WO2024135407A1 - アンモニア気化器 - Google Patents

アンモニア気化器 Download PDF

Info

Publication number
WO2024135407A1
WO2024135407A1 PCT/JP2023/044034 JP2023044034W WO2024135407A1 WO 2024135407 A1 WO2024135407 A1 WO 2024135407A1 JP 2023044034 W JP2023044034 W JP 2023044034W WO 2024135407 A1 WO2024135407 A1 WO 2024135407A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
shell
liquid ammonia
outlet
flow path
Prior art date
Application number
PCT/JP2023/044034
Other languages
English (en)
French (fr)
Inventor
忠 浅沼
隆仁 秋田
愛子 藤河
省吾 新田
祐貴 竹内
Original Assignee
株式会社Ihiプラント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihiプラント filed Critical 株式会社Ihiプラント
Publication of WO2024135407A1 publication Critical patent/WO2024135407A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation

Definitions

  • the present invention relates to an ammonia vaporizer.
  • This application claims priority based on Japanese Patent Application No. 2022-205752, filed on December 22, 2022, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a vaporizer that vaporizes liquefied ammonia, which contains ammonia as the main component and water as a high-boiling point component having a boiling point higher than that of the main component.
  • This vaporizer includes a shell, a supply unit, a plurality of heat transfer tubes, an outlet unit, a liquid outlet unit, and a heater.
  • the supply unit supplies liquefied gas into the shell.
  • the plurality of heat transfer tubes are arranged in the shell, and a first heating fluid having a temperature that vaporizes the main component of the liquefied gas is introduced into the shell.
  • the outlet unit discharges the main component vaporized in the shell from the shell.
  • the liquid outlet unit is arranged at the bottom of the shell, and discharges the liquefied gas accumulated in the shell from the shell.
  • the heater vaporizes the main component contained in the liquefied gas discharged from the shell through the liquid outlet unit by heat exchange with the second heating fluid.
  • the liquid ammonia becomes more concentrated with water (high boiling point component), and because its boiling point is higher, it tends to accumulate in the upper part of the liquid phase when the temperature increases. For this reason, even if the liquid ammonia that has accumulated in the shell is discharged from the bottom of the shell as in the above-mentioned conventional technology, there is a possibility that the liquid ammonia with a high water concentration cannot be efficiently discharged from inside the shell.
  • the present invention was made in consideration of the above circumstances, and aims to provide an ammonia vaporizer that can efficiently discharge liquid ammonia, which has a high water concentration due to the vaporization of ammonia, from within the shell.
  • the ammonia vaporizer according to the first aspect of the present invention comprises a shell into which liquid ammonia is introduced, a plurality of heat transfer tubes installed inside the shell and through which a heat transfer medium flows, and a liquid ammonia extraction section that extracts the liquid ammonia from the middle of the shell in the height direction.
  • the ammonia vaporizer of the first aspect may further include a mixer that mixes the liquid ammonia extracted from the liquid ammonia extraction section with the ammonia gas that has been vaporized inside the shell and discharged to the outside of the shell, and a heater that vaporizes the mixed fluid that has passed through the mixer.
  • the intermediate portion in the ammonia vaporizer of the first or second aspect, may be included within the range in the height direction in which the plurality of heat transfer tubes are arranged.
  • the liquid ammonia outlet may include a first outlet and a second outlet, the first outlet being provided at a first height in the intermediate section, and the second outlet being provided at a second height in the intermediate section that is different from the first height.
  • the ammonia vaporizer of the fourth aspect may be provided with a first opening/closing device that opens and closes a flow path communicating with the first outlet, and a second opening/closing device that opens and closes a flow path communicating with the second outlet.
  • the heat medium may be seawater.
  • liquid ammonia with a high water concentration due to vaporization of ammonia can be efficiently discharged from within the shell.
  • FIG. 1 is an overall configuration diagram of an ammonia vaporizer according to an embodiment.
  • FIG. 2 is an internal configuration diagram of a vaporizer body according to one embodiment.
  • 3 is a cross-sectional view taken along line III-III shown in FIG. 2.
  • 1 is a graph showing the relationship between the boiling point/dew point of liquid ammonia and pressure.
  • FIG. 1 is an overall configuration diagram of an ammonia vaporizer 1 according to one embodiment.
  • the ammonia vaporizer 1 vaporizes liquid ammonia 100 supplied from a low-temperature storage tank 2, and supplies the ammonia gas to a supply destination (e.g., a boiler of a thermal power plant).
  • the low-temperature storage tank 2 stores liquid ammonia 100 containing, for example, about 0.5 wt % water (a high boiling point component).
  • the low-temperature storage tank 2 is, for example, a large, double-shelled, above-ground low-temperature tank with a total height of about 50 meters.
  • a cold insulation material such as granular perlite is filled between an inner tank and an outer tank (not shown).
  • the low-temperature storage tank 2 may also be an underground low-temperature tank.
  • the low-temperature storage tank 2 stores liquid ammonia 100 transferred from an ammonia tanker via an receiving pipe (not shown).
  • the storage temperature of the liquid ammonia 100 is, for example, about -33°C to -34°C.
  • the ammonia vaporizer 1 comprises a vaporizer body 10 and a heater 11.
  • the vaporizer body 10 is connected to the low-temperature storage tank 2 via a liquid ammonia supply flow path 3.
  • the liquid ammonia supply flow path 3 supplies liquid ammonia 100 from the low-temperature storage tank 2 to the vaporizer body 10.
  • the liquid ammonia supply flow path 3 is provided with a valve 3a for opening and closing the flow path, a pump (not shown), and the like.
  • the heater 11 is connected to the vaporizer body 10 via an ammonia gas outlet flow path 12.
  • the ammonia gas outlet flow path 12 supplies the ammonia gas vaporized in the vaporizer body 10 to the heater 11.
  • the heater 11 is also connected to a supply destination (not shown) via an ammonia gas supply flow path 13.
  • the ammonia gas supply flow path 13 supplies the ammonia gas heated to a predetermined temperature by the heater 11 to the supply destination.
  • the vaporizer body 10 is connected to a first heat medium supply passage 14 and a first heat medium discharge passage 15.
  • the first heat medium supply passage 14 supplies the first heat medium that vaporizes the liquid ammonia 100 to the vaporizer body 10.
  • the first heat medium is seawater 200.
  • the first heat medium supply passage 14 is provided with a pump 14a that pumps up the seawater 200, a valve (not shown), and the like.
  • the first heat medium discharge flow path 15 discharges the seawater 200, which has been cooled by heat exchange with the liquid ammonia 100 inside the vaporizer body 10, into the sea.
