WO2024135833A1 - Fuel cell system and work machine - Google Patents

Fuel cell system and work machine Download PDF

Info

Publication number
WO2024135833A1
WO2024135833A1 PCT/JP2023/046184 JP2023046184W WO2024135833A1 WO 2024135833 A1 WO2024135833 A1 WO 2024135833A1 JP 2023046184 W JP2023046184 W JP 2023046184W WO 2024135833 A1 WO2024135833 A1 WO 2024135833A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel cell
cell system
pressure
individual
Prior art date
Application number
PCT/JP2023/046184
Other languages
French (fr)
Japanese (ja)
Inventor
悠生 小野
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024135833A1 publication Critical patent/WO2024135833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell system and a work machine.
  • This application claims priority to Japanese Patent Application No. 2022-205772, filed in Japan on December 22, 2022, the contents of which are incorporated herein by reference.
  • An object of the present disclosure is to provide a fuel cell system and a working machine that can prevent changes in responsiveness caused by external air pressure.
  • a fuel cell system includes a plurality of fuel cells that generate electrical energy by reacting hydrogen gas with oxygen in the air, a plurality of individual air compressors provided for each of the plurality of fuel cells, each of which pressurizes air to a predetermined operating pressure and supplies the air to the corresponding fuel cell, and a common air compressor provided on the primary side of the plurality of individual air compressors, which pressurizes air and supplies the air to the plurality of individual air compressors.
  • the fuel cell system can prevent changes in responsiveness caused by external air pressure.
  • FIG. 1 is a perspective view showing a transporter vehicle according to a first embodiment
  • 1 is a schematic block diagram showing the configuration of a power system and a drive system of a transport vehicle according to a first embodiment
  • 1 is a schematic block diagram showing the configuration of a fuel cell system according to a first embodiment
  • FIG. 5 is a schematic block diagram showing the configuration of a fuel cell system according to a second embodiment.
  • the transport vehicle 10 is a dump truck that travels through a work site such as a mine to transport a load.
  • the transport vehicle 10 may be an unmanned dump truck that operates without being driven by a driver, or may be a manned dump truck that operates based on the driving operation by a driver.
  • the transporter vehicle 10 includes a dump body 11 , a vehicle body 12 , and a traveling device 13 .
  • the dump body 11 is a member on which a load is carried. At least a portion of the dump body 11 is positioned above the vehicle body 12.
  • the dump body 11 performs a dumping operation and a lowering operation. Through the dumping operation and the lowering operation, the dump body 11 is adjusted to a dumping position and a loaded position.
  • the dump position refers to a position in which the dump body 11 is raised.
  • the loaded position refers to a position in which the dump body 11 is lowered.
  • the dump operation refers to an operation in which the dump body 11 is moved away from the vehicle body 12 and tilted in the dumping direction.
  • the dumping direction is toward the rear of the vehicle body 12.
  • the dump operation includes lifting the front end of the dump body 11 and tilting the dump body 11 rearward.
  • the dump operation causes the loading surface of the dump body 11 to tilt downward toward the rear.
  • the lowering operation refers to the operation of bringing the dump body 11 closer to the vehicle body 12.
  • the lowering operation includes lowering the front end of the dump body 11.
  • the dump body 11 When performing soil removal operations, the dump body 11 performs a dumping operation to change from a loaded position to a dumping position. If a load is loaded on the dump body 11, the load is discharged rearward from the rear end of the dump body 11 by the dumping operation. When loading operations are performed, the dump body 11 is adjusted to the loaded position.
  • the vehicle body 12 includes a vehicle frame.
  • the vehicle body 12 supports the dump body 11.
  • the vehicle body 12 is supported by the running gear 13.
  • the running device 13 supports the vehicle body 12.
  • the running device 13 causes the transport vehicle 10 to travel.
  • the running device 13 causes the transport vehicle 10 to travel forward or backward. At least a portion of the running device 13 is disposed below the vehicle body 12.
  • the running device 13 has a pair of front wheels and a pair of rear wheels. The front wheels are steered wheels, and the rear wheels are driven wheels.
  • FIG. 2 is a schematic block diagram showing the configuration of the power system 14 and drive system 15 of the transport vehicle 10 according to the first embodiment.
  • the transport vehicle 10 is equipped with the power system 14 and drive system 15.
  • the power system 14 generates power for operating the drive system 15 by reacting hydrogen with oxygen.
  • the drive system 15 operates to drive the dump body 11 and the traveling device 13.
  • the dump body 11 is an example of a working machine that is driven by electrical energy generated by a fuel cell.
  • the power system 14 includes a fuel cell 143, a battery 144, and a DCDC converter 145.
  • the power system 14 includes a plurality of fuel cells 143.
  • the fuel cell 143 generates electric power by electrochemically reacting hydrogen with oxygen.
  • the battery 144 stores the electric power generated in the fuel cell 143.
  • the DCDC converter 145 is provided corresponding to the fuel cell 143 and the battery 144.
  • the DCDC converter 145 outputs electric power from the corresponding fuel cell 143 or battery 144 in accordance with an instruction from the control device.
  • the power output by the power system 14 is output to the drive system 15 via the bus B.
  • the drive system 15 has an inverter 151, a pump drive motor 152, a hydraulic pump 153, a hoist cylinder 154, an inverter 155, and a travel drive motor 156.
  • the inverter 151 converts the DC current from the bus B into three-phase AC current and supplies it to the pump drive motor 152.
  • the pump drive motor 152 drives the hydraulic pump 153.
  • the hydraulic oil discharged from the hydraulic pump 153 is supplied to the hoist cylinder 154 via a control valve (not shown).
  • the hoist cylinder 154 is operated by the hydraulic oil being supplied to the hoist cylinder 154.
  • the hoist cylinder 154 performs a dumping operation or a lowering operation of the dump body 11.
  • the inverter 155 converts the DC current from the bus B into three-phase AC current and supplies it to the travel drive motor 156.
  • the rotational force generated by the travel drive motor 156 is transmitted to the rear wheels of the travel device 13.
