WO2024135198A1 - Navigation assistance device, navigation assistance method, and program - Google Patents

Navigation assistance device, navigation assistance method, and program Download PDF

Info

Publication number
WO2024135198A1
WO2024135198A1 PCT/JP2023/041633 JP2023041633W WO2024135198A1 WO 2024135198 A1 WO2024135198 A1 WO 2024135198A1 JP 2023041633 W JP2023041633 W JP 2023041633W WO 2024135198 A1 WO2024135198 A1 WO 2024135198A1
Authority
WO
WIPO (PCT)
Prior art keywords
condition
ship
route
constraint condition
avoidance
Prior art date
Application number
PCT/JP2023/041633
Other languages
French (fr)
Japanese (ja)
Inventor
和也 中川
将吾 鎌田
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2024135198A1 publication Critical patent/WO2024135198A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H25/04Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring automatic, e.g. reacting to compass
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems

Definitions

  • the present invention relates to a navigation support device, a navigation support method, and a program.
  • Patent Document 1 discloses a technology that calculates the future collision risk between one's own ship and another ship when the own ship is sailing according to a sailing schedule, and then weights the calculated collision risk by the time until the future state is reached, to sequentially calculate the collision risk taking into account the degree of temporal certainty.
  • Automatic collision avoidance maneuvering algorithms search for an avoidance route under restrictive conditions, such as compliance with rules for collision prevention. If the search results in no suitable avoidance route being found, the ship will move on to stopping.
  • the present invention was made in consideration of the above problems, and its main objective is to provide a navigation support device, a navigation support method, and a program that enable continued navigation.
  • a navigation support device includes a first route calculation unit that calculates a first avoidance route for avoidance under a first constraint condition, a second route calculation unit that calculates a second avoidance route under a second constraint condition that relaxes the first constraint condition when the cost of the first avoidance route is equal to or greater than a predetermined value, and a ship stopping decision unit that decides to stop the ship when the cost of the second avoidance route is equal to or greater than a predetermined value.
  • the first constraint condition may be a condition that limits the route search range for searching for an avoidance route to a predetermined range
  • the second constraint condition may be a condition that expands the route search range outside the predetermined range. This makes it possible to continue navigation by expanding the route search range.
  • the predetermined range may be a passing allowable range in which other ships are permitted to pass under rules for collision prevention. This makes it possible to extend the route search range beyond the passing allowable range and continue navigation.
  • the first constraint condition may be a condition for maintaining the boat speed
  • the second constraint condition may be a condition for allowing a change in the boat speed. This makes it possible to continue navigation while allowing the change in the boat speed.
  • the ship stopping determination unit may further determine to stop the ship when the rate of change in ship speed is equal to or greater than a predetermined rate. This makes it possible to transition to stopping the ship when the rate of change in ship speed becomes excessive.
  • the first constraint condition may be a condition that prohibits re-passing the same point
  • the second constraint condition may be a condition that allows re-passing the same point by turning. This makes it possible to continue navigation by turning so as to re-pass the same point.
  • the vessel stopping determination unit may further determine to stop the vessel when the turning angle is equal to or greater than a predetermined value. This makes it possible to transition to a vessel stopping state when the turning angle becomes excessive.
  • the first constraint condition may include a condition for limiting the route search range for searching for an avoidance route to a predetermined range and a condition for maintaining the vessel speed
  • the second constraint condition may include a condition for expanding the route search range outside the predetermined range and a condition for allowing changes in the vessel speed. This makes it possible to continue navigation by expanding the route search range and allowing changes in the vessel speed.
  • the first constraint condition may include a condition that limits the route search range for searching for an avoidance route to a predetermined range and a condition that prohibits re-passing the same point
  • the second constraint condition may include a condition that expands the route search range outside the predetermined range and a condition that allows re-passing the same point by turning. This makes it possible to continue navigation by expanding the route search range and allowing a turn to re-pass the same point.
  • the first constraint condition may include a condition to maintain the ship speed and a condition to prohibit re-passing the same point
  • the second constraint condition may include a condition to allow a change in ship speed and a condition to allow re-passing the same point by turning. This makes it possible to continue navigation by allowing a change in ship speed and turning to re-pass the same point.
  • the first constraint condition may include a condition for limiting the route search range for searching for an avoidance route to a predetermined range, a condition for maintaining the vessel speed, and a condition for prohibiting re-passing the same point
  • the second constraint condition may include a condition for expanding the route search range outside the predetermined range, a condition for allowing a change in vessel speed, and a condition for allowing re-passing the same point by turning.
  • the cost may be based on the collision risk on the avoidance route. This makes it possible to search for an avoidance route that reduces the collision risk.
  • a ship detection unit may be further provided that detects other ships that are to be avoided based on data generated by a radar, an AIS, or a camera. This makes it possible to detect other ships that are to be avoided.
  • a navigation support method calculates a first avoidance route for avoidance under a first constraint condition, and if the cost of the first avoidance route is equal to or greater than a predetermined value, calculates a second avoidance route under a second constraint condition that relaxes the first constraint condition, and if the cost of the second avoidance route is equal to or greater than a predetermined value, decides to stop the ship. This makes it possible to continue navigation.
  • a program causes a computer to calculate a first avoidance route for avoidance under a first constraint condition, calculate a second avoidance route under a second constraint condition that relaxes the first constraint condition if the cost of the first avoidance route is equal to or greater than a predetermined value, and decide to stop the ship if the cost of the second avoidance route is equal to or greater than a predetermined value. This makes it possible to continue navigation.
  • FIG. 1 illustrates an example of a shipboard system.
  • FIG. 1 illustrates an example of a navigation support device.
  • FIG. 4 is a diagram showing an example of a other ship management database.
  • FIG. 13 is a diagram for explaining calculation of an avoidance route.
  • FIG. 13 is a diagram for explaining constraint conditions.
  • FIG. 13 is a diagram for explaining constraint conditions.
  • FIG. 13 is a diagram for explaining constraint conditions.
  • FIG. 13 is a diagram for explaining constraint conditions.
  • FIG. 13 is a diagram for explaining constraint conditions.
  • FIG. 13 is a diagram for explaining constraint conditions.
  • FIG. 13 is a diagram for explaining constraint conditions.
  • FIG. 13 is a diagram illustrating an example of a navigation support method.
  • FIG. 13 is a diagram illustrating an example of a navigation support method.
  • FIG. 13 is a diagram illustrating an example of a navigation support method.
  • FIG. 1 is a block diagram showing an example configuration of the shipboard system 100.
  • the shipboard system 100 is a system installed on a ship.
  • the ship on which the shipboard system 100 is installed is referred to as the "own ship” and other ships are referred to as "other ships.”
  • the shipboard system 100 includes a navigation assistance device 1, a display unit 2, a radar 3, an AIS 4, a camera 5, a GNSS receiver 6, a gyrocompass 7, an ECDIS 8, a wireless communication unit 9, and a ship steering control unit 10. These devices are connected to a network N, such as a LAN, and are capable of network communication with each other.
  • a network N such as a LAN
  • the navigation support device 1 is equipped with a computer including a CPU, RAM, ROM, non-volatile memory, and an input/output interface.
  • the CPU of the navigation support device 1 executes information processing according to a program loaded from the ROM or non-volatile memory to the RAM.
  • the program may be supplied via an information storage medium such as an optical disk or a memory card, or via a communications network such as the Internet or a LAN.
  • an information storage medium such as an optical disk or a memory card
  • a communications network such as the Internet or a LAN.
  • the display unit 2 displays radar images, camera images, electronic nautical charts, etc.
  • the display unit 2 is, for example, a display device with a touch sensor, a so-called touch panel.
  • the touch sensor detects the position on the screen pointed to by the user's finger, etc. Without being limited to this, the pointed position may also be input by a trackball, etc.
  • the radar 3 emits radio waves around the ship, receives the reflected waves, and generates echo data based on the received signals.
  • the radar 3 also identifies targets from the echo data and generates TT data (Target Tracking Data) that represents the target's position and speed.
  • the AIS (Automatic Identification System) 4 receives AIS data from other ships around the ship or from land-based control. It is not limited to AIS, and VDES (VHF Data Exchange System) may also be used. AIS data includes the identification codes, names, positions, courses, speeds, types, lengths, and destinations of other ships.
  • Camera 5 is a digital camera that captures images of the outside world from the ship and generates image data.
  • Camera 5 is installed, for example, on the bridge of the ship, facing the bow direction.
  • Camera 5 is, for example, a so-called PTZ camera that has pan/tilt and optical zoom functions.
  • the camera 5 may include an image recognition unit that estimates the in-image position and type of a target, such as a ship, contained in a captured image using an object detection model.
  • the image recognition unit is not limited to the camera 5, and may be realized in other devices, such as the navigation support device 1.
  • the GNSS receiver 6 detects the ship's position based on radio waves received from the Global Navigation Satellite System (GNSS).
  • the gyrocompass 7 detects the ship's bow direction.
  • a GPS compass may be used instead of a gyrocompass.
  • the ECDIS (Electronic Chart Display and Information System) 8 acquires the ship's position from the GNSS receiver 6 and displays the ship's position on an electronic chart.
  • the ECDIS 8 also displays the ship's planned route on the electronic chart.
  • a GNSS plotter may be used instead of an ECDIS.
  • the wireless communication unit 9 includes wireless equipment that realizes satellite communication.
  • the wireless communication unit 9 also includes wireless equipment that realizes wireless communication using, for example, ultra-high frequency waves, very high frequency waves, short waves, medium high frequency waves, or medium waves.
  • the ship steering control unit 10 is a control device for realizing autonomous navigation, and controls the ship's steering gear.
  • the ship steering control unit 10 may also control the ship's engine.
  • the navigation support device 1 is an independent device, but this is not limiting and it may be integrated with another device such as ECDIS 8. In other words, the functional parts of the navigation support device 1 may be realized by another device.
  • the navigation support device 1 is mounted on a ship, but this is not limiting.
  • it may be installed at a control center on land to provide the ship with an avoidance route or a command to stop.
  • FIG. 2 is a block diagram showing an example of the configuration of the navigation support device 1.
  • the navigation support device 1 includes a control unit 20.
  • the control unit 20 is a computer including a CPU, RAM, ROM, non-volatile memory, an input/output interface, etc.
  • the control unit 20 includes an other ship data acquisition unit 11, an own ship data acquisition unit 12, a collision risk calculation unit 13, a meeting relationship determination unit 14, an avoidance route calculation unit 15, an assistance calculation unit 16, and a ship stopping determination unit 17.
  • the other ship data acquisition unit 11 is an example of a other ship detection unit
  • the avoidance route calculation unit 15 is an example of a first route calculation unit
  • the auxiliary calculation unit 16 is an example of a second route calculation unit.
  • the other ship data acquisition unit 11 acquires other ship data that indicates the position and speed of other ships.
  • Speed is a vector quantity that is expressed by ship speed and course.
  • Other ship data is generated based on data detected by the radar 3, AIS 4, or camera 5 installed on the ship.
  • the other ship data acquisition unit 11 sequentially acquires, as other ship data, the TT data generated by the radar 3, the AIS data received by the AIS 4, or the identification data identified from the images captured by the camera 5.
  • the other ship data acquisition unit 11 registers the acquired other ship data in a other ship management database constructed in memory.
  • the other ship management database includes fields such as "Ship ID,” “Source,” “Position,” “Speed,” and “Course.”
  • “Ship ID” is an identifier given to other ships.
  • “Source” indicates whether the other ship data was generated by radar 3, AIS 4, or camera 5.
  • Position indicates the position of the other ship.
  • the position of the other ship is expressed as latitude and longitude.
  • the position of the other ship detected by the radar 3 or camera 5 is expressed as a relative position to the ship itself, so it is converted to an absolute position using the ship's own position detected by the GNSS receiver 6.
  • Speed indicates the speed of the other ship.
  • Ship speed is a scalar quantity.
  • Corona indicates the course of the other ship.
  • the speed and course of the other ship detected by radar 3 or camera 5 are estimated from the change over time in the position of the other ship in the image.
  • the ship data acquisition unit 12 acquires ship data representing the ship's position and speed. Specifically, the ship data acquisition unit 12 sequentially acquires the ship's position detected by the GNSS receiver 6, and calculates the ship's speed from the change in the ship's position over time. Without being limited to this, the ship's speed may be acquired from a speedometer, and the ship's course may be acquired from a gyrocompass 7.
  • the collision risk calculation unit 13 estimates the collision risk between the ship and other ships based on the other ship data acquired by the other ship data acquisition unit 11 and the own ship data acquired by the own ship data acquisition unit 12.
  • the collision risk calculation unit 13 calculates a collision risk area where the risk of collision between the ship and another ship is greater than or equal to a predetermined value.
  • the collision risk area is, for example, OZT (Obstacle Zone by Target). It is not limited to OZT, and for example, PAD (Predict Area of Danger) or DAC (Dangerous Area of Collision) may also be used.
  • the collision risk calculation unit 13 may also calculate a collision risk value, such as the CPA (Closest Point of Approach) or the SJ value (Subject Judgement), which indicates the risk of collision between the ship and another ship.
  • a collision risk value such as the CPA (Closest Point of Approach) or the SJ value (Subject Judgement), which indicates the risk of collision between the ship and another ship.
  • the meeting relationship determination unit 14 determines the meeting relationship between the own ship and other ships based on the other ship data acquired by the other ship data acquisition unit 11 and the own ship data acquired by the own ship data acquisition unit 12. Meeting relationships include a meeting relationship, a crossing relationship, and an overtaking relationship. The meeting relationship determination unit 14 calculates the course difference between the own ship and other ships, and classifies the meeting relationship based on the position and course difference of the other ship relative to the own ship.
  • the avoidance route calculation unit 15 calculates an avoidance route when the need for avoidance arises based on the positions and speeds of other ships acquired by the other ship data acquisition unit 11, the collision risk between the ship and other ships calculated by the collision risk calculation unit 13, and the meeting relationship between the ship and other ships determined by the meeting relationship determination unit 14.
  • Examples of when avoidance becomes necessary include when there is a target such as another ship near the ship, when there is a collision risk area on the ship's course or planned route, or when the collision risk value is above or below a specified level.
  • the avoidance route calculation unit 15 uses an avoidance maneuvering algorithm to calculate an avoidance route for avoidance under predetermined constraint conditions.
  • the constraint conditions applied by the avoidance route calculation unit 15 are also referred to as “first constraint conditions”
  • the avoidance route calculated by the avoidance route calculation unit 15 is also referred to as “first avoidance route”.
  • FIG. 4 is a diagram for explaining the calculation of an avoidance route.
  • the figure shows a virtual plane for searching for an avoidance route.
  • a large number of search points SD are arranged in a matrix on the virtual plane. Only a portion of the search points SD are shown in the figure.
  • the avoidance route calculation unit 15 calculates multiple candidate routes CR from the ship PS to the target point DS.
  • the candidate routes CR are composed of links that connect the search points SD.
  • the avoidance route calculation unit 15 uses a route search method to generate candidate routes CR with low costs.
  • the cost is calculated based on the collision risk along the route. That is, the higher the collision risk, the higher the cost, and the lower the collision risk, the lower the cost. For this reason, the route candidates CR are generated to avoid other ships OP and collision risk areas OZ.
  • the cost is also calculated based on the length of the route. That is, the longer the route, the higher the cost, and the shorter the route, the lower the cost. For this reason, the route candidates CR are generated to reach the target point DS from the own ship PS via a shorter route.
  • the cost is also calculated based on the degree of course change. That is, the greater the course change, the greater the cost, and the smaller the course change, the lower the cost. For this reason, route candidates CR are generated so that there are fewer opportunities for course changes and the course changes are smaller.
  • the avoidance route calculation unit 15 selects the route candidate CR with the smallest cost from among the multiple route candidates CR as the "first avoidance route.”
  • the avoidance route calculation unit 15 outputs the first avoidance route to the ship steering control unit 10 when the cost of the selected first avoidance route is less than a predetermined threshold serving as the adoption criterion.
  • the ship steering control unit 10 controls the ship steering so that the ship follows the first avoidance route.
  • the cost of the selected first avoidance route is low enough to be adopted, in other words, if a first avoidance route that meets the adoption criteria is generated, the first avoidance route is adopted and provided to the ship maneuvering control unit 10.
