WO2024135157A1 - Surface-emitting laser device, electronic appliance, and method for producing surface-emitting laser device - Google Patents

Surface-emitting laser device, electronic appliance, and method for producing surface-emitting laser device Download PDF

Info

Publication number
WO2024135157A1
WO2024135157A1 PCT/JP2023/040720 JP2023040720W WO2024135157A1 WO 2024135157 A1 WO2024135157 A1 WO 2024135157A1 JP 2023040720 W JP2023040720 W JP 2023040720W WO 2024135157 A1 WO2024135157 A1 WO 2024135157A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting laser
laser device
mesa
mesas
insulating film
Prior art date
Application number
PCT/JP2023/040720
Other languages
French (fr)
Japanese (ja)
Inventor
秀輝 渡邊
幸四郎 和田
達也 真藤
修平 山口
敬錫 宋
康貴 比嘉
倫太郎 幸田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024135157A1 publication Critical patent/WO2024135157A1/en

Links

Definitions

  • the technology disclosed herein (hereinafter also referred to as "the technology”) relates to a surface-emitting laser device, an electronic device, and a method for manufacturing a surface-emitting laser device.
  • VCSELs vertical cavity surface emitting lasers
  • Some conventional surface-emitting lasers have an anode electrode and a cathode electrode formed on the surface side of the substrate (see, for example, Patent Documents 1 and 2).
  • one of the anode electrode and the cathode electrode is provided on the top of a mesa formed on the substrate, and the other is provided locally in the area surrounding the mesa.
  • the main objective of this technology is to provide a surface-emitting laser device that can improve productivity.
  • the present technology includes a resonator including a mesa having a light emitting layer provided on a substrate, At least a side surface of the mesa and a region of the resonator or the substrate surrounding the mesa are covered with an insulating film; an opening is provided in the insulating film covering the peripheral region; the insulating film is covered with a conductive film as an electrode, The conductive film is in contact with the peripheral region at the opening.
  • the conductive film may be provided so as to straddle a portion covering the side surface of the insulating film and a portion covering the peripheral region of the insulating film.
  • the surface emitting laser device may include a plurality of the resonators.
  • the mesas of the plurality of resonators may include two mesas adjacent to the opening in a plan view.
  • the centers of the two mesas and the center of the opening do not have to be on the same line.
  • the two mesas and the opening do not have to be on the same straight line.
  • the distance between the center of each of the two mesas and the center of the opening may be more than half the distance between the centers of the two mesas.
  • the distance between the center of each of the two mesas and the center of the opening may be the same.
  • the opening may be surrounded by at least three mesas including the two mesas among the mesas of the plurality of resonators.
  • the insulating film covering the peripheral region may have a plurality of the openings, and each of the plurality of openings may be surrounded by the at least three mesas in a plan view.
  • the conductive film may cover an entire surface of the insulating film covering the peripheral region.
  • a first reflector, a light-emitting layer, and a second reflector are stacked in this order from the substrate side, and the bottom surface of the mesa may be located between the first reflector and the light-emitting layer, or within the first reflector, or between the substrate and the first reflector.
  • the shape of the opening in a plan view and the shape of the mesa in a plan view may be similar to each other.
  • the shape of the opening in plan view may be similar to a polygon having vertices at the centers of the at least three mesas surrounding the opening.
  • the distance between the centers of the two mesas may be 20 ⁇ m or less.
  • Another electrode may be provided on the top of the mesa, the insulating film may have another opening exposing the another electrode, and the conductive film may be opened to expose the another opening.
  • the mesa may have a contact layer on the top thereof that contacts the further electrode.
  • a contact layer in contact with the electrode may be provided between the substrate and the mesa.
  • the present technology also provides an electronic device including the surface-emitting laser device.
  • the present technology includes a step of producing a laminate in which a plurality of layers are laminated on a structure including a substrate; Etching the stack to form a mesa; forming a first electrode on the top of the mesa; forming an insulating film on the stacked body having the first electrode formed on the mesa; removing by etching at least a portion of the insulating film covering the first electrode and a portion of the insulating film covering a region around the mesa of the structure; forming a conductive film as a second electrode on the insulating film covering a side surface of the mesa and on the insulating film covering the peripheral region; Also provided is a method for manufacturing a surface emitting laser device, comprising:
  • 1 is a cross-sectional view of a surface-emitting laser device according to Example 1 of an embodiment of the present technology.
  • 1 is a plan view of a surface-emitting laser device according to a first example of an embodiment of the present technology;
  • 2 is a flowchart for explaining an example of a method for manufacturing the surface emitting laser device of FIG. 1 .
  • 2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 .
  • 2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 .
  • 2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 .
  • 2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 .
  • 2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 .
  • 2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 .
  • 2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 .
  • FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 2 of an embodiment of the present technology.
  • FIG. 11 is a plan view of a surface-emitting laser device according to Example 2 of an embodiment of the present technology.
  • 12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 .
  • 12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 .
  • 12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 .
  • FIG. 12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 .
  • 12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 .
  • 12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 .
  • 12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 .
  • FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 3 of an embodiment of the present technology.
  • FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 3 of an embodiment of the present technology.
  • FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 3 of an embodiment of the
  • FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 4 of an embodiment of the present technology.
  • FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 5 of an embodiment of the present technology.
  • FIG. 13 is a cross-sectional view of a surface-emitting laser device according to Example 6 of an embodiment of the present technology.
  • FIG. 13 is a plan view of a surface-emitting laser device according to Example 6 of an embodiment of the present technology.
  • FIG. 13 is a cross-sectional view of a surface-emitting laser device according to Example 7 of an embodiment of the present technology.
  • FIG. 13 is a cross-sectional view of a surface-emitting laser device according to Example 8 of an embodiment of the present technology.
  • FIG. 13 is a cross-sectional view of a surface-emitting laser device according to Example 9 of an embodiment of the present technology.
  • FIG. 13 is a plan view of a surface-emitting laser device according to Example 9 of an embodiment of the present technology.
  • FIG. 23 is a cross-sectional view of a surface-emitting laser device according to a tenth example of an embodiment of the present technology.
  • FIG. 13 is a cross-sectional view of a surface-emitting laser device according to an eleventh example of an embodiment of the present technology.
  • FIG. 21 is a plan view of a surface-emitting laser device according to an eleventh example of an embodiment of the present technology.
  • 1 is a plan view of a surface-emitting laser device according to a first modified example of an embodiment of the present technology.
  • 11 is a plan view of a surface-emitting laser device according to a second modified example of an embodiment of the present technology.
  • FIG. FIG. 11 is a cross-sectional view of a surface-emitting laser device according to a third modified example of an embodiment of the present technology.
  • 1 is a diagram illustrating an example of an application of a surface-emitting laser device according to a first embodiment of the present technology to a distance measuring device.
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system;
  • FIG. 2 is an explanatory diagram showing an example of an installation position of a distance measuring device.
  • Example 10 Surface-emitting laser device according to Example 10 of one embodiment of the present technology 11.
  • electrodes are formed on the top of the mesa and in the area surrounding the mesa. Conventionally, however, electrodes are formed only in a portion (local) of the area surrounding the mesa to avoid short circuits on the side of the mesa (see, for example, Patent Documents 1 and 2). However, in such a configuration, when the mesa is tall or the distance between the mesas is narrow, it is difficult to form electrodes in the area surrounding the mesa, resulting in a significant decrease in productivity (yield).
  • Fig. 1 is a cross-sectional view of a surface-emitting laser device 10-1 according to a first example of an embodiment of the present technology.
  • Fig. 2 is a plan view of the surface-emitting laser device 10-1.
  • Fig. 1 is a cross-sectional view taken along line 1-1 in Fig. 2.
  • a surface-emitting laser device 10-1 according to Example 1 of an embodiment of the present technology is a vertical cavity surface-emitting laser (VCSEL).
  • the surface-emitting laser device 10-1 includes a resonator R including a mesa M having a light-emitting layer 105 provided on a substrate 101.
  • the surface-emitting laser device 10-1 is a back-emission type VCSEL that emits light to the back surface (lower surface) side of the substrate 101.
  • the surface-emitting laser device 10-1 is a coplanar type VCSEL in which an anode electrode 111 and a cathode electrode 110 are provided on the same surface side (front surface side) of the substrate 101.
  • the surface-emitting laser device 10-1 is driven by, for example, a laser driver.
  • the surface-emitting laser device 10-1 has multiple (e.g., seven) resonators R arranged in an array, essentially forming a surface-emitting laser array (see Figure 2).
  • the resonator R has first and second reflecting mirrors 103, 108 that sandwich the light-emitting layer 105 from above and below.
  • the first reflecting mirror 103 is disposed between the substrate 101 and the light-emitting layer 105.
  • the second reflecting mirror 108 is disposed on the opposite side (upper side) of the light-emitting layer 105 from the substrate 101 side.
  • the first reflecting mirror is also called the “lower reflecting mirror” and the second reflecting mirror is also called the "upper reflecting mirror”.
  • the resonator R further includes a first contact layer 102 disposed between the substrate 101 and the first reflector 103, a first cladding layer 104 disposed between the first reflector 103 and the light-emitting layer 105, a second cladding layer 106 disposed between the light-emitting layer 105 and the second reflector 108, an oxide constriction layer 107 disposed within the second cladding layer 106, and a second contact layer 109 disposed on the second reflector 108.
  • a first contact layer 102, a first reflecting mirror 103, a first cladding layer 104, a light-emitting layer 105, a second cladding layer 106 with an oxide constriction layer 107 disposed therein, a second reflecting mirror 108, and a second contact layer 109 are stacked in this order on a substrate 101.
  • the mesa M is composed of the first reflector 103, the first cladding layer 104, the light emitting layer 105, the second cladding layer 106 with the oxide constriction layer 107 disposed therein, the second reflector 108, and the second contact layer 109.
  • the bottom surface of the mesa M is located between the first reflector 103 and the first contact layer 102. That is, the mesa M protrudes from the first contact layer 102.
  • a solid anode electrode 111 (p-side electrode) is provided on the top of the mesa M.
  • the height of the mesa M is, for example, about 9 ⁇ m.
  • the planar shape of the mesa M is circular, but it may be other shapes such as an ellipse or a polygon.
  • the periphery of the anode electrode 111, the side of the mesa M, and the area of the first contact layer 102 surrounding the mesa M are covered with an insulating film 112.
  • the insulating film 112 is covered with a conductive film serving as the cathode electrode 110 (n-side electrode).
  • the substrate 101 is, for example, a semi-insulating GaAs substrate, but may be a first conductivity type (for example, n-type) semiconductor substrate (for example, an n-GaAs substrate).
  • n-type semiconductor substrate for example, an n-GaAs substrate.
  • the first contact layer 102 is provided between the substrate 101 and the mesa M (specifically, the first reflecting mirror 103).
  • the first contact layer 102 is made of a highly doped layer (a low resistance layer with high carrier conductivity) that is a compound semiconductor layer doped with a first conductivity type (e.g., n-type) impurity at a high concentration.
  • the first contact layer 102 is made of a highly doped n-GaAs layer.
  • the thickness of the first contact layer 102 is, for example, 1 to 10 ⁇ m.
  • the first reflecting mirror 103 is, for example, a semiconductor multilayer reflecting mirror.
  • the multilayer reflecting mirror is also called a distributed Bragg reflector (DBR).
  • the first reflecting mirror 103 is a semiconductor multilayer reflecting mirror (a semiconductor multilayer reflecting mirror made of an impurity semiconductor) of a first conductivity type (for example, n-type).
  • the first reflecting mirror 103 is, for example, made of a compound semiconductor (GaAs-based compound semiconductor) lattice-matched to GaAs.
  • the first reflecting mirror 103 has, for example, a layered structure in which a high refractive index layer (for example, n-GaAs) and a low refractive index layer (for example, n-AlGaAs) are alternately layered.
  • the optical thickness of each refractive index layer is 1 ⁇ 4 of the oscillation wavelength ⁇ .
  • the number of pairs (the number of pairs of high refractive index layers and low refractive index layers) of the first reflecting mirror 103 is, for example, 16 pairs.
  • the first cladding layer 104 is, for example, made of a first conductivity type (for example, n-type) GaAs-based compound semiconductor (for example, n-AlGaAs).
  • the cladding layer is also called a "spacer layer”.
  • the light emitting layer 105 has, as an example, a quantum well structure including a barrier layer and a quantum well layer made of a GaAs-based compound semiconductor (e.g., InGaAs) designed to have an emission wavelength of 900 to 940 nm.
  • This quantum well structure may be a single quantum well structure (QW structure) or a multiple quantum well structure (MQW structure).
  • the light emitting layer 105 is preferably disposed at the position of an antinode of a standing wave generated in the resonator R.
  • the light emitting layer 105 may have a plurality of QW structures or a plurality of MQW structures stacked via a tunnel junction.
  • the light emitting layer 105 is also called an "active layer".
  • the second cladding layer 106 is made of, for example, a GaAs-based compound semiconductor (for example, p-AlGaAs) of a second conductivity type (for example, p-type).
  • the cladding layer is also called a "spacer layer”.
  • the oxidized constriction layer 107 has a non-oxidized region 107a and an oxidized region 107b surrounding the non-oxidized region 107a.
  • the non-oxidized region 107a is made of, for example, AlGaAs or AlAs (AlGaAs having a higher Al composition than the AlGaAs of the first and second reflectors 103 and 108), and functions as a current/light passing region.
  • the oxidized region 107b is made of, for example, Al x O y (higher resistance and lower refractive index than AlGaAs), and functions as a current/light constriction region.
  • the oxidized constriction layer 107 has a function of setting the light emission region (current injection region) of the light emitting layer 105.
  • the oxidized constriction layer 107 is preferably disposed at the position of a node of a standing wave generated in the resonator R.
  • the second reflecting mirror 108 is, for example, a semiconductor multilayer reflecting mirror.
  • the second reflecting mirror 108 is a semiconductor multilayer reflecting mirror (a semiconductor multilayer reflecting mirror made of an impurity semiconductor) of a second conductivity type (for example, p-type).
  • the second reflecting mirror 108 is, for example, made of a compound semiconductor (GaAs-based compound semiconductor) lattice-matched to GaAs.
  • the second reflecting mirror 108 has a layered structure in which a high refractive index layer (for example, p-GaAs) and a low refractive index layer (for example, p-AlGaAs) are alternately layered.
  • each refractive index layer is 1 ⁇ 4 of the oscillation wavelength ⁇ .
  • the number of pairs of the second reflecting mirror 108 is, for example, 36 pairs.
  • the reflectance of the second reflecting mirror 108 is set slightly higher than that of the first reflecting mirror 103.