  • ⁇ Configuration of Fuel Cell System> 3 is a schematic block diagram showing the configuration of a fuel cell system 17 according to the first embodiment.
  • the transport vehicle 10 is equipped with a fuel cell system 17 that supplies hydrogen and air to a plurality of fuel cells 143.
  • the fuel cell system 17 includes a common air compressor 171, an air tank 172, an intake manifold 173, individual air compressors 174, a hydrogen tank 175, and the fuel cells 143.
  • the common air compressor 171 compresses the atmospheric air and increases its pressure to a predetermined reference pressure (for example, 0.1 MPa).
  • the air tank 172 stores compressed air supplied from the common air compressor 171.
  • An intake port of the air tank 172 is connected to a discharge port of the common air compressor 171.
  • a pressure regulating valve 1721 is provided at the discharge port of the air tank 172.
  • the pressure regulating valve 1721 adjusts the pressure of the air supplied from the discharge port of the air tank 172 to a reference pressure.
  • the intake manifold 173 has one intake port and multiple outlet ports, and distributes air supplied to the intake port to the multiple outlet ports.
  • the number of outlet ports of the intake manifold 173 is equal to the number of fuel cells 143.
  • the intake port of the intake manifold 173 is connected to the outlet port of the air tank 172.
  • Multiple individual air compressors 174 are provided corresponding to the fuel cells 143, respectively.
  • the individual air compressors 174 compress air and increase the pressure to an operating pressure instructed by the control device.
  • the intake ports of the individual air compressors 174 are connected to the corresponding outlet ports of the intake manifold 173.
  • the outlet ports of the individual air compressors 174 are connected to the intake port on the positive electrode side of the fuel cells 143.
  • the multiple hydrogen tanks 175 are tanks that store compressed hydrogen. Hydrogen is supplied from the hydrogen tanks 175 to the fuel cell 143.
  • a common air compressor 171 In other words, in the air flow path of the fuel cell system 17, from the upstream side, a common air compressor 171, an air tank 172, an intake manifold 173, an individual air compressor 174, and a fuel cell 143 are provided.
  • the fuel cell system 17 includes a common air compressor 171 that boosts the atmospheric pressure to the reference pressure, upstream of the individual air compressors 174.
  • the fuel cell system 17 according to the first embodiment can quickly increase the air pressure to the operating pressure instructed by the control device. This allows the fuel cell system 17 according to the first embodiment to prevent a decrease in the efficiency of the power system 14. Furthermore, the fuel cell system 17 according to the first embodiment can prevent the amount of supplied air from being insufficient relative to the amount of required air by quickly increasing the pressure, thereby preventing deterioration of the fuel cell.
  • each individual air compressor 174 would need to compensate for the drop in outside air pressure.
  • the common air compressor 171 compensates for the drop in outside air pressure, so the increase in power consumption can be suppressed.
  • the fuel cell system 17 according to the first embodiment also includes an air tank 172 that stores air pressurized to a reference pressure by the common air compressor 171.
  • the air tank 172 suppresses fluctuations in the pressure of the air supplied to the individual air compressors 174, and reduces the risk of air shortages due to air consumption by the individual air compressors 174. This makes it possible to prevent inching of the common air compressor 171 when air consumption by the individual air compressors 174 increases.
  • the fuel cell systems 17 according to the other embodiments do not necessarily need to include the air tank 172. Even if the fuel cell system 17 does not include the air tank 172, the common air compressor 171 can be provided to suppress changes in responsiveness due to external air pressure.
  • Second Embodiment 4 is a schematic block diagram showing the configuration of a fuel cell system 17 according to a second embodiment.
  • the fuel cell system 17 according to the second embodiment further includes an exhaust manifold 176, a turbine 177, and a shaft 178 in addition to the configuration of the first embodiment.
  • the exhaust manifold 176 has multiple intake ports and one exhaust port, and collects the air supplied to each of the multiple intake ports and discharges it from the single exhaust port.
  • the number of intake ports of the exhaust manifold 176 is equal to the number of fuel cells 143.
  • the intake ports of the exhaust manifold 176 are each connected to the exhaust ports of the corresponding fuel cells 143.
  • the turbine 177 rotates by receiving exhaust air from the fuel cell 143.
  • the intake port of the turbine 177 is connected to the exhaust port of the exhaust manifold 176.
  • the shaft 178 connects the turbine 177 to the common air compressor 171 so that their rotation axes coincide with each other.
  • the shaft 178 transmits the rotational energy of the turbine 177 to the common air compressor 171. That is, the common air compressor 171, the turbine 177, and the shaft 178 configure a turbocharger.
  • the fuel cell system 17 includes a turbine 177 that rotates with exhaust gas discharged from the multiple fuel cells 143 and drives the common air compressor 171 using the energy generated by the rotation.
  • the turbine 177 assists the rotation of the common air compressor 171, so that the fuel cell system 17 can suppress an increase in power consumption that accompanies an increase in the power generation current of the fuel cell 143.
  • the common air compressor 171 and the turbine 177 do not need to constitute a turbocharger.
  • the fuel cell system 17 according to other embodiments may include a generator that generates power by the rotation of the turbine 177, and the common air compressor 171 may be driven by the power of the generator.
  • the fuel cell system 17 is mounted on the transport vehicle 10, but is not limited to this.
  • the fuel cell system 17 may be mounted on other work machines such as a hydraulic excavator or a wheel loader.
  • the fuel cell system can prevent changes in responsiveness caused by external air pressure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A plurality of individual air compressors are provided to respectively correspond to a plurality of fuel cells. Each of the individual air compressors raises the pressure of air to a desired operating pressure and supplies the air to the fuel cell corresponding thereto. A common air compressor is provided upstream from the plurality of individual air compressors, raises the pressure of air, and supplies the air with a predetermined reference pressure to the plurality of individual air compressors.