  • the first heat medium discharge flow path 15 is provided with valves, pumps, etc. (not shown). Note that the first heat medium is not limited to seawater 200, and depending on the installation location of the ammonia vaporizer 1, water from a river, lake, etc. may be used instead of seawater 200.
  • the heater 11 is connected to a second heat medium supply flow path 16 and a second heat medium discharge flow path 17.
  • the second heat medium supply flow path 16 supplies the heater 11 with a second heat medium that heats the ammonia gas.
  • the second heat medium is, for example, steam generated in a boiler to which the second heat medium is supplied.
  • the second heat medium supply flow path 16 is provided with a valve or the like (not shown).
  • the second heat medium discharge flow path 17 discharges the condensate that has condensed by heat exchange with the ammonia gas inside the heater 11.
  • the second heat medium discharge flow path 17 is provided with a valve, etc. (not shown).
  • the second heat medium discharge flow path 17 is connected to a cooler (not shown). The cooler recovers heat from the condensate that has exchanged heat with the ammonia gas, cools the condensate, and transports the condensate to a specified location.
  • a bottom extraction flow passage 18 is connected to the vaporizer body 10.
  • the bottom extraction flow passage 18 extracts liquid ammonia 100 from the bottom of the vaporizer body 10.
  • the bottom extraction flow passage 18 is provided with a valve 18a for opening and closing the flow passage, and a pump (not shown), etc.
  • an intermediate extraction flow passage 19 is connected to the vaporizer body 10.
  • the intermediate extraction flow passage 19 extracts liquid ammonia 100 with a high concentration of water (high boiling point component) from the intermediate part in the height direction of the vaporizer body 10.
  • the intermediate extraction flow passage 19 is provided with valves 19a to 19c that open and close the flow passage, and a pump (not shown) that supplies the extracted liquid ammonia 100 (with a high water concentration) to the mixer 50 described below.
  • the mixer 50 mixes the ammonia gas discharged from the vaporizer body 10 with the liquid ammonia 100 extracted from the intermediate extraction flow path 19.
  • the mixer 50 forms a mixed fluid, for example, by spraying liquid ammonia 100 with a high water concentration onto the ammonia gas flowing through the ammonia gas discharge flow path 12.
  • the heater 11 raises the temperature of the mixed fluid that has passed through the mixer 50, completely vaporizing it.
  • FIG. 2 is a diagram showing the internal configuration of the vaporizer body 10 according to one embodiment.
  • the vaporizer body 10 includes a shell 20, tube sheets 21 and 22, and a plurality of heat transfer tubes 23.
  • the shell 20 is formed in a cylindrical shape extending in the horizontal direction.
  • the tube sheets 21 and 22 support the plurality of heat transfer tubes 23 and divide the inside of the shell 20 into three spaces.
  • a plurality of baffle plates may be provided between the tube sheets 21 and 22. In this case, the baffle plates do not divide the space inside the shell 20.
  • a first heat medium inlet 10A, a first heat medium outlet 10B, and a liquid ammonia vaporization chamber 10C are formed within the shell 20.
  • the space between the first heat medium inlet 10A and the liquid ammonia vaporization chamber 10C is partitioned by a tube plate 21.
  • the space between the liquid ammonia vaporization chamber 10C and the first heat medium outlet 10B is partitioned by a tube plate 22.
  • the tube plate 21 supports the first ends of the heat transfer tubes 23.
  • the openings at the first ends of the heat transfer tubes 23 are connected to the first heat medium inlet section 10A.
  • the tube plate 22 supports the second ends of the heat transfer tubes 23.
  • the openings at the second ends of the heat transfer tubes 23 are connected to the first heat medium outlet section 10B.
  • the multiple heat transfer tubes 23 are supported in parallel in the horizontal direction by the tube plates 21 and 22 and a baffle plate (not shown).
  • the shell 20 is formed with a first heat medium supply port 24 that communicates with the first heat medium inlet 10A.
  • the first heat medium supply passage 14 described above is connected to the first heat medium supply port 24.
  • the shell 20 is also formed with a first heat medium discharge port 25 that communicates with the first heat medium outlet 10B.
  • the first heat medium discharge passage 15 described above is connected to the first heat medium discharge port 25.
  • the first heat medium that flows out to the first heat medium outlet portion 10B is discharged from the first heat medium discharge port 25 through the first heat medium discharge flow path 15 to the outside of the shell 20.
  • the first heat medium supply port 24 and the first heat medium discharge port 25 may be provided on the side wall portion of the shell 20, or on the bottom or top of the shell 20, as long as the function of supplying and discharging the first heat medium can be ensured.
  • the upper part of the shell 20 is provided with an ammonia gas outlet 26 and a liquid ammonia supply port 27.
  • the ammonia gas outlet 26 and the liquid ammonia supply port 27 are connected to the liquid ammonia vaporization chamber 10C.
  • the liquid ammonia supply port 27 is connected to the liquid ammonia supply flow path 3 described above.
  • the liquid ammonia supply port 27 is located in the center of the shell 20 in the longitudinal direction.
  • the liquid ammonia supply port 27 is connected to a distributor 30 located inside the shell 20.
  • the distributor 30 is located above the heat transfer tubes 23 and extends parallel to the heat transfer tubes 23.
  • the distributor 30 distributes the liquid ammonia 100 supplied from the liquid ammonia supply port 27 in the longitudinal direction of the shell 20.
  • Examples of the distributor 30 include pipes or trays with numerous holes or notches formed therein.
  • a pair of ammonia gas outlets 26 are provided on either side of the liquid ammonia supply port 27 at positions that do not overlap with the distributor 30 in a plan view.
  • the pair of ammonia gas outlets 26 includes a first ammonia gas outlet 26a disposed on the first heat medium inlet 10A (tube plate 21) side and a second ammonia gas outlet 26b disposed on the first heat medium outlet 10B (tube plate 22) side.
  • the first ammonia gas outlet 26a is connected to the first branch pipe 12a of the ammonia gas outlet flow passage 12.
  • the second ammonia gas outlet 26b is connected to the second branch pipe 12b of the ammonia gas outlet flow passage 12.
  • the first branch pipe 12a and the second branch pipe 12b join together upstream (nearby) of the mixer 50 shown in FIG. 1.
  • a drain collection section 28 is provided at the bottom of the shell 20 so as to protrude downward.
  • the drain collection section 28 is connected to the liquid ammonia vaporization chamber 10C.
  • the drain collection section 28 is connected to the bottom extraction flow path 18 described above.
  • a liquid ammonia extraction section 40 that extracts the liquid ammonia 100 in the liquid ammonia vaporization chamber 10C is provided in the middle of the height of the shell 20.
  • the liquid ammonia extraction section 40 has a first extraction outlet 41 provided at a first height and a second extraction outlet 42 provided at a second height different from the first height.