  • the second contact layer 109 constitutes the top of the mesa M and is in contact with the anode electrode 111.
  • the second contact layer 109 is made of a highly doped layer (a low resistance layer with high carrier conductivity) that is a compound semiconductor layer doped with a high concentration of impurities of a second conductivity type (e.g., p-type).
  • the second contact layer 109 is made of a highly doped p-GaAs layer.
  • the thickness of the second contact layer 109 is, for example, 1 to 10 ⁇ m.
  • the anode electrode 111 is configured to include at least one type of metal (including alloy) selected from the group consisting of, for example, Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn, and In.
  • the anode electrode 111 has a Ti/Pt/Au laminated structure, for example.
  • the Ti, Pt, and Au have thicknesses of, for example, 50 nm, 100 nm, and 200 nm, respectively.
  • the anode electrode 111 may have a single-layer structure.
  • the anode electrode 111 is electrically connected to the anode (positive electrode) of the laser driver.
  • the insulating film 112 is made of a dielectric material such as SiO 2 , SiN, SiON, or Al 2 O 3.
  • the thickness of the insulating film 112 is, for example, several tens to several hundreds of nm (for example, about 200 nm).
  • the insulating film 112 has a first insulating film 112a covering the peripheral region of the mesa M of the first contact layer 102, a second insulating film 112b covering the side surface of the mesa M, and a third insulating film 112c covering the peripheral portion of the anode electrode 111 provided on the top of the mesa M.
  • the first insulating film 112a is provided with a plurality of contact holes CH1 (e.g., six) as openings (see FIG. 2).
  • the contact holes CH1 are through-hole-shaped openings.
  • the first insulating film 112a covers the entire area around each mesa M of the first contact layer 102.
  • the third insulating film 112c is provided with a contact hole CH2 as another opening that exposes the center of the anode electrode 111.
  • the conductive film serving as the cathode electrode 110 is composed of at least one metal (including alloys) selected from the group consisting of, for example, Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn, In, and Ge.
  • the cathode electrode 110 has, as an example, a laminated structure of AuGe/Ni/Au.
  • the AuGe, Ni, and Au have, as an example, film thicknesses of 150 nm, 50 nm, and 200 nm, respectively.
  • the cathode electrode 110 may have a single-layer structure.
  • the cathode electrode 110 is electrically connected to the cathode (negative electrode) of the laser driver.
  • the conductive film serving as the cathode electrode 110 is provided so as to straddle the first insulating film 112a, which is the portion of the insulating film 112 that covers the side surface of the mesa M, and the second insulating film 112b, which is the portion of the insulating film 112 that covers the area surrounding the mesa M of the first contact layer 102.
  • the conductive film contacts the area surrounding the mesa M of the first contact layer 102 at the contact hole CH1.
  • the conductive film as the cathode electrode 110 has a first electrode portion 110a that covers the first insulating film 112a and contacts the first contact layer 102 at the contact hole CH1, a second electrode portion 110b that covers the second insulating film 112b, and a third electrode portion 110c that covers the third insulating film 112c.
  • the first electrode portion 110a covers the entire surface of the first insulating film 112a.
  • the third electrode portion 110c is opened so as to expose at least a part (for example, the entirety) of the contact hole CH2.
  • the inner edge of the opening of the third electrode portion 110c is located on the third insulating film 112c. Note that the first electrode portion 110a does not have to cover a part of the first insulating film 112a.
  • the insulating film 112 insulates the anode electrode 111 and the side surface of the mesa M from the cathode electrode 110, and the cathode electrode 110 is conductive with the first contact layer 102 through the contact hole CH1.
  • the anode electrodes 111 are provided independently for each resonator R, and the cathode electrode 110 is provided in common. Therefore, it is possible to drive each resonator R independently.
  • a plurality of (e.g., seven) resonators R are arranged two-dimensionally (e.g., staggered) in a planar view.
  • each contact hole CH1 is surrounded by three mesas M out of the plurality of (e.g., seven) resonators R. That is, in the surface-emitting laser device 10-1, there are six sets of three mesas M and one contact hole CH1 surrounded by the three mesas M.
  • the centers (area centers of gravity) of the three mesas M are located at the three vertices of an equilateral triangle in a planar view.
  • the planar view shape of the contact hole CH1 is, for example, a circle.
  • the three mesas M include three sets of two mesas M adjacent to a corresponding contact hole CH1 in a planar view.
  • a planar view it is preferable that the centers of the two mesas M and the center of the corresponding contact hole CH1 are not on the same line.
  • the center of the contact hole CH1 is located inside an equilateral triangle whose vertices are the vertices of the three mesas M. Note that in a planar view, the centers of the two mesas M and the center of the corresponding contact hole CH1 may be on the same line.
  • the two mesas M and the corresponding contact hole CH1 are not on the same line.
  • the entire contact hole CH1 is located inside an equilateral triangle whose vertices are the vertices of the three mesas M. Note that in a plan view, the two mesas M and the corresponding contact hole CH1 may be on the same line.
  • the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 is more than 1/2 the distance between the centers of the two mesas M.
  • at least one of the distances between the center of each of the two mesas M and the center of the corresponding contact hole CH1 may be 1/2 or less the distance between the centers of the two mesas M.
  • the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 is the same.
  • the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 does not have to be the same.
  • planar shape of the contact hole CH1 and the planar shape of the mesa M are similar to each other.
  • the planar shapes of the contact hole CH1 and the mesa M are both circular and similar to each other. This allows the space between the mesa M and the contact hole CH1 to be larger, making it easier to form the contact hole CH1.
  • the planar shape of the contact hole CH1 is not limited to a circle, and may be any other shape such as an ellipse or a polygon.
  • each contact hole CH1 coincides with the center of gravity G of an equilateral triangle whose vertices are the centers of the three corresponding mesas M, satisfying all of the above preferable conditions.
  • the distance between the centers of the two mesas M is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less. This allows the light-emitting region (effective light-emitting area) of the light-emitting layer 105 to be enlarged for the same array area, thereby enabling higher output.
  • the arrangement of the mesas M and contact holes CH1 in the surface-emitting laser device 10-1 is extremely effective in preventing a decrease in productivity even if the distance between the centers of the two mesas M is short.
  • ⁇ Operation of surface-emitting laser> The operation of the surface-emitting laser device 10-1 will be briefly described below.
  • a current supplied from the anode side of a laser driver and flowing in from the anode electrode 111 passes through the second contact layer 109, the second reflecting mirror 108, and the second cladding layer 106 in this order (when passing through the second cladding layer 106, it is constricted by the oxide constriction layer 107) and is injected into the light-emitting layer 105.
  • the light-emitting layer 105 emits light, and the light travels back and forth between the first and second reflecting mirrors 103 and 108 while being amplified by the light-emitting layer 105 and constricted by the oxide constriction layer 107, and when the oscillation conditions are satisfied, it is emitted as laser light from the back surface (lower surface) of the substrate 101.
  • the current passing through the light emitting layer 105 passes through the first cladding layer 104, the first reflecting mirror 103, and the first contact layer 102 in this order to reach the conductive film serving as the cathode electrode 110, and is then discharged from the conductive film to, for example, the cathode side of a laser driver. At this time, a lateral current path is formed in the first contact layer 102.
  • a method for manufacturing the surface-emitting laser device 10-1 will be described below with reference to the flow chart of Fig. 3.
  • a semiconductor manufacturing method using a semiconductor manufacturing apparatus is used to simultaneously produce a plurality of surface-emitting laser devices 10-1 on a single wafer (hereinafter, also referred to as "substrate 101" for convenience) which is the base material of the substrate 101.
  • substrate 101 also referred to as "substrate 101" for convenience
  • the series of the surface-emitting laser devices 10-1 is separated from each other to obtain a plurality of chip-shaped surface-emitting laser devices 10-1.
  • a laminate is produced (see FIG. 4). Specifically, for example, by metal-organic chemical vapor deposition (MOCVD), a first contact layer 102, a first reflecting mirror 103, a first cladding layer 104, a light-emitting layer 105, a second cladding layer 106 having an oxidized layer 107S (e.g., an AlGaAs layer) disposed therein, a second reflecting mirror 108, and a second contact layer 109 are laminated in this order on a substrate 101 (e.g., a semi-insulating GaAs substrate) as a growth substrate (epitaxially grown at a growth temperature of 605° C.).
  • MOCVD metal-organic chemical vapor deposition
  • the gallium source gas may be, for example, trimethylgallium (( CH3 ) 3Ga ), the aluminum source gas may be, for example, trimethylaluminum (( CH3 ) 3Al ), the indium source gas may be, for example, trimethylindium (( CH3 ) 3In ), and the As source gas may be, for example, trimethylarsenic (( CH3 ) 3As ).
  • the silicon source gas may be, for example, monosilane ( SiH4 ), and the carbon source gas may be, for example, carbon tetrabromide ( CBr4 ).
  • the mesa M is formed (see FIG. 5). Specifically, first, a resist pattern is formed by photolithography to cover the portion of the surface (upper surface) of the laminate on the second contact layer 109 side where the mesa M is to be formed. Next, using the resist pattern as a mask, the laminate is etched by ICP (Inductively Coupled Plasma) dry etching using, for example, Cl 2 , SiCl 4 , or Ar until the first contact layer 102 is exposed, and a mesa M with a height of about 9 ⁇ m is formed on the first contact layer 102.
  • ICP Inductively Coupled Plasma
  • the first contact layer 102 can be stably exposed regardless of the in-plane distribution or the variation of the etching rate. Note that if the surface layer of the first contact layer 102 on the light emitting layer 105 side is an etching stop layer (for example, an InGaP layer), the first contact layer 102 can be more reliably prevented from being etched. Thereafter, the resist pattern is removed.
  • an etching stop layer for example, an InGaP layer
  • the oxidized constriction layer 107 is formed (see FIG. 6). Specifically, the mesa M is first exposed to a high-temperature water vapor atmosphere to oxidize the side surface of the mesa M. At this time, only Al in the oxidized layer 107S having a large Al composition is selectively oxidized, and an oxidized constriction layer 107 in which the non-oxidized region 107a is surrounded by the oxidized region 107b (Al x O y ) is formed.
  • the anode electrode 111 is formed (see FIG. 7). Specifically, the anode electrode 111 is formed in a solid state on the top of the mesa M (the second contact layer 109) using, for example, a lift-off method. At this time, the electrode material for the anode electrode 111 is deposited by vacuum deposition, sputtering, or the like.
  • the insulating film 112 is formed (see FIG. 8). Specifically, the insulating film 112 is deposited over the entire surface. At this time, the insulating film 112 is deposited using a plasma CVD (Chemical Vapor Deposition) method, sputtering, or the like.
  • a plasma CVD Chemical Vapor Deposition
  • first and second contact holes CH1 and CH2 are formed (see FIG. 9). Specifically, by photolithography and plasma dry etching using CF4, SF6, or Ar, a portion of the insulating film 112 that covers the area around the mesa M of the first contact layer 102 is removed to form contact hole CH1, and a portion of the insulating film 112 that covers the center of the anode electrode 111 is removed to form contact hole CH2. As a result, a portion of the first contact layer 102 is exposed through contact hole CH1, and the center of the anode electrode 111 is exposed through contact hole CH2.
  • a conductive film is formed as the cathode electrode 110 (see FIG. 10).
  • a lift-off method is used to form the conductive film as the cathode electrode 110 on substantially the entire surface of the insulating film 112 and in the contact hole CH1.
  • the conductive film is formed by vacuum deposition, sputtering, or the like.
  • a lift-off process is performed on the top of the mesa M to form the conductive film on the side of the mesa M and on the entire area around the mesa M, but the conductive film may also be formed by a plating method, or after the conductive film is formed on the entire surface, only the conductive film covering the top of the mesa M may be removed by etching or milling.
  • the surface-emitting laser device 10-1 manufactured by the above series of steps can be mounted on a laser driver, for example, by flip chip (junction down).
  • the surface-emitting laser device 10-1 includes a resonator R including a mesa M having a light-emitting layer 105 provided on a substrate 101.
  • At least the side surface of the mesa M and a peripheral region of the mesa M of the resonator R are covered with an insulating film 112, and a contact hole CH1 serving as an opening is provided in the insulating film 112 covering the peripheral region, and the insulating film 112 is covered with a conductive film serving as a cathode electrode 110 (electrode), and the conductive film is in contact with the peripheral region through the contact hole CH1.
  • the insulating film 112 that covers at least the side of the mesa M and the area surrounding the mesa M of the resonator R is covered with a conductive film serving as the cathode electrode 110.
  • a conductive film serving as the cathode electrode 110 This means that there is no need to form an electrode in that area, for example by lift-off or etching, and even if there are restrictions on the space around the mesa M (for example, when the distance between the mesas M is narrow), it is easy to form the electrode.
  • the surface-emitting laser device 10-1 can provide a surface-emitting laser device that can improve productivity (yield).
  • Electrodes are provided over the entire area surrounding the mesa (e.g., JP 2017-147461 A), but in this configuration, electrodes are also formed on the sides of the mesa, which raises concerns about the high risk of short circuits.
  • the conductive film serving as the cathode electrode 110 is an insulating film 1
  • the second insulating film 112b which is a portion of the insulating film 112 that covers the side surface of the mesa M, is provided so as to straddle the second insulating film 112b, which is a portion of the insulating film 112 that covers the peripheral region of the mesa M. This makes it easier to form the cathode electrode 110, and makes it possible to further improve productivity.
  • the surface-emitting laser device 10-1 has multiple resonators R. This makes it possible to provide a surface-emitting laser array that can improve productivity.
  • the mesas M of the multiple resonators R have two mesas M adjacent to a contact hole CH1 in a plan view. This makes it possible to electrically connect each of the two mesas M to the cathode electrode 110 via the contact hole CH1.
  • the centers of the two mesas M and the center of the contact hole CH1 are not on the same line. This makes it possible to separate the centers of the two mesas M from the contact hole CH1, making it easier to form the contact hole CH1 and to deposit the cathode electrode 110 in the contact hole CH1.
  • the two mesas M and the contact hole CH1 are not on the same line. This allows the centers of the two mesas M and the contact hole CH1 to be spaced apart from each other, making it easier to form the contact hole CH1 and to deposit the cathode electrode 110 in the contact hole CH1.
  • the distance between the center of each of the two mesas M and the center of the contact hole CH1 is more than half the distance between the centers of the two mesas M. This makes it possible to further separate the centers of the two mesas M from the contact hole CH1, making it even easier to form the contact hole CH1 and to deposit the cathode electrode 110 in the contact hole CH1.
  • the distance between the center of each of the two mesas M and the center of the contact hole CH1 is the same. This makes it possible to reliably separate the centers of the two mesas M from the contact hole CH1, and reliably facilitates the formation of the contact hole CH1 and the deposition of the cathode electrode 110 in the contact hole CH1.
