, which determines an agricultural machine that is a predetermined distance or less from the self-propelled tank as the destination of the self-propelled tank.
 自走式タンクが遠方の農業機械に向かうことを抑制し、自走式タンクから比較的近い位置にある農業機械に自走式タンクを向かわせることで、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By preventing the self-propelled tank from heading towards distant agricultural machinery and directing the self-propelled tank towards agricultural machinery that is relatively close to the self-propelled tank, it is possible to efficiently transport the produce harvested by the agricultural machinery to the self-propelled tank.
 [項目B16]
 前記制御装置は、
  前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
  前記自走式タンクからの距離が最も小さい農業機械を、前記自走式タンクの移動先に決定する、項目B13からB15のいずれかに記載の自走式タンク。
[Item B16]
The control device includes:
Calculating a distance between the self-propelled tank and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
A self-propelled tank according to any one of items B13 to B15, wherein the agricultural machine that is the shortest distance from the self-propelled tank is determined as the destination of the self-propelled tank.
 自走式タンクからの距離が最も小さい農業機械を自走式タンクの移動先に決定することで、農業機械が収穫した収穫物の自走式タンクへの移送を効率良く行うことができる。 By determining the agricultural machinery that is the closest distance from the self-propelled tank as the destination for the self-propelled tank, the harvested produce from the agricultural machinery can be efficiently transported to the self-propelled tank.
 [項目B17]
 前記自走式タンクは、前記農業機械に乗った状態で前記農業機械が排出する前記収穫物を受け取る、項目B13からB16のいずれかに記載の自走式タンク。
[Item B17]
A self-propelled tank according to any one of items B13 to B16, wherein the self-propelled tank receives the harvested product discharged by the agricultural machine while mounted on the agricultural machine.
 自走式タンクが農業機械に乗った状態で収穫物を受け取って貯留することにより、農業機械は、作物の収穫を行いながら収穫物を自走式タンクに移すことができる。 The self-propelled tank receives and stores the harvested crops while mounted on the agricultural machinery, allowing the agricultural machinery to transfer the harvested crops to the self-propelled tank while harvesting.
 農業機械に乗った状態の自走式タンクに収穫物を排出することで、自走式タンクへ収穫物を排出するときに農業機械と自走式タンクとを並走させる制御を行う必要が無くなり、収穫作業の制御をシンプルにすることができる。 By discharging the harvest into a self-propelled tank mounted on the agricultural machinery, there is no need to control the agricultural machinery and the self-propelled tank to run side by side when discharging the harvest into the self-propelled tank, simplifying the control of the harvesting operation.
 [項目B18]
 前記制御装置は、
  前記自走式タンクを新たに乗せることが可能な一台以上の農業機械を前記複数の農業機械の中から選択し、
  前記選択した一台以上の農業機械の中から、前記自走式タンクの移動先とする農業機械を決定する、項目B17に記載の自走式タンク。
[Item B18]
The control device includes:
selecting one or more agricultural machines on which the self-propelled tank can be newly mounted from among the plurality of agricultural machines;
A self-propelled tank as described in item B17, which determines an agricultural machine to which the self-propelled tank is to be moved from among the one or more selected agricultural machines.
 自走式タンクを新たに乗せることが可能な農業機械を、自走式タンクの移動先として決定する。これにより、自走式タンクを新たに乗せることができない農業機械に自走式タンクを移動させることを抑制できる。 The agricultural machinery that can newly mount the self-propelled tank is determined as the destination for the self-propelled tank. This makes it possible to prevent the self-propelled tank from being moved to an agricultural machinery that cannot newly mount the self-propelled tank.
 [項目B19]
 前記制御装置は、
  前記複数の農業機械のそれぞれの前記自走式タンクが乗るスペースの空き状況を示す空き状況情報を取得し、
  前記空き状況情報に基づいて、前記自走式タンクを新たに乗せることが可能な一台以上の農業機械を前記複数の農業機械の中から選択する、項目B18に記載の自走式タンク。
[Item B19]
The control device includes:
Acquire availability information indicating availability of a space for carrying the self-propelled tank of each of the plurality of agricultural machines;
The self-propelled tank described in item B18, wherein one or more agricultural machines capable of newly mounting the self-propelled tank are selected from among the plurality of agricultural machines based on the availability information.