  • the first extraction outlet 41 and the second extraction outlet 42 are disposed at different positions from each other in the longitudinal direction (horizontal direction) of the shell 20.
  • FIG. 3 is a cross-sectional view taken along line III-III shown in FIG. 3, the liquid ammonia withdrawal section 40 is provided in the middle part in the height direction of the shell 20.
  • the middle part in the height direction of the shell 20 refers to a part of the shell 20 excluding the upper part of the shell 20 where the liquid ammonia supply port 27 is provided and the bottom part of the shell 20 where the drain recovery section 28 is connected.
  • the intermediate portion in the height direction of the shell 20 where the liquid ammonia extraction section 40 is provided is included in the range A in the height direction in which the multiple heat transfer tubes 23 are arranged.
  • the first height at which the first outlet 41 is provided is the same height as the center position C1 of the range A in which the multiple heat transfer tubes 23 are arranged.
  • the second height at which the second outlet 42 is provided is lower than the first height, and is 1/4 the height from the bottom of the range A in which the multiple heat transfer tubes 23 are arranged.
  • the first outlet 41 and the second outlet 42 are located below the center position C2 of the shell 20.
  • the first outlet 41 is connected to the first communication flow path 19A of the intermediate outlet flow path 19.
  • the first communication flow path 19A is provided with a valve 19a that opens and closes the flow path.
  • the second outlet 42 is connected to the second communication flow path 19B of the intermediate outlet flow path 19.
  • the second communication flow path 19B is provided with a valve 19b that opens and closes the flow path.
  • the first communication flow path 19A and the first communication flow path 19A join upstream of a pump (not shown) provided in the intermediate outlet flow path 19.
  • Either valve 19a or valve 19b is open when ammonia vaporizer 1 is in operation.
  • a level gauge (not shown) that measures the liquid level of liquid ammonia 100 in liquid ammonia vaporization chamber 10C is connected to shell 20. Based on the level gauge, an operator opens valve 19a or valve 19b that corresponds to the liquid level of liquid ammonia 100, and extracts liquid ammonia 100 from the upper liquid phase.
  • a control device may be provided that automatically opens and closes valves 19a and 19b based on the measurement results of the level gauge.
  • Fig. 4 is a graph showing the relationship between the boiling point/dew point and pressure of liquid ammonia 100.
  • the vertical axis represents the boiling point/dew point in units of °C.
  • the horizontal axis represents the pressure in units of kPaG based on atmospheric pressure.
  • the temperature of the seawater 200 varies between, for example, 17° C. in winter and 35° C. in summer.
  • the inlet pressure of the vaporizer body 10 is 400 kPaG and the connecting pressure with the boiler is 350 kPaG, the temperature of the liquid ammonia 100 will be between the boiling point curve and the dew point curve in both winter and summer, and the liquid ammonia 100 will be in a gas-liquid mixed phase state.
  • seawater 200 is used as the first heat medium, a portion of the liquid ammonia 100 will not vaporize within the vaporizer body 10, and the concentration of water (high boiling point component) will gradually increase due to the vaporization of ammonia (main component, low boiling point component).
  • Liquid ammonia 100 with a high concentration of water has a high boiling point and is therefore difficult to vaporize. For this reason, it is desirable to discharge liquid ammonia 100 with a high water concentration from within the shell 20. Liquid ammonia 100 with a high water concentration and high boiling point is more likely to remain in the upper part of the liquid phase (near the liquid surface) shown in Figure 2 when the temperature becomes high. Therefore, as shown in Figures 2 and 3, by providing liquid ammonia extraction section 40 at the middle part of the shell 20 in the height direction rather than at the bottom of the shell 20, liquid ammonia 100 with a high water concentration can be efficiently discharged from within the shell 20.
  • the liquid ammonia 100 discharged from the shell 20 contains about 5 wt% water (high boiling point component). As shown in FIG. 1, the liquid ammonia 100 passes through the intermediate extraction flow path 19, is pressurized by a pump (not shown), and is then supplied to the mixer 50. The mixer 50 sprays the liquid ammonia 100, which has a high water concentration, into the ammonia gas flowing through the ammonia gas discharge flow path 12 to generate a mixed fluid. The heater 11 completely vaporizes the mixed fluid that has passed through the mixer 50 and supplies it to the destination.
  • the ammonia vaporizer 1 includes a shell 20 into which liquid ammonia 100 is introduced, a plurality of heat transfer tubes 23 installed inside the shell 20 and through which a heat medium flows, and a liquid ammonia extraction section 40 that extracts the liquid ammonia 100 from the middle of the height of the shell 20.
  • the liquid ammonia 100 which has a high water concentration due to the evaporation of ammonia, can be efficiently discharged from inside the shell 20.
  • this embodiment includes a mixer 50 that mixes the liquid ammonia 100 extracted from the liquid ammonia extraction section 40 with the ammonia gas that has been vaporized inside the shell 20 and discharged to the outside of the shell 20, and a heater 11 that vaporizes the mixed fluid that has passed through the mixer 50.
  • a mixer 50 that mixes the liquid ammonia 100 extracted from the liquid ammonia extraction section 40 with the ammonia gas that has been vaporized inside the shell 20 and discharged to the outside of the shell 20, and a heater 11 that vaporizes the mixed fluid that has passed through the mixer 50.
  • the intermediate portion where the liquid ammonia extraction section 40 is provided is included within the range A in the height direction in which the multiple heat transfer tubes 23 are arranged. This configuration makes it easier to extract liquid ammonia 100 with a high water concentration from the upper part of the liquid phase of liquid ammonia 100.
  • the liquid ammonia extraction section 40 includes a first outlet 41 provided at a first height in the middle section, and a second outlet 42 provided at a second height different from the first height in the middle section.
  • this embodiment includes a valve 19a (first opening/closing device) that opens and closes a first communication flow path 19A (flow path) that communicates with the first outlet 41, and a valve 19b (second opening/closing device) that opens and closes a second communication flow path 19B (flow path) that communicates with the second outlet 42.
  • a valve 19a first opening/closing device
  • a valve 19b second opening/closing device
  • the first heat medium (heat medium) is seawater 200.
  • the first heat medium that vaporizes the liquid ammonia 100 can be secured in large quantities at low cost.
  • liquid ammonia with a high water concentration due to vaporization of ammonia can be efficiently discharged from within the shell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