  • the contact hole CH1 is surrounded by at least three mesas M, including the two mesas M, of the multiple resonators R. This makes it possible to establish electrical continuity between the at least three mesas M and the cathode electrode 110 through the contact hole CH1.
  • the insulating film 112 covering the area around the mesa M of the resonator R has a plurality of contact holes CH1, and in a plan view, each of the plurality of contact holes CH1 is surrounded by at least three corresponding mesas M. This makes it possible to establish electrical continuity between the at least three mesas M and the cathode electrode 110 through each contact hole CH1.
  • the conductive film serving as the cathode electrode 110 covers the entire surface of the insulating film 112 that covers the area surrounding the mesa M of the resonator R. This makes it easier to form the cathode electrode 110.
  • the first reflector 103, the first cladding layer 104, the light-emitting layer 105, the second cladding layer 106, and the second reflector 108 are layered in this order from the substrate 101 side, and the bottom surface of the mesa M is located between the first reflector 103 and the substrate 101.
  • planar shape of the contact hole CH1 and the planar shape of the mesa M are similar to each other. This makes it easier to form the contact hole CH1.
  • the distance between the centers of the two mesas M is 20 ⁇ m or less. This allows the light-emitting region of the light-emitting layer 105 to be enlarged for the same array area, thereby achieving higher output.
  • An anode electrode (another electrode) is provided on the top of the mesa M, the insulating film 112 has a contact hole CH2 as another opening that exposes the anode electrode 111, and the conductive film as the cathode electrode 110 has an opening to expose the contact hole CH2. This allows the anode electrode 111 to be exposed while the anode electrode 111 and the cathode electrode 110 are insulated from each other.
  • the mesa M has a second contact layer 109 at its top that contacts the anode electrode 111. This reduces the contact resistance between the anode electrode 111 and the mesa M.
  • a first contact layer 102 that contacts the cathode electrode 110 is provided between the substrate 101 and the mesa M. This makes it possible to reduce the contact resistance between the cathode electrode 110 and the mesa M.
  • the method for manufacturing the surface-emitting laser device 10-1 according to Example 1 of an embodiment of the present technology includes the steps of: generating a laminate in which multiple layers are stacked on a structure including a substrate 101 and a first contact layer 102; etching the laminate to form a mesa; forming an anode electrode 111 (first electrode) on the top of the mesa; depositing an insulating film 112 on the laminate in which the anode electrode 111 is formed on the mesa; removing by etching at least a portion of the insulating film 112 covering the anode electrode 111 and a portion of the insulating film 112 covering the peripheral area of the mesa of the above structure; and forming a conductive film as a cathode electrode 110 (second electrode) on the insulating film 112 covering the side surface of the mesa and the insulating film 112 covering the peripheral area.
  • the manufacturing method for the surface-emitting laser device 10-1 allows the cathode electrode 110 to be easily formed, improving productivity (yield).
  • Fig. 11 is a cross-sectional view of a surface-emitting laser device 10-2 according to Example 2 of an embodiment of the present technology.
  • Fig. 12 is a plan view of a surface-emitting laser device 10-2 according to Example 2 of an embodiment of the present technology.
  • Fig. 11 is a cross-sectional view taken along line 11-11 in Fig. 12.
  • the surface-emitting laser device 10-2 has a similar configuration to the surface-emitting laser device 10-1 of Example 1, except that it has an intra-cavity structure in which the anode electrode 111 and the cathode electrode 110 are installed in the resonator R.
  • the first contact layer 102 is disposed between the first reflector 103 and the first cladding layer 104, and the bottom surface of the mesa M is located between the first contact layer 102 and the first cladding layer 104.
  • the height of the mesa M is, for example, about 6 ⁇ m.
  • an undoped semiconductor multilayer reflector e.g., a GaAs-based semiconductor multilayer reflector
  • This can improve the conductivity between the first cladding layer 104 and the cathode electrode 110 via the first contact layer 102.
  • the first contact layer 102 has a laminated structure in which an etching stop layer made of a layer with a high etching selectivity, such as an InGaP layer, and a GaAs layer are laminated. This makes it possible to more accurately stop dry etching at the first contact layer 102.
  • the optical thickness of the laminated structure is set to be equal to or less than the oscillation wavelength ⁇ (for example, ⁇ , 3 ⁇ /4, ⁇ /2, etc.).
  • the first contact layer 102 is doped with Si as an impurity at a concentration of 1 to 5 ⁇ 10 18 cm -3 .
  • a plurality of (e.g., nine) resonators R are arranged two-dimensionally (e.g., arranged in a matrix) in a planar view.
  • each contact hole CH1 is surrounded by four mesas M out of the plurality of (e.g., nine) resonators R. That is, in the surface-emitting laser device 10-2, there are four sets of four mesas M and one contact hole CH1 surrounded by the four mesas M.
  • the centers (area centers of gravity) of the four mesas M are located at the four vertices of a square in a planar view.
  • the four mesas M include four pairs of two mesas M adjacent to a corresponding contact hole CH1 in a planar view.
  • a planar view it is preferable that the centers of the two mesas M and the center of the corresponding contact hole CH1 are not on the same line.
  • the center of the contact hole CH1 is located inside a square whose vertices are the vertices of the four mesas M. Note that in a planar view, the centers of the two mesas M and the center of the corresponding contact hole CH1 may be on the same line.
  • the two mesas M and the corresponding contact hole CH1 are not on the same line.
  • the entire contact hole CH1 is located inside a square whose vertices are the vertices of the four mesas M. Note that in a planar view, the two mesas M and the corresponding contact hole CH1 may be on the same line.
  • the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 is more than 1/2 the distance between the centers of the two mesas M.
  • at least one of the distances between the center of each of the two mesas M and the center of the corresponding contact hole CH1 may be 1/2 or less the distance between the centers of the two mesas M.
  • the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 is the same.
  • the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 does not have to be the same.
  • planar shape of the contact hole CH1 and the planar shape of the mesa M are similar to each other.
  • the planar shapes of the contact hole CH1 and the mesa M are both circular and similar to each other. This allows the space between the mesa M and the contact hole CH1 to be increased, making it easier to form the contact hole CH1.
  • the planar shape of the contact hole CH1 is not limited to a circle, and may be any other shape such as an ellipse or a polygon.
  • each contact hole CH1 coincides with the center of gravity G of a square whose vertices are the centers of the corresponding four mesas M, satisfying all of the above preferred conditions.
  • a method for manufacturing the surface-emitting laser device 10-2 will be described below.
  • a semiconductor manufacturing method using a semiconductor manufacturing apparatus is used to simultaneously produce a plurality of surface-emitting laser devices 10-2 on a single wafer (hereinafter, also referred to as "substrate 101" for convenience) which is the base material of the substrate 101.
  • substrate 101 also referred to as "substrate 101" for convenience
  • the series of the surface-emitting laser devices 10-2 is separated from one another to obtain a plurality of chip-shaped surface-emitting laser devices 10-2.
  • a laminate is produced (see FIG. 13). Specifically, for example, by metal-organic chemical vapor deposition (MOCVD), a first reflecting mirror 103, a first contact layer 102, a first cladding layer 104, a light-emitting layer 105, a second cladding layer 106 having an oxidized layer 107S (e.g., an AlGaAs layer) disposed therein, a second reflecting mirror 108, and a second contact layer 109 are laminated in this order on a substrate 101 (e.g., a semi-insulating substrate) as a growth substrate (epitaxially grown at a growth temperature of 605° C.).
  • MOCVD metal-organic chemical vapor deposition
  • the gallium source gas may be, for example, trimethylgallium (( CH3 ) 3Ga ), the aluminum source gas may be, for example, trimethylaluminum (( CH3 ) 3Al ), the indium source gas may be, for example, trimethylindium (( CH3 ) 3In ), and the As source gas may be, for example, trimethylarsenic (( CH3 ) 3As ).
  • the silicon source gas may be, for example, monosilane ( SiH4 ), and the carbon source gas may be, for example, carbon tetrabromide ( CBr4 ).
  • the mesa M is formed (see FIG. 14). Specifically, first, a resist pattern is formed by photolithography to cover the portion of the surface (upper surface) of the laminate on the second contact layer 109 side where the mesa M is to be formed. Next, using the resist pattern as a mask, the laminate is etched by ICP (Inductively Coupled Plasma) dry etching using, for example, Cl 2 , SiCl 4 , or Ar until the first contact layer 102 is exposed, and a mesa M with a height of about 6 ⁇ m is formed on the first contact layer 102. At this time, the etching can be accurately stopped at the first contact layer 102 due to the action of the etching stop layer of the first contact layer 102. Then, the resist pattern is removed.
  • ICP Inductively Coupled Plasma
  • the oxidized constriction layer 107 is formed (see FIG. 15). Specifically, the mesa M is first exposed to a high-temperature water vapor atmosphere to oxidize the side surface of the mesa M. At this time, only Al in the oxidized layer 107S having a large Al composition is selectively oxidized, and an oxidized constriction layer 107 in which the non-oxidized region 107a is surrounded by the oxidized region 107b (Al x O y ) is formed.
  • the anode electrode 111 is formed (see FIG. 16). Specifically, the anode electrode 111 is formed in a solid state on the top of the mesa M (the second contact layer 109) using, for example, a lift-off method. At this time, the electrode material of the anode electrode 111 is deposited by vacuum deposition, sputtering, or the like.
  • the insulating film 112 is formed (see FIG. 17). Specifically, the insulating film 112 is deposited over the entire surface. At this time, the insulating film 112 is deposited using a plasma CVD (Chemical Vapor Deposition) method, sputtering, or the like.
  • a plasma CVD Chemical Vapor Deposition
  • the first and second contact holes CH1 and CH2 are formed (see FIG. 18). Specifically, by photolithography and plasma dry etching using CF4, SF6, or Ar, a part of the insulating film 112 that covers the area around the mesa M of the first contact layer 102 is removed to form contact hole CH1, and a part of the insulating film 112 that covers the center of the anode electrode 111 is removed to form contact hole CH2. As a result, a part of the first contact layer 102 is exposed through contact hole CH1, and the center of the anode electrode 111 is exposed through contact hole CH2.
  • a conductive film is formed as the cathode electrode 110 (see FIG. 19).
  • a lift-off method is used to form the conductive film as the cathode electrode 110 on substantially the entire surface of the insulating film 112 and in the contact hole CH1.
  • the conductive film is formed by vacuum deposition, sputtering, or the like.
  • a lift-off process is performed on the top of the mesa M to form the conductive film over the entire area around the mesa M, but the conductive film may also be formed using a plating method, or after the conductive film is formed over the entire surface, only the conductive film covering the top of the mesa M may be removed by etching or milling.
  • the surface-emitting laser device 10-2 manufactured by the above series of steps can be mounted on a laser driver, for example, by flip chip (junction down).
  • ⁇ Effects of surface-emitting laser and method for manufacturing surface-emitting laser> According to the surface-emitting laser device 10-2, it is possible to provide a surface-emitting laser device capable of reducing the series resistance while obtaining the same effects as the surface-emitting laser device 10-1 according to the first embodiment. According to the manufacturing method of the surface-emitting laser device 10-2, it is possible to obtain the same effects as the manufacturing method of the surface-emitting laser device 10-1 according to the first embodiment.
  • the array arrangement (planar configuration) of FIG. 2 may be adopted in the surface-emitting laser device 10-2 having the cross-sectional configuration of FIG. 11.
  • the array arrangement (planar configuration) of FIG. 12 may be adopted in the surface-emitting laser device 10-1 having the cross-sectional configuration of FIG. 1.
  • the combination of the cross-sectional configuration and the array arrangement (planar configuration) may be changed as appropriate.
  • Surface-emitting laser device according to Example 3 of an embodiment of the present technology> 20 is a cross-sectional view of a surface-emitting laser device 10-3 according to Example 3 of an embodiment of the present technology.
  • the surface-emitting laser device 10-3 has a similar configuration to the surface-emitting laser device 10-2 according to Example 2, except that the surface-emitting laser device 10-3 does not have the first and second contact layers 102 and 109.
  • the conductive film serving as the cathode electrode 110 contacts the first reflector 103 through the contact hole CH1.
  • the first reflector 103 is made of an n-type semiconductor multilayer film reflector (e.g., n-GaAs/n-AlGaAs).
  • n-GaAs/n-AlGaAs When current is applied, a lateral current path is formed in the first reflector 103.
  • the anode electrode 111 contacts the second reflector 108.
  • the surface-emitting laser device 10-3 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
  • the surface-emitting laser device 10-3 provides substantially the same effects as the surface-emitting laser device 10-2 according to Example 2.
  • the manufacturing method for the surface-emitting laser device 10-3 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-2 according to Example 2.
  • the surface-emitting laser device 10-3 may have a second contact layer 109.
  • FIG. 21 is a cross-sectional view of a surface-emitting laser device 10-4 according to Example 4 of an embodiment of the present technology.
  • the surface-emitting laser device 10-4 has a similar configuration to the surface-emitting laser device 10-3 of Example 3, except that the bottom surface of the mesa M is located inside the first reflector 103.
  • the surface-emitting laser device 10-4 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
  • the surface-emitting laser device 10-4 provides substantially the same effects as the surface-emitting laser device 10-3 according to Example 3.
  • the manufacturing method for the surface-emitting laser device 10-4 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-3 according to Example 3.
  • the surface-emitting laser device 10-4 may have a second contact layer 109.
  • FIG. 22 is a cross-sectional view of a surface-emitting laser device 10-5 according to a fifth example of an embodiment of the present technology.
  • the surface-emitting laser device 10-5 has a similar configuration to the surface-emitting laser device 10-3 of Example 3, except that the bottom surface of the mesa M is located within the first cladding layer 104.
  • the surface-emitting laser device 10-5 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
  • the surface-emitting laser device 10-5 provides substantially the same effects as the surface-emitting laser device 10-3 according to Example 3.
  • the manufacturing method for the surface-emitting laser device 10-5 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-3 according to Example 3.
  • the surface-emitting laser device 10-5 may have a second contact layer 109.
  • Fig. 23 is a cross-sectional view of a surface-emitting laser device 10-6 according to Example 6 of an embodiment of the present technology.
  • Fig. 24 is a plan view of a surface-emitting laser device 10-6 according to Example 6 of an embodiment of the present technology.
  • Fig. 23 is a cross-sectional view taken along line 23-23 in Fig. 24.
  • the surface-emitting laser device 10-6 has a configuration generally similar to that of the surface-emitting laser device 10-2 according to the second embodiment, except that the conductive film serving as the cathode electrode 110 does not have the third electrode portion 110c.