 自走式タンクを新たに乗せることが可能な農業機械を、自走式タンクの移動先として決定することができる。 The agricultural machinery that can accommodate the self-propelled tank can be determined as the destination for the self-propelled tank.
 本開示の技術は、農業機械の分野において特に有用である。 The technology disclosed herein is particularly useful in the field of agricultural machinery.
 1:収穫システム、 70:圃場、 71:作業領域、 72:枕地、 73:目標経路、 76:道路、 77:目標経路、 78:貯蔵庫、 80:ネットワーク、 90:収穫装置、 100:農業機械(作業車両)、 101:車体、 102:走行装置、 103:刈取装置、 104:搬送装置、 105:脱穀装置、 107:排出装置、 108:排藁処理装置、 109:リール、 110:キャビン、 111:原動機(エンジン)、 112:変速装置(トランスミッション)、 115:台、 117:排出口、 120:測位装置(GNSSユニット)、 121:GNSS受信機、 122:RTK受信機、 123:慣性計測装置(IMU)、 124:処理回路、 125:LiDARセンサ、 126:カメラ、 127:障害物センサ、 131:操作端末、 132:操作スイッチ群、 133:ブザー、 140:駆動装置、 141:動力伝達機構、 150:センサ群、 151:操作レバーセンサ、 152:回転センサ、 160:制御装置、 161:プロセッサ、 162:RAM、 163:ROM、 164:記憶装置、 165-167:ECU、 171:スロープ、 172:スロープ、 173:アクチュエータ、 174:アクチュエータ、 190:通信装置、 200:自走式タンク、 201:タンク、 201a:開口部、 202:筐体、 203:走行装置、 204:原動機(電動モータ)、 205:減速機、 220:測位装置(GNSSユニット)、 221:GNSS受信機、 222:RTK受信機、 223:慣性計測装置(IMU)、 224:処理回路、 225:LiDARセンサ、 226:カメラ、 227:障害物センサ、 233:ブザー、 240:駆動装置、 250:センサ群、 252:回転センサ、 256:荷重センサ、 260:制御装置、 261:プロセッサ、 262:RAM、 263:ROM、 264:記憶装置、 265、266:ECU、 270:収穫物、 290:通信装置、 400:端末装置、 420:入力装置、 430:表示装置、 450:記憶装置、 460:プロセッサ、 470:ROM、 480:RAM、 490:通信装置、 600:管理装置、 660:プロセッサ、 650:記憶装置、 670:ROM、 680:RAM、 690:通信装置 1: Harvesting system, 70: Field, 71: Working area, 72: Headland, 73: Target route, 76: Road, 77: Target route, 78: Storage, 80: Network, 90: Harvesting equipment, 100: Agricultural machinery (work vehicle), 101: Body, 102: Traveling equipment, 103: Harvesting equipment, 104: Transporting equipment, 105: Threshing equipment, 107: Discharge equipment, 108: Straw waste treatment equipment, 109: Reel, 110: Cabin, 111: Prime mover (engine), 112: Transmission, 115: Base, 117: Discharge outlet, 120: Positioning equipment (GNSS unit), 121: GNSS receiver, 122: RTK receiver, 123: Inertial measurement unit (IMU), 124: Processing circuit, 125: LiDAR sensor, 126: Camera, 127: Obstacle sensor, 131: Operation terminal, 132: Operation switch group, 133: Buzzer, 140: Drive unit, 141: Power transmission mechanism, 150: Sensor group, 151: Operation lever sensor, 152: Rotation sensor, 160: Control unit, 161: Processor, 162: RAM, 163: ROM, 164: Storage unit, 165-167: ECU, 1 71: Slope, 172: Slope, 173: Actuator, 174: Actuator, 190: Communication device, 200: Self-propelled tank, 201: Tank, 201a: Opening, 202: Housing, 203: Running gear, 204: Prime mover (electric motor), 205: Reducer, 220: Positioning device (GNSS unit), 221: GNSS receiver, 222: RTK receiver, 223: Inertial measurement unit (IMU), 224: Processing circuit, 225: LiDAR sensor, 226: Camera, 227: Obstacle sensor, 233: Buzzer, 240: Drive device 250: Sensor group, 252: Rotation sensor, 256: Load sensor, 260: Control device, 261: Processor, 262: RAM, 263: ROM, 264: Storage device, 265, 266: ECU, 270: Harvest product, 290: Communication device, 400: Terminal device, 420: Input device, 430: Display device, 450: Storage device, 460: Processor, 470: ROM, 480: RAM, 490: Communication device, 600: Management device, 660: Processor, 650: Storage device, 670: ROM, 680: RAM, 690: Communication device

Claims (37)

  1.  圃場から作物を収穫する収穫装置と、
     自走可能で且つ前記収穫装置から収穫物を受け取って貯留可能な複数の自走式タンクと、
     前記複数の自走式タンクを搭載可能な車体と、
     を備え、
     前記複数の自走式タンクのうちの1つである第1自走式タンクは、前記車体に定められた位置であって前記収穫物を受け入れる受け入れ位置で停止して、前記収穫装置が排出する前記収穫物を受け入れ、前記収穫物を受け入れた後は、前記車体から離脱して、前記収穫物の搬送先に向けて移動する、作業車両。
    A harvesting device for harvesting crops from a field;
    a plurality of self-propelled tanks capable of self-propelling and receiving and storing the harvested product from the harvesting device;
    A vehicle body capable of mounting the plurality of self-propelled tanks;
    Equipped with
    A first self-propelled tank, which is one of the multiple self-propelled tanks, stops at a receiving position that is a position determined on the vehicle body and receives the harvest, receives the harvest discharged by the harvesting device, and after receiving the harvest, detaches from the vehicle body and moves toward the destination of the harvest.