アンモニア気化器(1)は、液体アンモニア(100)が導入されるシェル(20)と、シェル(20)の内部に設置され、熱媒体が流通する複数の伝熱管(23)と、シェル(20)の高さ方向の中間部から、液体アンモニア(100)を抜き出す液体アンモニア抜出部(40)と、を備える。

Description

アンモニア気化器
 本発明は、アンモニア気化器に関するものである。
 本願は、2022年12月22日に、日本に出願された特願2022-205752号に基づき優先権を主張し、その内容をここに援用する。
 下記特許文献1には、主成分であるアンモニアと、主成分の沸点よりも高い沸点を有する高沸点成分である水とが含まれる液化アンモニアを気化させる気化器が開示されている。この気化器は、シェルと、供給部と、複数の伝熱管と、導出部と、液流出部と、加熱器と、を備えている。供給部は、シェル内に液化ガスを供給する。複数の伝熱管は、シェル内に配置され、液化ガスの主成分を気化させる温度を有する第1加熱流体が導入される。導出部は、シェル内で気化した主成分をシェルから導出させる。液流出部は、シェルの底部に配置され、シェル内に溜まった液化ガスをシェルから流出させる。加熱器は、液流出部を通してシェルから導出された液化ガスに含まれる主成分を、第2加熱流体との熱交換により気化させる。
日本国特開2022-6152号公報
 アンモニア(主成分,低沸点成分)の気化によって、水(高沸点成分)の濃度が高くなった液体アンモニアは、沸点が高くなるため、温度が高くなると、液相上部に滞留し易くなる。このため、上記従来技術のように、シェルの底部からシェル内に溜まった液体アンモニアを排出させても、水分濃度が高い液体アンモニアをシェル内から効率よく排出できない可能性があった。
 本発明は上記事情に鑑みてなされたものであり、アンモニアの気化によって水分濃度が高くなった液体アンモニアをシェル内から効率よく排出することができるアンモニア気化器を提供することを目的とする。
 本発明の第1の態様に係るアンモニア気化器は、液体アンモニアが導入されるシェルと、前記シェルの内部に設置され、熱媒体が流通する複数の伝熱管と、前記シェルの高さ方向の中間部から、前記液体アンモニアを抜き出す液体アンモニア抜出部と、を備える。
 また、本発明の第2の態様では、第1の態様のアンモニア気化器において、前記シェルの内部で気化し、前記シェルの外部に排出されたアンモニアガスに、前記液体アンモニア抜出部から抜き出した前記液体アンモニアを混合させる混合器と、前記混合器を通過した混合流体を気化させる加熱器と、を備えてもよい。
 また、本発明の第3の態様では、第1または第2の態様のアンモニア気化器において、前記中間部は、前記複数の伝熱管が配置される高さ方向の範囲内に含まれてもよい。
 また、本発明の第4の態様では、第1から第3態様のいずれか一つのアンモニア気化器において、前記液体アンモニア抜出部は、第1抜出口および第2抜出口を備え、前記第1抜出口は、前記中間部において、第1の高さに設けられ、前記第2抜出口は、前記中間部において、前記第1の高さと異なる第2の高さに設けられてもよい。
 また、本発明の第5の態様では、第4態様のアンモニア気化器において、前記第1抜出口に連通する流路を開閉する第1開閉装置と、前記第2抜出口に連通する流路を開閉する第2開閉装置と、を備えてもよい。
 また、本発明の第6の態様では、第1から第5態様のいずれか一つのアンモニア気化器において、前記熱媒体は、海水であってもよい。
 上記本発明の一態様によれば、アンモニアの気化によって水分濃度が高くなった液体アンモニアをシェル内から効率よく排出することができる。
一実施形態に係るアンモニア気化器の全体構成図である。 一実施形態に係る気化器本体の内部構成図である。 図2に示すIII-III断面図である。 液体アンモニアの沸点/露点と圧力との関係を示すグラフである。
 以下、本発明の一実施形態について図面を参照して説明する。
 図1は、一実施形態に係るアンモニア気化器1の全体構成図である。
アンモニア気化器1は、低温貯蔵タンク2から供給された液体アンモニア100を気化させ、そのアンモニアガスを供給先(例えば、火力発電所のボイラ)に供給する。低温貯蔵タンク2には、例えば、水(高沸点成分)を0.5wt%程度含む液体アンモニア100が貯蔵されている。
 低温貯蔵タンク2は、例えば、全高が50メートル程ある大型の二重殻地上低温タンクである。低温貯蔵タンク2において、図示しない内槽と外槽との間に粒状のパーライト等の保冷材が充填されている。なお、低温貯蔵タンク2は、地下式低温タンクであっても構わない。低温貯蔵タンク2は、アンモニアタンカーから受け入れ配管(図示省略)を介して移送された液体アンモニア100を貯蔵する。液体アンモニア100の貯蔵温度は、例えば、-33℃~-34℃程である。
 アンモニア気化器1は、気化器本体10と、加熱器11と、を備えている。気化器本体10は、液体アンモニア供給流路3を介して低温貯蔵タンク2と接続されている。液体アンモニア供給流路3は、低温貯蔵タンク2の液体アンモニア100を気化器本体10に供給する。液体アンモニア供給流路3には、流路を開閉するバルブ3aや、図示しないポンプ等が設けられている。