  • the assistance calculation unit 16 calculates an avoidance route as described below. In other words, if the cost of the selected first avoidance route is too high to be adopted, in other words, if no first avoidance route that meets the adoption criterion has been generated, the first avoidance route will not be adopted.
  • the first constraint condition will now be explained.
  • the avoidance route calculation unit 15 applies the following first constraint condition.
  • the first constraint condition includes a condition that limits the route search range for searching for an avoidance route to a predetermined range.
  • the predetermined range is the allowable passing range within which other ships are permitted to pass under regulations for collision prevention.
  • Rules for preventing collisions include, for example, the Convention on International Regulations for Preventing Collisions at Sea (COLREG Convention) or the Act on Preventing Collisions at Sea in Japan.
  • Figure 5A shows an example where the first ship PS and another ship OP are in an intersecting relationship.
  • the collision risk area OZ of the other ship OP is on the course of the first ship PS, and if the first ship PS continues on this path, there is a risk of collision with the other ship OP.
  • ship PS becomes the "giving way ship” and is obligated to give way.
  • the own ship PS can move to the starboard side and cross the stern of the other ship OP. In other words, the own ship PS can pass to the right of the collision risk area OZ. On the other hand, the own ship PS is not permitted to move to the port side and cross the bow of the other ship OP.
  • the avoidance route calculation unit 15 defines the area to the right of the bow line of the ship PS as the allowable passing range LA and the area to the left of the bow line of the ship PS as the non-allowable passing range NA, limits the route search range to the allowable passing range LA, and searches for an avoidance route SR within the allowable passing range LA.
  • the allowable passing range LA is the route search range
  • the non-allowable passing range NA is not the route search range.
  • Limiting the route search range to the passing range LA means placing search points SD within the passing range LA and not placing search points SD outside of that range.
  • Figure 6A shows an example where the own ship PS and another ship OP are in a meeting relationship. According to the rules for preventing collisions, when the own ship PS and the other ship OP are heading towards each other and meeting, both the own ship PS and the other ship OP become "giving way vessels" and both have an obligation to give way.
  • ship PS must move to the starboard side to avoid ship OP, and is not permitted to move to the port side.
  • ship OP must move to the starboard side to avoid ship PS, and is not permitted to move to the port side.
  • the avoidance route calculation unit 15 also sets the range to the right of the bow line of the ship PS as the allowable passing range LA and the range to the left of the bow line of the ship PS as the non-allowable passing range NA, limits the route search range to the allowable passing range LA, and searches for the avoidance route SR within the allowable passing range LA.
  • condition limiting the route search range to the passable range LA is relaxed to a condition expanding the range outside the passable range LA, but this is not limiting.
  • condition limiting the route search range to a specified water area may be relaxed to a condition expanding the range outside the specified water area.
  • the first constraint condition may also include a condition to maintain the vessel speed or a condition to prohibit a change in the vessel speed.
  • the avoidance route calculation unit 15 calculates the avoidance route SR for the vessel PS to travel at a constant vessel speed.
  • the first constraint condition may also include a condition that prohibits re-passing the same point.
  • the avoidance route calculation unit 15 is configured not to calculate an avoidance route SR that would cause the ship PS to re-pass the same point.
  • the auxiliary calculation unit 16 calculates an avoidance route under constraint conditions that relax the first constraint conditions.
  • the constraint conditions applied by the auxiliary calculation unit 16 are also referred to as “second constraint conditions,” and the avoidance route calculated by the auxiliary calculation unit 16 is also referred to as “second avoidance route.”
  • the auxiliary calculation unit 16 performs the same calculations as the avoidance route calculation unit 15, except that the constraint conditions are different. In other words, the auxiliary calculation unit 16 uses the same avoidance maneuvering algorithm as the avoidance route calculation unit 15, and calculates a second avoidance route under a second constraint condition.
  • the second constraint condition includes a condition that expands the route search range outside the passable range. This condition corresponds to the condition that limits the route search range to the passable range described above.
  • FIG. 5B shows an example where the own ship PS and another ship OP are in an intersecting relationship.
  • FIG. 6B shows an example where the own ship PS and another ship OP are in an intersecting relationship.
  • the auxiliary calculation unit 16 expands the route search range outside the passable range LA to search for the avoidance route SR. In other words, the auxiliary calculation unit 16 searches for the avoidance route SR using not only the passable range LA but also the non-passable range NA as the route search range.
  • Extending the route search range outside the passing range LA means placing search points SD not only within the passing range LA but also in other ranges.
  • the auxiliary calculation unit 16 can calculate an escape route SR that proceeds to the port side so as to avoid, for example, the collision risk area OZ in front and the collision risk area OZ on the starboard side.
  • the second constraint condition may also include a condition that allows for changes in the vessel speed. This condition corresponds to the condition for maintaining the vessel speed described above.
  • the auxiliary calculation unit 16 may calculate an avoidance route SR in which the vessel speed changes.
  • the second constraint condition may also include a condition that permits passing through the same point again by turning. This condition corresponds to the above-mentioned condition that prohibits passing through the same point again. As shown in FIG. 7B, the auxiliary calculation unit 16 may calculate an avoidance route SR that turns so as to pass through the same point again.
  • the assistance calculation unit 16 outputs the second avoidance route to the ship steering control unit 10.
  • the ship steering control unit 10 controls the ship steering so that the ship follows the second avoidance route.
  • the cost of the selected second avoidance route is low enough to be adopted, in other words, if a second avoidance route that meets the adoption criteria is generated, the second avoidance route is adopted and provided to the ship maneuvering control unit 10.
  • the ship stopping decision unit 17 decides to stop the ship as described below. In other words, if the cost of the selected second avoidance route is too high to be adopted, in other words, if no second avoidance route that meets the adoption criterion has been generated, the second avoidance route will not be adopted.
  • the ship stopping decision unit 17 decides to stop the ship if the cost of the second avoidance route is equal to or greater than a predetermined cost that serves as the adoption criterion.
  • the ship stopping decision unit 17 decides to stop the ship, it outputs a stop command to the ship steering control unit 10.
  • the ship steering control unit 10 controls the ship steering so that the ship stops.
  • the ship stopping decision unit 17 may also decide to stop the ship when the degree of change in ship speed of the second avoidance route calculated under conditions that allow changes in ship speed is equal to or greater than a predetermined value.
  • the degree of change in ship speed is, for example, the amount or rate of change in ship speed.
  • the ship stopping decision unit 17 may also decide to stop if the turning angle of the second avoidance route calculated under conditions that allow re-passing the same point by turning is equal to or greater than a predetermined value.
  • FIGS. 8-10 are flow diagrams mainly showing an example of the processing procedure related to the calculation of an avoidance route and the decision to stop the ship in the navigation support method realized in the navigation support device 1.
  • the control unit 20 of the navigation support device 1 executes the information processing shown in the figures according to a program, thereby functioning as the avoidance route calculation unit 15, the assistance calculation unit 16, and the stopping decision unit 17.
  • the process shown in FIG. 8 is started when the need for an avoidance occurs.
  • the control unit 20 of the navigation support device 1 calculates a first avoidance route under a first constraint condition (S11, processing as the avoidance route calculation unit 15).
  • the first constraint condition includes, for example, a condition that limits the route search range to an allowable passing range, a condition that maintains the ship's speed, and a condition that prohibits re-passing the same point.
  • control unit 20 determines whether the calculated first avoidance route is adoptable (S12). Whether the first avoidance route is adoptable is determined based on whether the cost of the first avoidance route is less than a predetermined threshold.
  • the control unit 20 adopts the first avoidance route and provides it to the ship maneuvering control unit 10 (S16).
  • the control unit 20 calculates a second avoidance route under a second constraint condition that relaxes the first constraint condition (S13, processing as the auxiliary calculation unit 16).
  • control unit 20 determines whether the calculated second avoidance route is adoptable (S14).
  • the adoptability is determined based on whether the cost of the second avoidance route is less than a predetermined threshold.
  • control unit 20 adopts the second avoidance route and provides it to the ship maneuvering control unit 10 (S16).
  • the control unit 20 decides to stop the ship and outputs a stopping command to the ship steering control unit 10 (S15, processing as the stopping decision unit 17).
  • FIG. 9 shows a specific example of processing in S13.
  • the control unit 20 calculates an avoidance route by allowing passage through areas that violate rules for collision prevention (S131). That is, the control unit 20 calculates an avoidance route under a condition (second constraint condition) that expands the route search range beyond the allowable passing range, which is relaxed from the condition (first constraint condition) that limits the route search range to the allowable passing range (see Figures 5A-6B).
  • control unit 20 calculates an avoidance route while allowing for changes in the vessel speed (S132). That is, the control unit 20 calculates an avoidance route under a condition that allows for changes in the vessel speed (a second constraint condition) that is relaxed from the condition that maintains the vessel speed (a first constraint condition).
  • control unit 20 calculates an avoidance route that involves turning and passing through the same point again (S133). That is, the control unit 20 calculates an avoidance route under a condition that allows passing through the same point again by turning (a second constraint condition) that is relaxed from a condition that prohibits passing through the same point again (a first constraint condition) (see Figures 7A and 7B).
  • the avoidance route is calculated by relaxing one of the conditions of limiting the route search range to the allowable passing range, maintaining the ship speed, and prohibiting re-passing the same point, but this is not limited to the above, and the avoidance route may be calculated by relaxing two or all of these three conditions.
  • FIG. 10 shows a specific example of the processing in S14.
  • the control unit 20 excludes from the multiple avoidance routes those avoidance routes where the rate of change in vessel speed is equal to or greater than a predetermined level (S141).
  • control unit 20 excludes avoidance routes with a turning angle equal to or greater than a predetermined value (S142). This mainly applies to avoidance routes calculated in S133 above by allowing re-passing the same point by turning. This excludes avoidance routes with excessive turning angles. Alternatively, it is possible not to calculate an avoidance route when the turning angle is equal to or greater than a predetermined value in S133 above.
  • control unit 20 determines whether or not there is an avoidance route whose cost is less than a predetermined threshold (S143). If there is no avoidance route whose cost is less than the predetermined threshold (S143: NO), the control unit 20 decides to stop the ship (S15).
  • the control unit 20 selects an avoidance route (S144). If multiple avoidance routes remain, the control unit 20 may select, for example, the avoidance route with the smallest cost, or may select one avoidance route according to a predetermined priority order.
  • a navigation aid device comprising:
  • the first constraint condition is a condition for limiting a route search range for searching for a collision avoidance route to a predetermined range
  • the second constraint condition is a condition for expanding the route search range outside the predetermined range
  • the predetermined range is a passing allowable range within which other ships are permitted to pass under regulations for collision prevention.
  • the first constraint condition is a condition for maintaining a vessel speed
  • the second constraint condition is a condition that allows for a change in boat speed.
  • the ship stopping determination unit further determines to stop the ship when a rate of change in ship speed is equal to or greater than a predetermined rate.
  • a navigation support device as described in (4).
  • the first constraint condition is a condition prohibiting re-passing the same point
  • the second constraint condition is a condition that allows the aircraft to pass through the same point again by turning.
  • the ship stopping determination unit further determines that the ship is to stop when the turning angle is equal to or greater than a predetermined value.
  • the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range and a condition for maintaining a ship speed;
  • the second constraint condition includes a condition for expanding the route search range outside the predetermined range and a condition for allowing a change in boat speed;
  • a navigation support device according to any one of (1) to (7).
  • the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range and a condition for prohibiting re-passing the same point;
  • the second constraint condition includes a condition for expanding the route search range to outside the predetermined range and a condition for allowing the vehicle to pass through the same point again by turning;
  • a navigation support device according to any one of (1) to (8).
  • the first constraint condition includes a condition for maintaining a ship speed and a condition for prohibiting re-passing the same point
  • the second constraint condition includes a condition allowing a change in vessel speed and a condition allowing re-passing of the same point by turning
  • a navigation support device according to any one of (1) to (9).
  • the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range, a condition for maintaining a ship speed, and a condition for prohibiting re-passing the same point;
  • the second constraint condition includes a condition for expanding the route search range beyond the predetermined range, a condition for allowing a change in ship speed, and a condition for allowing re-passing the same point by turning;
  • a navigation support device according to any one of (1) to (10).
  • the cost is based on a collision risk in the avoidance route.
  • a navigation support device according to any one of (1) to (11).
  • the navigation system further includes a ship detection unit that detects other ships to be avoided based on data generated by a radar, an AIS, or a camera.
  • a navigation support device according to any one of (1) to (12).
  • All processes described herein may be embodied and fully automated by software code modules executed by a computing system including one or more computers or processors.
  • the code modules may be stored in any type of non-transitory computer-readable medium or other computer storage device. Some or all of the methods may be embodied in dedicated computer hardware.
  • the various exemplary logic blocks and modules described in connection with the embodiments disclosed herein may be implemented or executed by a machine such as a processor.
  • the processor may be a microprocessor, but alternatively the processor may be a controller, a microcontroller, or a state machine, or a combination thereof.
  • the processor may include electrical circuitry configured to process computer-executable instructions.
  • the processor includes an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable device that performs logical operations without processing computer-executable instructions.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the processor may also be implemented as a combination of computing devices, such as a combination of a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, the processor may also include primarily analog elements. For example, some or all of the signal processing algorithms described herein may be implemented by analog circuitry or mixed analog and digital circuitry.
  • the computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, mainframe computer, digital signal processor, portable computing device, device controller, or computational engine within an appliance.
  • conditional language such as “can,” “could,” “would,” or “potential” is understood within the context in which it is generally used to convey that certain embodiments include certain features, elements, and/or steps, while other embodiments do not. Thus, such conditional language does not generally imply that features, elements, and/or steps are required in any manner in one or more embodiments, or that one or more embodiments necessarily include logic for determining whether those features, elements, and/or steps are included in or performed in any particular embodiment.
  • Disjunctive language such as "at least one of X, Y, Z" is understood in the context where it is generally used to indicate that an item, term, etc. may be either X, Y, Z, or any combination thereof (e.g., X, Y, Z), unless specifically stated otherwise. Thus, such disjunctive language does not generally imply that a particular embodiment requires that each of at least one of X, at least one of Y, or at least one of Z, respectively, be present.
  • a processor configured to perform the following A, B, and C may include a first processor configured to perform A and a second processor configured to perform B and C.
  • the term “horizontal” as used herein is defined as a plane parallel to the plane or surface of the floor of the area in which the described system is used or the plane in which the described method is performed, regardless of its orientation.
  • the term “floor” may be interchanged with the terms “ground” or “water surface”.
  • the term “vertical” refers to a direction perpendicular to a defined horizontal line. Terms such as “upper”, “lower”, “below”, “up”, “side”, “higher”, “lower”, “above”, “over”, “below” and the like are defined relative to the horizontal plane.
  • connection includes a direct connection and/or a connection having an intermediate structure between the two components described.
  • 1 Navigation support device 2 Display unit, 3 Radar, 4 AIS, 5 Camera, 6 GNSS receiver, 7 Gyrocompass, 8 ECDIS, 9 Wireless communication unit, 10 Ship maneuvering control unit, 20 Control unit, 11 Other ship data acquisition unit (example of other ship detection unit), 12 Own ship data acquisition unit, 13 Collision risk calculation unit, 14 Meeting relationship determination unit, 15 Evasion route calculation unit (example of first route calculation unit), 16 Auxiliary calculation unit (example of second route calculation unit), 17 Stopping decision unit, 100 Onboard system