  2.  前記第1自走式タンク以外であって且つ前記複数の自走式タンクのうちの少なくとも1つである第2自走式タンクは、前記第1自走式タンクの前記受け入れ位置からの移動に伴い、前記受け入れ位置に移動し、前記受け入れ位置で前記収穫物を受け入れる、請求項1に記載の作業車両。 The work vehicle described in claim 1, wherein a second self-propelled tank other than the first self-propelled tank and at least one of the plurality of self-propelled tanks moves to the receiving position in response to the movement of the first self-propelled tank from the receiving position, and receives the harvest at the receiving position.
  3.  前記第2自走式タンクは、前記収穫物を受け入れた後は、前記車体から離脱して、前記収穫物の搬送先に向けて移動する、請求項2に記載の作業車両。 The work vehicle according to claim 2, wherein the second self-propelled tank detaches from the vehicle body after receiving the harvest and moves toward the destination of the harvest.
  4.  前記第1自走式タンクは、前記第1自走式タンクを走行させる走行装置および前記第1自走式タンクの前記走行装置の動作を制御する制御装置を備え、
     前記第1自走式タンクの前記制御装置は、
      前記収穫物を受け入れるときは、前記第1自走式タンクが前記受け入れ位置で停止するよう、前記第1自走式タンクの前記走行装置を制御し、
      前記収穫物の搬送先に向けて移動させるときは、前記第1自走式タンクが前記車体から離脱して前記搬送先に向けて移動するよう前記第1自走式タンクの前記走行装置を制御する、請求項1または2に記載の作業車両。
    The first self-propelled tank includes a traveling device that causes the first self-propelled tank to travel and a control device that controls the operation of the traveling device of the first self-propelled tank,
    The control device of the first self-propelled tank,
    When receiving the harvested product, the traveling device of the first self-propelled tank is controlled so that the first self-propelled tank stops at the receiving position;
    The work vehicle according to claim 1 or 2, wherein when the harvest is to be moved toward a destination, the running device of the first self-propelled tank is controlled so that the first self-propelled tank detaches from the vehicle body and moves toward the destination.
  5.  前記第2自走式タンクは、前記第2自走式タンクを走行させる走行装置および前記第2自走式タンクの前記走行装置の動作を制御する制御装置を備え、
     前記第2自走式タンクの前記制御装置は、前記収穫物を受け入れるときは、前記第2自走式タンクが前記受け入れ位置に向けて移動し、前記受け入れ位置で停止するよう、前記第2自走式タンクの前記走行装置を制御する、請求項2に記載の作業車両。
    The second self-propelled tank includes a traveling device that causes the second self-propelled tank to travel and a control device that controls the operation of the traveling device of the second self-propelled tank,
    The work vehicle described in claim 2, wherein the control device of the second self-propelled tank controls the running device of the second self-propelled tank so that, when receiving the harvest, the second self-propelled tank moves toward the receiving position and stops at the receiving position.