 加熱器11は、アンモニアガス導出流路12を介して気化器本体10と接続されている。アンモニアガス導出流路12は、気化器本体10で気化したアンモニアガスを加熱器11に供給する。また、加熱器11は、アンモニアガス供給流路13を介して図示しない供給先と接続されている。アンモニアガス供給流路13は、加熱器11で所定温度まで昇温したアンモニアガスを供給先に供給する。
 気化器本体10には、第1熱媒体供給流路14と、第1熱媒体排出流路15とが接続されている。第1熱媒体供給流路14は、液体アンモニア100を気化させる第1熱媒体を気化器本体10に供給する。本実施形態の第1熱媒体は、海水200である。第1熱媒体供給流路14には、海水200を汲み上げるポンプ14aや、図示しないバルブ等が設けられている。
 第1熱媒体排出流路15は、気化器本体10内で液体アンモニア100との熱交換によって低温となった海水200を海に放出する。第1熱媒体排出流路15には、図示しないバルブやポンプ等が設けられている。なお、第1熱媒体は、海水200に限定されず、アンモニア気化器1の設置場所によっては、海水200の代わりに河川や湖等の水を使用する場合もある。
 加熱器11には、第2熱媒体供給流路16と、第2熱媒体排出流路17とが接続されている。第2熱媒体供給流路16は、アンモニアガスを昇温させる第2熱媒体を加熱器11に供給する。本実施形態の第2熱媒体は、例えば、供給先のボイラで生成した水蒸気である。第2熱媒体供給流路16には、図示しないバルブ等が設けられている。
 第2熱媒体排出流路17は、加熱器11内でアンモニアガスとの熱交換によって凝縮した凝縮液を排出する。第2熱媒体排出流路17には、図示しないバルブ等が設けられている。第2熱媒体排出流路17は、図示しない冷却器と接続されている。冷却器は、アンモニアガスと熱交換した凝縮液から熱回収すると共に凝縮液を冷却し、その凝縮液を所定の場所に移送する。
 気化器本体10には、底部抜出流路18が接続されている。底部抜出流路18は、気化器本体10の底部から液体アンモニア100を抜き出す。底部抜出流路18には、流路を開閉するバルブ18aと、図示しないポンプ等が設けられている。
 また、気化器本体10には、中間部抜出流路19が接続されている。中間部抜出流路19は、気化器本体10の高さ方向の中間部から水(高沸点成分)の濃度が高くなった液体アンモニア100を抜き出す。中間部抜出流路19には、流路を開閉するバルブ19a~19cと、後述する混合器50に、抜き出した(水分濃度が高くなった)液体アンモニア100を供給する図示しないポンプ等が設けられている。
 混合器50は、気化器本体10から排出されたアンモニアガスに、中間部抜出流路19から抜き出した液体アンモニア100を混合させる。混合器50は、例えば、アンモニアガス導出流路12を流通するアンモニアガスに、水分濃度が高くなった液体アンモニア100をスプレーすることで混合流体を形成する。加熱器11は、混合器50を通過した混合流体を昇温させ、完全に気化させる。
 図2は、一実施形態に係る気化器本体10の内部構成図である。
 図2に示すように、気化器本体10は、シェル20と、管板21,22と、複数の伝熱管23と、を備えている。シェル20は、水平方向に延びる円筒状に形成されている。管板21,22は、複数の伝熱管23を支持すると共に、シェル20内を3つの空間に仕切っている。なお、管板21,22の間には、図示しない複数のバッフルプレートが設けられていてもよい。この場合、バッフルプレートはシェル20内の空間を仕切らない。
 シェル20内には、第1熱媒体入口部10Aと、第1熱媒体出口部10Bと、液体アンモニア気化室10Cと、が形成されている。第1熱媒体入口部10Aと液体アンモニア気化室10Cとの間の空間は、管板21によって仕切られている。液体アンモニア気化室10Cと第1熱媒体出口部10Bとの間の空間は、管板22によって仕切られている。
 管板21は、伝熱管23の第1端部を支持している。伝熱管23の第1端部の開口は、第1熱媒体入口部10Aに連通している。管板22は、伝熱管23の第2端部を支持している。伝熱管23の第2端部の開口は、第1熱媒体出口部10Bに連通している。複数の伝熱管23は、管板21,22及び図示しないバッフルプレートによって水平方向に平行に支持されている。
 シェル20には、第1熱媒体入口部10Aに連通する第1熱媒体供給口24が形成されている。第1熱媒体供給口24には、上述した第1熱媒体供給流路14が接続されている。また、シェル20には、第1熱媒体出口部10Bに連通する第1熱媒体排出口25が形成されている。第1熱媒体排出口25には、上述した第1熱媒体排出流路15が接続されている。