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

[Problem] To provide a navigation assistance device by which navigation can continue. [Solution] This navigation assistance device comprises: a first route calculation unit which calculates a first evading route for evading under a first constraint condition; a second route calculation unit which calculates a second evading route under a second constraint condition that is more relaxed than the first constraint condition when the cost for the first evading route is equal to or greater than a prescribed value; and a ship stoppage determination unit which determines ship stoppage when the cost of the second evading route is equal to or greater than a prescribed value.

Description

航行支援装置、航行支援方法、及びプログラムNavigation support device, navigation support method, and program
 本発明は、航行支援装置、航行支援方法、及びプログラムに関する。 The present invention relates to a navigation support device, a navigation support method, and a program.
 特許文献1には、自船が航行予定に基づいて航行したときの、自船と他船の将来の衝突危険度を求め、さらに求めた衝突危険度に対して将来の状態になるまでの時間で重み付けをして時間的な確信度を考慮した衝突危険度を順次算出する技術が開示されている。 Patent Document 1 discloses a technology that calculates the future collision risk between one's own ship and another ship when the own ship is sailing according to a sailing schedule, and then weights the calculated collision risk by the time until the future state is reached, to sequentially calculate the collision risk taking into account the degree of temporal certainty.
特開平11-272999号公報Japanese Patent Application Publication No. 11-272999
 近年、自動避航操船の研究が進められている。自動避航操船のアルゴリズムは、例えば衝突予防のための規則を遵守する等の制約条件下で避航経路を探索する。探索の結果、使用に適した避航経路が見つからない場合には、停船に移行する。 In recent years, research into automatic collision avoidance maneuvering has been progressing. Automatic collision avoidance maneuvering algorithms search for an avoidance route under restrictive conditions, such as compliance with rules for collision prevention. If the search results in no suitable avoidance route being found, the ship will move on to stopping.
 しかしながら、停船は最終的な手段であり、停船からの復旧には時間と労力を要するため、できる限り航行を継続する方が好ましい。 However, stopping the ship is a last resort, and since recovering from a stopped ship takes time and effort, it is preferable to continue sailing as much as possible.
 本発明は、上記課題に鑑みてなされたものであり、その主な目的は、航行の継続を図ることが可能な航行支援装置、航行支援方法、及びプログラムを提供することにある。 The present invention was made in consideration of the above problems, and its main objective is to provide a navigation support device, a navigation support method, and a program that enable continued navigation.
 上記課題を解決するため、本発明の一の態様の航行支援装置は、第1の制約条件下で避航のための第1の避航経路を算出する第1経路算出部と、前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で第2の避航経路を算出する第2経路算出部と、前記第2の避航経路のコストが所定以上である場合に、停船を決定する停船判断部と、を備える。これによれば、航行の継続を図ることが可能となる。 In order to solve the above problem, a navigation support device according to one aspect of the present invention includes a first route calculation unit that calculates a first avoidance route for avoidance under a first constraint condition, a second route calculation unit that calculates a second avoidance route under a second constraint condition that relaxes the first constraint condition when the cost of the first avoidance route is equal to or greater than a predetermined value, and a ship stopping decision unit that decides to stop the ship when the cost of the second avoidance route is equal to or greater than a predetermined value. This makes it possible to continue navigation.
 上記態様において、前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件であり、前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件であってもよい。これによれば、経路探索範囲を拡張して航行の継続を図ることが可能となる。 In the above aspect, the first constraint condition may be a condition that limits the route search range for searching for an avoidance route to a predetermined range, and the second constraint condition may be a condition that expands the route search range outside the predetermined range. This makes it possible to continue navigation by expanding the route search range.
 上記態様において、前記所定の範囲は、衝突予防のための規則上、他船に対して通過が許容される通過許容範囲であってもよい。これによれば、経路探索範囲を通過許容範囲外に拡張して航行の継続を図ることが可能となる。 In the above aspect, the predetermined range may be a passing allowable range in which other ships are permitted to pass under rules for collision prevention. This makes it possible to extend the route search range beyond the passing allowable range and continue navigation.
 上記態様において、前記第1の制約条件は、船速を維持する条件であり、前記第2の制約条件は、船速の変化を許容する条件であってもよい。これによれば、船速の変化を許容して航行の継続を図ることが可能となる。 In the above aspect, the first constraint condition may be a condition for maintaining the boat speed, and the second constraint condition may be a condition for allowing a change in the boat speed. This makes it possible to continue navigation while allowing the change in the boat speed.
 上記態様において、前記停船判断部は、さらに、船速の変化度が所定以上である場合に停船を決定してもよい。これによれば、船速の変化度が過大となる場合に停船に移行することが可能となる。 In the above aspect, the ship stopping determination unit may further determine to stop the ship when the rate of change in ship speed is equal to or greater than a predetermined rate. This makes it possible to transition to stopping the ship when the rate of change in ship speed becomes excessive.
 上記態様において、前記第1の制約条件は、同地点の再通過を禁止する条件であり、前記第2の制約条件は、旋回による同地点の再通過を許容する条件であってもよい。これによれば、同地点を再通過するように旋回して航行の継続を図ることが可能となる。 In the above aspect, the first constraint condition may be a condition that prohibits re-passing the same point, and the second constraint condition may be a condition that allows re-passing the same point by turning. This makes it possible to continue navigation by turning so as to re-pass the same point.
 上記態様において、前記停船判断部は、さらに、旋回角が所定以上である場合に停船を決定してもよい。これによれば、旋回角が過大となる場合に停船に移行することが可能となる。 In the above aspect, the vessel stopping determination unit may further determine to stop the vessel when the turning angle is equal to or greater than a predetermined value. This makes it possible to transition to a vessel stopping state when the turning angle becomes excessive.
 上記態様において、前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、船速を維持する条件とを含み、前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、船速の変化を許容する条件とを含んでもよい。これによれば、経路探索範囲を拡張し、船速の変化を許容して航行の継続を図ることが可能となる。 In the above aspect, the first constraint condition may include a condition for limiting the route search range for searching for an avoidance route to a predetermined range and a condition for maintaining the vessel speed, and the second constraint condition may include a condition for expanding the route search range outside the predetermined range and a condition for allowing changes in the vessel speed. This makes it possible to continue navigation by expanding the route search range and allowing changes in the vessel speed.
 上記態様において、前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、同地点の再通過を禁止する条件とを含み、前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、旋回による同地点の再通過を許容する条件とを含んでもよい。これによれば、経路探索範囲を拡張し、同地点を再通過する旋回を許容して航行の継続を図ることが可能となる。 In the above aspect, the first constraint condition may include a condition that limits the route search range for searching for an avoidance route to a predetermined range and a condition that prohibits re-passing the same point, and the second constraint condition may include a condition that expands the route search range outside the predetermined range and a condition that allows re-passing the same point by turning. This makes it possible to continue navigation by expanding the route search range and allowing a turn to re-pass the same point.
 上記態様において、前記第1の制約条件は、船速を維持する条件と、同地点の再通過を禁止する条件とを含み、前記第2の制約条件は、船速の変化を許容する条件と、旋回による同地点の再通過を許容する条件とを含んでもよい。これによれば、船速の変化を許容し、同地点を再通過する旋回を許容して航行の継続を図ることが可能となる。 In the above aspect, the first constraint condition may include a condition to maintain the ship speed and a condition to prohibit re-passing the same point, and the second constraint condition may include a condition to allow a change in ship speed and a condition to allow re-passing the same point by turning. This makes it possible to continue navigation by allowing a change in ship speed and turning to re-pass the same point.
 上記態様において、前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、船速を維持する条件と、同地点の再通過を禁止する条件とを含み、前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、船速の変化を許容する条件と、旋回による同地点の再通過を許容する条件とを含んでもよい。これによれば、経路探索範囲を拡張し、船速の変化を許容し、同地点を再通過する旋回を許容して航行の継続を図ることが可能となる。 In the above aspect, the first constraint condition may include a condition for limiting the route search range for searching for an avoidance route to a predetermined range, a condition for maintaining the vessel speed, and a condition for prohibiting re-passing the same point, while the second constraint condition may include a condition for expanding the route search range outside the predetermined range, a condition for allowing a change in vessel speed, and a condition for allowing re-passing the same point by turning. This makes it possible to continue navigation by expanding the route search range, allowing a change in vessel speed, and allowing a turn to re-pass the same point.
 上記態様において、前記コストは、前記避航経路における衝突リスクに基づいてもよい。これによれば、衝突リスクが低くなるように避航経路を探索することが可能となる。 In the above aspect, the cost may be based on the collision risk on the avoidance route. This makes it possible to search for an avoidance route that reduces the collision risk.
 上記態様において、レーダー、AIS、又はカメラにより生成されたデータに基づいて、避航対象となる他船を検出する他船検出部をさらに備えてもよい。これによれば、避航対象となる他船を検出することが可能となる。 In the above aspect, a ship detection unit may be further provided that detects other ships that are to be avoided based on data generated by a radar, an AIS, or a camera. This makes it possible to detect other ships that are to be avoided.
 また、本発明の他の態様の航行支援方法は、第1の制約条件下で避航のための第1の避航経路を算出し、前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で第2の避航経路を算出し、前記第2の避航経路のコストが所定以上である場合に、停船を決定する。これによれば、航行の継続を図ることが可能となる。 In addition, a navigation support method according to another aspect of the present invention calculates a first avoidance route for avoidance under a first constraint condition, and if the cost of the first avoidance route is equal to or greater than a predetermined value, calculates a second avoidance route under a second constraint condition that relaxes the first constraint condition, and if the cost of the second avoidance route is equal to or greater than a predetermined value, decides to stop the ship. This makes it possible to continue navigation.
 また、本発明の他の態様のプログラムは、第1の制約条件下で避航のための第1の避航経路を算出すること、前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で第2の避航経路を算出すること、及び前記第2の避航経路のコストが所定以上である場合に、停船を決定すること、をコンピュータに実行させる。これによれば、航行の継続を図ることが可能となる。 In addition, a program according to another aspect of the present invention causes a computer to calculate a first avoidance route for avoidance under a first constraint condition, calculate a second avoidance route under a second constraint condition that relaxes the first constraint condition if the cost of the first avoidance route is equal to or greater than a predetermined value, and decide to stop the ship if the cost of the second avoidance route is equal to or greater than a predetermined value. This makes it possible to continue navigation.
船載システムの例を示す図である。FIG. 1 illustrates an example of a shipboard system. 航行支援装置の例を示す図である。FIG. 1 illustrates an example of a navigation support device. 他船管理データベースの例を示す図である。FIG. 4 is a diagram showing an example of a other ship management database. 避航経路の算出を説明するための図である。FIG. 13 is a diagram for explaining calculation of an avoidance route. 制約条件を説明するための図である。FIG. 13 is a diagram for explaining constraint conditions. 制約条件を説明するための図である。FIG. 13 is a diagram for explaining constraint conditions. 制約条件を説明するための図である。FIG. 13 is a diagram for explaining constraint conditions. 制約条件を説明するための図である。FIG. 13 is a diagram for explaining constraint conditions. 制約条件を説明するための図である。FIG. 13 is a diagram for explaining constraint conditions. 制約条件を説明するための図である。FIG. 13 is a diagram for explaining constraint conditions. 航行支援方法の例を示す図である。FIG. 13 is a diagram illustrating an example of a navigation support method. 航行支援方法の例を示す図である。FIG. 13 is a diagram illustrating an example of a navigation support method. 航行支援方法の例を示す図である。FIG. 13 is a diagram illustrating an example of a navigation support method.
 以下、本発明の実施形態について、図面を参照しながら説明する。 Below, an embodiment of the present invention will be described with reference to the drawings.
 図1は、船載システム100の構成例を示すブロック図である。船載システム100は、船舶に搭載されるシステムである。以下の説明では、船載システム100が搭載された船舶を「自船」といい、その他の船舶を「他船」という。 FIG. 1 is a block diagram showing an example configuration of the shipboard system 100. The shipboard system 100 is a system installed on a ship. In the following description, the ship on which the shipboard system 100 is installed is referred to as the "own ship" and other ships are referred to as "other ships."
 船載システム100は、航行支援装置1、表示部2、レーダー3、AIS4、カメラ5、GNSS受信機6、ジャイロコンパス7、ECDIS8、無線通信部9、及び操船制御部10を備えている。これらの機器は、例えばLAN等のネットワークNに接続されており、相互にネットワーク通信が可能である。 The shipboard system 100 includes a navigation assistance device 1, a display unit 2, a radar 3, an AIS 4, a camera 5, a GNSS receiver 6, a gyrocompass 7, an ECDIS 8, a wireless communication unit 9, and a ship steering control unit 10. These devices are connected to a network N, such as a LAN, and are capable of network communication with each other.
 航行支援装置1は、CPU、RAM、ROM、不揮発性メモリ、及び入出力インターフェース等を含むコンピュータを備えている。航行支援装置1のCPUは、ROM又は不揮発性メモリからRAMにロードされたプログラムに従って情報処理を実行する。 The navigation support device 1 is equipped with a computer including a CPU, RAM, ROM, non-volatile memory, and an input/output interface. The CPU of the navigation support device 1 executes information processing according to a program loaded from the ROM or non-volatile memory to the RAM.
 プログラムは、光ディスク又はメモリカード等の情報記憶媒体を介して供給されてもよいし、インターネット又はLAN等の通信ネットワークを介して供給されてもよい。 The program may be supplied via an information storage medium such as an optical disk or a memory card, or via a communications network such as the Internet or a LAN.
 表示部2は、レーダー画像、カメラ画像、又は電子海図などを表示する。表示部2は、例えばタッチセンサ付き表示装置、いわゆるタッチパネルである。タッチセンサは、ユーザの指等による画面内の指示位置を検出する。これに限らず、トラックボール等により指示位置が入力されてもよい。 The display unit 2 displays radar images, camera images, electronic nautical charts, etc. The display unit 2 is, for example, a display device with a touch sensor, a so-called touch panel. The touch sensor detects the position on the screen pointed to by the user's finger, etc. Without being limited to this, the pointed position may also be input by a trackball, etc.
 レーダー3は、自船の周囲に電波を発してその反射波を受信し、受信信号に基づいてエコーデータを生成する。また、レーダー3は、エコーデータから物標を識別し、物標の位置及び速度を表すTTデータ(Target Tracking Data)を生成する。 The radar 3 emits radio waves around the ship, receives the reflected waves, and generates echo data based on the received signals. The radar 3 also identifies targets from the echo data and generates TT data (Target Tracking Data) that represents the target's position and speed.
 AIS(Automatic Identification System)4は、自船の周囲に存在する他船又は陸上の管制からAISデータを受信する。AISに限らず、VDES(VHF Data Exchange System)が用いられてもよい。AISデータは、他船の識別符号、船名、位置、針路、船速、船種、船体長、及び行き先などを含んでいる。 The AIS (Automatic Identification System) 4 receives AIS data from other ships around the ship or from land-based control. It is not limited to AIS, and VDES (VHF Data Exchange System) may also be used. AIS data includes the identification codes, names, positions, courses, speeds, types, lengths, and destinations of other ships.
 カメラ5は、自船から外部を撮像して画像データを生成するデジタルカメラである。カメラ5は、例えば自船のブリッジに船首方位を向いて設置される。カメラ5は、例えばパン・チルト機能及び光学ズーム機能を有する、いわゆるPTZカメラである。 Camera 5 is a digital camera that captures images of the outside world from the ship and generates image data. Camera 5 is installed, for example, on the bridge of the ship, facing the bow direction. Camera 5 is, for example, a so-called PTZ camera that has pan/tilt and optical zoom functions.
 カメラ5は、撮像した画像に含まれる船舶等の物標の画像内位置及び種別を物体検出モデルにより推定する画像認識部を含んでもよい。画像認識部は、カメラ5に限らず、航行支援装置1等の他の装置において実現されてもよい。 The camera 5 may include an image recognition unit that estimates the in-image position and type of a target, such as a ship, contained in a captured image using an object detection model. The image recognition unit is not limited to the camera 5, and may be realized in other devices, such as the navigation support device 1.
 GNSS受信機6は、GNSS(Global Navigation Satellite System)から受信した電波に基づいて自船の位置を検出する。ジャイロコンパス7は、自船の船首方位を検出する。ジャイロコンパスに限らず、GPSコンパスが用いられてもよい。 The GNSS receiver 6 detects the ship's position based on radio waves received from the Global Navigation Satellite System (GNSS). The gyrocompass 7 detects the ship's bow direction. A GPS compass may be used instead of a gyrocompass.
 ECDIS(Electronic Chart Display and Information System)8は、GNSS受信機6から自船の位置を取得し、電子海図上に自船の位置を表示する。また、ECDIS8は、電子海図上に自船の計画航路も表示する。ECDISに限らず、GNSSプロッタが用いられてもよい。 The ECDIS (Electronic Chart Display and Information System) 8 acquires the ship's position from the GNSS receiver 6 and displays the ship's position on an electronic chart. The ECDIS 8 also displays the ship's planned route on the electronic chart. A GNSS plotter may be used instead of an ECDIS.
 無線通信部9は、衛星通信を実現する無線設備を含んでいる。また、無線通信部9は、例えば極超短波、超短波、短波、中短波、又は中波などを利用した無線通信を実現する無線設備を含んでいる。 The wireless communication unit 9 includes wireless equipment that realizes satellite communication. The wireless communication unit 9 also includes wireless equipment that realizes wireless communication using, for example, ultra-high frequency waves, very high frequency waves, short waves, medium high frequency waves, or medium waves.