  6.  前記第2自走式タンクの前記制御装置は、前記収穫物の搬送先に向けて移動させるときは、前記第2自走式タンクが前記車体から離脱して前記搬送先に向けて移動するよう、前記第2自走式タンクの前記走行装置を制御する、請求項3に記載の作業車両。 The work vehicle according to claim 3, wherein the control device of the second self-propelled tank controls the travel device of the second self-propelled tank so that, when the second self-propelled tank is moved toward the destination of the harvested product, the second self-propelled tank detaches from the vehicle body and moves toward the destination.
  7.  前記第1自走式タンクは、前記収穫物の搬送先で前記収穫物を排出した後、前記車体の位置に移動し、
     前記受け入れ位置で前記収穫装置が排出する前記収穫物を再び受け入れる、請求項1に記載の作業車両。
    the first self-propelled tank moves to the position of the vehicle body after discharging the harvest at the destination of the harvest,
    The work vehicle according to claim 1 , wherein the work vehicle re-accepts the harvested material discharged by the harvesting device at the receiving position.
  8.  前記第2自走式タンクは、前記収穫物の搬送先で前記収穫物を排出した後、前記車体の位置に移動し、
     前記受け入れ位置で前記収穫装置が排出する前記収穫物を再び受け入れる、請求項3に記載の作業車両。
    the second self-propelled tank moves to the position of the vehicle body after discharging the harvest at the destination of the harvest,
    The work vehicle according to claim 3 , wherein the work vehicle again receives the harvested material discharged by the harvesting device at the receiving position.
  9.  前記第1自走式タンクは、前記受け入れ位置で前記収穫物を受け入れた後、前記車体上の前記受け入れ位置とは別の位置に移動し、
     前記第1自走式タンクの前記別の位置への移動に伴い、前記第2自走式タンクは、前記受け入れ位置に移動する、請求項2に記載の作業車両。
    the first self-propelled tank receives the harvested product at the receiving position, and then moves to a position on the vehicle body other than the receiving position;
    3. The work vehicle according to claim 2, wherein the second self-propelled tank moves to the receiving position as the first self-propelled tank moves to the other position.
  10.  前記車体は、前記複数の自走式タンクが乗る台を備える、請求項1または2に記載の作業車両。 The work vehicle according to claim 1 or 2, wherein the vehicle body is provided with a platform on which the plurality of self-propelled tanks are mounted.
  11.  前記作業車両は、前記複数の自走式タンクが前記台に対して乗り降りするためのスロープを備える、請求項10に記載の作業車両。 The work vehicle according to claim 10, wherein the work vehicle is provided with a ramp for the plurality of self-propelled tanks to get on and off the platform.
  12.  前記第1および第2自走式タンク以外であって且つ前記複数の自走式タンクのうちの1つである第3自走式タンクは、前記第2自走式タンクの前記受け入れ位置からの移動に伴い、前記受け入れ位置に移動し、前記受け入れ位置で前記収穫物を受け入れる、請求項3に記載の作業車両。 The work vehicle described in claim 3, wherein a third self-propelled tank other than the first and second self-propelled tanks and one of the plurality of self-propelled tanks moves to the receiving position in response to the movement of the second self-propelled tank from the receiving position, and receives the harvest at the receiving position.
  13.  前記第3自走式タンクは、前記収穫物を受け入れた後は、前記車体から離脱して、前記収穫物の搬送先に向けて移動する、請求項12に記載の作業車両。 The work vehicle according to claim 12, wherein the third self-propelled tank detaches from the vehicle body after receiving the harvest and moves toward the destination of the harvest.
  14.  前記第3自走式タンクは、前記収穫物の搬送先で前記収穫物を排出した後、前記車体の位置に移動し、
     前記受け入れ位置で前記収穫装置が排出する前記収穫物を再び受け入れる、請求項13に記載の作業車両。
    the third self-propelled tank moves to the position of the vehicle body after discharging the harvest at the destination of the harvest,
    The work vehicle according to claim 13 , wherein the work vehicle re-accepts the harvested material discharged by the harvesting device at the receiving position.
  15.  前記複数の自走式タンクのそれぞれは、上方に開口した開口部を有し、前記収穫装置から排出されて落下する前記収穫物を受け取る、請求項1または2に記載の作業車両。 The work vehicle according to claim 1 or 2, wherein each of the plurality of self-propelled tanks has an opening that opens upward and receives the harvested product that is discharged and dropped from the harvesting device.