Description

燃料電池システムおよび作業機械Fuel cell system and working machine
 本開示は、燃料電池システムおよび作業機械に関する。
 本願は、2022年12月22日に日本に出願された特願2022-205772号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to a fuel cell system and a work machine.
This application claims priority to Japanese Patent Application No. 2022-205772, filed in Japan on December 22, 2022, the contents of which are incorporated herein by reference.
 燃料電池は、水素と酸素との化学反応により電気エネルギーを生成する。燃料である水素は水素ガスを充填した高圧タンクから滞りなく供給される。一方で、通常、酸素は大気から取り出される。そのため、燃料電池には、空気を圧縮して燃料電池へ供給するためのエアコンプレッサが設けられる。特許文献1には、燃料電池に圧縮空気を供給するエアコンプレッサが開示されている。 Fuel cells generate electrical energy through a chemical reaction between hydrogen and oxygen. The fuel, hydrogen, is continuously supplied from a high-pressure tank filled with hydrogen gas. Meanwhile, oxygen is usually extracted from the atmosphere. For this reason, fuel cells are provided with an air compressor to compress air and supply it to the fuel cell. Patent Document 1 discloses an air compressor that supplies compressed air to a fuel cell.
特開2017-152230号公報JP 2017-152230 A
 ところで、燃料電池システムを備える作業機械は、気圧の低い高地環境において用いられることがある。エアコンプレッサは、燃料電池の要求する圧力まで空気を圧縮するため、外気圧が低いほどエアコンプレッサの必要動力が大きい。そのため、高地環境において燃料電池を用いる場合、所望の電力を出力するために必要な圧力の空気を生成するのに時間がかかり、応答性が低くなる可能性がある。
 本開示の目的は、外気圧による応答性の変化が生じることを防ぐことができる燃料電池システムおよび作業機械を提供することにある。
However, a work machine equipped with a fuel cell system may be used in a high altitude environment with low air pressure. The air compressor compresses air to the pressure required by the fuel cell, so the lower the external air pressure, the greater the power required by the air compressor. Therefore, when a fuel cell is used in a high altitude environment, it may take time to generate air at the pressure required to output the desired power, resulting in poor responsiveness.
An object of the present disclosure is to provide a fuel cell system and a working machine that can prevent changes in responsiveness caused by external air pressure.
 本開示の一態様によれば、燃料電池システムは、水素ガスと空気中の酸素とを反応させて電気エネルギーを生成する複数の燃料電池と、前記複数の燃料電池それぞれに設けられた複数の個別エアコンプレッサであって、それぞれが空気を所定の動作圧まで昇圧して対応する前記燃料電池に供給する複数の個別エアコンプレッサと、前記複数の個別エアコンプレッサの一次側に設けられ、空気を昇圧して前記複数の個別エアコンプレッサに供給する共通エアコンプレッサとを備える。 According to one aspect of the present disclosure, a fuel cell system includes a plurality of fuel cells that generate electrical energy by reacting hydrogen gas with oxygen in the air, a plurality of individual air compressors provided for each of the plurality of fuel cells, each of which pressurizes air to a predetermined operating pressure and supplies the air to the corresponding fuel cell, and a common air compressor provided on the primary side of the plurality of individual air compressors, which pressurizes air and supplies the air to the plurality of individual air compressors.
 上記態様によれば、燃料電池システムは、外気圧による応答性の変化が生じることを防ぐことができる。 According to the above aspect, the fuel cell system can prevent changes in responsiveness caused by external air pressure.
第一実施形態に係る運搬車両を模式的に示す斜視図である。1 is a perspective view showing a transporter vehicle according to a first embodiment; 第一実施形態に係る運搬車両の動力系および駆動系の構成を示す概略ブロック図である。1 is a schematic block diagram showing the configuration of a power system and a drive system of a transport vehicle according to a first embodiment. 第一実施形態に係る燃料電池システムの構成を示す概略ブロック図である。1 is a schematic block diagram showing the configuration of a fuel cell system according to a first embodiment. 第二実施形態に係る燃料電池システムの構成を示す概略ブロック図である。FIG. 5 is a schematic block diagram showing the configuration of a fuel cell system according to a second embodiment.
〈第一実施形態〉
《運搬車両の構成》
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第一実施形態に係る運搬車両10を模式的に示す斜視図である。運搬車両10は、鉱山などの作業現場を走行して積荷を運搬するダンプトラックである。運搬車両10は、運転者による運転操作によらずに無人で稼働する無人ダンプトラックでもよいし、運転者による運転操作に基づいて稼働する有人ダンプトラックでもよい。
 運搬車両10は、ダンプボディ11と、車体12と、走行装置13とを備える。
First Embodiment
Configuration of the transport vehicle
Hereinafter, the embodiments will be described in detail with reference to the drawings.
1 is a perspective view showing a transport vehicle 10 according to a first embodiment. The transport vehicle 10 is a dump truck that travels through a work site such as a mine to transport a load. The transport vehicle 10 may be an unmanned dump truck that operates without being driven by a driver, or may be a manned dump truck that operates based on the driving operation by a driver.
The transporter vehicle 10 includes a dump body 11 , a vehicle body 12 , and a traveling device 13 .
 ダンプボディ11は、積荷が積載される部材である。ダンプボディ11の少なくとも一部は、車体12よりも上方に配置される。ダンプボディ11は、ダンプ動作及び下げ動作する。ダンプ動作及び下げ動作により、ダンプボディ11は、ダンプ姿勢及び積載姿勢に調整される。ダンプ姿勢とは、ダンプボディ11が上昇している姿勢をいう。積載姿勢とは、ダンプボディ11が下降している姿勢をいう。 The dump body 11 is a member on which a load is carried. At least a portion of the dump body 11 is positioned above the vehicle body 12. The dump body 11 performs a dumping operation and a lowering operation. Through the dumping operation and the lowering operation, the dump body 11 is adjusted to a dumping position and a loaded position. The dump position refers to a position in which the dump body 11 is raised. The loaded position refers to a position in which the dump body 11 is lowered.
 ダンプ動作とは、ダンプボディ11を車体12から離隔させてダンプ方向に傾斜させる動作をいう。ダンプ方向は、車体12の後方である。実施形態において、ダンプ動作は、ダンプボディ11の前端部を上昇させて、ダンプボディ11を後方に傾斜させることを含む。ダンプ動作により、ダンプボディ11の積載面は、後方に向かって下方に傾斜する。 The dump operation refers to an operation in which the dump body 11 is moved away from the vehicle body 12 and tilted in the dumping direction. The dumping direction is toward the rear of the vehicle body 12. In the embodiment, the dump operation includes lifting the front end of the dump body 11 and tilting the dump body 11 rearward. The dump operation causes the loading surface of the dump body 11 to tilt downward toward the rear.