 第1熱媒体供給口24から第1熱媒体入口部10Aに供給された第1熱媒体(海水200)は、複数の伝熱管23を通る過程で、液体アンモニア気化室10C内の液体アンモニア100と熱交換し、第1熱媒体出口部10Bに流出する。第1熱媒体出口部10Bに流出した第1熱媒体は、第1熱媒体排出口25から第1熱媒体排出流路15を介して、シェル20外に排出される。なお、第1熱媒体供給口24及び第1熱媒体排出口25は、第1熱媒体を供給及び排出する機能を確保できれば、シェル20の側壁部に設けられてもよいし、シェル20の底部または上部に設けられてもよい。
 シェル20の上部には、アンモニアガス導出口26と、液体アンモニア供給口27と、が設けられている。アンモニアガス導出口26及び液体アンモニア供給口27は、液体アンモニア気化室10Cに連通する。液体アンモニア供給口27には、上述した液体アンモニア供給流路3が接続されている。液体アンモニア供給口27は、シェル20の長手方向の中央部に配置されている。液体アンモニア供給口27は、シェル20の内部に配置されたディストリビューター30と接続されている。
 ディストリビューター30は、複数の伝熱管23の上方に位置すると共に、複数の伝熱管23と平行に延びる。ディストリビューター30は、液体アンモニア供給口27から供給される液体アンモニア100をシェル20の長手方向に分配する。ディストリビューター30としては、例えば、多数の孔や切り欠きが形成された配管またはトレイ等を例示できる。一対のアンモニアガス導出口26が、液体アンモニア供給口27の両側であって、ディストリビューター30と平面視で重ならない位置に設けられている。
 一対のアンモニアガス導出口26は、第1熱媒体入口部10A(管板21)側に配置された第1アンモニアガス導出口26aと、第1熱媒体出口部10B(管板22)側に配置された第2アンモニアガス導出口26bとを有する。第1アンモニアガス導出口26aには、アンモニアガス導出流路12の第1枝管12aが接続されている。また、第2アンモニアガス導出口26bには、アンモニアガス導出流路12の第2枝管12bが接続されている。なお、第1枝管12a及び第2枝管12bは、図1に示す混合器50の上流側(手前側)で合流している。
 シェル20の底部には、ドレン回収部28が下方に突出するよう設けられている。ドレン回収部28は、液体アンモニア気化室10Cに連通している。ドレン回収部28には、上述した底部抜出流路18が接続されている。
 シェル20の高さ方向の中間部には、液体アンモニア気化室10C内の液体アンモニア100を抜き出す液体アンモニア抜出部40が設けられている。液体アンモニア抜出部40は、第1の高さに設けられた第1抜出口41と、第1の高さと異なる第2の高さに設けられた第2抜出口42と、を備える。第1抜出口41と第2抜出口42は、シェル20の長手方向(水平方向)において、互いに異なる位置に配置されている。
 図3は、図2に示すIII-III断面図である。
 図3に示すように、液体アンモニア抜出部40は、シェル20の高さ方向の中間部に設けられている。なお、シェル20の高さ方向の中間部とは、シェル20のうち、液体アンモニア供給口27が設けられるシェル20の上部や、ドレン回収部28が連設されるシェル20の底部を除く部分である。
 液体アンモニア抜出部40が設けられるシェル20の高さ方向の中間部は、複数の伝熱管23が配置される高さ方向の範囲Aに含まれる。具体的に、第1抜出口41が設けられる第1の高さは、複数の伝熱管23が配置される範囲Aの中心位置C1と同じ高さである。また、第2抜出口42が設けられる第2の高さは、第1の高さよりも下方であって、複数の伝熱管23が配置される範囲Aの下から1/4の高さである。なお、第1抜出口41及び第2抜出口42は、シェル20の中心位置C2に対しては下方に位置している。
 第1抜出口41には、中間部抜出流路19の第1連通流路19Aが接続されている。第1連通流路19Aには、流路を開閉するバルブ19aが設けられている。また、第2抜出口42には、中間部抜出流路19の第2連通流路19Bが接続されている。第2連通流路19Bには、流路を開閉するバルブ19bが設けられている。なお、第1連通流路19A及び第1連通流路19Aは、中間部抜出流路19に設けられた図示しないポンプの上流側で合流している。
 バルブ19a及びバルブ19bのいずれか一方は、アンモニア気化器1の運転時に、開放されている。シェル20には、液体アンモニア気化室10C内の液体アンモニア100の液面レベルを測定する図示しない液面計が接続されている。作業者は、液面計に基づいて、液体アンモニア100の液面レベルに対応するバルブ19aまたはバルブ19bを開け、液相上部から液体アンモニア100を抜き出す。なお、液面計の計測結果に基づいて、自動でバルブ19a及びバルブ19bを開閉する制御装置を設けても構わない。
 図4は、液体アンモニア100の沸点/露点と圧力との関係を示すグラフである。なお、図4において縦軸は、沸点/露点であり、単位は[℃]である。また、図4において横軸は、圧力であり、単位は大気圧基準の[kPaG]である。
 図4に示すように、海水200の温度は、例えば、冬季で17[℃]~夏季で35[℃]の間で変化する。