 操船制御部10は、自律航行を実現するための制御装置であり、自船の操舵機を制御する。また、操船制御部10は、自船のエンジンを制御してもよい。 The ship steering control unit 10 is a control device for realizing autonomous navigation, and controls the ship's steering gear. The ship steering control unit 10 may also control the ship's engine.
 本実施形態において、航行支援装置1は独立した装置であるが、これに限らず、ECDIS8等の他の装置と一体であってもよい。すなわち、航行支援装置1の機能部が他の装置で実現されてもよい。 In this embodiment, the navigation support device 1 is an independent device, but this is not limiting and it may be integrated with another device such as ECDIS 8. In other words, the functional parts of the navigation support device 1 may be realized by another device.
 なお、本実施形態では、航行支援装置1は船舶に搭載されるが、これに限らず、例えば陸上の管制に設置され、避航経路又は停船指令を船舶に提供してもよい。 In this embodiment, the navigation support device 1 is mounted on a ship, but this is not limiting. For example, it may be installed at a control center on land to provide the ship with an avoidance route or a command to stop.
 図2は、航行支援装置1の構成例を示すブロック図である。航行支援装置1は、制御部20を備えている。制御部20は、CPU、RAM、ROM、不揮発性メモリ、及び入出力インターフェース等を含むコンピュータである。 FIG. 2 is a block diagram showing an example of the configuration of the navigation support device 1. The navigation support device 1 includes a control unit 20. The control unit 20 is a computer including a CPU, RAM, ROM, non-volatile memory, an input/output interface, etc.
 制御部20は、他船データ取得部11、自船データ取得部12、衝突リスク算出部13、見合い関係判定部14、避航経路算出部15、補助算出部16、及び停船判断部17を備えている。 The control unit 20 includes an other ship data acquisition unit 11, an own ship data acquisition unit 12, a collision risk calculation unit 13, a meeting relationship determination unit 14, an avoidance route calculation unit 15, an assistance calculation unit 16, and a ship stopping determination unit 17.
 これらの機能部は、制御部20のCPUがプログラムに従って情報処理を実行することによって実現される。他船データ取得部11は他船検出部の例であり、避航経路算出部15は第1の経路算出部の例であり、補助算出部16は第2の経路算出部の例である。 These functional units are realized by the CPU of the control unit 20 executing information processing according to a program. The other ship data acquisition unit 11 is an example of a other ship detection unit, the avoidance route calculation unit 15 is an example of a first route calculation unit, and the auxiliary calculation unit 16 is an example of a second route calculation unit.
 他船データ取得部11は、他船の位置及び速度を表す他船データを取得する。速度は、船速と針路で表されるベクトル量である。他船データは、自船に搭載されたレーダー3、AIS4、又はカメラ5により検出されたデータに基づいて生成される。 The other ship data acquisition unit 11 acquires other ship data that indicates the position and speed of other ships. Speed is a vector quantity that is expressed by ship speed and course. Other ship data is generated based on data detected by the radar 3, AIS 4, or camera 5 installed on the ship.
 具体的には、他船データ取得部11は、レーダー3により生成されたTTデータ、AIS4により受信されたAISデータ、又はカメラ5により撮像された画像から識別された識別データを、他船データとして逐次取得する。他船データ取得部11は、取得された他船データを、メモリに構築された他船管理データベースに登録する。 Specifically, the other ship data acquisition unit 11 sequentially acquires, as other ship data, the TT data generated by the radar 3, the AIS data received by the AIS 4, or the identification data identified from the images captured by the camera 5. The other ship data acquisition unit 11 registers the acquired other ship data in a other ship management database constructed in memory.
 図3に示すように、他船管理データベースは、「船舶ID」、「ソース」、「位置」、「船速」、及び「針路」等のフィールドを含んでいる。「船舶ID」は、他船に付与される識別子である。「ソース」は、他船データがレーダー3、AIS4、及びカメラ5の何れによって生成されたかを表す。 As shown in FIG. 3, the other ship management database includes fields such as "Ship ID," "Source," "Position," "Speed," and "Course." "Ship ID" is an identifier given to other ships. "Source" indicates whether the other ship data was generated by radar 3, AIS 4, or camera 5.
 「位置」は、他船の位置を表す。他船の位置は、緯度・経度で表される。レーダー3又はカメラ5により検出される他船の位置は、自船に対する相対位置で表されるので、GNSS受信機6により検出される自船の位置を用いて絶対位置に変換される。 "Position" indicates the position of the other ship. The position of the other ship is expressed as latitude and longitude. The position of the other ship detected by the radar 3 or camera 5 is expressed as a relative position to the ship itself, so it is converted to an absolute position using the ship's own position detected by the GNSS receiver 6.
 「船速」は、他船の船速を表す。船速はスカラー量である。「針路」は、他船の針路を表す。レーダー3又はカメラ5により検出される他船の船速及び針路は、他船の画像内位置の時間的変化から推定される。 "Speed" indicates the speed of the other ship. Ship speed is a scalar quantity. "Course" indicates the course of the other ship. The speed and course of the other ship detected by radar 3 or camera 5 are estimated from the change over time in the position of the other ship in the image.
 なお、AIS3、レーダー4、及びカメラ5のうちの1つをソースとする他船データの位置と、別の1つをソースとする他船データの位置とが同一又は近似する場合には、それらの他船データは共通の他船に関するものとしてレコードがまとめられる。 In addition, if the position of other ship data sourced from one of the AIS 3, radar 4, and camera 5 is the same as or similar to the position of other ship data sourced from another one of the sources, the records of those other ship data are grouped together as being related to a common other ship.
 図2の説明に戻る。自船データ取得部12は、自船の位置及び速度を表す自船データを取得する。具体的には、自船データ取得部12は、GNSS受信機6により検出される自船の位置を逐次取得し、自船の位置の時間的変化から自船の速度を算出する。これに限らず、自船の船速は、船速計から取得されてもよいし、自船の針路は、ジャイロコンパス7から取得されてもよい。 Returning to the explanation of Figure 2, the ship data acquisition unit 12 acquires ship data representing the ship's position and speed. Specifically, the ship data acquisition unit 12 sequentially acquires the ship's position detected by the GNSS receiver 6, and calculates the ship's speed from the change in the ship's position over time. Without being limited to this, the ship's speed may be acquired from a speedometer, and the ship's course may be acquired from a gyrocompass 7.
 衝突リスク算出部13は、他船データ取得部11により取得された他船データ及び自船データ取得部12により取得された自船データに基づいて、自船と他船の衝突リスクを推定する。 The collision risk calculation unit 13 estimates the collision risk between the ship and other ships based on the other ship data acquired by the other ship data acquisition unit 11 and the own ship data acquired by the own ship data acquisition unit 12.
 具体的には、衝突リスク算出部13は、自船と他船が衝突するリスクが所定以上となる衝突リスク領域を算出する。衝突リスク領域は、例えばOZT(Obstacle Zone by Target)である。OZTに限らず、例えばPAD(Predict Area of Danger)又はDAC(Dangerous Area of Collision)等が用いられてもよい。 Specifically, the collision risk calculation unit 13 calculates a collision risk area where the risk of collision between the ship and another ship is greater than or equal to a predetermined value. The collision risk area is, for example, OZT (Obstacle Zone by Target). It is not limited to OZT, and for example, PAD (Predict Area of Danger) or DAC (Dangerous Area of Collision) may also be used.
 また、衝突リスク算出部13は、例えばCPA(Closest Point of Approach)又はSJ値(Subject Judgement)等の、自船と他船が衝突するリスクを表す衝突リスク値を算出してもよい。 The collision risk calculation unit 13 may also calculate a collision risk value, such as the CPA (Closest Point of Approach) or the SJ value (Subject Judgement), which indicates the risk of collision between the ship and another ship.
 見合い関係判定部14は、他船データ取得部11により取得された他船データ及び自船データ取得部12により取得された自船データに基づいて、自船と他船の見合い関係を判定する。見合い関係には、行会い関係、横切り関係、及び追越し関係がある。見合い関係判定部14は、自船と他船の針路差を算出し、自船を基準とする他船の位置及び針路差から見合い関係を分類する。 The meeting relationship determination unit 14 determines the meeting relationship between the own ship and other ships based on the other ship data acquired by the other ship data acquisition unit 11 and the own ship data acquired by the own ship data acquisition unit 12. Meeting relationships include a meeting relationship, a crossing relationship, and an overtaking relationship. The meeting relationship determination unit 14 calculates the course difference between the own ship and other ships, and classifies the meeting relationship based on the position and course difference of the other ship relative to the own ship.
 避航経路算出部15は、他船データ取得部11により取得された他船の位置及び速度、衝突リスク算出部13により算出された自船と他船の衝突リスク、及び見合い関係判定部14により判定された自船と他船の見合い関係などに基づいて、避航の必要が生じた場合に避航経路を算出する。 The avoidance route calculation unit 15 calculates an avoidance route when the need for avoidance arises based on the positions and speeds of other ships acquired by the other ship data acquisition unit 11, the collision risk between the ship and other ships calculated by the collision risk calculation unit 13, and the meeting relationship between the ship and other ships determined by the meeting relationship determination unit 14.
 避航の必要が生じた場合とは、例えば自船の近傍に他船等の物標が存在する場合、自船の針路上若しくは計画航路上に衝突リスク領域が存在する場合、又は衝突リスク値が所定以上若しくは所定以下になる場合などである。 Examples of when avoidance becomes necessary include when there is a target such as another ship near the ship, when there is a collision risk area on the ship's course or planned route, or when the collision risk value is above or below a specified level.
 避航経路算出部15は、避航操船アルゴリズムを用い、所定の制約条件下で避航のための避航経路を算出する。以下の説明では、避航経路算出部15により適用される制約条件を「第1の制約条件」ともいい、避航経路算出部15により算出される避航経路を「第1の避航経路」ともいう。 The avoidance route calculation unit 15 uses an avoidance maneuvering algorithm to calculate an avoidance route for avoidance under predetermined constraint conditions. In the following description, the constraint conditions applied by the avoidance route calculation unit 15 are also referred to as "first constraint conditions", and the avoidance route calculated by the avoidance route calculation unit 15 is also referred to as "first avoidance route".
 図4は、避航経路の算出を説明するための図である。同図は、避航経路を探索するための仮想平面を示している。仮想平面には、多数の探索点SDがマトリクス状に配置されている。同図では、一部の探索点SDのみを示している。 FIG. 4 is a diagram for explaining the calculation of an avoidance route. The figure shows a virtual plane for searching for an avoidance route. A large number of search points SD are arranged in a matrix on the virtual plane. Only a portion of the search points SD are shown in the figure.
 避航経路算出部15は、自船PSから目標点DSに向かう複数の経路候補CRを算出する。経路候補CRは、探索点SDを連結するリンクによって構成される。避航経路算出部15は、経路探索の手法により、コストが低くなるように経路候補CRを生成する。 The avoidance route calculation unit 15 calculates multiple candidate routes CR from the ship PS to the target point DS. The candidate routes CR are composed of links that connect the search points SD. The avoidance route calculation unit 15 uses a route search method to generate candidate routes CR with low costs.
 例えば、コストは、経路上の衝突リスクに基づいて計算される。すなわち、衝突リスクが高いほどコストが高くなり、衝突リスクが低いほどコストが低くなる。このため、経路候補CRは、他船OP及び衝突リスク領域OZを避けるように生成される。 For example, the cost is calculated based on the collision risk along the route. That is, the higher the collision risk, the higher the cost, and the lower the collision risk, the lower the cost. For this reason, the route candidates CR are generated to avoid other ships OP and collision risk areas OZ.
 また、コストは、経路の長さに基づいても計算される。すなわち、経路が長いほどコストが高くなり、経路が短いほどコストが低くなる。このため、経路候補CRは、より短い経路で自船PSから目標点DSへ到達するように生成される。 The cost is also calculated based on the length of the route. That is, the longer the route, the higher the cost, and the shorter the route, the lower the cost. For this reason, the route candidates CR are generated to reach the target point DS from the own ship PS via a shorter route.
 また、コストは、変針度に基づいても計算される。すなわち、変針が大きいほどコストが大きくなり、変針が小さいほどコストが低くなる。このため、経路候補CRは、より変針の機会が少なくなるように、またより変針が小さくなるように生成される。 The cost is also calculated based on the degree of course change. That is, the greater the course change, the greater the cost, and the smaller the course change, the lower the cost. For this reason, route candidates CR are generated so that there are fewer opportunities for course changes and the course changes are smaller.
 避航経路算出部15は、複数の経路候補CRからコストが最小となる経路候補CRを「第1の避航経路」として選出する。 The avoidance route calculation unit 15 selects the route candidate CR with the smallest cost from among the multiple route candidates CR as the "first avoidance route."
 図2の説明に戻る。避航経路算出部15は、選出された第1の避航経路のコストが採用基準となる所定の閾値未満である場合に、第1の避航経路を操船制御部10に出力する。操船制御部10は、自船が第1の避航経路を辿るように操船制御する。 Returning to the explanation of FIG. 2, the avoidance route calculation unit 15 outputs the first avoidance route to the ship steering control unit 10 when the cost of the selected first avoidance route is less than a predetermined threshold serving as the adoption criterion. The ship steering control unit 10 controls the ship steering so that the ship follows the first avoidance route.
 すなわち、選出された第1の避航経路が採用可能なほどコストが低い場合、言い換えると、採用基準を満たす第1の避航経路が生成された場合に、第1の避航経路が採用され、操船制御部10に提供される。 In other words, if the cost of the selected first avoidance route is low enough to be adopted, in other words, if a first avoidance route that meets the adoption criteria is generated, the first avoidance route is adopted and provided to the ship maneuvering control unit 10.
 一方、選出された第1の避航経路のコストが採用基準となる所定の閾値以上である場合には、後述するように補助算出部16が避航経路を算出する。すなわち、選出された第1の避航経路が採用不能なほどコストが高い場合、言い換えると、採用基準を満たす第1の避航経路が生成されなかった場合には、第1の避航経路は採用されない。 On the other hand, if the cost of the selected first avoidance route is equal to or greater than a predetermined threshold serving as the adoption criterion, the assistance calculation unit 16 calculates an avoidance route as described below. In other words, if the cost of the selected first avoidance route is too high to be adopted, in other words, if no first avoidance route that meets the adoption criterion has been generated, the first avoidance route will not be adopted.
 第1の制約条件について説明する。避航経路算出部15は、上述の経路候補CR(図4参照)を探索する際に、下記の第1の制約条件を適用する。 The first constraint condition will now be explained. When searching for the above-mentioned route candidate CR (see FIG. 4), the avoidance route calculation unit 15 applies the following first constraint condition.
 例えば、第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件を含んでいる。例えば、所定の範囲は、衝突予防のための規則上、他船に対して通過が許容される通過許容範囲である。 For example, the first constraint condition includes a condition that limits the route search range for searching for an avoidance route to a predetermined range. For example, the predetermined range is the allowable passing range within which other ships are permitted to pass under regulations for collision prevention.
 衝突予防のための規則は、例えば、海上における衝突の予防のための国際規則に関する条約(COLREG条約)又は日本国における海上衝突予防法などである。 Rules for preventing collisions include, for example, the Convention on International Regulations for Preventing Collisions at Sea (COLREG Convention) or the Act on Preventing Collisions at Sea in Japan.
 図5Aは、自船PSと他船OPが横切り関係にある例を示している。この例では、自船PSの針路上に他船OPの衝突リスク領域OZが存在しており、自船PSがこのまま進むと他船OPと衝突するおそれがある。 Figure 5A shows an example where the first ship PS and another ship OP are in an intersecting relationship. In this example, the collision risk area OZ of the other ship OP is on the course of the first ship PS, and if the first ship PS continues on this path, there is a risk of collision with the other ship OP.
 衝突予防のための規則によると、自船PSに対して右舷側から他船OPが接近する場合、すなわち自船PSが右舷側に他船OPを見る場合、自船PSが「避航船」となり、避航義務が生じる。 According to the rules for preventing collisions, if another ship OP approaches ship PS from the starboard side, i.e. if ship PS sees ship OP on its starboard side, ship PS becomes the "giving way ship" and is obligated to give way.
 このとき、自船PSは、右舷側に進んで他船OPの船尾方向を横切ることができる。言い換えると、自船PSは、衝突リスク範囲OZの右方向を通過することができる。一方、自船PSは、左舷側に進んで他船OPの船首方向を横切ることは許されない。 At this time, the own ship PS can move to the starboard side and cross the stern of the other ship OP. In other words, the own ship PS can pass to the right of the collision risk area OZ. On the other hand, the own ship PS is not permitted to move to the port side and cross the bow of the other ship OP.
 このため、避航経路算出部15は、自船PSの船首線より右の範囲を通過許容範囲LAとし、自船PSの船首線より左の範囲を通過非許容範囲NAとして、経路探索範囲を通過許容範囲LAに限定し、通過許容範囲LA内で避航経路SRを探索する。すなわち、通過許容範囲LAを経路探索範囲とし、通過非許容範囲NAを経路探索範囲とはしない。 For this reason, the avoidance route calculation unit 15 defines the area to the right of the bow line of the ship PS as the allowable passing range LA and the area to the left of the bow line of the ship PS as the non-allowable passing range NA, limits the route search range to the allowable passing range LA, and searches for an avoidance route SR within the allowable passing range LA. In other words, the allowable passing range LA is the route search range, and the non-allowable passing range NA is not the route search range.
 経路探索範囲を通過許容範囲LAに限定するとは、通過許容範囲LAに探索点SDを配置し、それ以外の範囲には探索点SDを配置しないことである。 Limiting the route search range to the passing range LA means placing search points SD within the passing range LA and not placing search points SD outside of that range.
 図6Aは、自船PSと他船OPが行会い関係にある例を示している。衝突予防のための規則によると、自船PSと他船OPが向かい合って行き会う場合、自船PSと他船OPの両者が「避航船」となり、両者に避航義務が生じる。 Figure 6A shows an example where the own ship PS and another ship OP are in a meeting relationship. According to the rules for preventing collisions, when the own ship PS and the other ship OP are heading towards each other and meeting, both the own ship PS and the other ship OP become "giving way vessels" and both have an obligation to give way.
 このとき、自船PSは、右舷側に進んで他船OPを避ける必要があり、左舷側に進むことは許されない。また、他船OPも、右舷側に進んで自船PSを避ける必要があり、左舷側に進むことは許されない。 At this time, ship PS must move to the starboard side to avoid ship OP, and is not permitted to move to the port side. Also, ship OP must move to the starboard side to avoid ship PS, and is not permitted to move to the port side.
 この場合も、避航経路算出部15は、自船PSの船首線より右の範囲を通過許容範囲LAとし、自船PSの船首線より左の範囲を通過非許容範囲NAとして、経路探索範囲を通過許容範囲LAに限定し、通過許容範囲LA内で避航経路SRを探索する。 In this case, the avoidance route calculation unit 15 also sets the range to the right of the bow line of the ship PS as the allowable passing range LA and the range to the left of the bow line of the ship PS as the non-allowable passing range NA, limits the route search range to the allowable passing range LA, and searches for the avoidance route SR within the allowable passing range LA.
 本実施形態では、経路探索範囲を通過許容範囲LAに限定する条件から通過許容範囲LA外に拡張する条件に緩和する例を挙げたが、これに限らず、例えば経路探索範囲を所定水域に限定する条件から所定水域外に拡張する条件に緩和してもよい。 In this embodiment, an example has been given in which the condition limiting the route search range to the passable range LA is relaxed to a condition expanding the range outside the passable range LA, but this is not limiting. For example, the condition limiting the route search range to a specified water area may be relaxed to a condition expanding the range outside the specified water area.