  • the second electrode portion 110b of the cathode electrode 110 covers a portion (e.g., the lower half) of the insulating film 112 that covers the side surface of the mesa M. Note that it is sufficient that the second electrode portion 110b covers at least a portion of the insulating film 112 that covers the side surface of the mesa M.
  • the surface-emitting laser device 10-6 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
  • the surface-emitting laser device 10-6 provides substantially the same effects as the surface-emitting laser device 10-2 according to Example 2.
  • the manufacturing method for the surface-emitting laser device 10-6 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-2 according to Example 2.
  • FIG. 25 is a cross-sectional view of a surface-emitting laser device 10-7 according to Example 7 of an embodiment of the present technology.
  • the surface-emitting laser device 10-7 has a similar configuration to the surface-emitting laser device 10-2 of Example 2, except that the conductive film serving as the cathode electrode 110 does not have the second and third electrode portions 110b and 110c.
  • the first electrode portion 110a of the cathode electrode 110 covers a portion (e.g., the lower portion) of the insulating film 112 that covers the side surface of the mesa M.
  • the surface-emitting laser device 10-7 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
  • the surface-emitting laser device 10-7 is slightly inferior in terms of suppressing declines in productivity, but provides roughly the same effects as the surface-emitting laser device 10-2 of Example 2.
  • the manufacturing method for the surface-emitting laser device 10-7 provides roughly the same effects as the manufacturing method for the surface-emitting laser device 10-2 of Example 2.
  • FIG. 26 is a cross-sectional view of a surface-emitting laser device 10-8 according to an eighth example of an embodiment of the present technology.
  • the surface-emitting laser device 10-8 has a similar configuration to the surface-emitting laser device 10-2 according to the second embodiment, except that an ion-implanted region IIA (the gray portion of the mesa M in FIG. 19) is provided instead of the oxide constriction layer 107.
  • an ion-implanted region IIA the gray portion of the mesa M in FIG. 19
  • the ion implantation region IIA is provided in a circumferential shape on the mesa M and functions as a current confinement region.
  • the region of the mesa M surrounded by the ion implantation region IIA functions as a current passing region.
  • the ion implantation region IIA is provided over the entire area in the height direction of the mesa M, but it is sufficient that the ion implantation region IIA is provided over at least a portion of the height direction of the mesa M.
  • Examples of ion species used in the ion implantation region IIA include H + and B + .
  • the surface-emitting laser device 10-8 can be manufactured by a method generally similar to that of the surface-emitting laser device 10-2 according to the second embodiment, except that an ion-implanted region IIA is formed instead of the oxide constriction layer 107.
  • the surface-emitting laser device 10-8 provides substantially the same effects as the surface-emitting laser device 10-2 according to Example 2.
  • the manufacturing method for the surface-emitting laser device 10-8 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-2 according to Example 2.
  • Fig. 27 is a cross-sectional view of a surface-emitting laser device 10-9 according to Example 9 of an embodiment of the present technology.
  • Fig. 28 is a plan view of a surface-emitting laser device 10-9 according to Example 9 of an embodiment of the present technology.
  • Fig. 27 is a cross-sectional view taken along line 27-27 in Fig. 28.
  • the surface-emitting laser device 10-9 has a configuration similar to that of the surface-emitting laser device 10-2 according to the second embodiment, except that it is a surface-emitting type.
  • the anode electrode 111 is provided in a circumferential shape (e.g., in a ring shape) on the top of the mesa M.
  • the anode electrode 111 has an opening that serves as an emission port, which opens at a position corresponding to the light-emitting region of the light-emitting layer 105.
  • the cathode electrode 110 does not have a third electrode portion 110c.
  • the surface-emitting laser device 10-9 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
  • the surface-emitting laser device 10-9 provides substantially the same effects as the surface-emitting laser device 10-2 according to Example 2.
  • the manufacturing method for the surface-emitting laser device 10-6 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-2 according to Example 2.
  • FIG. 29 is a cross-sectional view of a surface-emitting laser device 10-10 according to a tenth example of an embodiment of the present technology.
  • the surface-emitting laser device 10-10 has the same configuration as the surface-emitting laser device 10-1 of Example 1, except that it does not have the first and second contact layers 102, 109.
  • a conductive film serving as the cathode electrode 110 contacts the substrate 101 through a contact hole CH1.
  • the substrate 101 is made of an n-type semiconductor substrate (e.g., an n-GaAs substrate).
  • a lateral current path is formed in the substrate 101 when a current is applied.
  • the anode electrode 111 contacts the second reflector 108.
  • the surface-emitting laser device 10-10 can be manufactured by a method generally similar to the manufacturing method of the surface-emitting laser device 10-1 according to the first embodiment.
  • the surface-emitting laser device 10-10 provides substantially the same effects as the surface-emitting laser device 10-1 of Example 1.
  • the manufacturing method for the surface-emitting laser device 10-10 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-1 of Example 1.
  • the surface-emitting laser device 10-10 may have a second contact layer 109.
  • Fig. 30 is a cross-sectional view of a surface-emitting laser device 10-11 according to an eleventh example of an embodiment of the present technology.
  • Fig. 31 is a plan view of a surface-emitting laser device 10-11 according to an eleventh example of an embodiment of the present technology.
  • Fig. 30 is a cross-sectional view taken along line 30-30 in Fig. 31.
  • the surface-emitting laser device 10-11 has a similar configuration to the surface-emitting laser device 10-1 of Example 1, except that the first insulating film 112a of the insulating film 112 only has a portion surrounding the mesa M.
  • contact holes CH1 are provided in a series across the peripheral area of each mesa M.
  • the first electrode portion 110a of the cathode electrode 110 contacts the first contact layer 102 through the contact hole CH1.
  • the contact hole CH1 may be a through-hole-shaped opening or a notch-shaped opening.
  • the surface-emitting laser device 10-11 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-1 according to the first embodiment. However, it is necessary to remove the insulating film 112 over a relatively wide area.
  • the surface-emitting laser device 10-11 provides substantially the same effects as the surface-emitting laser device 10-1 of Example 1.
  • the manufacturing method for the surface-emitting laser device 10-11 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-1 of Example 1.
  • FIG. 32 is a plan view of a surface-emitting laser device 10-M1 according to a first modification of an embodiment of the present technology.
  • each contact hole CH1 e.g., an equilateral triangle
  • the polygon e.g., an equilateral triangle
  • the surface-emitting laser device 10-M1 has the same cross-sectional configuration as any of the surface-emitting laser devices 10-1 to 10-11 according to Examples 1 to 11.
  • the equilateral triangle that is the planar shape of the contact hole CH1 and the equilateral triangle whose vertex is the center of the three mesas M that surround the contact hole CH1 are oriented 60° apart from each other around the emission direction. This allows the distance between each mesa M and the contact hole CH1 to be as short as possible (preferably minimized), making it easier to form the contact hole CH1.
  • the angle of deviation between the two equilateral triangles around the emission direction is not limited to 60° and may be, for example, 0°, 15°, 30°, 45°, etc.
  • FIG. 33 is a plan view of a surface-emitting laser device 10-M2 according to a second modification of an embodiment of the present technology.
  • the planar shape (e.g., a square) of each contact hole CH1 is similar to the polygon (e.g., a square) whose vertices are the centers of the four mesas M surrounding the contact hole CH1.
  • the surface-emitting laser device 10-M2 has the same cross-sectional configuration as any of the surface-emitting laser devices 10-1 to 10-11 according to Examples 1 to 11.
  • the square shape of the contact hole CH1 in plan view and the squares whose vertices are the centers of the four mesas M surrounding the contact hole CH1 are oriented in a 45° offset direction relative to each other around the emission direction. This allows the distance between each mesa M and the contact hole CH1 to be as short as possible (preferably minimized), making it easier to form the contact hole CH1.
  • the offset angle of the two squares around the emission direction is not limited to 45° and may be, for example, 0°, 15°, 30°, etc.
  • FIG. 34 is a cross-sectional view of a surface-emitting laser device 10-M3 according to a third modification of an embodiment of the present technology.
  • the surface-emitting laser device 10-M3 has the same configuration as the surface-emitting laser device 10-8 according to Example 8, except that the mesa M is provided with an ion-implanted region IIA in addition to an oxide constriction layer 107.
  • the surface-emitting laser device 10-M3 can achieve a more sufficient current confinement effect.
  • the number of resonators R can be changed as appropriate.
  • the number of resonators R may be, for example, 1, 2 or more and 6 or less, 8, or 10 or more.
  • the number of contact holes CH1 as openings can be changed as appropriate.
  • the number of contact holes CH1 may be, for example, 1 to 3, 5, or 7 or more.
  • the arrangement of the contact hole CH1 and mesa M as the opening can be changed as appropriate.
  • the oxide constriction layer 107 is not limited to being disposed in the second cladding layer 106, but may be disposed in any of the second reflecting mirror 108, the first cladding layer 104, and the first reflecting mirror 103.
  • a plurality of oxide constriction layers 107 may be provided.
  • current confinement in a surface-emitting laser device is not limited to that achieved by an oxide confinement layer or an ion-implanted region.
  • current confinement may be achieved by QWI, which creates a band gap energy difference between the inside and outside of the aperture by Ga vacancy diffusion to confine carriers, buried tunnel junction, ion diffusion, quantum well intermixing, etc.
  • light confinement in a surface-emitting laser device is not limited to that achieved by an oxide constriction layer.
  • Light confinement can be achieved by any structure that creates a refractive index difference and confines light in a high refractive index region, such as a step structure or a buried tunnel junction, in which a high refractive index region is surrounded by a low refractive index region.
  • the first and second reflectors of the surface-emitting laser device may include multiple constituent layers made of different materials stacked on top of each other.
  • the first and second reflectors may be hybrid mirrors including a semiconductor multilayer reflector and a dielectric multilayer reflector, or a hybrid mirror including a semiconductor multilayer reflector and a metal reflector, or a hybrid mirror including a dielectric multilayer reflector and a metal reflector, or a hybrid mirror including a semiconductor multilayer reflector, a dielectric multilayer reflector, and a metal reflector.
  • the substrate 101 may be a Si substrate, a Ge substrate, a GaN substrate, an InP substrate, or the like.
  • a material that is lattice-matched to the substrate 101 may be laminated on the substrate 101, or different materials may be bonded together.
  • the surface-emitting laser device can use any material that has an oscillation wavelength in the wavelength band of 200 to 2000 nm.
  • the conductivity types (p-type and n-type) of the structures on both sides sandwiching the light-emitting layer 105 of the surface-emitting laser device in each of the above-mentioned embodiments and modifications may be interchanged.
  • each layer constituting the surface-emitting laser device can be changed as appropriate within the range in which the surface-emitting laser device functions.
  • the technology according to the present disclosure can be applied to various products (electronic devices).
  • the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, or a low-power device (e.g., a smartphone, a smart watch, a mouse, a tablet, etc.).
  • the surface-emitting laser device can also be used as a light source for devices that form or display images using laser light (e.g., laser printers, laser copiers, projectors, head-mounted displays, head-up displays, etc.).
  • laser printers e.g., laser printers, laser copiers, projectors, head-mounted displays, head-up displays, etc.
  • FIG. 35 shows an example of the schematic configuration of a distance measurement device 1000 equipped with a surface-emitting laser device 10-1 as an example of electronic equipment related to the present technology.
  • the distance measurement device 1000 measures the distance to a subject S using a TOF (Time Of Flight) method.
  • the distance measurement device 1000 is equipped with a surface-emitting laser device 10-1 as a light source.
  • the distance measurement device 1000 is equipped with, for example, the surface-emitting laser device 10-1, a light receiving device 125, lenses 115 and 130, a signal processing unit 140, a control unit 150, a display unit 160, and a memory unit 170.
  • the light receiving device 125 detects the light reflected by the subject S.
  • the lens 115 is a collimating lens that collimates the light emitted from the surface emitting laser device 10-1.
  • the lens 130 is a focusing lens that collects the light reflected by the subject S and guides it to the light receiving device 125.
  • the signal processing unit 140 is a circuit for generating a signal corresponding to the difference between the signal input from the light receiving device 125 and the reference signal input from the control unit 150.
  • the control unit 150 is configured to include, for example, a Time to Digital Converter (TDC).
  • TDC Time to Digital Converter
  • the reference signal may be a signal input from the control unit 150, or may be an output signal of a detection unit that directly detects the output of the surface-emitting laser device 10-1.
  • the control unit 150 is, for example, a processor that controls the surface-emitting laser device 10-1, the light receiving device 125, the signal processing unit 140, the display unit 160, and the storage unit 170.
  • the control unit 150 is a circuit that measures the distance to the specimen S based on the signal generated by the signal processing unit 140.
  • the control unit 150 generates a video signal for displaying information about the distance to the specimen S and outputs it to the display unit 160.
  • the display unit 160 displays information about the distance to the specimen S based on the video signal input from the control unit 150.
  • the control unit 150 stores information about the distance to the subject S in the memory unit 170.
  • any of the above surface-emitting laser devices 10-1 to 10-11 and 10-M1 to 10-M3 can be applied to the distance measurement device 1000 instead of the surface-emitting laser device 10-1.
  • FIG. 36 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
  • the body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps.
  • radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020.
  • the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
  • the outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • a distance measurement device 12031 is connected to the outside-vehicle information detection unit 12030.
  • the distance measurement device 12031 includes the distance measurement device 1000 described above.
  • the outside-vehicle information detection unit 12030 causes the distance measurement device 12031 to measure the distance to an object outside the vehicle (subject S), and acquires the distance data obtained thereby.
  • the outside-vehicle information detection unit 12030 may perform object detection processing of people, cars, obstacles, signs, etc. based on the acquired distance data.
  • the in-vehicle information detection unit 12040 detects information inside the vehicle.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
  • the microcomputer 12051 can calculate control target values for the driving force generating device, steering mechanism, or braking device based on information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output control commands to the drive system control unit 12010.
  • the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including vehicle collision avoidance or impact mitigation, following driving based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
  • the microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
  • the audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • Figure 37 shows an example of the installation location of the distance measuring device 12031.
  • the vehicle 12100 has distance measurement devices 12101, 12102, 12103, 12104, and 12105 as the distance measurement device 12031.
  • the distance measuring devices 12101, 12102, 12103, 12104, and 12105 are provided, for example, on the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100.
  • the distance measuring device 12101 provided on the front nose and the distance measuring device 12105 provided on the top of the windshield inside the vehicle cabin mainly obtain data in front of the vehicle 12100.
  • the distance measuring devices 12102 and 12103 provided on the side mirrors mainly obtain data on the sides of the vehicle 12100.
  • the distance measuring device 12104 provided on the rear bumper or back door mainly obtains data on the rear of the vehicle 12100.