 仮に、気化器本体10の入口圧力を400[kPaG]とし、ボイラとの取合圧力を350[kPaG]とした場合、冬季及び夏季のいずれも、液体アンモニア100の温度は、沸点曲線と露点曲線の間になり、液体アンモニア100は気液混相状態となる。つまり、海水200を第1熱媒体とした場合、気化器本体10内では、液体アンモニア100の一部が気化せず、アンモニア(主成分,低沸点成分)の気化によって、水(高沸点成分)の濃度が徐々に高くなっていく。
 水(高沸点成分)の濃度が高くなった液体アンモニア100は、沸点が高くなるため、気化し難くなる。このため、水分濃度が高くなった液体アンモニア100は、シェル20内から排出することが望ましい。水分濃度が高くなり、沸点が高くなった液体アンモニア100は、温度が高くなると、図2に示す液相上部(液面付近)に滞留し易くなる。したがって、図2及び図3に示すように、液体アンモニア抜出部40を、シェル20の底部ではなく、シェル20の高さ方向の中間部に設けることで、水分濃度が高くなった液体アンモニア100をシェル20内から効率よく排出することができる。
 シェル20内から排出された液体アンモニア100は、水(高沸点成分)を5wt%程度含む。液体アンモニア100は、図1に示すように、中間部抜出流路19を通り、図示しないポンプによって昇圧された後、混合器50に供給される。混合器50は、アンモニアガス導出流路12を流通するアンモニアガスに、水分濃度が高くなった液体アンモニア100をスプレーし、混合流体を生成する。加熱器11は、混合器50を通過した混合流体を完全に気化させ、供給先に供給する。
 上述したように、本実施形態に係るアンモニア気化器1は、液体アンモニア100が導入されるシェル20と、シェル20の内部に設置され、熱媒体が流通する複数の伝熱管23と、シェル20の高さ方向の中間部から、液体アンモニア100を抜き出す液体アンモニア抜出部40と、を備える。この構成によれば、アンモニアの気化によって水分濃度が高くなった液体アンモニア100をシェル20内から効率よく排出することができる。
 また、本実施形態では、シェル20の内部で気化し、シェル20の外部に排出されたアンモニアガスに、液体アンモニア抜出部40から抜き出した液体アンモニア100を混合させる混合器50と、混合器50を通過した混合流体を気化させる加熱器11と、を備える。この構成によれば、シェル20から排出し、水分濃度が高くなった液体アンモニア100を気化させて、供給先に供給することができる。
 また、本実施形態では、液体アンモニア抜出部40が設けられる中間部は、複数の伝熱管23が配置される高さ方向の範囲A内に含まれる。この構成によれば、液体アンモニア100の液相上部から、水分濃度が高くなった液体アンモニア100を抜き出し易くなる。
 また、本実施形態では、液体アンモニア抜出部40は、中間部において、第1の高さに設けられた第1抜出口41と、中間部において、第1の高さと異なる第2の高さに設けられた第2抜出口42と、を備える。この構成によれば、シェル20内において高さの異なる2箇所から、水分濃度が高くなった液体アンモニア100を抜き出すことができる。
 また、本実施形態では、第1抜出口41に連通する第1連通流路19A(流路)を開閉するバルブ19a(第1開閉装置)と、第2抜出口42に連通する第2連通流路19B(流路)を開閉するバルブ19b(第2開閉装置)と、を備える。この構成によれば、シェル20内の液体アンモニア100の水面レベルに応じて、液体アンモニア100の抜出位置を変更できる。
 また、本実施形態では、第1熱媒体(熱媒体)は、海水200である。この構成によれば、液体アンモニア100を気化する第1熱媒体を、低廉で大量に確保できる。
 以上、本発明の好ましい実施形態を記載し説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、特許請求の範囲によって制限されている。
 本発明の一態様によれば、アンモニアの気化によって水分濃度が高くなった液体アンモニアをシェル内から効率よく排出することができる。
 1…アンモニア気化器、2…低温貯蔵タンク、3…液体アンモニア供給流路、3a…バルブ、10…気化器本体、10A…第1熱媒体入口部、10B…第1熱媒体出口部、10C…液体アンモニア気化室、11…加熱器、12…アンモニアガス導出流路、12a…第1枝管、12b…第2枝管、13…アンモニアガス供給流路、14…第1熱媒体供給流路、14a…ポンプ、15…第1熱媒体排出流路、16…第2熱媒体供給流路、17…第2熱媒体排出流路、18…底部抜出流路、18a…バルブ、19…中間部抜出流路、19a…バルブ(第1開閉装置)、19A…第1連通流路、19b…バルブ(第2開閉装置)、19B…第2連通流路、19c…バルブ、20…シェル、21…管板、22…管板、23…伝熱管、24…第1熱媒体供給口、25…第1熱媒体排出口、26…アンモニアガス導出口、26a…第1アンモニアガス導出口、26b…第2アンモニアガス導出口、27…液体アンモニア供給口、28…ドレン回収部、30…ディストリビューター、40…液体アンモニア抜出部、41…第1抜出口、42…第2抜出口、50…混合器、100…液体アンモニア、200…海水(熱媒体)、A…範囲、C1…中心位置、C2…中心位置