 下げ動作とは、ダンプボディ11を車体12に接近させる動作をいう。実施形態において、下げ動作は、ダンプボディ11の前端部を下降させることを含む。 The lowering operation refers to the operation of bringing the dump body 11 closer to the vehicle body 12. In the embodiment, the lowering operation includes lowering the front end of the dump body 11.
 排土作業を実施する場合、ダンプボディ11は、積載姿勢からダンプ姿勢に変化するように、ダンプ動作する。ダンプボディ11に積荷が積載されている場合、積荷は、ダンプ動作により、ダンプボディ11の後端部から後方に排出される。積込作業が実施される場合、ダンプボディ11は、積載姿勢に調整される。 When performing soil removal operations, the dump body 11 performs a dumping operation to change from a loaded position to a dumping position. If a load is loaded on the dump body 11, the load is discharged rearward from the rear end of the dump body 11 by the dumping operation. When loading operations are performed, the dump body 11 is adjusted to the loaded position.
 車体12は、車体フレームを含む。車体12は、ダンプボディ11を支持する。車体12は、走行装置13に支持される。 The vehicle body 12 includes a vehicle frame. The vehicle body 12 supports the dump body 11. The vehicle body 12 is supported by the running gear 13.
 走行装置13は、車体12を支持する。走行装置13は、運搬車両10を走行させる。走行装置13は、運搬車両10を前進又は後進させる。走行装置13の少なくとも一部は、車体12よりも下方に配置される。走行装置13は、一対の前輪と一対の後輪とを備える。前輪は操舵輪であり、後輪は駆動輪である。 The running device 13 supports the vehicle body 12. The running device 13 causes the transport vehicle 10 to travel. The running device 13 causes the transport vehicle 10 to travel forward or backward. At least a portion of the running device 13 is disposed below the vehicle body 12. The running device 13 has a pair of front wheels and a pair of rear wheels. The front wheels are steered wheels, and the rear wheels are driven wheels.
 図2は、第一実施形態に係る運搬車両10の動力系14および駆動系15の構成を示す概略ブロック図である。運搬車両10は、動力系14および駆動系15を備える。動力系14は、水素と酸素とを反応させて駆動系15を動作させるための動力を発生する。駆動系15は、動作することで、ダンプボディ11および走行装置13を駆動させる。ダンプボディ11は、燃料電池が生成した電気エネルギーによって駆動する作業機の一例である。 FIG. 2 is a schematic block diagram showing the configuration of the power system 14 and drive system 15 of the transport vehicle 10 according to the first embodiment. The transport vehicle 10 is equipped with the power system 14 and drive system 15. The power system 14 generates power for operating the drive system 15 by reacting hydrogen with oxygen. The drive system 15 operates to drive the dump body 11 and the traveling device 13. The dump body 11 is an example of a working machine that is driven by electrical energy generated by a fuel cell.
 動力系14は、燃料電池143、バッテリ144、DCDCコンバータ145を備える。なお、動力系14は、複数の燃料電池143を備える。
 燃料電池143は、水素と酸素とを電気化学反応させて電力を発生する。バッテリ144は、燃料電池143において発生した電力を蓄える。DCDCコンバータ145は、燃料電池143およびバッテリ144に対応して設けられる。DCDCコンバータ145は、制御装置からの指示に従って、対応する燃料電池143またはバッテリ144から電力を出力させる。
The power system 14 includes a fuel cell 143, a battery 144, and a DCDC converter 145. The power system 14 includes a plurality of fuel cells 143.
The fuel cell 143 generates electric power by electrochemically reacting hydrogen with oxygen. The battery 144 stores the electric power generated in the fuel cell 143. The DCDC converter 145 is provided corresponding to the fuel cell 143 and the battery 144. The DCDC converter 145 outputs electric power from the corresponding fuel cell 143 or battery 144 in accordance with an instruction from the control device.
 動力系14が出力した電力は、母線Bを介して駆動系15へ出力される。駆動系15は、インバータ151と、ポンプ駆動モータ152と、油圧ポンプ153と、ホイストシリンダ154と、インバータ155と、走行駆動モータ156とを有する。インバータ151は、母線Bからの直流電流を三相交流電流に変換してポンプ駆動モータ152に供給する。ポンプ駆動モータ152は、油圧ポンプ153を駆動する。油圧ポンプ153から吐出された作動油は、図示しない制御弁を介してホイストシリンダ154に供給される。作動油がホイストシリンダ154に供給されることにより、ホイストシリンダ154が作動する。ホイストシリンダ154は、ダンプボディ11をダンプ動作又は下げ動作させる。インバータ155は、母線Bからの直流電流を三相交流電流に変換して走行駆動モータ156に供給する。走行駆動モータ156が発生した回転力は、走行装置13の後輪に伝達される。 The power output by the power system 14 is output to the drive system 15 via the bus B. The drive system 15 has an inverter 151, a pump drive motor 152, a hydraulic pump 153, a hoist cylinder 154, an inverter 155, and a travel drive motor 156. The inverter 151 converts the DC current from the bus B into three-phase AC current and supplies it to the pump drive motor 152. The pump drive motor 152 drives the hydraulic pump 153. The hydraulic oil discharged from the hydraulic pump 153 is supplied to the hoist cylinder 154 via a control valve (not shown). The hoist cylinder 154 is operated by the hydraulic oil being supplied to the hoist cylinder 154. The hoist cylinder 154 performs a dumping operation or a lowering operation of the dump body 11. The inverter 155 converts the DC current from the bus B into three-phase AC current and supplies it to the travel drive motor 156. The rotational force generated by the travel drive motor 156 is transmitted to the rear wheels of the travel device 13.
《燃料電池システムの構成》
 図3は、第一実施形態に係る燃料電池システム17の構成を示す概略ブロック図である。運搬車両10は、複数の燃料電池143に水素と空気を供給する燃料電池システム17を備える。燃料電池システム17は、共通エアコンプレッサ171、エアタンク172、吸気マニホールド173、個別エアコンプレッサ174、水素タンク175、および燃料電池143を備える。
<Configuration of Fuel Cell System>
3 is a schematic block diagram showing the configuration of a fuel cell system 17 according to the first embodiment. The transport vehicle 10 is equipped with a fuel cell system 17 that supplies hydrogen and air to a plurality of fuel cells 143. The fuel cell system 17 includes a common air compressor 171, an air tank 172, an intake manifold 173, individual air compressors 174, a hydrogen tank 175, and the fuel cells 143.