  • the forward data obtained by the distance measuring devices 12101 and 12105 is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, etc.
  • FIG. 37 shows an example of the detection ranges of the distance measuring devices 12101 to 12104.
  • Detection range 12111 indicates the detection range of the distance measuring device 12101 provided on the front nose
  • detection ranges 12112 and 12113 indicate the detection ranges of the distance measuring devices 12102 and 12103 provided on the side mirrors, respectively
  • detection range 12114 indicates the detection range of the distance measuring device 12104 provided on the rear bumper or back door.
  • the microcomputer 12051 can determine the distance to each three-dimensional object within the detection ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance data obtained from the distance measuring devices 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest three-dimensional object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance data obtained from the distance measuring devices 12101 to 12104, and can use the data to automatically avoid obstacles.
  • the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk, which indicates the degree of risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by performing forced deceleration or avoidance steering via the drive system control unit 12010.
  • the above describes an example of a mobile object control system to which the technology disclosed herein can be applied.
  • the technology disclosed herein can be applied to the distance measuring device 12031 of the configuration described above.
  • a light emitting device comprising: a resonator including a mesa having a light emitting layer provided on a substrate; At least a side surface of the mesa and a region of the resonator or the substrate surrounding the mesa are covered with an insulating film; an opening is provided in the insulating film covering the peripheral region; the insulating film is covered with a conductive film as an electrode, The conductive film is in contact with the peripheral region at the opening.
  • the surface-emitting laser device according to (1), wherein the conductive film is provided so as to straddle a portion covering the side surface of the insulating film and a portion covering the peripheral region of the insulating film.
  • a surface-emitting laser device according to any one of (4) to (6), wherein, in a planar view, the distance between the center of each of the two mesas and the center of the opening is more than 1/2 the distance between the centers of the two mesas.
  • the surface-emitting laser device according to any one of (4) to (7), wherein in a plan view, the distance between the center of each of the two mesas and the center of the opening is the same.
  • the surface-emitting laser device according to any one of (4) to (8), wherein, in a planar view, the opening is surrounded by at least three mesas, including the two mesas, among the mesas of the plurality of resonators.
  • a surface-emitting laser device according to any one of (9) to (13), wherein the planar shape of the opening and a polygon having vertices at the centers of the at least three mesas surrounding the opening are similar to each other.
  • the surface-emitting laser device according to any one of (1) to (14), wherein the distance between the centers of the two mesas is 20 ⁇ m or less.

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

Provided is a surface-emitting laser device which can be produced more efficiently. This surface-emitting laser device is equipped with a resonator disposed on a substrate and including a mesa including a luminescent layer, wherein at least the side surfaces of the mesa and a region surrounding the mesa of the resonator or substrate are covered with an insulating film. The insulating film covering the surrounding region has an opening and the insulating film is covered with an electroconductive film serving as an electrode, the electroconductive film being in contact with the surrounding region in the opening. Thus, it is possible to provide the surface-emitting laser device, which can be produced more efficiently.

Description

面発光レーザ装置、電子機器及び面発光レーザ装置の製造方法Surface emitting laser device, electronic device, and method for manufacturing surface emitting laser device
 本開示に係る技術(以下「本技術」とも呼ぶ)は、面発光レーザ装置、電子機器及び面発光レーザ装置の製造方法に関する。 The technology disclosed herein (hereinafter also referred to as "the technology") relates to a surface-emitting laser device, an electronic device, and a method for manufacturing a surface-emitting laser device.
 従来、垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)が知られている。 Conventionally, vertical cavity surface emitting lasers (VCSELs) are known.
 従来の面発光レーザの中には、基板の表面側にアノード電極及びカソード電極が形成されたものがある(例えば特許文献1、2参照)。従来の面発光レーザでは、アノード電極及びカソード電極の一方が、基板上に形成されたメサの頂部に設けられ、他方がメサの周辺の領域に局所的に設けられている。 Some conventional surface-emitting lasers have an anode electrode and a cathode electrode formed on the surface side of the substrate (see, for example, Patent Documents 1 and 2). In conventional surface-emitting lasers, one of the anode electrode and the cathode electrode is provided on the top of a mesa formed on the substrate, and the other is provided locally in the area surrounding the mesa.
特開2011-243650号公報JP 2011-243650 A 特開2014-138023号公報JP 2014-138023 A
 従来の面発光レーザでは、生産性を向上させることに関して改善の余地があった。  Conventional surface-emitting lasers had room for improvement in terms of increasing productivity.
 そこで、本技術は、生産性を向上させることができる面発光レーザ装置を提供することを主目的とする。 The main objective of this technology is to provide a surface-emitting laser device that can improve productivity.
 本技術は、基板上に設けられた、発光層を有するメサを含む共振器を備え、
 少なくとも、前記メサの側面と、前記共振器又は前記基板の、前記メサの周辺の領域とが絶縁膜で覆われ、
 前記周辺の領域を覆う前記絶縁膜には、開口部が設けられ、
 前記絶縁膜が電極としての導電膜で覆われ、
 前記導電膜が前記開口部で前記周辺の領域に接している、面発光レーザ装置を提供する。
 前記導電膜は、前記絶縁膜の前記側面を覆う部分と、前記絶縁膜の前記周辺の領域を覆う部分とに跨るように設けられていてもよい。
 前記面発光レーザ装置は、前記共振器を複数備えていてもよい。
 複数の前記共振器の前記メサは、平面視において、前記開口部と隣接する2つのメサを有していてもよい。
 前記2つのメサの中心と、前記開口部の中心とが同一直線上になくてもよい。
 平面視において、前記2つのメサと前記開口部とが、同一直線上になくてもよい。
 平面視において、前記2つのメサの各々の中心と前記開口部の中心との距離は、前記2つのメサの中心間の距離の1/2超であってもよい。
 平面視において、前記2つのメサの各々の中心と前記開口部の中心との距離は、同一であってもよい。
 平面視において、複数の前記共振器の前記メサのうち前記2つのメサを含む少なくとも3つのメサで前記開口部が囲まれていてもよい。
 前記周辺の領域を覆う前記絶縁膜には、前記開口部が複数設けられ、平面視において、複数の前記開口部の各々が、対応する前記少なくとも3つのメサで囲まれていてもよい。 前記導電膜が、前記周辺の領域を覆う前記絶縁膜の全面を覆っていてもよい。
 前記共振器では、前記基板側から第1反射鏡、発光層及び第2反射鏡がこの順に積層され、前記メサの底面は、前記第1反射鏡と前記発光層との間、又は、前記第1反射鏡内、又は、前記基板と前記第1反射鏡との間に位置していてもよい。
 前記開口部の平面視形状と前記メサの平面視形状とが、互いに相似であってもよい。
 前記開口部の平面視形状と、該開口部を囲む前記少なくとも3つのメサの中心を頂点とする多角形とが、互いに相似であってもよい。
 前記2つのメサの中心間の距離は、20μm以下であってもよい。
 前記メサの頂部上に別の電極が設けられ、前記絶縁膜は、前記別の電極を露出させる別の開口部を有し、前記導電膜は、前記別の開口部を露出させるように開口していてもよい。
 前記メサは、前記別の電極と接するコンタクト層を頂部に有していてもよい。
 前記基板と前記メサとの間に前記電極と接するコンタクト層が設けられていてもよい。 本技術は、前記面発光レーザ装置を備える、電子機器も提供する。
 本技術は、基板を含む構造上に複数の層が積層された積層体を生成する工程と、
 前記積層体をエッチングしてメサを形成する工程と、
 前記メサの頂部上に第1電極を形成する工程と、
 前記メサに前記第1電極が形成された前記積層体に絶縁膜を成膜する工程と、
 前記第1電極を覆う前記絶縁膜の少なくとも一部及び前記構造の前記メサの周辺の領域を覆う絶縁膜の一部をエッチングにより除去する工程と、
 前記メサの側面を覆う前記絶縁膜上及び前記周辺の領域を覆う前記絶縁膜上に第2電極としての導電膜を形成する工程と、
 を含む、面発光レーザ装置の製造方法も提供する。
The present technology includes a resonator including a mesa having a light emitting layer provided on a substrate,
At least a side surface of the mesa and a region of the resonator or the substrate surrounding the mesa are covered with an insulating film;
an opening is provided in the insulating film covering the peripheral region;
the insulating film is covered with a conductive film as an electrode,
The conductive film is in contact with the peripheral region at the opening.
The conductive film may be provided so as to straddle a portion covering the side surface of the insulating film and a portion covering the peripheral region of the insulating film.
The surface emitting laser device may include a plurality of the resonators.
The mesas of the plurality of resonators may include two mesas adjacent to the opening in a plan view.
The centers of the two mesas and the center of the opening do not have to be on the same line.
In a plan view, the two mesas and the opening do not have to be on the same straight line.
In a plan view, the distance between the center of each of the two mesas and the center of the opening may be more than half the distance between the centers of the two mesas.
In a plan view, the distance between the center of each of the two mesas and the center of the opening may be the same.
In a plan view, the opening may be surrounded by at least three mesas including the two mesas among the mesas of the plurality of resonators.
The insulating film covering the peripheral region may have a plurality of the openings, and each of the plurality of openings may be surrounded by the at least three mesas in a plan view. The conductive film may cover an entire surface of the insulating film covering the peripheral region.
In the resonator, a first reflector, a light-emitting layer, and a second reflector are stacked in this order from the substrate side, and the bottom surface of the mesa may be located between the first reflector and the light-emitting layer, or within the first reflector, or between the substrate and the first reflector.
The shape of the opening in a plan view and the shape of the mesa in a plan view may be similar to each other.
The shape of the opening in plan view may be similar to a polygon having vertices at the centers of the at least three mesas surrounding the opening.
The distance between the centers of the two mesas may be 20 μm or less.
Another electrode may be provided on the top of the mesa, the insulating film may have another opening exposing the another electrode, and the conductive film may be opened to expose the another opening.
The mesa may have a contact layer on the top thereof that contacts the further electrode.
A contact layer in contact with the electrode may be provided between the substrate and the mesa. The present technology also provides an electronic device including the surface-emitting laser device.
The present technology includes a step of producing a laminate in which a plurality of layers are laminated on a structure including a substrate;
Etching the stack to form a mesa;
forming a first electrode on the top of the mesa;
forming an insulating film on the stacked body having the first electrode formed on the mesa;
removing by etching at least a portion of the insulating film covering the first electrode and a portion of the insulating film covering a region around the mesa of the structure;
forming a conductive film as a second electrode on the insulating film covering a side surface of the mesa and on the insulating film covering the peripheral region;
Also provided is a method for manufacturing a surface emitting laser device, comprising:
本技術の一実施形態の実施例1に係る面発光レーザ装置の断面図である。1 is a cross-sectional view of a surface-emitting laser device according to Example 1 of an embodiment of the present technology. 本技術の一実施形態の実施例1に係る面発光レーザ装置の平面図である。1 is a plan view of a surface-emitting laser device according to a first example of an embodiment of the present technology; 図1の面発光レーザ装置の製造方法の一例を説明するためのフローチャートである。2 is a flowchart for explaining an example of a method for manufacturing the surface emitting laser device of FIG. 1 . 図1の面発光レーザ装置の製造方法の一例の工程毎の断面図である。2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 . 図1の面発光レーザ装置の製造方法の一例の工程毎の断面図である。2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 . 図1の面発光レーザ装置の製造方法の一例の工程毎の断面図である。2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 . 図1の面発光レーザ装置の製造方法の一例の工程毎の断面図である。2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 . 図1の面発光レーザ装置の製造方法の一例の工程毎の断面図である。2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 . 図1の面発光レーザ装置の製造方法の一例の工程毎の断面図である。2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 . 図1の面発光レーザ装置の製造方法の一例の工程毎の断面図である。2A to 2C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 1 . 本技術の一実施形態の実施例2に係る面発光レーザ装置の断面図である。FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 2 of an embodiment of the present technology. 本技術の一実施形態の実施例2に係る面発光レーザ装置の平面図である。FIG. 11 is a plan view of a surface-emitting laser device according to Example 2 of an embodiment of the present technology. 図11の面発光レーザ装置の製造方法の一例の工程毎の断面図である。12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 . 図11の面発光レーザ装置の製造方法の一例の工程毎の断面図である。12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 . 図11の面発光レーザ装置の製造方法の一例の工程毎の断面図である。12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 . 図11の面発光レーザ装置の製造方法の一例の工程毎の断面図である。12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 . 図11の面発光レーザ装置の製造方法の一例の工程毎の断面図である。12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 . 図11の面発光レーザ装置の製造方法の一例の工程毎の断面図である。12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 . 図11の面発光レーザ装置の製造方法の一例の工程毎の断面図である。12A to 12C are cross-sectional views of steps in an example of a manufacturing method for the surface-emitting laser device of FIG. 11 . 本技術の一実施形態の実施例3に係る面発光レーザ装置の断面図である。FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 3 of an embodiment of the present technology. 本技術の一実施形態の実施例4に係る面発光レーザ装置の断面図である。FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 4 of an embodiment of the present technology. 本技術の一実施形態の実施例5に係る面発光レーザ装置の断面図である。FIG. 11 is a cross-sectional view of a surface-emitting laser device according to Example 5 of an embodiment of the present technology. 本技術の一実施形態の実施例6に係る面発光レーザ装置の断面図である。FIG. 13 is a cross-sectional view of a surface-emitting laser device according to Example 6 of an embodiment of the present technology. 本技術の一実施形態の実施例6に係る面発光レーザ装置の平面図である。FIG. 13 is a plan view of a surface-emitting laser device according to Example 6 of an embodiment of the present technology. 本技術の一実施形態の実施例7に係る面発光レーザ装置の断面図である。FIG. 13 is a cross-sectional view of a surface-emitting laser device according to Example 7 of an embodiment of the present technology. 本技術の一実施形態の実施例8に係る面発光レーザ装置の断面図である。FIG. 13 is a cross-sectional view of a surface-emitting laser device according to Example 8 of an embodiment of the present technology. 本技術の一実施形態の実施例9に係る面発光レーザ装置の断面図である。FIG. 13 is a cross-sectional view of a surface-emitting laser device according to Example 9 of an embodiment of the present technology. 本技術の一実施形態の実施例9に係る面発光レーザ装置の平面図である。FIG. 13 is a plan view of a surface-emitting laser device according to Example 9 of an embodiment of the present technology. 本技術の一実施形態の実施例10に係る面発光レーザ装置の断面図である。FIG. 23 is a cross-sectional view of a surface-emitting laser device according to a tenth example of an embodiment of the present technology. 本技術の一実施形態の実施例11に係る面発光レーザ装置の断面図である。FIG. 13 is a cross-sectional view of a surface-emitting laser device according to an eleventh example of an embodiment of the present technology. 本技術の一実施形態の実施例11に係る面発光レーザ装置の平面図である。FIG. 21 is a plan view of a surface-emitting laser device according to an eleventh example of an embodiment of the present technology. 本技術の一実施形態の変形例1に係る面発光レーザ装置の平面図である。1 is a plan view of a surface-emitting laser device according to a first modified example of an embodiment of the present technology. 本技術の一実施形態の変形例2に係る面発光レーザ装置の平面図である。11 is a plan view of a surface-emitting laser device according to a second modified example of an embodiment of the present technology. FIG. 本技術の一実施形態の変形例3に係る面発光レーザ装置の断面図である。FIG. 11 is a cross-sectional view of a surface-emitting laser device according to a third modified example of an embodiment of the present technology. 本技術の一実施形態の実施例1に係る面発光レーザ装置の距離測定装置への適用例を示す図である。1 is a diagram illustrating an example of an application of a surface-emitting laser device according to a first embodiment of the present technology to a distance measuring device. 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; 距離測定装置の設置位置の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of an installation position of a distance measuring device.