  16.  前記作業車両は、前記作業車両を走行させる走行装置および前記走行装置の動作を制御して前記作業車両を自動運転で走行させる制御装置を備える、請求項1または2に記載の作業車両。 The work vehicle according to claim 1 or 2, comprising a driving device for driving the work vehicle and a control device for controlling the operation of the driving device to drive the work vehicle in an automatic manner.
  17.  圃場を走行しながら作物を収穫する作業車両から収穫物を受け取って貯留する自走式タンクであって、
     前記自走式タンクを走行させる走行装置と、
     前記走行装置の動作を制御して前記自走式タンクを走行させる制御装置と、
     を備え、
     前記制御装置は、前記自走式タンクを前記作業車両の車体上に移動させ、
     前記車体上の前記自走式タンクは、前記作業車両の収穫装置が排出する前記収穫物を受け入れ、
     前記収穫物を受け入れた後、前記制御装置は、前記自走式タンクを前記車体から離脱させて前記収穫物の搬送先に向けて移動させる、自走式タンク。
    A self-propelled tank that receives and stores crops from a work vehicle that harvests crops while traveling in a field,
    A traveling device for traveling the self-propelled tank;
    A control device that controls the operation of the traveling device to travel the self-propelled tank;
    Equipped with
    The control device moves the self-propelled tank onto a body of the work vehicle,
    The self-propelled tank on the vehicle body receives the harvested product discharged by the harvesting device of the work vehicle,
    After receiving the harvest, the control device detaches the self-propelled tank from the vehicle body and moves it toward the destination of the harvest.
  18.  前記収穫物の搬送先で前記自走式タンクから前記収穫物を排出した後、前記制御装置は、前記自走式タンクを前記車体の位置に移動させ、
     前記車体上で前記収穫装置が排出する前記収穫物を再び受け入れる、請求項17に記載の作業車両。
    After the harvest is discharged from the self-propelled tank at the destination of the harvest, the control device moves the self-propelled tank to the position of the vehicle body,
    The work vehicle according to claim 17, wherein the work vehicle receives back the harvested material discharged by the harvesting device on the vehicle body.
  19.  圃場を走行しながら作物を収穫する複数の農業機械と、前記複数の農業機械から収穫物を受け取って溜める複数の自走式タンクとを用いる収穫システムであって、
     前記複数の自走式タンクのうちの移動させる対象となる移動対象自走式タンクの位置を示す自走式タンク位置情報と、前記複数の農業機械の位置を示す農業機械位置情報とに基づいて、前記移動対象自走式タンクの移動先とする農業機械を前記複数の農業機械の中から決定する処理装置を備える、収穫システム。
    A harvesting system using a plurality of agricultural machines that harvest crops while traveling in a field, and a plurality of self-propelled tanks that receive and store harvested products from the plurality of agricultural machines,
    A harvesting system comprising a processing device that determines an agricultural machine to which the target self-propelled tank is to be moved from among the plurality of agricultural machines, based on self-propelled tank position information that indicates the position of a target self-propelled tank to be moved among the plurality of self-propelled tanks, and agricultural machinery position information that indicates the positions of the plurality of agricultural machines.
  20.  前記移動対象自走式タンクは、前記処理装置が決定した移動先である前記農業機械の位置情報を取得し、前記移動先である農業機械の位置に向けて移動する、請求項19に記載の収穫システム。 The harvesting system according to claim 19, wherein the self-propelled tank to be moved acquires position information of the agricultural machine that is the destination determined by the processing device, and moves toward the location of the agricultural machine that is the destination.
  21.  前記処理装置は、
      前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記移動対象自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
      前記移動対象自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械を前記移動対象自走式タンクの移動先に決定する、請求項19または20に記載の収穫システム。
    The processing device includes:
    Calculating a distance between the self-propelled tank to be moved and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
    The harvesting system according to claim 19 or 20, wherein an agricultural machine that is closer to the target self-propelled tank than an agricultural machine that is farther from the target self-propelled tank is determined as the destination of the target self-propelled tank.
  22.  前記処理装置は、
      前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記移動対象自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
      前記移動対象自走式タンクからの距離が所定距離以下の農業機械を、前記移動対象自走式タンクの移動先に決定する、請求項19または20に記載の収穫システム。
    The processing device includes:
    Calculating a distance between the self-propelled tank to be moved and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
    The harvesting system according to claim 19 or 20, wherein an agricultural machine that is a predetermined distance or less away from the target self-propelled tank is determined as a destination of the target self-propelled tank.