 共通エアコンプレッサ171は、大気を圧縮し、所定の基準圧(例えば、0.1MPa)まで昇圧する。
 エアタンク172は、共通エアコンプレッサ171から供給された圧縮空気を格納する。エアタンク172の吸気口は、共通エアコンプレッサ171の吐出口に接続される。エアタンク172の吐出口には、調圧弁1721が設けられる。調圧弁1721は、エアタンク172の吐出口から供給される空気の圧力を基準圧に調整する。
 吸気マニホールド173は、1つの吸気口と複数の吐出口とを備え、吸気口に供給された空気を複数の吐出口に分配する。吸気マニホールド173の吐出口の数は、燃料電池143の数と等しい。吸気マニホールド173の吸気口はエアタンク172の吐出口に接続される。
The common air compressor 171 compresses the atmospheric air and increases its pressure to a predetermined reference pressure (for example, 0.1 MPa).
The air tank 172 stores compressed air supplied from the common air compressor 171. An intake port of the air tank 172 is connected to a discharge port of the common air compressor 171. A pressure regulating valve 1721 is provided at the discharge port of the air tank 172. The pressure regulating valve 1721 adjusts the pressure of the air supplied from the discharge port of the air tank 172 to a reference pressure.
The intake manifold 173 has one intake port and multiple outlet ports, and distributes air supplied to the intake port to the multiple outlet ports. The number of outlet ports of the intake manifold 173 is equal to the number of fuel cells 143. The intake port of the intake manifold 173 is connected to the outlet port of the air tank 172.
 複数の個別エアコンプレッサ174は、それぞれ燃料電池143に対応して設けられる。個別エアコンプレッサ174は、空気を圧縮し、制御装置が指示する動作圧まで昇圧する。個別エアコンプレッサ174の吸気口は、吸気マニホールド173の対応する吐出口に接続される。個別エアコンプレッサ174の吐出口は、燃料電池143の正極側の吸気口に接続される。 Multiple individual air compressors 174 are provided corresponding to the fuel cells 143, respectively. The individual air compressors 174 compress air and increase the pressure to an operating pressure instructed by the control device. The intake ports of the individual air compressors 174 are connected to the corresponding outlet ports of the intake manifold 173. The outlet ports of the individual air compressors 174 are connected to the intake port on the positive electrode side of the fuel cells 143.
 複数の水素タンク175は、圧縮された水素を格納するタンクである。水素は、水素タンク175から、燃料電池143へ供給される。 The multiple hydrogen tanks 175 are tanks that store compressed hydrogen. Hydrogen is supplied from the hydrogen tanks 175 to the fuel cell 143.
 つまり、燃料電池システム17のうち、空気が流れる経路には、上流側から順に、共通エアコンプレッサ171、エアタンク172、吸気マニホールド173、個別エアコンプレッサ174、燃料電池143が設けられる。 In other words, in the air flow path of the fuel cell system 17, from the upstream side, a common air compressor 171, an air tank 172, an intake manifold 173, an individual air compressor 174, and a fuel cell 143 are provided.
《作用・効果》
 このように、燃料電池システム17は、複数の個別エアコンプレッサ174の上流に、大気を基準圧まで昇圧させる共通エアコンプレッサ171を備える。これにより、運搬車両10の環境の気圧の高低によらず、複数の個別エアコンプレッサ174は、常に基準圧から動作圧までの昇圧を行うことができる。
 例えば燃料電池システム17が共通エアコンプレッサ171を備えない場合、外気圧が0.07MPaであり、制御装置が指示する動作圧が0.25MPaであるとき、複数の個別エアコンプレッサ174は、それぞれ0.18MPaの昇圧を行う必要がある。これに対し、第一実施形態のように燃料電池システム17が共通エアコンプレッサ171を備える場合、複数の個別エアコンプレッサ174は、それぞれ0.15MPaの昇圧を行えばよい。つまり、第一実施形態に係る燃料電池システム17は、空気の圧力を制御装置が指示する動作圧へ速やかに昇圧することができる。これにより、第一実施形態に係る燃料電池システム17は、動力系14の効率の低下を防ぐことができる。また第一実施形態に係る燃料電池システム17は、速やかな昇圧により、供給空気量が必要空気量に対して不足することを防ぎ、燃料電池の劣化を防ぐことができる。
<Action and Effects>
In this way, the fuel cell system 17 includes a common air compressor 171 that boosts the atmospheric pressure to the reference pressure, upstream of the individual air compressors 174. This allows the individual air compressors 174 to constantly boost the atmospheric pressure from the reference pressure to the operating pressure, regardless of the air pressure in the environment of the transport vehicle 10.
For example, if the fuel cell system 17 does not include the common air compressor 171, when the outside air pressure is 0.07 MPa and the operating pressure instructed by the control device is 0.25 MPa, each of the individual air compressors 174 needs to increase the pressure by 0.18 MPa. In contrast, if the fuel cell system 17 includes the common air compressor 171 as in the first embodiment, each of the individual air compressors 174 only needs to increase the pressure by 0.15 MPa. In other words, the fuel cell system 17 according to the first embodiment can quickly increase the air pressure to the operating pressure instructed by the control device. This allows the fuel cell system 17 according to the first embodiment to prevent a decrease in the efficiency of the power system 14. Furthermore, the fuel cell system 17 according to the first embodiment can prevent the amount of supplied air from being insufficient relative to the amount of required air by quickly increasing the pressure, thereby preventing deterioration of the fuel cell.
 また、共通エアコンプレッサ171を備えない場合、各個別エアコンプレッサ174が外気圧の低下分を補う必要があるところ、第一実施形態によれば、共通エアコンプレッサ171が外気圧の低下分を補うため、消費電力の増加を抑えることができる。 In addition, if the common air compressor 171 is not provided, each individual air compressor 174 would need to compensate for the drop in outside air pressure. However, according to the first embodiment, the common air compressor 171 compensates for the drop in outside air pressure, so the increase in power consumption can be suppressed.