 以下に添付図面を参照しながら、本技術の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。本明細書において、本技術に係る面発光レーザ装置が複数の効果を奏することが記載される場合でも、本技術に係る面発光レーザ装置は、少なくとも1つの効果を奏すればよい。本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。 Below, a preferred embodiment of the present technology will be described in detail with reference to the attached drawings. Note that in this specification and the drawings, components having substantially the same functional configuration will be denoted with the same reference numerals to avoid repeated description. The embodiments described below are representative embodiments of the present technology, and are not intended to narrow the scope of the present technology. Even if this specification describes that the surface-emitting laser device according to the present technology has multiple effects, it is sufficient that the surface-emitting laser device according to the present technology has at least one effect. The effects described in this specification are merely examples and are not limiting, and other effects may also be present.
 また、以下の順序で説明を行う。
0.導入
1.本技術の一実施形態の実施例1に係る面発光レーザ装置
2.本技術の一実施形態の実施例2に係る面発光レーザ装置
3.本技術の一実施形態の実施例3に係る面発光レーザ装置
4.本技術の一実施形態の実施例4に係る面発光レーザ装置
5.本技術の一実施形態の実施例5に係る面発光レーザ装置
6.本技術の一実施形態の実施例6に係る面発光レーザ装置
7.本技術の一実施形態の実施例7に係る面発光レーザ装置
8.本技術の一実施形態の実施例8に係る面発光レーザ装置
9.本技術の一実施形態の実施例9に係る面発光レーザ装置
10.本技術の一実施形態の実施例10に係る面発光レーザ装置
11.本技術の一実施形態の実施例11に係る面発光レーザ装置
12.本技術の一実施形態の変形例1に係る面発光レーザ装置
13.本技術の一実施形態の変形例2に係る面発光レーザ装置
14.本技術の一実施形態の変形例3に係る面発光レーザ装置
15.本技術のその他の変形例
16.電子機器への応用例
17.面発光レーザ装置を距離測定装置に適用した例
18.距離測定装置を移動体に搭載した例
The explanation will be given in the following order:
0. Introduction 1. Surface-emitting laser device according to Example 1 of one embodiment of the present technology 2. Surface-emitting laser device according to Example 2 of one embodiment of the present technology 3. Surface-emitting laser device according to Example 3 of one embodiment of the present technology 4. Surface-emitting laser device according to Example 4 of one embodiment of the present technology 5. Surface-emitting laser device according to Example 5 of one embodiment of the present technology 6. Surface-emitting laser device according to Example 6 of one embodiment of the present technology 7. Surface-emitting laser device according to Example 7 of one embodiment of the present technology 8. Surface-emitting laser device according to Example 8 of one embodiment of the present technology 9. Surface-emitting laser device according to Example 9 of one embodiment of the present technology 10. Surface-emitting laser device according to Example 10 of one embodiment of the present technology 11. Surface-emitting laser device according to Example 11 of one embodiment of the present technology 12. Surface-emitting laser device according to Modification 1 of one embodiment of the present technology 13. Surface-emitting laser device according to Modification 2 of one embodiment of the present technology 14. Surface-emitting laser device according to Modification 3 of one embodiment of the present technology 15. Other modifications of the present technology 16. Application example to electronic device 17. Example of application of surface-emitting laser device to distance measurement device 18. Example of distance measurement device mounted on a moving object
<0.導入>
 垂直共振器型の面発光レーザ(Vertical cavity surface emitting laser : VCSEL)では、高出力化のために、有効発光エリアを拡大することが求められる。基板の表面側にアノード電極及びカソード電極が設けられる、コプレナー型のVCSELでは、基板上に設けられたメサの周辺の領域にアノード電極又はカソード電極を形成する必要があり、有効発光エリアを大きくすることが困難である。例えばコプレナー型のVCSELアレイにおいて、有効発光エリアを拡大するためにメサ間の距離を短くすると、メサの周辺の領域に電極等を形成することが困難となり、生産性(歩留まり)が著しく低下する。
<0. Introduction>
In a vertical cavity surface emitting laser (VCSEL), it is required to expand the effective light emitting area in order to increase the output. In a coplanar VCSEL in which an anode electrode and a cathode electrode are provided on the surface side of a substrate, it is necessary to form an anode electrode or a cathode electrode in the peripheral region of a mesa provided on the substrate, and it is difficult to increase the effective light emitting area. For example, in a coplanar VCSEL array, if the distance between mesas is shortened to expand the effective light emitting area, it becomes difficult to form electrodes, etc. in the peripheral region of the mesa, and the productivity (yield) is significantly reduced.
 ところで、コプレナー型のVCSELでは、メサの頂部とメサの周辺の領域とに電極が形成されるが、従来、メサ側面でのショートを回避するために、メサの周辺の領域の一部(局所)に電極が形成されている(例えば特許文献1、2参照)。しかし、このような構成では、メサの高さが高い場合や、メサ間の間隔が狭い場合等に、メサの周辺の領域に電極等を形成することが困難であり、生産性(歩留まり)が著しく低下する。 In a coplanar VCSEL, electrodes are formed on the top of the mesa and in the area surrounding the mesa. Conventionally, however, electrodes are formed only in a portion (local) of the area surrounding the mesa to avoid short circuits on the side of the mesa (see, for example, Patent Documents 1 and 2). However, in such a configuration, when the mesa is tall or the distance between the mesas is narrow, it is difficult to form electrodes in the area surrounding the mesa, resulting in a significant decrease in productivity (yield).
 そこで、発明者らは、鋭意検討の末、生産性(歩留まり)を向上させることができる面発光レーザ装置として、本技術に係る面発光レーザを開発した。 After extensive research, the inventors developed a surface-emitting laser according to this technology as a surface-emitting laser device that can improve productivity (yield).
 以下、本技術の一実施形態に係る面発光レーザ装置を幾つかの実施例を挙げて詳細に説明する。以下では、便宜上、図1等の断面図における上方を上、下方を下として説明する。 Below, a surface-emitting laser device according to an embodiment of the present technology will be described in detail with reference to several examples. For convenience, the upper side in the cross-sectional view of FIG. 1 and the like will be referred to as the top and the lower side as the bottom.
<1.本技術の一実施形態の実施例1に係る面発光レーザ装置>
 図1は、本技術の一実施形態の実施例1に係る面発光レーザ装置10-1の断面図である。図2は、面発光レーザ装置10-1の平面図である。図1は、図2の1-1線断面図である。
1. Surface-emitting laser device according to Example 1 of an embodiment of the present technology
Fig. 1 is a cross-sectional view of a surface-emitting laser device 10-1 according to a first example of an embodiment of the present technology. Fig. 2 is a plan view of the surface-emitting laser device 10-1. Fig. 1 is a cross-sectional view taken along line 1-1 in Fig. 2.
≪面発光レーザの構成≫
(全体構成)
 本技術の一実施形態の実施例1に係る面発光レーザ装置10-1は、垂直共振器型面発光レーザ(VCSEL)である。面発光レーザ装置10-1は、一例として、図1に示すように、基板101上に設けられた、発光層105を有するメサMを含む共振器Rを備える。面発光レーザ装置10-1は、一例として、基板101の裏面(下面)側へ光を出射する裏面出射型のVCSELである。面発光レーザ装置10-1は、一例として、基板101の同一面側(表面側)にアノード電極111及びカソード電極110が設けられる、コプレナー型のVCSELである。面発光レーザ装置10-1は、例えばレーザドライバにより駆動される。
<Configuration of surface-emitting laser>
(overall structure)
A surface-emitting laser device 10-1 according to Example 1 of an embodiment of the present technology is a vertical cavity surface-emitting laser (VCSEL). As an example, as shown in FIG. 1, the surface-emitting laser device 10-1 includes a resonator R including a mesa M having a light-emitting layer 105 provided on a substrate 101. As an example, the surface-emitting laser device 10-1 is a back-emission type VCSEL that emits light to the back surface (lower surface) side of the substrate 101. As an example, the surface-emitting laser device 10-1 is a coplanar type VCSEL in which an anode electrode 111 and a cathode electrode 110 are provided on the same surface side (front surface side) of the substrate 101. The surface-emitting laser device 10-1 is driven by, for example, a laser driver.
 面発光レーザ装置10-1は、アレイ状に配置された複数(例えば7つ)の共振器Rを備え、実質的に面発光レーザアレイを構成する(図2参照)。 The surface-emitting laser device 10-1 has multiple (e.g., seven) resonators R arranged in an array, essentially forming a surface-emitting laser array (see Figure 2).
 共振器Rは、発光層105に加えて、該発光層105を上下に挟む第1及び第2反射鏡103、108を有する。第1反射鏡103は、基板101と発光層105との間に配置されている。第2反射鏡108は、発光層105の基板101側とは反対側(上側)に配置されている。第1反射鏡は「下部反射鏡」とも呼ばれ、第2反射鏡は「上部反射鏡」とも呼ばれる。 In addition to the light-emitting layer 105, the resonator R has first and second reflecting mirrors 103, 108 that sandwich the light-emitting layer 105 from above and below. The first reflecting mirror 103 is disposed between the substrate 101 and the light-emitting layer 105. The second reflecting mirror 108 is disposed on the opposite side (upper side) of the light-emitting layer 105 from the substrate 101 side. The first reflecting mirror is also called the "lower reflecting mirror" and the second reflecting mirror is also called the "upper reflecting mirror".
 共振器Rは、さらに、基板101と第1反射鏡103との間に配置された第1コンタクト層102と、第1反射鏡103と発光層105との間に配置された第1クラッド層104と、発光層105と第2反射鏡108との間に配置された第2クラッド層106と、第2クラッド層106内に配置された酸化狭窄層107と、第2反射鏡108上に配置された第2コンタクト層109とを有する。 The resonator R further includes a first contact layer 102 disposed between the substrate 101 and the first reflector 103, a first cladding layer 104 disposed between the first reflector 103 and the light-emitting layer 105, a second cladding layer 106 disposed between the light-emitting layer 105 and the second reflector 108, an oxide constriction layer 107 disposed within the second cladding layer 106, and a second contact layer 109 disposed on the second reflector 108.
 すなわち、共振器Rでは、基板101上に第1コンタクト層102、第1反射鏡103、第1クラッド層104、発光層105、酸化狭窄層107が内部に配置された第2クラッド層106と、第2反射鏡108と、第2コンタクト層109とがこの順に積層されている。 In other words, in the resonator R, a first contact layer 102, a first reflecting mirror 103, a first cladding layer 104, a light-emitting layer 105, a second cladding layer 106 with an oxide constriction layer 107 disposed therein, a second reflecting mirror 108, and a second contact layer 109 are stacked in this order on a substrate 101.
 ここでは、第1反射鏡103、第1クラッド層104、発光層105、酸化狭窄層107が内部に配置された第2クラッド層106、第2反射鏡108及び第2コンタクト層109によりメサMが構成されている。メサMの底面は、第1反射鏡103と第1コンタクト層102と間に位置する。すなわち、第1コンタクト層102にメサMが突設されている。メサMの頂部上にベタ状のアノード電極111(p側電極)が設けられている。メサMの高さは、例えば9μm程度である。ここでは、メサMの平面視形状は、円形とされているが、例えば楕円形、多角形等の他の形状であってもよい。 Here, the mesa M is composed of the first reflector 103, the first cladding layer 104, the light emitting layer 105, the second cladding layer 106 with the oxide constriction layer 107 disposed therein, the second reflector 108, and the second contact layer 109. The bottom surface of the mesa M is located between the first reflector 103 and the first contact layer 102. That is, the mesa M protrudes from the first contact layer 102. A solid anode electrode 111 (p-side electrode) is provided on the top of the mesa M. The height of the mesa M is, for example, about 9 μm. Here, the planar shape of the mesa M is circular, but it may be other shapes such as an ellipse or a polygon.
 アノード電極111の周辺部、メサMの側面及び第1コンタクト層102のメサMの周辺の領域が絶縁膜112で覆われている。絶縁膜112は、カソード電極110(n側電極)としての導電膜で覆われている。 The periphery of the anode electrode 111, the side of the mesa M, and the area of the first contact layer 102 surrounding the mesa M are covered with an insulating film 112. The insulating film 112 is covered with a conductive film serving as the cathode electrode 110 (n-side electrode).
(基板)
 基板101は、一例として、半絶縁性のGaAs基板からなる。なお、基板101は、第1導電型(例えばn型)の半導体基板(例えばn-GaAs基板)であってもよい。
(substrate)
The substrate 101 is, for example, a semi-insulating GaAs substrate, but may be a first conductivity type (for example, n-type) semiconductor substrate (for example, an n-GaAs substrate).
(第1コンタクト層)
 第1コンタクト層102は、上述のように、基板101とメサM(詳しくは第1反射鏡103)との間に設けられている。第1コンタクト層102は、一例として、第1導電型(例えばn型)の不純物が高濃度でドープされた化合物半導体層であるハイドープ層(キャリア伝導性が高い低抵抗層)からなる。ここでは、第1コンタクト層102は、ハイドープのn-GaAs層からなる。第1コンタクト層102の厚さは、例えば1~10μmである。
(First Contact Layer)
As described above, the first contact layer 102 is provided between the substrate 101 and the mesa M (specifically, the first reflecting mirror 103). As an example, the first contact layer 102 is made of a highly doped layer (a low resistance layer with high carrier conductivity) that is a compound semiconductor layer doped with a first conductivity type (e.g., n-type) impurity at a high concentration. Here, the first contact layer 102 is made of a highly doped n-GaAs layer. The thickness of the first contact layer 102 is, for example, 1 to 10 μm.