 また、第1の制約条件は、船速を維持する条件ないし船速の変化を禁止する条件を含んでもよい。避航経路算出部15は、自船PSが一定の船速で航行するための避航経路SRを算出する。 The first constraint condition may also include a condition to maintain the vessel speed or a condition to prohibit a change in the vessel speed. The avoidance route calculation unit 15 calculates the avoidance route SR for the vessel PS to travel at a constant vessel speed.
 また、第1の制約条件は、同地点の再通過を禁止する条件を含んでもよい。図7Aに示すように、避航経路算出部15は、自船PSが同地点を再通過するような避航経路SRを算出しないようにする。 The first constraint condition may also include a condition that prohibits re-passing the same point. As shown in FIG. 7A, the avoidance route calculation unit 15 is configured not to calculate an avoidance route SR that would cause the ship PS to re-pass the same point.
 補助算出部16は、避航経路算出部15により算出された第1の避航経路のコストが所定以上である場合に、第1の制約条件を緩和した制約条件下で避航経路を算出する。以下の説明では、補助算出部16により適用される制約条件を「第2の制約条件」ともいい、補助算出部16により算出される避航経路を「第2の避航経路」ともいう。 If the cost of the first avoidance route calculated by the avoidance route calculation unit 15 is equal to or greater than a predetermined value, the auxiliary calculation unit 16 calculates an avoidance route under constraint conditions that relax the first constraint conditions. In the following description, the constraint conditions applied by the auxiliary calculation unit 16 are also referred to as "second constraint conditions," and the avoidance route calculated by the auxiliary calculation unit 16 is also referred to as "second avoidance route."
 補助算出部16は、制約条件が異なる点以外は避航経路算出部15と同じ計算を行う。すなわち、補助算出部16は、避航経路算出部15と同じ避航操船アルゴリズムを用い、第2の制約条件下で第2の避航経路を算出する。 The auxiliary calculation unit 16 performs the same calculations as the avoidance route calculation unit 15, except that the constraint conditions are different. In other words, the auxiliary calculation unit 16 uses the same avoidance maneuvering algorithm as the avoidance route calculation unit 15, and calculates a second avoidance route under a second constraint condition.
 例えば、第2の制約条件は、経路探索範囲を通過許容範囲外に拡張する条件を含んでいる。これは、上述の経路探索範囲を通過許容範囲に限定する条件に対応する条件である。 For example, the second constraint condition includes a condition that expands the route search range outside the passable range. This condition corresponds to the condition that limits the route search range to the passable range described above.
 図5Bは、上記図5Aと同様に、自船PSと他船OPが横切り関係にある例を示している。図6Bは、上記図6Aと同様に、自船PSと他船OPが行会い関係にある例を示している。 FIG. 5B, like FIG. 5A above, shows an example where the own ship PS and another ship OP are in an intersecting relationship. FIG. 6B, like FIG. 6A above, shows an example where the own ship PS and another ship OP are in an intersecting relationship.
 これらの例では、さらに右舷側にも別の他船OPの衝突リスク領域が存在するため、右舷側に避航経路SRを生成することは難しい。 In these examples, there is also a collision risk area with another ship OP on the starboard side, making it difficult to generate an escape route SR on the starboard side.
 補助算出部16は、経路探索範囲を通過許容範囲LA外に拡張して、避航経路SRを探索する。すなわち、補助算出部16は、通過許容範囲LAだけでなく通過非許容範囲NAも経路探索範囲として避航経路SRを探索する。 The auxiliary calculation unit 16 expands the route search range outside the passable range LA to search for the avoidance route SR. In other words, the auxiliary calculation unit 16 searches for the avoidance route SR using not only the passable range LA but also the non-passable range NA as the route search range.
 経路探索範囲を通過許容範囲LA外に拡張するとは、通過許容範囲LAだけでなくそれ以外の範囲にも探索点SDを配置することである。 Extending the route search range outside the passing range LA means placing search points SD not only within the passing range LA but also in other ranges.
 これにより、補助算出部16は、例えば正面の衝突リスク領域OZと右舷側の衝突リスク領域OZを避けるように左舷側に進む避航経路SRを算出し得る。 As a result, the auxiliary calculation unit 16 can calculate an escape route SR that proceeds to the port side so as to avoid, for example, the collision risk area OZ in front and the collision risk area OZ on the starboard side.
 また、第2の制約条件は、船速の変化を許容する条件を含んでもよい。これは、上述の船速を維持する条件に対応する条件である。補助算出部16は、船速が変化する避航経路SRを算出し得る。 The second constraint condition may also include a condition that allows for changes in the vessel speed. This condition corresponds to the condition for maintaining the vessel speed described above. The auxiliary calculation unit 16 may calculate an avoidance route SR in which the vessel speed changes.
 また、第2の制約条件は、旋回による同地点の再通過を許容する条件を含んでもよい。これは、上述の同地点の再通過を禁止する条件に対応する条件である。図7Bに示すように、補助算出部16は、同地点を再通過するように旋回する避航経路SRを算出し得る。 The second constraint condition may also include a condition that permits passing through the same point again by turning. This condition corresponds to the above-mentioned condition that prohibits passing through the same point again. As shown in FIG. 7B, the auxiliary calculation unit 16 may calculate an avoidance route SR that turns so as to pass through the same point again.
 図2の説明に戻る。補助算出部16は、選出された第2の避航経路のコストが採用基準となる所定の閾値未満である場合に、第2の避航経路を操船制御部10に出力する。操船制御部10は、自船が第2の避航経路を辿るように操船制御する。 Returning to the explanation of FIG. 2, if the cost of the selected second avoidance route is less than a predetermined threshold serving as the adoption criterion, the assistance calculation unit 16 outputs the second avoidance route to the ship steering control unit 10. The ship steering control unit 10 controls the ship steering so that the ship follows the second avoidance route.
 すなわち、制約条件を緩和した結果、選出された第2の避航経路が採用可能なほどコストが低い場合、言い換えると、採用基準を満たす第2の避航経路が生成された場合に、第2の避航経路が採用され、操船制御部10に提供される。 In other words, if, as a result of relaxing the constraints, the cost of the selected second avoidance route is low enough to be adopted, in other words, if a second avoidance route that meets the adoption criteria is generated, the second avoidance route is adopted and provided to the ship maneuvering control unit 10.
 一方、選出された第2の避航経路のコストが採用基準となる所定の閾値以上である場合には、下記のように停船判断部17が停船を決定する。すなわち、選出された第2の避航経路が採用不能なほどコストが高い場合、言い換えると、採用基準を満たす第2の避航経路が生成されなかった場合には、第2の避航経路は採用されない。 On the other hand, if the cost of the selected second avoidance route is equal to or greater than a predetermined threshold serving as the adoption criterion, the ship stopping decision unit 17 decides to stop the ship as described below. In other words, if the cost of the selected second avoidance route is too high to be adopted, in other words, if no second avoidance route that meets the adoption criterion has been generated, the second avoidance route will not be adopted.
 停船判断部17は、第2の避航経路のコストが採用基準となる所定以上である場合に、停船を決定する。停船判断部17は、停船を決定すると、停船指令を操船制御部10に出力する。操船制御部10は、自船が停船するように操船制御する。 The ship stopping decision unit 17 decides to stop the ship if the cost of the second avoidance route is equal to or greater than a predetermined cost that serves as the adoption criterion. When the ship stopping decision unit 17 decides to stop the ship, it outputs a stop command to the ship steering control unit 10. The ship steering control unit 10 controls the ship steering so that the ship stops.
 また、停船判断部17は、船速の変化を許容する条件下で算出された第2の避航経路の船速の変化度が所定以上である場合に、停船を決定してもよい。船速の変化度は、例えば船速の変化量又は変化率である。 The ship stopping decision unit 17 may also decide to stop the ship when the degree of change in ship speed of the second avoidance route calculated under conditions that allow changes in ship speed is equal to or greater than a predetermined value. The degree of change in ship speed is, for example, the amount or rate of change in ship speed.
 また、停船判断部17は、旋回による同地点の再通過を許容する条件下で算出された第2の避航経路の旋回角が所定以上である場合に、停船を決定してもよい。 The ship stopping decision unit 17 may also decide to stop if the turning angle of the second avoidance route calculated under conditions that allow re-passing the same point by turning is equal to or greater than a predetermined value.
 図8-図10は、航行支援装置1において実現される航行支援方法のうち、避航経路の算出及び停船の判断に係る処理の手順例を主に示すフロー図である。航行支援装置1の制御部20は、同図に示す情報処理をプログラムに従って実行することで、避航経路算出部15、補助算出部16、及び停船判断部17として機能する。 FIGS. 8-10 are flow diagrams mainly showing an example of the processing procedure related to the calculation of an avoidance route and the decision to stop the ship in the navigation support method realized in the navigation support device 1. The control unit 20 of the navigation support device 1 executes the information processing shown in the figures according to a program, thereby functioning as the avoidance route calculation unit 15, the assistance calculation unit 16, and the stopping decision unit 17.
 図8に示す処理は、避航の必要が生じた場合に開始される。まず、航行支援装置1の制御部20は、第1の制約条件下で第1の避航経路を算出する(S11、避航経路算出部15としての処理)。 The process shown in FIG. 8 is started when the need for an avoidance occurs. First, the control unit 20 of the navigation support device 1 calculates a first avoidance route under a first constraint condition (S11, processing as the avoidance route calculation unit 15).
 第1の制約条件は、例えば、経路探索範囲を通過許容範囲に限定する条件、船速を維持する条件、及び同地点の再通過を禁止する条件などを含む。 The first constraint condition includes, for example, a condition that limits the route search range to an allowable passing range, a condition that maintains the ship's speed, and a condition that prohibits re-passing the same point.
 次に、制御部20は、算出された第1の避航経路が採用可能であるか否か判定する(S12)。採用可能であるか否かは、第1の避航経路のコストが所定の閾値未満であるか否かで判定される。 Next, the control unit 20 determines whether the calculated first avoidance route is adoptable (S12). Whether the first avoidance route is adoptable is determined based on whether the cost of the first avoidance route is less than a predetermined threshold.
 第1の避航経路が採用可能である場合(S12:YES)、制御部20は、第1の避航経路を採用し、操船制御部10に提供する(S16)。 If the first avoidance route is adoptable (S12: YES), the control unit 20 adopts the first avoidance route and provides it to the ship maneuvering control unit 10 (S16).
 一方、第1の避航経路が採用可能でない場合(S12:NO)、制御部20は、第1の制約条件を緩和した第2の制約条件下で第2の避航経路を算出する(S13、補助算出部16としての処理)。 On the other hand, if the first avoidance route is not adoptable (S12: NO), the control unit 20 calculates a second avoidance route under a second constraint condition that relaxes the first constraint condition (S13, processing as the auxiliary calculation unit 16).
 次に、制御部20は、算出された第2の避航経路が採用可能であるか否か判定する(S14)。採用可能であるか否かは、第2の避航経路のコストが所定の閾値未満であるか否かで判定される。 Next, the control unit 20 determines whether the calculated second avoidance route is adoptable (S14). The adoptability is determined based on whether the cost of the second avoidance route is less than a predetermined threshold.
 第2の経路が採用可能である場合(S14:YES)、制御部20は、第2の避航経路を採用し、操船制御部10に提供する(S16)。 If the second route is adoptable (S14: YES), the control unit 20 adopts the second avoidance route and provides it to the ship maneuvering control unit 10 (S16).
 一方、第2の経路が採用可能でない場合(S14:NO)、制御部20は、停船を決定し、停船指令を操船制御部10に出力する(S15、停船判断部17としての処理)。 On the other hand, if the second route cannot be adopted (S14: NO), the control unit 20 decides to stop the ship and outputs a stopping command to the ship steering control unit 10 (S15, processing as the stopping decision unit 17).
 図9は、S13の具体的な処理例を示す図である。 FIG. 9 shows a specific example of processing in S13.
 S12の後、制御部20は、衝突防止のための規則に反する範囲の通過を許容して避航経路を算出する(S131)。すなわち、制御部20は、経路探索範囲を通過許容範囲に限定する条件(第1の制約条件)から緩和された、経路探索範囲を通過許容範囲外に拡張する条件(第2の制約条件)で避航経路を算出する(図5A-図6B参照)。 After S12, the control unit 20 calculates an avoidance route by allowing passage through areas that violate rules for collision prevention (S131). That is, the control unit 20 calculates an avoidance route under a condition (second constraint condition) that expands the route search range beyond the allowable passing range, which is relaxed from the condition (first constraint condition) that limits the route search range to the allowable passing range (see Figures 5A-6B).
 次に、制御部20は、船速の変化を許容して避航経路を算出する(S132)。すなわち、制御部20は、船速を維持する条件(第1の制約条件)から緩和された、船速の変化を許容する条件(第2の制約条件)で避航経路を算出する。 Next, the control unit 20 calculates an avoidance route while allowing for changes in the vessel speed (S132). That is, the control unit 20 calculates an avoidance route under a condition that allows for changes in the vessel speed (a second constraint condition) that is relaxed from the condition that maintains the vessel speed (a first constraint condition).
 次に、制御部20は、旋回して同地点を再通過する避航経路を算出する(S133)。すなわち、制御部20は、同地点の再通過を禁止する条件(第1の制約条件)から緩和された、旋回による同地点の再通過を許容する条件(第2の制約条件)で避航経路を算出する(図7A-図7B参照)。 Next, the control unit 20 calculates an avoidance route that involves turning and passing through the same point again (S133). That is, the control unit 20 calculates an avoidance route under a condition that allows passing through the same point again by turning (a second constraint condition) that is relaxed from a condition that prohibits passing through the same point again (a first constraint condition) (see Figures 7A and 7B).
 なお、本例では、経路探索範囲を通過許容範囲に限定する条件、船速を維持する条件、及び同地点の再通過を禁止する条件の何れか1つの条件を緩和して避航経路をそれぞれ算出しているが、これに限らず、それら3つ条件のうちの2つの条件又は全ての条件を緩和して避航経路が算出されてもよい。 In this example, the avoidance route is calculated by relaxing one of the conditions of limiting the route search range to the allowable passing range, maintaining the ship speed, and prohibiting re-passing the same point, but this is not limited to the above, and the avoidance route may be calculated by relaxing two or all of these three conditions.
 図10は、S14の具体的な処理例を示す図である。 FIG. 10 shows a specific example of the processing in S14.
 S13で複数の避航経路が算出された後、制御部20は、複数の避航経路から、船速の変化度が所定以上の避航経路を除外する(S141)。これは、上記S132で船速の変化を許容して算出された避航経路を主な対象とする。これにより、船速の変化度が過大となる避航経路が除外される。なお、これに代えて、上記S132で船速の変化度が所定以上となるときに避航経路を算出しないようにしてもよい。 After multiple avoidance routes are calculated in S13, the control unit 20 excludes from the multiple avoidance routes those avoidance routes where the rate of change in vessel speed is equal to or greater than a predetermined level (S141). This mainly targets avoidance routes calculated in S132 above while allowing for changes in vessel speed. This excludes avoidance routes where the rate of change in vessel speed is excessively large. Alternatively, it is also possible not to calculate an avoidance route when the rate of change in vessel speed is equal to or greater than a predetermined level in S132 above.
 次に、制御部20は、旋回角が所定以上の避航経路を除外する(S142)。これは、上記S133で旋回による同地点の再通過を許容して算出された避航経路を主な対象とする。これにより、旋回角が過大となる避航経路が除外される。なお、これに代えて、上記S133で旋回角が所定以上となるときに避航経路を算出しないようにしてもよい。 Next, the control unit 20 excludes avoidance routes with a turning angle equal to or greater than a predetermined value (S142). This mainly applies to avoidance routes calculated in S133 above by allowing re-passing the same point by turning. This excludes avoidance routes with excessive turning angles. Alternatively, it is possible not to calculate an avoidance route when the turning angle is equal to or greater than a predetermined value in S133 above.
 次に、制御部20は、コストが所定の閾値未満の避航経路があるか否か判定する(S143)。コストが所定の閾値未満の避航経路がない場合(S143:NO)、制御部20は停船を決定する(S15)。 Next, the control unit 20 determines whether or not there is an avoidance route whose cost is less than a predetermined threshold (S143). If there is no avoidance route whose cost is less than the predetermined threshold (S143: NO), the control unit 20 decides to stop the ship (S15).
 一方、コストが所定の閾値未満の避航経路がある場合(S143:YES)、制御部20は、避航経路を選出する(S144)。複数の避航経路が残っている場合、制御部20は、例えばコストが最小となる避航経路を選出してもよいし、予め定められた優先順位に従って1つの避航経路を選出してもよい。 On the other hand, if there is an avoidance route whose cost is less than the predetermined threshold (S143: YES), the control unit 20 selects an avoidance route (S144). If multiple avoidance routes remain, the control unit 20 may select, for example, the avoidance route with the smallest cost, or may select one avoidance route according to a predetermined priority order.
 以上、本発明の実施形態について説明したが、本発明は以上に説明した実施形態に限定されるものではなく、種々の変更が当業者にとって可能であることはもちろんである。 The above describes an embodiment of the present invention, but the present invention is not limited to the above-described embodiment, and various modifications are possible for those skilled in the art.
 以下、本発明の代表的な実施形態を列挙する。 The following are representative embodiments of the present invention.
(1)
 第1の制約条件下で避航のための第1の避航経路を算出する第1経路算出部と、
 前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で第2の避航経路を算出する第2経路算出部と、
 前記第2の避航経路のコストが所定以上である場合に、停船を決定する停船判断部と、
 を備える、航行支援装置。
(1)
a first route calculation unit that calculates a first avoidance route for avoidance under a first constraint condition;
a second route calculation unit that calculates a second avoidance route under a second constraint condition that is a relaxation of the first constraint condition when a cost of the first avoidance route is equal to or greater than a predetermined cost;
a ship stopping determination unit that determines to stop the ship when the cost of the second avoidance route is equal to or greater than a predetermined cost;
A navigation aid device comprising:
(2)
 前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件であり、
 前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件である、
 (1)に記載の航行支援装置。
(2)
the first constraint condition is a condition for limiting a route search range for searching for a collision avoidance route to a predetermined range,
the second constraint condition is a condition for expanding the route search range outside the predetermined range;
A navigation support device as described in (1).
(3)
 前記所定の範囲は、衝突予防のための規則上、他船に対して通過が許容される通過許容範囲である、
 (2)に記載の航行支援装置。
(3)
The predetermined range is a passing allowable range within which other ships are permitted to pass under regulations for collision prevention.
A navigation support device as described in (2).
(4)
 前記第1の制約条件は、船速を維持する条件であり、
 前記第2の制約条件は、船速の変化を許容する条件である、
 (1)ないし(3)の何れかに記載の航行支援装置。