 また、第一実施形態に係る燃料電池システム17は、共通エアコンプレッサ171によって基準圧まで昇圧した空気を格納するエアタンク172を備える。エアタンク172は、個別エアコンプレッサ174へ供給する空気の圧力の変動を抑え、個別エアコンプレッサ174による空気の消費によって空気が不足するリスクを低減することができる。これにより、個別エアコンプレッサ174による空気の消費が多くなったときに、共通エアコンプレッサ171のインチングが生じることを防ぐことができる。なお、他の実施形態に係る燃料電池システム17は、必ずしもエアタンク172を備えなくてもよい。燃料電池システム17がエアタンク172を備えない場合も、共通エアコンプレッサ171を備えることで、外気圧による応答性の変化が生じることを抑えることができる。 The fuel cell system 17 according to the first embodiment also includes an air tank 172 that stores air pressurized to a reference pressure by the common air compressor 171. The air tank 172 suppresses fluctuations in the pressure of the air supplied to the individual air compressors 174, and reduces the risk of air shortages due to air consumption by the individual air compressors 174. This makes it possible to prevent inching of the common air compressor 171 when air consumption by the individual air compressors 174 increases. Note that the fuel cell systems 17 according to the other embodiments do not necessarily need to include the air tank 172. Even if the fuel cell system 17 does not include the air tank 172, the common air compressor 171 can be provided to suppress changes in responsiveness due to external air pressure.
〈第二実施形態〉
 図4は、第二実施形態に係る燃料電池システム17の構成を示す概略ブロック図である。第二実施形態に係る燃料電池システム17は、第一実施形態の構成に加え、さらに排気マニホールド176、タービン177、シャフト178を備える。
Second Embodiment
4 is a schematic block diagram showing the configuration of a fuel cell system 17 according to a second embodiment. The fuel cell system 17 according to the second embodiment further includes an exhaust manifold 176, a turbine 177, and a shaft 178 in addition to the configuration of the first embodiment.
 排気マニホールド176は、複数の吸気口と1つの吐出口を備え、複数の吸気口それぞれに供給された空気を集合させて1つの吐出口から吐出させる。排気マニホールド176の吸気口の数は、燃料電池143の数と等しい。排気マニホールド176の吸気口は、それぞれ対応する燃料電池143の吐出口に接続される。 The exhaust manifold 176 has multiple intake ports and one exhaust port, and collects the air supplied to each of the multiple intake ports and discharges it from the single exhaust port. The number of intake ports of the exhaust manifold 176 is equal to the number of fuel cells 143. The intake ports of the exhaust manifold 176 are each connected to the exhaust ports of the corresponding fuel cells 143.
 タービン177は、燃料電池143の排気を受けて回転する。タービン177の吸気口は排気マニホールド176の吐出口に接続される。
 シャフト178は、タービン177の回転軸と共通エアコンプレッサ171の回転軸とを一致させるように接続する。シャフト178は、タービン177の回転エネルギーを共通エアコンプレッサ171に伝達させる。すなわち、共通エアコンプレッサ171、タービン177およびシャフト178は、ターボチャージャを構成する。
The turbine 177 rotates by receiving exhaust air from the fuel cell 143. The intake port of the turbine 177 is connected to the exhaust port of the exhaust manifold 176.
The shaft 178 connects the turbine 177 to the common air compressor 171 so that their rotation axes coincide with each other. The shaft 178 transmits the rotational energy of the turbine 177 to the common air compressor 171. That is, the common air compressor 171, the turbine 177, and the shaft 178 configure a turbocharger.
《作用・効果》
 このように、第二実施形態に係る燃料電池システム17は、複数の燃料電池143から排出される排気によって回転し、回転によって発生するエネルギーを用いて共通エアコンプレッサ171を駆動させるタービン177を備える。燃料電池143の発電電流が増加すると、燃料電池143の要求空気量が増加し、共通エアコンプレッサ171の稼働率が高くなる。これに対し、タービン177が共通エアコンプレッサ171の回転を補助するため、燃料電池システム17は、燃料電池143の発電電流の増加に伴う消費電力の増大を抑えることができる。なお、他の実施形態においては、共通エアコンプレッサ171とタービン177はターボチャージャを構成しなくてもよい。例えば、他の実施形態に係る燃料電池システム17は、タービン177の回転によって発電する発電機を備え、当該発電機の電力で共通エアコンプレッサ171を駆動してもよい。
<Action and Effects>
In this way, the fuel cell system 17 according to the second embodiment includes a turbine 177 that rotates with exhaust gas discharged from the multiple fuel cells 143 and drives the common air compressor 171 using the energy generated by the rotation. When the power generation current of the fuel cell 143 increases, the amount of air required by the fuel cell 143 increases, and the operating rate of the common air compressor 171 increases. In response to this, the turbine 177 assists the rotation of the common air compressor 171, so that the fuel cell system 17 can suppress an increase in power consumption that accompanies an increase in the power generation current of the fuel cell 143. Note that in other embodiments, the common air compressor 171 and the turbine 177 do not need to constitute a turbocharger. For example, the fuel cell system 17 according to other embodiments may include a generator that generates power by the rotation of the turbine 177, and the common air compressor 171 may be driven by the power of the generator.
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 例えば、上述した実施形態においては、燃料電池システム17が運搬車両10に搭載されるが、これに限られない。例えば、他の実施形態においては、燃料電池システム17が油圧ショベルやホイールローダなどの他の作業機械に搭載されていてもよい。
Other Embodiments
Although one embodiment has been described in detail above with reference to the drawings, the specific configuration is not limited to the above, and various design modifications and the like are possible.
For example, in the above-described embodiment, the fuel cell system 17 is mounted on the transport vehicle 10, but is not limited to this. For example, in other embodiments, the fuel cell system 17 may be mounted on other work machines such as a hydraulic excavator or a wheel loader.
 上記態様によれば、燃料電池システムは、外気圧による応答性の変化が生じることを防ぐことができる。 According to the above aspect, the fuel cell system can prevent changes in responsiveness caused by external air pressure.
 10…運搬車両 11…ダンプボディ 12…車体 13…走行装置 14…動力系 143…燃料電池 144…バッテリ 145…DCDCコンバータ 15…駆動系 151…インバータ 152…ポンプ駆動モータ 153…油圧ポンプ 154…ホイストシリンダ 155…インバータ 156…走行駆動モータ 17…燃料電池システム 171…共通エアコンプレッサ 172…エアタンク 1721…調圧弁 173…吸気マニホールド 174…個別エアコンプレッサ 175…水素タンク 176…排気マニホールド 177…タービン 178…シャフト  10...Transport vehicle 11...Dump truck body 12...Vehicle body 13...Travel gear 14...Power system 143...Fuel cell 144...Battery 145...DC-DC converter 15...Drive system 151...Inverter 152...Pump drive motor 153...Hydraulic pump 154...Hoist cylinder 155...Inverter 156...Travel drive motor 17...Fuel cell system 171...Common air compressor 172...Air tank 1721...Pressure regulator 173...Intake manifold 174...Individual air compressor 175...Hydrogen tank 176...Exhaust manifold 177...Turbine 178...Shaft