(第1反射鏡)
 第1反射鏡103は、一例として半導体多層膜反射鏡である。多層膜反射鏡は、分布型ブラッグ反射鏡(DBR:Distributed Bragg Reflector)とも呼ばれる。第1反射鏡103は、第1導電型(例えばn型)の半導体多層膜反射鏡(不純物半導体からなる半導体多層膜反射鏡)である。第1反射鏡103は、一例として、GaAsに格子整合する化合物半導体(GaAs系化合物半導体)からなる。詳述すると、第1反射鏡103は、一例として、高屈折率層(例えばn-GaAs)と低屈折率層(例えばn-AlGaAs)とが交互に積層された積層構造を有する。各屈折率層の光学厚さは、発振波長λの1/4である。ここでは、第1反射鏡103のペア数(高屈折率層及び低屈折率層のペアの数)は、例えば16ペアである。
(First reflector)
The first reflecting mirror 103 is, for example, a semiconductor multilayer reflecting mirror. The multilayer reflecting mirror is also called a distributed Bragg reflector (DBR). The first reflecting mirror 103 is a semiconductor multilayer reflecting mirror (a semiconductor multilayer reflecting mirror made of an impurity semiconductor) of a first conductivity type (for example, n-type). The first reflecting mirror 103 is, for example, made of a compound semiconductor (GaAs-based compound semiconductor) lattice-matched to GaAs. In more detail, the first reflecting mirror 103 has, for example, a layered structure in which a high refractive index layer (for example, n-GaAs) and a low refractive index layer (for example, n-AlGaAs) are alternately layered. The optical thickness of each refractive index layer is ¼ of the oscillation wavelength λ. Here, the number of pairs (the number of pairs of high refractive index layers and low refractive index layers) of the first reflecting mirror 103 is, for example, 16 pairs.
(第1クラッド層)
 第1クラッド層104は、一例として、第1導電型(例えばn型)のGaAs系化合物半導体(例えばn-AlGaAs)からなる。クラッド層は「スペーサ層」とも呼ばれる。
(First Cladding Layer)
The first cladding layer 104 is, for example, made of a first conductivity type (for example, n-type) GaAs-based compound semiconductor (for example, n-AlGaAs). The cladding layer is also called a "spacer layer".
(発光層)
 発光層105は、一例として、発光波長が900~940nmとなるように設計された、GaAs系化合物半導体(例えばInGaAs)からなる障壁層及び量子井戸層を含む量子井戸構造を有する。この量子井戸構造は、単一量子井戸構造(QW構造)であってもよいし、多重量子井戸構造(MQW構造)であってもよい。発光層105は、共振器R内に生じる定在波の腹の位置に配置されることが好ましい。なお、発光層105は、トンネルジャンクションを介して積層された複数のQW構造又は複数のMQW構造を有していてもよい。発光層105は、「活性層」とも呼ばれる。
(Light Emitting Layer)
The light emitting layer 105 has, as an example, a quantum well structure including a barrier layer and a quantum well layer made of a GaAs-based compound semiconductor (e.g., InGaAs) designed to have an emission wavelength of 900 to 940 nm. This quantum well structure may be a single quantum well structure (QW structure) or a multiple quantum well structure (MQW structure). The light emitting layer 105 is preferably disposed at the position of an antinode of a standing wave generated in the resonator R. The light emitting layer 105 may have a plurality of QW structures or a plurality of MQW structures stacked via a tunnel junction. The light emitting layer 105 is also called an "active layer".
(第2クラッド層)
 第2クラッド層106は、一例として、第2導電型(例えばp型)のGaAs系化合物半導体(例えばp-AlGaAs)からなる。クラッド層は「スペーサ層」とも呼ばれる。
(Second Clad Layer)
The second cladding layer 106 is made of, for example, a GaAs-based compound semiconductor (for example, p-AlGaAs) of a second conductivity type (for example, p-type). The cladding layer is also called a "spacer layer".
(酸化狭窄層)
 酸化狭窄層107は、非酸化領域107aと該非酸化領域107aを取り囲む酸化領域107bとを有する。非酸化領域107aは、例えばAlGaAsやAlAs(第1及び第2反射鏡103、108のAlGaAsよりもAl組成が高いAlGaAs)からなり、電流・光通過領域として機能する。酸化領域107bは、例えばAl(AlGaAsよりも高抵抗且つ低屈折率)からなり、電流・光狭窄領域として機能する。すなわち、酸化狭窄層107は、発光層105の発光領域(電流注入領域)を設定する機能を有する。酸化狭窄層107は、共振器R内に生じる定在波の節の位置に配置されることが好ましい。
(Oxidation constriction layer)
The oxidized constriction layer 107 has a non-oxidized region 107a and an oxidized region 107b surrounding the non-oxidized region 107a. The non-oxidized region 107a is made of, for example, AlGaAs or AlAs (AlGaAs having a higher Al composition than the AlGaAs of the first and second reflectors 103 and 108), and functions as a current/light passing region. The oxidized region 107b is made of, for example, Al x O y (higher resistance and lower refractive index than AlGaAs), and functions as a current/light constriction region. That is, the oxidized constriction layer 107 has a function of setting the light emission region (current injection region) of the light emitting layer 105. The oxidized constriction layer 107 is preferably disposed at the position of a node of a standing wave generated in the resonator R.
(第2反射鏡)
 第2反射鏡108は、一例として半導体多層膜反射鏡である。第2反射鏡108は、第2導電型(例えばp型)の半導体多層膜反射鏡(不純物半導体からなる半導体多層膜反射鏡)である。第2反射鏡108は、一例として、GaAsに格子整合する化合物半導体(GaAs系化合物半導体)からなる。第2反射鏡108は、高屈折率層(例えばp-GaAs)と低屈折率層(例えばp-AlGaAs)とが交互に積層された積層構造を有する。各屈折率層の光学厚さは、発振波長λの1/4である。第2反射鏡108のペア数は、例えば36ペアである。第2反射鏡108は、第1反射鏡103よりも反射率が僅かに高く設定されている。
(Second reflector)
The second reflecting mirror 108 is, for example, a semiconductor multilayer reflecting mirror. The second reflecting mirror 108 is a semiconductor multilayer reflecting mirror (a semiconductor multilayer reflecting mirror made of an impurity semiconductor) of a second conductivity type (for example, p-type). The second reflecting mirror 108 is, for example, made of a compound semiconductor (GaAs-based compound semiconductor) lattice-matched to GaAs. The second reflecting mirror 108 has a layered structure in which a high refractive index layer (for example, p-GaAs) and a low refractive index layer (for example, p-AlGaAs) are alternately layered. The optical thickness of each refractive index layer is ¼ of the oscillation wavelength λ. The number of pairs of the second reflecting mirror 108 is, for example, 36 pairs. The reflectance of the second reflecting mirror 108 is set slightly higher than that of the first reflecting mirror 103.
(第2コンタクト層)
 第2コンタクト層109は、メサMの頂部を構成し、アノード電極111と接する。第2コンタクト層109は、一例として、第2導電型(例えばp型)の不純物が高濃度でドープされた化合物半導体層であるハイドープ層(キャリア伝導性が高い低抵抗層)からなる。ここでは、第2コンタクト層109は、ハイドープのp-GaAs層からなる。第2コンタクト層109の厚さは、例えば1~10μmである。
(Second Contact Layer)
The second contact layer 109 constitutes the top of the mesa M and is in contact with the anode electrode 111. As an example, the second contact layer 109 is made of a highly doped layer (a low resistance layer with high carrier conductivity) that is a compound semiconductor layer doped with a high concentration of impurities of a second conductivity type (e.g., p-type). Here, the second contact layer 109 is made of a highly doped p-GaAs layer. The thickness of the second contact layer 109 is, for example, 1 to 10 μm.
(アノード電極)
 アノード電極111は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)を含んで構成されている。ここでは、アノード電極111は、一例として、Ti/Pt/Auの積層構造を有する。該積層構造において、Ti、Pt、Auは、一例として、それぞれ50nm、100nm、200nmの膜厚とされている。なお、アノード電極111は、単層構造を有していてもよい。アノード電極111は、レーザドライバの陽極(正極)に電気的に接続される。
(Anode electrode)
The anode electrode 111 is configured to include at least one type of metal (including alloy) selected from the group consisting of, for example, Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn, and In. Here, the anode electrode 111 has a Ti/Pt/Au laminated structure, for example. In the laminated structure, the Ti, Pt, and Au have thicknesses of, for example, 50 nm, 100 nm, and 200 nm, respectively. The anode electrode 111 may have a single-layer structure. The anode electrode 111 is electrically connected to the anode (positive electrode) of the laser driver.
(絶縁膜、カソード電極(導電膜))
 絶縁膜112は、例えばSiO、SiN、SiON、Al等の誘電体からなる。絶縁膜112の厚さは、一例として、数十nm~数百nm(例えば200nm程度)とされている。絶縁膜112は、第1コンタクト層102のメサMの周辺の領域を覆う第1絶縁膜112aと、該メサMの側面を覆う第2絶縁膜112bと、該メサMの頂部に設けられたアノード電極111の周辺部を覆う第3絶縁膜112cとを有する。
(Insulating film, cathode electrode (conductive film))
The insulating film 112 is made of a dielectric material such as SiO 2 , SiN, SiON, or Al 2 O 3. The thickness of the insulating film 112 is, for example, several tens to several hundreds of nm (for example, about 200 nm). The insulating film 112 has a first insulating film 112a covering the peripheral region of the mesa M of the first contact layer 102, a second insulating film 112b covering the side surface of the mesa M, and a third insulating film 112c covering the peripheral portion of the anode electrode 111 provided on the top of the mesa M.
 第1絶縁膜112aには、開口部としてのコンタクトホールCH1が複数(例えば6つ)設けられている(図2参照)。コンタクトホールCH1は、一例として、貫通孔状の開口部である。ここでは、第1絶縁膜112aは、第1コンタクト層102の各メサMの周辺の領域の全域を覆っている。第3絶縁膜112cには、アノード電極111の中央部を露出させる別の開口部としてのコンタクトホールCH2が設けられている。 The first insulating film 112a is provided with a plurality of contact holes CH1 (e.g., six) as openings (see FIG. 2). As an example, the contact holes CH1 are through-hole-shaped openings. Here, the first insulating film 112a covers the entire area around each mesa M of the first contact layer 102. The third insulating film 112c is provided with a contact hole CH2 as another opening that exposes the center of the anode electrode 111.
 カソード電極110としての導電膜は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn、In及びGeからなる群から選択された少なくとも1種類の金属(合金を含む)を含んで構成されている。ここでは、カソード電極110は、一例として、AuGe/Ni/Auの積層構造を有する。該積層構造において、AuGe、Ni、Auは、一例として、それぞれ150nm、50nm、200nmの膜厚とされている。なお、カソード電極110は、単層構造を有していてもよい。カソード電極110は、レーザドライバの陰極(負極)に電気的に接続される。 The conductive film serving as the cathode electrode 110 is composed of at least one metal (including alloys) selected from the group consisting of, for example, Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn, In, and Ge. Here, the cathode electrode 110 has, as an example, a laminated structure of AuGe/Ni/Au. In the laminated structure, the AuGe, Ni, and Au have, as an example, film thicknesses of 150 nm, 50 nm, and 200 nm, respectively. The cathode electrode 110 may have a single-layer structure. The cathode electrode 110 is electrically connected to the cathode (negative electrode) of the laser driver.
 カソード電極110としての導電膜は、絶縁膜112の、メサMの側面を覆う部分である第1絶縁膜112aと、絶縁膜112の、第1コンタクト層102のメサMの周辺の領域を覆う部分である第2絶縁膜112bとに跨るように設けられている。該導電膜は、コンタクトホールCH1で第1コンタクト層102のメサMの周辺の領域に接している。 The conductive film serving as the cathode electrode 110 is provided so as to straddle the first insulating film 112a, which is the portion of the insulating film 112 that covers the side surface of the mesa M, and the second insulating film 112b, which is the portion of the insulating film 112 that covers the area surrounding the mesa M of the first contact layer 102. The conductive film contacts the area surrounding the mesa M of the first contact layer 102 at the contact hole CH1.
 詳述すると、カソード電極110としての導電膜は、第1絶縁膜112aを覆う部分であってコンタクトホールCH1で第1コンタクト層102に接する第1電極部110aと、第2絶縁膜112bを覆う第2電極部110bと、第3絶縁膜112cを覆う第3電極部110cとを有する。ここでは、第1電極部110aは、第1絶縁膜112aの全面を覆っている。第3電極部110cは、コンタクトホールCH2の少なくとも一部(例えば全部)を露出させるように開口している。ここでは、第3電極部110cの開口の内縁部が第3絶縁膜112c上に位置している。なお、第1電極部110aは、第1絶縁膜112aの一部を覆っていなくてもよい。 More specifically, the conductive film as the cathode electrode 110 has a first electrode portion 110a that covers the first insulating film 112a and contacts the first contact layer 102 at the contact hole CH1, a second electrode portion 110b that covers the second insulating film 112b, and a third electrode portion 110c that covers the third insulating film 112c. Here, the first electrode portion 110a covers the entire surface of the first insulating film 112a. The third electrode portion 110c is opened so as to expose at least a part (for example, the entirety) of the contact hole CH2. Here, the inner edge of the opening of the third electrode portion 110c is located on the third insulating film 112c. Note that the first electrode portion 110a does not have to cover a part of the first insulating film 112a.
 以上のように、絶縁膜112により、アノード電極111及びメサMの側面と、カソード電極110とが絶縁され、コンタクトホールCH1においてカソード電極110と第1コンタクト層102とが導通している。面発光レーザ装置10-1では、各共振器Rに対して、アノード電極111が互いに独立に設けられ、且つ、カソード電極110が共通に設けられている。よって、各共振器Rを独立に駆動することが可能である。 As described above, the insulating film 112 insulates the anode electrode 111 and the side surface of the mesa M from the cathode electrode 110, and the cathode electrode 110 is conductive with the first contact layer 102 through the contact hole CH1. In the surface-emitting laser device 10-1, the anode electrodes 111 are provided independently for each resonator R, and the cathode electrode 110 is provided in common. Therefore, it is possible to drive each resonator R independently.
(メサ及びコンタクトホール(開口部)の配置)
 発明者らは、以下に説明するように、メサM及びコンタクトホールCH1(開口部)の配置に工夫を凝らすことにより、面発光レーザ装置10-1の製造時に、コンタクトホールCH1を形成しやすくし、且つ、カソード電極110としての導電膜をコンタクトホールCH1内にも成膜しやすくすることに成功した。
(Arrangement of Mesas and Contact Holes (Openings))
As described below, the inventors have succeeded in making it easier to form the contact hole CH1 during the manufacture of the surface-emitting laser device 10-1, by devising an arrangement of the mesa M and the contact hole CH1 (opening), and also making it easier to form a conductive film as the cathode electrode 110 within the contact hole CH1.