  23.  前記処理装置は、
      前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記移動対象自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
      前記移動対象自走式タンクからの距離が最も小さい農業機械を、前記移動対象自走式タンクの移動先に決定する、請求項19または20に記載の収穫システム。
    The processing device includes:
    Calculating a distance between the self-propelled tank to be moved and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
    The harvesting system according to claim 19 or 20, wherein the agricultural machine that is closest to the target self-propelled tank is determined as the destination of the target self-propelled tank.
  24.  前記処理装置は、
      前記収穫物を新たに収容可能な空き容量がある自走式タンクを、前記複数の自走式タンクの中から選択し、
      選択した前記自走式タンクを前記移動対象自走式タンクに設定する、請求項19または20に記載の収穫システム。
    The processing device includes:
    selecting a self-propelled tank having free capacity capable of newly accommodating the harvested product from among the plurality of self-propelled tanks;
    21. The harvesting system of claim 19 or 20, wherein the selected self-propelled tank is set as the target self-propelled tank.
  25.  前記処理装置は、
      前記収穫物を新たに収容可能な空き容量が第1所定量以上、または既に収容している前記収穫物の量が第2所定量未満である自走式タンクを、前記複数の自走式タンクの中から選択し、
      選択した前記自走式タンクを前記移動対象自走式タンクに設定する、請求項19または20に記載の収穫システム。
    The processing device includes:
    selecting a self-propelled tank from among the plurality of self-propelled tanks, the self-propelled tank having a free capacity for newly storing the harvested product equal to or greater than a first predetermined amount, or the amount of the harvested product already stored therein being less than a second predetermined amount;
    21. The harvesting system of claim 19 or 20, wherein the selected self-propelled tank is set as the target self-propelled tank.
  26.  前記処理装置は、前記収穫物を新たに収容可能な空き容量が第1所定量以上、または既に収容している前記収穫物の量が第2所定量未満である自走式タンクを、前記複数の自走式タンクの中から二台以上選択し、
      選択した前記二台以上の自走式タンクのそれぞれを前記移動対象自走式タンクに設定し、
     前記自走式タンク位置情報は、選択した前記二台以上の自走式タンクそれぞれの位置を示す情報を含み、
     前記処理装置は、前記自走式タンク位置情報と前記農業機械位置情報とに基づいて、選択した前記二台以上の自走式タンクそれぞれの移動先とする一台以上の農業機械を決定する、請求項19または20に記載の収穫システム。
    The processing device selects two or more self-propelled tanks from among the plurality of self-propelled tanks, the self-propelled tanks having a free capacity for newly storing the harvested product that is equal to or greater than a first predetermined amount, or an amount of the harvested product already stored therein that is less than a second predetermined amount,
    Setting each of the two or more selected self-propelled tanks as the target self-propelled tanks to be moved;
    The self-propelled tank position information includes information indicating the positions of each of the two or more selected self-propelled tanks,
    The harvesting system according to claim 19 or 20, wherein the processing device determines one or more agricultural machines to which each of the two or more selected self-propelled tanks is to be moved based on the self-propelled tank position information and the agricultural machine position information.
  27.  前記複数の自走式タンクのそれぞれは、前記農業機械に乗った状態で前記農業機械が排出する前記収穫物を受け取る、請求項19または20に記載の収穫システム。 The harvesting system according to claim 19 or 20, wherein each of the plurality of self-propelled tanks receives the harvested material discharged by the agricultural machine while mounted on the agricultural machine.
  28.  前記処理装置は、
      前記自走式タンクを新たに乗せることが可能な一台以上の農業機械を前記複数の農業機械の中から選択し、
      選択した前記一台以上の農業機械の中から、前記移動対象自走式タンクの移動先とする農業機械を決定する、請求項27に記載の収穫システム。
    The processing device includes:
    selecting one or more agricultural machines on which the self-propelled tank can be newly mounted from among the plurality of agricultural machines;
    The harvesting system according to claim 27, further comprising: determining an agricultural machine to which the target self-propelled tank is to be moved from among the one or more selected agricultural machines.