(4)
the first constraint condition is a condition for maintaining a vessel speed,
The second constraint condition is a condition that allows for a change in boat speed.
A navigation support device according to any one of (1) to (3).
(5)
 前記停船判断部は、さらに、船速の変化度が所定以上である場合に停船を決定する、
 (4)に記載の航行支援装置。
(5)
The ship stopping determination unit further determines to stop the ship when a rate of change in ship speed is equal to or greater than a predetermined rate.
A navigation support device as described in (4).
(6)
 前記第1の制約条件は、同地点の再通過を禁止する条件であり、
 前記第2の制約条件は、旋回による同地点の再通過を許容する条件である、
 (1)ないし(5)の何れかに記載の航行支援装置。
(6)
The first constraint condition is a condition prohibiting re-passing the same point,
The second constraint condition is a condition that allows the aircraft to pass through the same point again by turning.
A navigation support device according to any one of (1) to (5).
(7)
 前記停船判断部は、さらに、旋回角が所定以上である場合に停船を決定する、
 (6)に記載の航行支援装置。
(7)
The ship stopping determination unit further determines that the ship is to stop when the turning angle is equal to or greater than a predetermined value.
A navigation support device as described in (6).
(8)
 前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、船速を維持する条件とを含み、
 前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、船速の変化を許容する条件とを含む、
 (1)ないし(7)の何れかに記載の航行支援装置。
(8)
the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range and a condition for maintaining a ship speed;
the second constraint condition includes a condition for expanding the route search range outside the predetermined range and a condition for allowing a change in boat speed;
A navigation support device according to any one of (1) to (7).
(9)
 前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、同地点の再通過を禁止する条件とを含み、
 前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、旋回による同地点の再通過を許容する条件とを含む、
 (1)ないし(8)の何れかに記載の航行支援装置。
(9)
the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range and a condition for prohibiting re-passing the same point;
the second constraint condition includes a condition for expanding the route search range to outside the predetermined range and a condition for allowing the vehicle to pass through the same point again by turning;
A navigation support device according to any one of (1) to (8).
(10)
 前記第1の制約条件は、船速を維持する条件と、同地点の再通過を禁止する条件とを含み、
 前記第2の制約条件は、船速の変化を許容する条件と、旋回による同地点の再通過を許容する条件とを含む、
 (1)ないし(9)の何れかに記載の航行支援装置。
(10)
the first constraint condition includes a condition for maintaining a ship speed and a condition for prohibiting re-passing the same point;
the second constraint condition includes a condition allowing a change in vessel speed and a condition allowing re-passing of the same point by turning;
A navigation support device according to any one of (1) to (9).
(11)
 前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、船速を維持する条件と、同地点の再通過を禁止する条件とを含み、
 前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、船速の変化を許容する条件と、旋回による同地点の再通過を許容する条件とを含む、
 (1)ないし(10)の何れかに記載の航行支援装置。
(11)
the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range, a condition for maintaining a ship speed, and a condition for prohibiting re-passing the same point;
the second constraint condition includes a condition for expanding the route search range beyond the predetermined range, a condition for allowing a change in ship speed, and a condition for allowing re-passing the same point by turning;
A navigation support device according to any one of (1) to (10).
(12)
 前記コストは、前記避航経路における衝突リスクに基づく、
 (1)ないし(11)の何れかに記載の航行支援装置。
(12)
The cost is based on a collision risk in the avoidance route.
A navigation support device according to any one of (1) to (11).
(13)
 レーダー、AIS、又はカメラにより生成されたデータに基づいて、避航対象となる他船を検出する他船検出部をさらに備える、
 (1)ないし(12)の何れかに記載の航行支援装置。
(13)
The navigation system further includes a ship detection unit that detects other ships to be avoided based on data generated by a radar, an AIS, or a camera.
A navigation support device according to any one of (1) to (12).
(14)
 第1の制約条件下で、避航のための第1の避航経路を算出し、
 前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で、第2の避航経路を算出し、
 前記第2の避航経路のコストが所定以上である場合に、停船を決定する、
 航行支援方法。
(14)
Calculating a first avoidance route for avoiding a collision under a first constraint condition;
calculating a second avoidance route under a second constraint condition obtained by relaxing the first constraint condition when a cost of the first avoidance route is equal to or greater than a predetermined cost;
determining whether or not the ship is to stop when the cost of the second avoidance route is equal to or greater than a predetermined value;
Navigational aids.
(15)
 第1の制約条件下で、避航のための第1の避航経路を算出すること、
 前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で、第2の避航経路を算出すること、及び
 前記第2の避航経路のコストが所定以上である場合に、停船を決定すること、
 をコンピュータに実行させるプログラム。
(15)
Calculating a first avoidance route for avoidance under a first constraint condition;
calculating a second avoidance route under a second constraint condition obtained by relaxing the first constraint condition when the cost of the first avoidance route is equal to or greater than a predetermined value; and determining to stop the ship when the cost of the second avoidance route is equal to or greater than a predetermined value.
A program that causes a computer to execute the following.
用語term
 必ずしも全ての目的または効果・利点が、本明細書中に記載される任意の特定の実施形態に則って達成され得るわけではない。従って、例えば当業者であれば、特定の実施形態は、本明細書中で教示または示唆されるような他の目的または効果・利点を必ずしも達成することなく、本明細書中で教示されるような1つまたは複数の効果・利点を達成または最適化するように動作するように構成され得ることを想到するであろう。 Not all objectives or advantages may be achieved in accordance with any particular embodiment described herein. Thus, for example, one of ordinary skill in the art will appreciate that a particular embodiment may be configured to operate in a manner that achieves or optimizes one or more advantages as taught herein, without necessarily achieving other objectives or advantages as taught or suggested herein.
 本明細書中に記載される全ての処理は、1つまたは複数のコンピュータまたはプロセッサを含むコンピューティングシステムによって実行されるソフトウェアコードモジュールにより具現化され、完全に自動化され得る。コードモジュールは、任意のタイプの非一時的なコンピュータ可読媒体または他のコンピュータ記憶装置に記憶することができる。一部または全ての方法は、専用のコンピュータハードウェアで具現化され得る。 All processes described herein may be embodied and fully automated by software code modules executed by a computing system including one or more computers or processors. The code modules may be stored in any type of non-transitory computer-readable medium or other computer storage device. Some or all of the methods may be embodied in dedicated computer hardware.
 本明細書中に記載されるもの以外でも、多くの他の変形例があることは、本開示から明らかである。例えば、実施形態に応じて、本明細書中に記載されるアルゴリズムのいずれかの特定の動作、イベント、または機能は、異なるシーケンスで実行することができ、追加、併合、または完全に除外することができる (例えば、記述された全ての行為または事象がアルゴリズムの実行に必要というわけではない)。さらに、特定の実施形態では、動作またはイベントは、例えば、マルチスレッド処理、割り込み処理、または複数のプロセッサまたはプロセッサコアを介して、または他の並列アーキテクチャ上で、逐次ではなく、並列に実行することができる。さらに、異なるタスクまたはプロセスは、一緒に機能し得る異なるマシンおよび/またはコンピューティングシステムによっても実行され得る。 It will be apparent from this disclosure that there are many other variations beyond those described herein. For example, depending on the embodiment, certain operations, events, or functions of any of the algorithms described herein may be performed in a different sequence, added, merged, or omitted entirely (e.g., not all acts or events described are necessary to execution of an algorithm). Furthermore, in certain embodiments, operations or events may be performed in parallel rather than sequentially, for example, via multithreading, interrupt processing, or multiple processors or processor cores, or on other parallel architectures. Furthermore, different tasks or processes may be performed by different machines and/or computing systems that may function together.
 本明細書中に開示された実施形態に関連して説明された様々な例示的論理ブロックおよびモジュールは、プロセッサなどのマシンによって実施または実行することができる。プロセッサは、マイクロプロセッサであってもよいが、代替的に、プロセッサは、コントローラ、マイクロコントローラ、またはステートマシン、またはそれらの組み合わせなどであってもよい。プロセッサは、コンピュータ実行可能命令を処理するように構成された電気回路を含むことができる。別の実施形態では、プロセッサは、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはコンピュータ実行可能命令を処理することなく論理演算を実行する他のプログラマブルデバイスを含む。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、デジタル信号プロセッサ(デジタル信号処理装置)とマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つ以上のマイクロプロセッサ、または任意の他のそのような構成として実装することができる。本明細書中では、主にデジタル技術に関して説明するが、プロセッサは、主にアナログ素子を含むこともできる。例えば、本明細書中に記載される信号処理アルゴリズムの一部または全部は、アナログ回路またはアナログとデジタルの混合回路により実装することができる。コンピューティング環境は、マイクロプロセッサ、メインフレームコンピュータ、デジタル信号プロセッサ、ポータブルコンピューティングデバイス、デバイスコントローラ、または装置内の計算エンジンに基づくコンピュータシステムを含むが、これらに限定されない任意のタイプのコンピュータシステムを含むことができる。 The various exemplary logic blocks and modules described in connection with the embodiments disclosed herein may be implemented or executed by a machine such as a processor. The processor may be a microprocessor, but alternatively the processor may be a controller, a microcontroller, or a state machine, or a combination thereof. The processor may include electrical circuitry configured to process computer-executable instructions. In another embodiment, the processor includes an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable device that performs logical operations without processing computer-executable instructions. The processor may also be implemented as a combination of computing devices, such as a combination of a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, the processor may also include primarily analog elements. For example, some or all of the signal processing algorithms described herein may be implemented by analog circuitry or mixed analog and digital circuitry. The computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, mainframe computer, digital signal processor, portable computing device, device controller, or computational engine within an appliance.
 特に明記しない限り、「できる」「できた」「だろう」または「可能性がある」などの条件付き言語は、特定の実施形態が特定の特徴、要素および/またはステップを含むが、他の実施形態は含まないことを伝達するために一般に使用される文脈内での意味で理解される。従って、このような条件付き言語は、一般に、特徴、要素および/またはステップが1つ以上の実施形態に必要とされる任意の方法であること、または1つ以上の実施形態が、これらの特徴、要素および/またはステップが任意の特定の実施形態に含まれるか、または実行されるかどうかを決定するための論理を必然的に含むことを意味するという訳ではない。 Unless otherwise indicated, conditional language such as "can," "could," "would," or "potential" is understood within the context in which it is generally used to convey that certain embodiments include certain features, elements, and/or steps, while other embodiments do not. Thus, such conditional language does not generally imply that features, elements, and/or steps are required in any manner in one or more embodiments, or that one or more embodiments necessarily include logic for determining whether those features, elements, and/or steps are included in or performed in any particular embodiment.
 語句「X、Y、Zの少なくとも1つ」のような選言的言語は、特に別段の記載がない限り、項目、用語等が X, Y, Z、のいずれか、又はそれらの任意の組み合わせであり得ることを示すために一般的に使用されている文脈で理解される(例: X、Y、Z)。従って、このような選言的言語は、一般的には、特定の実施形態がそれぞれ存在するXの少なくとも1つ、Yの少なくとも1つ、またはZの少なくとも1つ、の各々を必要とすることを意味するものではない。 Disjunctive language such as "at least one of X, Y, Z" is understood in the context where it is generally used to indicate that an item, term, etc. may be either X, Y, Z, or any combination thereof (e.g., X, Y, Z), unless specifically stated otherwise. Thus, such disjunctive language does not generally imply that a particular embodiment requires that each of at least one of X, at least one of Y, or at least one of Z, respectively, be present.
 本明細書中に記載されかつ/または添付の図面に示されたフロー図における任意のプロセス記述、要素またはブロックは、プロセスにおける特定の論理機能または要素を実装するための1つ以上の実行可能命令を含む、潜在的にモジュール、セグメント、またはコードの一部を表すものとして理解されるべきである。代替の実施形態は、本明細書中に記載された実施形態の範囲内に含まれ、ここでは、要素または機能は、当業者に理解されるように、関連する機能性に応じて、実質的に同時にまたは逆の順序で、図示または説明されたものから削除、順不同で実行され得る。 Any process descriptions, elements or blocks in the flow diagrams described herein and/or illustrated in the accompanying drawings should be understood as potentially representing modules, segments or portions of code that contain one or more executable instructions for implementing a particular logical function or element in the process. Alternative embodiments are included within the scope of the embodiments described herein, where elements or functions may be deleted, performed out of order from that shown or described, substantially simultaneously or in reverse order, depending on the functionality involved, as will be understood by those skilled in the art.
 特に明示されていない限り、「一つ」のような数詞は、一般的に、1つ以上の記述された項目を含むと解釈されるべきである。従って、「~するように設定された一つのデバイス」などの語句は、1つ以上の列挙されたデバイスを含むことを意図している。このような1つまたは複数の列挙されたデバイスは、記載された引用を実行するように集合的に構成することもできる。例えば、「以下のA、BおよびCを実行するように構成されたプロセッサ」は、Aを実行するように構成された第1のプロセッサと、BおよびCを実行するように構成された第2のプロセッサとを含むことができる。加えて、導入された実施例の具体的な数の列挙が明示的に列挙されたとしても、当業者は、このような列挙が典型的には少なくとも列挙された数(例えば、他の修飾語を用いない「2つの列挙と」の単なる列挙は、通常、少なくとも2つの列挙、または2つ以上の列挙を意味する)を意味すると解釈されるべきである。 Unless otherwise expressly stated, numerals such as "one" should generally be construed to include one or more of the described items. Thus, phrases such as "a device configured to" are intended to include one or more of the listed devices. Such one or more listed devices may also be collectively configured to perform the recited reference. For example, "a processor configured to perform the following A, B, and C" may include a first processor configured to perform A and a second processor configured to perform B and C. In addition, even if a specific number of enumerations of the embodiments introduced are explicitly enumerated, one of ordinary skill in the art should construe such enumerations as typically meaning at least the number enumerated (e.g., the mere enumeration of "two enumerations" without other modifiers typically means at least two enumerations, or more than two enumerations).
 一般に、本明細書中で使用される用語は、一般に、「非限定」用語(例えば、「~を含む」という用語は「それだけでなく、少なくとも~を含む」と解釈すべきであり、「~を持つ」という用語は「少なくとも~を持っている」と解釈すべきであり、「含む」という用語は「以下を含むが、これらに限定されない。」などと解釈すべきである。) を意図していると、当業者には判断される。 In general, those of skill in the art will recognize that the terms used herein generally intend the terms "non-limiting" (e.g., the term "including" should be interpreted as "including but not limited to," the term "having" should be interpreted as "having at least," the term "including" should be interpreted as "including, but not limited to," etc.).
 説明の目的のために、本明細書中で使用される「水平」という用語は、その方向に関係なく、説明されるシステムが使用される領域の床の平面または表面に平行な平面、または説明される方法が実施される平面として定義される。「床」という用語は、「地面」または「水面」という用語と置き換えることができる。「垂直/鉛直」という用語は、定義された水平線に垂直/鉛直な方向を指します。「上側」「下側」「下」「上」「側面」「より高く」「より低く」「上の方に」「~を越えて」「下の」などの用語は水平面に対して定義されている。 For purposes of explanation, the term "horizontal" as used herein is defined as a plane parallel to the plane or surface of the floor of the area in which the described system is used or the plane in which the described method is performed, regardless of its orientation. The term "floor" may be interchanged with the terms "ground" or "water surface". The term "vertical" refers to a direction perpendicular to a defined horizontal line. Terms such as "upper", "lower", "below", "up", "side", "higher", "lower", "above", "over", "below" and the like are defined relative to the horizontal plane.
 本明細書中で使用される用語の「付着する」、「接続する」、「対になる」及び他の関連用語は、別段の注記がない限り、取り外し可能、移動可能、固定、調節可能、及び/または、取り外し可能な接続または連結を含むと解釈されるべきである。接続/連結は、直接接続及び/または説明した2つの構成要素間の中間構造を有する接続を含む。 The terms "attach," "connect," "mate," and other related terms used herein should be construed to include removable, movable, fixed, adjustable, and/or detachable connections or couplings, unless otherwise noted. A connection/coupling includes a direct connection and/or a connection having an intermediate structure between the two components described.
 特に明示されていない限り、本明細書中で使用される、「およそ」、「約」、および「実質的に」のような用語が先行する数は、列挙された数を含み、また、さらに所望の機能を実行するか、または所望の結果を達成する、記載された量に近い量を表す。例えば、「およそ」、「約」及び「実質的に」とは、特に明示されていない限り、記載された数値の10%未満の値をいう。本明細書中で使用されているように、「およそ」、「約」、および「実質的に」などの用語が先行して開示されている実施形態の特徴は、さらに所望の機能を実行するか、またはその特徴について所望の結果を達成するいくつかの可変性を有する特徴を表す。 Unless otherwise expressly stated, as used herein, numbers preceded by terms such as "approximately," "about," and "substantially" are inclusive of the recited number and further represent an amount close to the recited amount that performs the desired function or achieves the desired result. For example, "approximately," "about," and "substantially" refer to values less than 10% of the recited numerical value unless otherwise expressly stated. As used herein, features of the disclosed embodiments preceded by terms such as "approximately," "about," and "substantially" further represent features that have some variability that perform the desired function or achieve the desired result for that feature.
 上述した実施形態には、多くの変形例および修正例を加えることができ、それらの要素は、他の許容可能な例の中にあるものとして理解されるべきである。そのような全ての修正および変形は、本開示の範囲内に含まれることを意図し、以下の請求の範囲によって保護される。 Many variations and modifications may be made to the embodiments described above, and these elements should be understood to be among the acceptable alternatives. All such modifications and variations are intended to be within the scope of this disclosure and are protected by the following claims.
1 航行支援装置、2 表示部、3 レーダー、4 AIS、5 カメラ、6 GNSS受信機、7 ジャイロコンパス、8 ECDIS、9 無線通信部、10 操船制御部、20 制御部、11 他船データ取得部(他船検出部の例)、12 自船データ取得部、13 衝突リスク算出部、14 見合い関係判定部、15 避航経路算出部(第1の経路算出部の例)、16 補助算出部(第2の経路算出部の例)、17 停船判断部、100 船載システム 1 Navigation support device, 2 Display unit, 3 Radar, 4 AIS, 5 Camera, 6 GNSS receiver, 7 Gyrocompass, 8 ECDIS, 9 Wireless communication unit, 10 Ship maneuvering control unit, 20 Control unit, 11 Other ship data acquisition unit (example of other ship detection unit), 12 Own ship data acquisition unit, 13 Collision risk calculation unit, 14 Meeting relationship determination unit, 15 Evasion route calculation unit (example of first route calculation unit), 16 Auxiliary calculation unit (example of second route calculation unit), 17 Stopping decision unit, 100 Onboard system