Claims (4)

  1.  水素ガスと空気中の酸素とを反応させて電気エネルギーを生成する複数の燃料電池と、
     前記複数の燃料電池それぞれに設けられた複数の個別エアコンプレッサであって、それぞれが空気を所望の動作圧まで昇圧して対応する燃料電池に供給する複数の個別エアコンプレッサと、
     前記複数の個別エアコンプレッサの上流に設けられ、空気を昇圧して所定の基準圧の空気を前記複数の個別エアコンプレッサに供給する共通エアコンプレッサと
     を備える燃料電池システム。
    A plurality of fuel cells that react hydrogen gas with oxygen in the air to generate electrical energy;
    a plurality of individual air compressors provided for each of the plurality of fuel cells, each of which pressurizes air to a desired operating pressure and supplies the air to a corresponding fuel cell;
    a common air compressor provided upstream of the plurality of individual air compressors for boosting air and supplying air at a predetermined reference pressure to the plurality of individual air compressors.
  2.  前記共通エアコンプレッサの下流かつ前記複数の個別エアコンプレッサの上流に設けられ、前記共通エアコンプレッサが供給する空気を貯留し、貯留した空気を前記基準圧で前記複数の個別エアコンプレッサへ供給するエアタンク
     を備える請求項1に記載の燃料電池システム。
    2. The fuel cell system according to claim 1, further comprising: an air tank provided downstream of the common air compressor and upstream of the plurality of individual air compressors, for storing air supplied by the common air compressor and for supplying the stored air to the plurality of individual air compressors at the reference pressure.
  3.  前記複数の燃料電池から排出される排気によって回転し、回転によって発生するエネルギーを用いて前記共通エアコンプレッサを駆動させるタービンを備える
     請求項1または請求項2に記載の燃料電池システム。
    3. The fuel cell system according to claim 1, further comprising a turbine that is rotated by exhaust gas discharged from the plurality of fuel cells and that drives the common air compressor using energy generated by the rotation.
  4.  請求項1または請求項2に記載の燃料電池システムと、
     前記燃料電池システムの前記複数の燃料電池が生成した電気エネルギーによって駆動する作業機と
     を備える作業機械。
    The fuel cell system according to claim 1 or 2,
    a work machine driven by electric energy generated by the plurality of fuel cells of the fuel cell system.
PCT/JP2023/046184 2022-12-22 2023-12-22 Fuel cell system and work machine WO2024135833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-205772 2022-12-22
JP2022205772A JP2024090106A (en) 2022-12-22 2022-12-22 Fuel cell system and working machine