  29.  前記処理装置は、
      前記複数の農業機械のそれぞれの前記自走式タンクが乗るスペースの空き状況を示す空き状況情報を取得し、
      前記空き状況情報に基づいて、前記自走式タンクを新たに乗せることが可能な一台以上の農業機械を前記複数の農業機械の中から選択する、請求項28に記載の収穫システム。
    The processing device includes:
    Acquire availability information indicating availability of a space for carrying the self-propelled tank of each of the plurality of agricultural machines;
    The harvesting system according to claim 28, further comprising: selecting one or more agricultural machines from among the plurality of agricultural machines that can newly mount the self-propelled tank based on the availability information.
  30.  前記処理装置は、前記移動対象自走式タンクに設けられている、請求項19または20に記載の収穫システム。 The harvesting system according to claim 19 or 20, wherein the processing device is provided in the mobile target self-propelled tank.
  31.  圃場を走行しながら作物を収穫する複数の農業機械のうちの少なくとも一つから収穫物を受け取って溜める自走式タンクであって、
     前記自走式タンクを走行させる走行装置と、
     前記走行装置の動作を制御して前記自走式タンクを自動運転で走行させる制御装置と、
     を備え、
     前記制御装置は、
      前記自走式タンクの位置を示す自走式タンク位置情報と、前記複数の農業機械の位置を示す農業機械位置情報とに基づいて、前記自走式タンクの移動先とする農業機械を前記複数の農業機械の中から決定し、
      決定した前記農業機械の位置に前記自走式タンクを移動させる、自走式タンク。
    A self-propelled tank that receives and stores crops from at least one of a plurality of agricultural machines that harvest crops while traveling in a farm field,
    A traveling device for traveling the self-propelled tank;
    A control device that controls the operation of the traveling device to automatically travel the self-propelled tank;
    Equipped with
    The control device includes:
    determining an agricultural machine to which the self-propelled tank is to be moved from among the plurality of agricultural machines based on self-propelled tank position information indicating the position of the self-propelled tank and agricultural machine position information indicating the positions of the plurality of agricultural machines;
    A self-propelled tank that moves the self-propelled tank to the determined position of the agricultural machine.
  32.  前記制御装置は、
      前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
      前記自走式タンクからの距離が大きい農業機械よりも距離が小さい農業機械を前記自走式タンクの移動先に決定する、請求項31に記載の自走式タンク。
    The control device includes:
    Calculating a distance between the self-propelled tank and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
    A self-propelled tank as described in claim 31, wherein an agricultural machine that is a shorter distance from the self-propelled tank is determined as a destination for the self-propelled tank than an agricultural machine that is a larger distance from the self-propelled tank.
  33.  前記制御装置は、
      前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
      前記自走式タンクからの距離が所定距離以下の農業機械を、前記自走式タンクの移動先に決定する、請求項31に記載の自走式タンク。
    The control device includes:
    Calculating a distance between the self-propelled tank and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
    A self-propelled tank as described in claim 31, wherein an agricultural machine that is a predetermined distance or less from the self-propelled tank is determined as a destination of the self-propelled tank.
  34.  前記制御装置は、
      前記自走式タンク位置情報および前記農業機械位置情報に基づいて、前記自走式タンクと前記複数の農業機械のそれぞれとの間の距離を演算し、
      前記自走式タンクからの距離が最も小さい農業機械を、前記自走式タンクの移動先に決定する、請求項31または32に記載の自走式タンク。
    The control device includes:
    Calculating a distance between the self-propelled tank and each of the plurality of agricultural machines based on the self-propelled tank position information and the agricultural machine position information;
    A self-propelled tank as described in claim 31 or 32, wherein the agricultural machine that is the shortest distance from the self-propelled tank is determined as the destination of the self-propelled tank.
  35.  前記自走式タンクは、前記農業機械に乗った状態で前記農業機械が排出する前記収穫物を受け取る、請求項31または32に記載の自走式タンク。 The self-propelled tank according to claim 31 or 32, wherein the self-propelled tank receives the harvested product discharged by the agricultural machine while mounted on the agricultural machine.
  36.  前記制御装置は、
      前記自走式タンクを新たに乗せることが可能な一台以上の農業機械を前記複数の農業機械の中から選択し、
      前記選択した一台以上の農業機械の中から、前記自走式タンクの移動先とする農業機械を決定する、請求項35に記載の自走式タンク。
    The control device includes:
    selecting one or more agricultural machines on which the self-propelled tank can be newly mounted from among the plurality of agricultural machines;
    A self-propelled tank as described in claim 35, wherein an agricultural machine to which the self-propelled tank is to be moved is determined from among the one or more selected agricultural machines.