Claims (15)

  1.  第1の制約条件下で避航のための第1の避航経路を算出する第1経路算出部と、
     前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で第2の避航経路を算出する第2経路算出部と、
     前記第2の避航経路のコストが所定以上である場合に、停船を決定する停船判断部と、
     を備える、航行支援装置。
    a first route calculation unit that calculates a first avoidance route for avoidance under a first constraint condition;
    a second route calculation unit that calculates a second avoidance route under a second constraint condition that is a relaxation of the first constraint condition when a cost of the first avoidance route is equal to or greater than a predetermined cost;
    a ship stopping determination unit that determines to stop the ship when the cost of the second avoidance route is equal to or greater than a predetermined value;
    A navigation aid device comprising:
  2.  前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件であり、
     前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件である、
     請求項1に記載の航行支援装置。
    the first constraint condition is a condition for limiting a route search range for searching for a collision avoidance route to a predetermined range,
    the second constraint condition is a condition for expanding the route search range outside the predetermined range;
    The navigation aid according to claim 1.
  3.  前記所定の範囲は、衝突予防のための規則上、他船に対して通過が許容される通過許容範囲である、
     請求項2に記載の航行支援装置。
    The predetermined range is a passing allowable range within which other ships are permitted to pass under regulations for collision prevention.
    3. A navigation aid according to claim 2.
  4.  前記第1の制約条件は、船速を維持する条件であり、
     前記第2の制約条件は、船速の変化を許容する条件である、
     請求項1に記載の航行支援装置。
    the first constraint condition is a condition for maintaining a vessel speed,
    The second constraint condition is a condition that allows for a change in boat speed.
    The navigation aid according to claim 1.
  5.  前記停船判断部は、さらに、船速の変化度が所定以上である場合に停船を決定する、
     請求項4に記載の航行支援装置。
    The ship stopping determination unit further determines to stop the ship when a rate of change in ship speed is equal to or greater than a predetermined rate.
    5. A navigation aid according to claim 4.
  6.  前記第1の制約条件は、同地点の再通過を禁止する条件であり、
     前記第2の制約条件は、旋回による同地点の再通過を許容する条件である、
     請求項1に記載の航行支援装置。
    The first constraint condition is a condition prohibiting re-passing the same point,
    The second constraint condition is a condition that allows the aircraft to pass through the same point again by turning.
    The navigation aid according to claim 1.
  7.  前記停船判断部は、さらに、旋回角が所定以上である場合に停船を決定する、
     請求項6に記載の航行支援装置。
    The ship stopping determination unit further determines that the ship is to stop when the turning angle is equal to or greater than a predetermined value.
    7. A navigation aid according to claim 6.
  8.  前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、船速を維持する条件とを含み、
     前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、船速の変化を許容する条件とを含む、
     請求項1に記載の航行支援装置。
    the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range and a condition for maintaining a ship speed;
    the second constraint condition includes a condition for expanding the route search range outside the predetermined range and a condition for allowing a change in boat speed;
    The navigation aid according to claim 1.
  9.  前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、同地点の再通過を禁止する条件とを含み、
     前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、旋回による同地点の再通過を許容する条件とを含む、
     請求項1に記載の航行支援装置。
    the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range and a condition for prohibiting re-passing the same point;
    the second constraint condition includes a condition for expanding the route search range to outside the predetermined range and a condition for allowing the vehicle to pass through the same point again by turning;
    The navigation aid according to claim 1.
  10.  前記第1の制約条件は、船速を維持する条件と、同地点の再通過を禁止する条件とを含み、
     前記第2の制約条件は、船速の変化を許容する条件と、旋回による同地点の再通過を許容する条件とを含む、
     請求項1に記載の航行支援装置。
    the first constraint condition includes a condition for maintaining a ship speed and a condition for prohibiting re-passing the same point;
    the second constraint condition includes a condition allowing a change in vessel speed and a condition allowing re-passing of the same point by turning;
    The navigation aid according to claim 1.
  11.  前記第1の制約条件は、避航経路を探索するための経路探索範囲を所定の範囲に限定する条件と、船速を維持する条件と、同地点の再通過を禁止する条件とを含み、
     前記第2の制約条件は、前記経路探索範囲を前記所定の範囲外に拡張する条件と、船速の変化を許容する条件と、旋回による同地点の再通過を許容する条件とを含む、
     請求項1に記載の航行支援装置。
    the first constraint condition includes a condition for limiting a route search range for searching for an avoidance route to a predetermined range, a condition for maintaining a ship speed, and a condition for prohibiting re-passing the same point;
    the second constraint condition includes a condition for expanding the route search range beyond the predetermined range, a condition for allowing a change in ship speed, and a condition for allowing re-passing the same point by turning;
    The navigation aid according to claim 1.
  12.  前記コストは、前記避航経路における衝突リスクに基づく、
     請求項1に記載の航行支援装置。
    The cost is based on a collision risk in the avoidance route.
    The navigation aid according to claim 1.
  13.  レーダー、AIS、又はカメラにより生成されたデータに基づいて、避航対象となる他船を検出する他船検出部をさらに備える、
     請求項1に記載の航行支援装置。
    The navigation system further includes a ship detection unit that detects other ships to be avoided based on data generated by a radar, an AIS, or a camera.
    The navigation aid according to claim 1.
  14.  第1の制約条件下で避航のための第1の避航経路を算出し、
     前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で第2の避航経路を算出し、
     前記第2の避航経路のコストが所定以上である場合に、停船を決定する、
     航行支援方法。
    Calculating a first avoidance route for avoidance under a first constraint condition;
    calculating a second avoidance route under a second constraint condition that is a relaxation of the first constraint condition when a cost of the first avoidance route is equal to or greater than a predetermined cost;
    determining whether or not the ship should stop when the cost of the second avoidance route is equal to or greater than a predetermined value;
    Navigational aids.
  15.  第1の制約条件下で避航のための第1の避航経路を算出すること、
     前記第1の避航経路のコストが所定以上である場合に、前記第1の制約条件を緩和した第2の制約条件下で第2の避航経路を算出すること、及び
     前記第2の避航経路のコストが所定以上である場合に、停船を決定すること、
     をコンピュータに実行させるプログラム。
    Calculating a first avoidance route for avoidance under a first constraint condition;
    calculating a second avoidance route under a second constraint condition obtained by relaxing the first constraint condition when the cost of the first avoidance route is equal to or greater than a predetermined value; and determining to stop the ship when the cost of the second avoidance route is equal to or greater than a predetermined value.
    A program that causes a computer to execute the following.
PCT/JP2023/041633 2022-12-20 2023-11-20 Navigation assistance device, navigation assistance method, and program WO2024135198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022203136 2022-12-20
JP2022-203136 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024135198A1 true WO2024135198A1 (en) 2024-06-27