Claims (6)

  1.  液体アンモニアが導入されるシェルと、
     前記シェルの内部に設置され、熱媒体が流通する複数の伝熱管と、
     前記シェルの高さ方向の中間部から、前記液体アンモニアを抜き出す液体アンモニア抜出部と、を備える、
     アンモニア気化器。
  2.  前記シェルの内部で気化し、前記シェルの外部に排出されたアンモニアガスに、前記液体アンモニア抜出部から抜き出した前記液体アンモニアを混合させる混合器と、
     前記混合器を通過した混合流体を気化させる加熱器と、を備える、
     請求項1に記載のアンモニア気化器。
  3.  前記中間部は、前記複数の伝熱管が配置される高さ方向の範囲内に含まれる、
     請求項1に記載のアンモニア気化器。
  4.  前記液体アンモニア抜出部は、第1抜出口および第2抜出口を備え、
     前記第1抜出口は、前記中間部において、第1の高さに設けられ、
     前記第2抜出口は、前記中間部において、前記第1の高さと異なる第2の高さに設けられる、
     請求項1に記載のアンモニア気化器。
  5.  前記第1抜出口に連通する流路を開閉する第1開閉装置と、
     前記第2抜出口に連通する流路を開閉する第2開閉装置と、を備える、
     請求項4に記載のアンモニア気化器。
  6.  前記熱媒体は、海水である、
     請求項1~5のいずれか一項に記載のアンモニア気化器。
PCT/JP2023/044034 2022-12-22 2023-12-08 アンモニア気化器 WO2024135407A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-205752 2022-12-22
JP2022205752A JP2024090091A (ja) 2022-12-22 2022-12-22 アンモニア気化器

Publications (1)

Publication Number Publication Date
WO2024135407A1 true WO2024135407A1 (ja) 2024-06-27

Family

ID=91588469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044034 WO2024135407A1 (ja) 2022-12-22 2023-12-08 アンモニア気化器

Country Status (2)

Country Link
JP (1) JP2024090091A (ja)
WO (1) WO2024135407A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120042A (ja) * 1974-03-11 1975-09-19
US4413479A (en) * 1981-04-15 1983-11-08 Institut Francais Du Petrole Process for producing cold and/or heat by means of an absorption cycle
US20030074915A1 (en) * 2001-10-22 2003-04-24 Cosby Ronald M. Single-pass, direct-fired generator for an absorption chiller
JP2009500866A (ja) * 2005-07-11 2009-01-08 プラクスエア・テクノロジー・インコーポレイテッド 低蒸気圧ガスシステム
JP2018200029A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 発電システム
CN210384868U (zh) * 2019-05-22 2020-04-24 南京恒正能源科技有限公司 列管式氨水蒸发撬装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120042A (ja) * 1974-03-11 1975-09-19
US4413479A (en) * 1981-04-15 1983-11-08 Institut Francais Du Petrole Process for producing cold and/or heat by means of an absorption cycle
US20030074915A1 (en) * 2001-10-22 2003-04-24 Cosby Ronald M. Single-pass, direct-fired generator for an absorption chiller
JP2009500866A (ja) * 2005-07-11 2009-01-08 プラクスエア・テクノロジー・インコーポレイテッド 低蒸気圧ガスシステム
JP2018200029A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 発電システム
CN210384868U (zh) * 2019-05-22 2020-04-24 南京恒正能源科技有限公司 列管式氨水蒸发撬装置

Also Published As

Publication number Publication date
JP2024090091A (ja) 2024-07-04

Similar Documents

Publication Publication Date Title
JP3946398B2 (ja) 中間媒体式気化器及び当該気化器を用いた天然ガスの供給方法
CN104048161B (zh) 一种液态天然气(lng)的联合气化装置
US7841305B2 (en) Heat exchange apparatus
CN105042326B (zh) 紧凑式中间流体型气化器
US20090065181A1 (en) System and method for heat exchanger fluid handling with atmospheric tower
US10775080B2 (en) LNG gasification systems and methods
CN101313190B (zh) 蒸汽热交换器
CN108351072B (zh) 中间介质式气体气化器
CN201325879Y (zh) 管壳式换热器型液氨蒸发器
KR102086641B1 (ko) 중간 매체식 기화기
KR100416690B1 (ko) 열교환기장치
WO2024135407A1 (ja) アンモニア気化器
JP2007247797A (ja) Lngベーパライザ
US2561506A (en) Liquefied gas evaporator
WO2024135405A1 (ja) アンモニア気化器
WO2024135406A1 (ja) アンモニア気化器
JP6666703B2 (ja) 熱交換器
CN205278766U (zh) 低温流体汽化器
JPS6124634B2 (ja)
CN109716012B (zh) 再气化装置
JPH03229100A (ja) 低温液化ガスの気化装置
JPH07294162A (ja) 熱交換装置
CN111692895B (zh) 一种冷火炬气分液、汽化和升温***
EP4386300A1 (en) Liquid hydrogen vaporizer, and generation method for generating hydrogen
JP2951567B2 (ja) 液化ガスの蒸発装置