Publications (1)

Publication Number Publication Date
WO2024135833A1 true WO2024135833A1 (en) 2024-06-27

Family

ID=91588996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/046184 WO2024135833A1 (en) 2022-12-22 2023-12-22 Fuel cell system and work machine

Country Status (2)

Country Link
JP (1) JP2024090106A (en)
WO (1) WO2024135833A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138760A (en) * 2014-01-24 2015-07-30 株式会社デンソー power output device
JP2020140835A (en) * 2019-02-27 2020-09-03 トヨタ自動車株式会社 Fuel cell system
WO2022111972A1 (en) * 2020-11-25 2022-06-02 Robert Bosch Gmbh Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138760A (en) * 2014-01-24 2015-07-30 株式会社デンソー power output device
JP2020140835A (en) * 2019-02-27 2020-09-03 トヨタ自動車株式会社 Fuel cell system
WO2022111972A1 (en) * 2020-11-25 2022-06-02 Robert Bosch Gmbh Fuel cell system

Also Published As

Publication number Publication date
JP2024090106A (en) 2024-07-04

Similar Documents

Publication Publication Date Title
US8958958B2 (en) Hybrid construction machine
US9187294B2 (en) Hybrid construction machine and method for controlling the same
US8556008B2 (en) Method and arrangement in power transmission of forest machine
WO2002089290A1 (en) Hybrid construction equipment power control apparatus
EP4127327B1 (en) Apparatus for use on construction or worksite machines, for example an excavator
WO2006090709A1 (en) Load handling regeneration system for battery type industrial vehicle
KR102336150B1 (en) Hydrogen Fuel Cell Platform for Four Wheel Drive Tractors
KR20140117364A (en) Work machine
CN109764027A (en) Electro-hydraulic pressure working truck with energy recovery function
WO2024135833A1 (en) Fuel cell system and work machine
US11668074B2 (en) Electrically driven hydraulic construction machine
JP2001012418A (en) Hybrid working machine
KR102167068B1 (en) Excavator swing energy regeneration system using fuel cell
JP2015163022A (en) work vehicle
GB2558300A (en) Range extender electric vehicle with ancillary device
CN111788355B (en) Hydraulic system for work machine and method of controlling hydraulic system
CN110453741A (en) Hybrid power bull-dozer
WO2024127994A1 (en) Fuel cell system and work vehicle
WO2024127995A1 (en) Fuel cell system and work vehicle
US11142441B2 (en) Industrial vehicle
US9643494B2 (en) Fuel cell system
US7444808B2 (en) Hydraulic system
WO2024154479A1 (en) Work vehicle
WO2023163109A1 (en) Work machine
JP7468589B2 (en) Fuel Cell Vehicles