Family

ID=91588561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041633 WO2024135198A1 (en) 2022-12-20 2023-11-20 Navigation assistance device, navigation assistance method, and program

Country Status (1)

Country Link
WO (1) WO2024135198A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006651A1 (en) * 2015-07-08 2017-01-12 本田技研工業株式会社 Automatic driving control device
WO2017145314A1 (en) * 2016-02-25 2017-08-31 株式会社日立製作所 Method for control of mobile body, mobile body, and system for control of mobile body
WO2021192097A1 (en) * 2020-03-25 2021-09-30 富士通株式会社 Route calculation program, information processing device, and route calculation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006651A1 (en) * 2015-07-08 2017-01-12 本田技研工業株式会社 Automatic driving control device
WO2017145314A1 (en) * 2016-02-25 2017-08-31 株式会社日立製作所 Method for control of mobile body, mobile body, and system for control of mobile body
WO2021192097A1 (en) * 2020-03-25 2021-09-30 富士通株式会社 Route calculation program, information processing device, and route calculation method

Similar Documents

Publication Publication Date Title
KR101937439B1 (en) Alternative route generation and rudder angle control support system for collision avoidance of autonomous ship and the other ships
EP2504719B1 (en) A method and system of navigational decision support in the process of safe vessel navigation
US11473914B2 (en) Navigation device and method of creating route
US11383813B2 (en) Automatic steering device, automatic steering method and automatic steering program
JP6523149B2 (en) Navigation control system, surface navigation body, underwater navigation body, navigation control method, tracking suspension processing method, navigation destination determination method and program
EP3583587A1 (en) System and method for managing navigation plan of a marine vessel
US11263886B2 (en) Ship maneuvering assistance system, ship control device, ship control method, and program
US20210396525A1 (en) Ship target object detection system, method of detecting ship target object and reliability estimating device
CN114258372A (en) Ship information display system, ship information display method, image generation device, and program
WO2024135198A1 (en) Navigation assistance device, navigation assistance method, and program
US20230260406A1 (en) Ship monitoring system, ship monitoring method, and information processing device
KR20160094809A (en) Bridge system for unmanned vessel and control method thereof
JP7313454B2 (en) RELATIVE POSITION MEASURING DEVICE, RELATIVE POSITION MEASURING METHOD, AND RELATIVE POSITION MEASURING PROGRAM
JP7489289B2 (en) Route calculation device
US20230406461A1 (en) Navigation route planning apparatus and navigation route planning method
WO2024116719A1 (en) Navigation support device, navigation support method, and program
WO2024057826A1 (en) Navigation supporting device, navigation supporting system, navigation supporting method, and navigation supporting program
WO2023074014A1 (en) Vessel monitoring device, vessel monitoring method, and program
WO2024116717A1 (en) Navigation assistance device, navigation assistance method, and program
WO2024116718A1 (en) Navigation assistance system, navigation assistance device, navigation assistance method, and program
US20240087459A1 (en) Ship monitoring device, ship monitoring method and a non-transitory computer-readable medium
WO2023112348A1 (en) Target monitoring device, target monitoring method, and program
JP2020027343A (en) Sail-avoiding support device
RU2780081C1 (en) Vessels safe passing prediction system
WO2022239401A1 (en) Ship monitoring system, ship monitoring method, information processing device, and program