  37.  前記制御装置は、
      前記複数の農業機械のそれぞれの前記自走式タンクが乗るスペースの空き状況を示す空き状況情報を取得し、
      前記空き状況情報に基づいて、前記自走式タンクを新たに乗せることが可能な一台以上の農業機械を前記複数の農業機械の中から選択する、請求項36に記載の自走式タンク。
    The control device includes:
    Acquire availability information indicating availability of a space for carrying the self-propelled tank of each of the plurality of agricultural machines;
    A self-propelled tank as described in claim 36, wherein one or more agricultural machines capable of newly mounting the self-propelled tank are selected from among the plurality of agricultural machines based on the availability information.
PCT/JP2023/044105 2022-12-28 2023-12-08 Work vehicle, self-propelled tank, and harvesting system WO2024142863A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022211005A JP2024094462A (en) 2022-12-28 2022-12-28 Work vehicles, self-propelled tanks and harvesting systems
JP2022211006A JP2024094463A (en) 2022-12-28 2022-12-28 Work vehicles, self-propelled tanks and harvesting systems
JP2022-211006 2022-12-28
JP2022-211005 2022-12-28

Publications (1)

Publication Number Publication Date
WO2024142863A1 true WO2024142863A1 (en) 2024-07-04

Family

ID=91717534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044105 WO2024142863A1 (en) 2022-12-28 2023-12-08 Work vehicle, self-propelled tank, and harvesting system

Country Status (1)

Country Link
WO (1) WO2024142863A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100349U (en) * 1991-01-30 1992-08-31
JP2006006144A (en) * 2004-06-23 2006-01-12 Iseki & Co Ltd Leaves/stems harvester
US20120302299A1 (en) * 2011-05-25 2012-11-29 Willi Behnke Harvesting Device
JP6640709B2 (en) * 2016-12-26 2020-02-05 本田技研工業株式会社 Work machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100349U (en) * 1991-01-30 1992-08-31
JP2006006144A (en) * 2004-06-23 2006-01-12 Iseki & Co Ltd Leaves/stems harvester
US20120302299A1 (en) * 2011-05-25 2012-11-29 Willi Behnke Harvesting Device
JP6640709B2 (en) * 2016-12-26 2020-02-05 本田技研工業株式会社 Work machine

Similar Documents

Publication Publication Date Title
EP3841859B1 (en) Harvester, surrounding condition detection system, surrounding condition detection program, recording medium recording the surrounding condition detection program and surrounding condition detection method
US10537062B2 (en) Aerial vehicle systems and methods
CN104106042B (en) For being easy to method and stereo visual system from vehicle unloading agricultural material
US20230042867A1 (en) Autonomous electric mower system and related methods
ES2923218T3 (en) Autonomous navigation system and vehicle manufactured with it
US20240172577A1 (en) Control system for agricultural machine and agriculture management system
WO2024142863A1 (en) Work vehicle, self-propelled tank, and harvesting system
JP2024094462A (en) Work vehicles, self-propelled tanks and harvesting systems
JP2024094463A (en) Work vehicles, self-propelled tanks and harvesting systems
WO2023119871A1 (en) Route-planning system and route-planning method for automatically traveling farm machine
WO2024004881A1 (en) Control system, control method, and delivery vehicle
JP2023005487A (en) Agricultural machine, and device and method for controlling agricultural machine
WO2024142864A1 (en) Seedling transplant system, seedling transplant method, and work vehicle
WO2024142663A1 (en) Seedling conveyance system and seedling conveyance method
WO2023127557A1 (en) Agricultural machine, sensing system used in agricultural machine, and sensing method
WO2023238724A1 (en) Route generation system and route generation method for automated travel of agricultural machine
WO2023276340A1 (en) Management system for agricultural machines
WO2024004463A1 (en) Travel control system, travel control method, and computer program
WO2023127556A1 (en) Agricultural machine, sensing system for use in agricultural machine, and sensing method
US20240219908A1 (en) Agricultural support system, and device and method to generate travel route for hailed agricultural machine
EP4393286A1 (en) Agricultural support system, and device and method to generate travel route for hailed agricultural machine
EP4378290A1 (en) Management system, and method for managing access of agricultural machine to field
WO2023238827A1 (en) Agricultural management system
EP4378291A1 (en) Agricultural assistance system and agricultural assistance method
US20240111297A1 (en) Travel control system, travel control method, and computer program