 ここで、各メサMの発光層105への電流注入効率を高めるために該メサMの周辺にコンタクトホールCH1が設けられることが好ましいが、該メサMと該コンタクトホールCH1との距離が短いほど、該コンタクトホールCH1の形成や該コンタクトホールCH1内への導電膜の成膜が困難となり生産性(歩留まり)が低下してしまう。 Here, it is preferable to provide a contact hole CH1 around each mesa M in order to increase the efficiency of current injection into the light-emitting layer 105 of the mesa M. However, the shorter the distance between the mesa M and the contact hole CH1, the more difficult it becomes to form the contact hole CH1 and to deposit a conductive film in the contact hole CH1, resulting in a decrease in productivity (yield).
 面発光レーザ装置10-1では、一例として図2に示すように、平面視において、複数(例えば7つ)の共振器Rが2次元配置(例えば千鳥配置)されている。平面視において、複数(例えば7つ)の共振器RのメサMのうち3つのメサMで各コンタクトホールCH1が囲まれている。すなわち、面発光レーザ装置10-1には、3つのメサM及び該3つのメサMに囲まれた1つのコンタクトホールCH1の組が6組存在する。ここでは、該3つのメサMの中心(面積重心)が、それぞれ平面視において正三角形の3つの頂点に位置する。コンタクトホールCH1の平面視形状は、例えば円形である。 In the surface-emitting laser device 10-1, as shown in FIG. 2 as an example, a plurality of (e.g., seven) resonators R are arranged two-dimensionally (e.g., staggered) in a planar view. In a planar view, each contact hole CH1 is surrounded by three mesas M out of the plurality of (e.g., seven) resonators R. That is, in the surface-emitting laser device 10-1, there are six sets of three mesas M and one contact hole CH1 surrounded by the three mesas M. Here, the centers (area centers of gravity) of the three mesas M are located at the three vertices of an equilateral triangle in a planar view. The planar view shape of the contact hole CH1 is, for example, a circle.
 該3つのメサMは、平面視において、対応するコンタクトホールCH1と隣接する2つのメサMの組を3組有する。平面視において、該2つのメサMの中心と、対応するコンタクトホールCH1の中心とが同一直線上にないことが好ましい。すなわち、平面視において、該コンタクトホールCH1の中心が、該3つのメサMの頂点を頂点とする正三角形の内部に位置することが好ましい。なお、平面視において、該2つのメサMの中心と、対応するコンタクトホールCH1の中心とが同一直線上にあってもよい。 The three mesas M include three sets of two mesas M adjacent to a corresponding contact hole CH1 in a planar view. In a planar view, it is preferable that the centers of the two mesas M and the center of the corresponding contact hole CH1 are not on the same line. In other words, in a planar view, it is preferable that the center of the contact hole CH1 is located inside an equilateral triangle whose vertices are the vertices of the three mesas M. Note that in a planar view, the centers of the two mesas M and the center of the corresponding contact hole CH1 may be on the same line.
 さらには、平面視において、該2つのメサMと、対応するコンタクトホールCH1とが、同一直線上にないことが好ましい。すなわち、平面視において、該コンタクトホールCH1の全体が、該3つのメサMの頂点を頂点とする正三角形の内部に位置することが好ましい。なお、平面視において、該2つのメサMと、対応するコンタクトホールCH1とが、同一直線上にあってもよい。 Furthermore, in a plan view, it is preferable that the two mesas M and the corresponding contact hole CH1 are not on the same line. In other words, in a plan view, it is preferable that the entire contact hole CH1 is located inside an equilateral triangle whose vertices are the vertices of the three mesas M. Note that in a plan view, the two mesas M and the corresponding contact hole CH1 may be on the same line.
 さらには、平面視において、該2つのメサMの各々の中心と、対応するコンタクトホールCH1の中心との距離は、該2つのメサMの中心間の距離の1/2超であることが好ましい。なお、平面視において、該2つのメサMの各々の中心と、対応するコンタクトホールCH1の中心との距離の少なくとも一方は、該2つのメサMの中心間の距離の1/2以下であってもよい。 Furthermore, in a planar view, it is preferable that the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 is more than 1/2 the distance between the centers of the two mesas M. Note that, in a planar view, at least one of the distances between the center of each of the two mesas M and the center of the corresponding contact hole CH1 may be 1/2 or less the distance between the centers of the two mesas M.
 さらには、平面視において、該2つのメサMの各々の中心と、対応するコンタクトホールCH1の中心との距離は、同一であることが好ましい。なお、平面視において、該2つのメサMの各々の中心と、対応するコンタクトホールCH1の中心との距離は、同一でなくてもよい。 Furthermore, in a planar view, it is preferable that the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 is the same. However, in a planar view, the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 does not have to be the same.
 コンタクトホールCH1の平面視形状とメサMの平面視形状とが、互いに相似であることが好ましい。ここでは、コンタクトホールCH1及びメサMの平面視形状の各々は、円形であり、互いに相似である。これにより、メサMとコンタクトホールCH1との間のスペースを大きくでき、コンタクトホールCH1を形成することが容易となる。なお、コンタクトホールCH1の平面視形状は、円形に限らず、楕円形、多角形等の他の如何なる形状であってもよい。 It is preferable that the planar shape of the contact hole CH1 and the planar shape of the mesa M are similar to each other. Here, the planar shapes of the contact hole CH1 and the mesa M are both circular and similar to each other. This allows the space between the mesa M and the contact hole CH1 to be larger, making it easier to form the contact hole CH1. Note that the planar shape of the contact hole CH1 is not limited to a circle, and may be any other shape such as an ellipse or a polygon.
 ここでは、一例として、各コンタクトホールCH1の中心が、対応する3つのメサMの中心を頂点とする正三角形の重心Gに一致しており、上記好ましい条件を全て満たしている。 Here, as an example, the center of each contact hole CH1 coincides with the center of gravity G of an equilateral triangle whose vertices are the centers of the three corresponding mesas M, satisfying all of the above preferable conditions.
 該2つのメサMの中心間の距離は、20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることがより一層好ましい。これにより、同一のアレイ面積において発光層105の発光領域(有効発光エリア)を大きくし、高出力化を図ることができる。面発光レーザ装置10-1の、メサMとコンタクトホールCH1の配置は、該2つのメサMの中心間の距離が短くても、生産性の低下を抑制できる点で非常に有効である。 The distance between the centers of the two mesas M is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less. This allows the light-emitting region (effective light-emitting area) of the light-emitting layer 105 to be enlarged for the same array area, thereby enabling higher output. The arrangement of the mesas M and contact holes CH1 in the surface-emitting laser device 10-1 is extremely effective in preventing a decrease in productivity even if the distance between the centers of the two mesas M is short.
≪面発光レーザの動作≫
 以下、面発光レーザ装置10-1の動作について簡単に説明する。面発光レーザ装置10-1では、例えばレーザドライバの陽極側から供給されアノード電極111から流入した電流は、第2コンタクト層109、第2反射鏡108及び第2クラッド層106をこの順に介し(第2クラッド層106を介す際、酸化狭窄層107で狭窄されて)、発光層105に注入される。このとき、発光層105が発光し、その光が第1及び第2反射鏡103、108の間を発光層105で増幅され酸化狭窄層107で狭窄されつつ往復し、発振条件を満たしたときに、基板101の裏面(下面)からレーザ光として出射される。発光層105を経た電流は、第1クラッド層104、第1反射鏡103及び第1コンタクト層102をこの順に介してカソード電極110としての導電膜へ至り、該導電膜から例えばレーザドライバの陰極側へ流出される。このとき、第1コンタクト層102に横方向の電流パスが形成される。
<Operation of surface-emitting laser>
The operation of the surface-emitting laser device 10-1 will be briefly described below. In the surface-emitting laser device 10-1, for example, a current supplied from the anode side of a laser driver and flowing in from the anode electrode 111 passes through the second contact layer 109, the second reflecting mirror 108, and the second cladding layer 106 in this order (when passing through the second cladding layer 106, it is constricted by the oxide constriction layer 107) and is injected into the light-emitting layer 105. At this time, the light-emitting layer 105 emits light, and the light travels back and forth between the first and second reflecting mirrors 103 and 108 while being amplified by the light-emitting layer 105 and constricted by the oxide constriction layer 107, and when the oscillation conditions are satisfied, it is emitted as laser light from the back surface (lower surface) of the substrate 101. The current passing through the light emitting layer 105 passes through the first cladding layer 104, the first reflecting mirror 103, and the first contact layer 102 in this order to reach the conductive film serving as the cathode electrode 110, and is then discharged from the conductive film to, for example, the cathode side of a laser driver. At this time, a lateral current path is formed in the first contact layer 102.
≪面発光レーザの製造方法≫
 以下、面発光レーザ装置10-1の製造方法について、図3のフローチャート等を参照して説明する。ここでは、一例として、半導体製造装置を用いた半導体製造方法により、基板101の基材である1枚のウェハ(以下では、便宜上「基板101」とも呼ぶ)上に複数の面発光レーザ装置10-1を同時に生成する。次いで、一連一体の複数の面発光レーザ装置10-1を互いに分離して、チップ状の複数の面発光レーザ装置10-1を得る。
<Manufacturing method of surface-emitting laser>
A method for manufacturing the surface-emitting laser device 10-1 will be described below with reference to the flow chart of Fig. 3. As an example, a semiconductor manufacturing method using a semiconductor manufacturing apparatus is used to simultaneously produce a plurality of surface-emitting laser devices 10-1 on a single wafer (hereinafter, also referred to as "substrate 101" for convenience) which is the base material of the substrate 101. Next, the series of the surface-emitting laser devices 10-1 is separated from each other to obtain a plurality of chip-shaped surface-emitting laser devices 10-1.
 最初のステップS1では、積層体を生成する(図4参照)。具体的には、例えば有機金属気層成長(MOCVD)法により、成長基板としての基板101(例えば半絶縁のGaAs基板)上に第1コンタクト層102、第1反射鏡103、第1クラッド層104、発光層105、被酸化層107S(例えばAlGaAs層)が内部に配置された第2クラッド層106、第2反射鏡108及び第2コンタクト層109をこの順に積層して(例えば成長温度605℃にてエピタキシャル成長させて)、積層体を生成する。なお、MOCVDを行う際、ガリウムの原料ガスとしては、例えばトリメチルガリウム((CH33Ga)、アルミニウムの原料ガスとしては、例えばトリメチルアルミニウム((CH33Al)、インジウムの原料ガスとしては、例えばトリメチルインジウム((CH33In)、Asの原料ガスとしては、例えばトリメチルヒ素((CHAs)をそれぞれ用いる。また、ケイ素の原料ガスとしては、例えばモノシラン(SiH4)を用い、炭素の原料ガスとしては、例えば、四臭化炭素(CBr4)を用いる。 In the first step S1, a laminate is produced (see FIG. 4). Specifically, for example, by metal-organic chemical vapor deposition (MOCVD), a first contact layer 102, a first reflecting mirror 103, a first cladding layer 104, a light-emitting layer 105, a second cladding layer 106 having an oxidized layer 107S (e.g., an AlGaAs layer) disposed therein, a second reflecting mirror 108, and a second contact layer 109 are laminated in this order on a substrate 101 (e.g., a semi-insulating GaAs substrate) as a growth substrate (epitaxially grown at a growth temperature of 605° C.). When MOCVD is performed, the gallium source gas may be, for example, trimethylgallium (( CH3 ) 3Ga ), the aluminum source gas may be, for example, trimethylaluminum (( CH3 ) 3Al ), the indium source gas may be, for example, trimethylindium (( CH3 ) 3In ), and the As source gas may be, for example, trimethylarsenic (( CH3 ) 3As ). The silicon source gas may be, for example, monosilane ( SiH4 ), and the carbon source gas may be, for example, carbon tetrabromide ( CBr4 ).
 次のステップS2では、メサMを形成する(図5参照)。具体的には、先ず、フォトリソグラフィにより、積層体の第2コンタクト層109側の表面(上面)のメサMが形成されることとなる箇所を覆うレジストパターンを形成する。次いで、該レジストパターンをマスクとして、積層体を例えばClやSiCl、Arを用いたICP(Inductively Coupled Plasma)ドライエッチングにより第1コンタクト層102が露出するまでエッチングし、第1コンタクト層102上に高さ約9μmのメサMを形成する。このとき、第1コンタクト層102の厚さを1~10μmと厚くしておくことで、面内分布やエッチングレートの変動によらず、第1コンタクト層102を安定して露出させることができる。なお、第1コンタクト層102の発光層105側の表層がエッチングストップ層(例えばInGaP層)であれば、第1コンタクト層102がエッチングされることをより確実に抑制することができる。その後、該レジストパターンを除去する。 In the next step S2, the mesa M is formed (see FIG. 5). Specifically, first, a resist pattern is formed by photolithography to cover the portion of the surface (upper surface) of the laminate on the second contact layer 109 side where the mesa M is to be formed. Next, using the resist pattern as a mask, the laminate is etched by ICP (Inductively Coupled Plasma) dry etching using, for example, Cl 2 , SiCl 4 , or Ar until the first contact layer 102 is exposed, and a mesa M with a height of about 9 μm is formed on the first contact layer 102. At this time, by making the thickness of the first contact layer 102 as thick as 1 to 10 μm, the first contact layer 102 can be stably exposed regardless of the in-plane distribution or the variation of the etching rate. Note that if the surface layer of the first contact layer 102 on the light emitting layer 105 side is an etching stop layer (for example, an InGaP layer), the first contact layer 102 can be more reliably prevented from being etched. Thereafter, the resist pattern is removed.
 次のステップS3では、酸化狭窄層107を形成する(図6参照)。具体的には、先ず、メサMを高温の水蒸気雰囲気中に曝し、メサMを側面から酸化する。このとき、Al組成の大きい被酸化層107SのAlのみが選択的に酸化され、非酸化領域107aを酸化領域107b(Al)で取り囲んだ酸化狭窄層107が形成される。 In the next step S3, the oxidized constriction layer 107 is formed (see FIG. 6). Specifically, the mesa M is first exposed to a high-temperature water vapor atmosphere to oxidize the side surface of the mesa M. At this time, only Al in the oxidized layer 107S having a large Al composition is selectively oxidized, and an oxidized constriction layer 107 in which the non-oxidized region 107a is surrounded by the oxidized region 107b (Al x O y ) is formed.
 次のステップS4では、アノード電極111を形成する(図7参照)。具体的には、例えばリフトオフ法を用いて、メサMの頂部(第2コンタクト層109)上にアノード電極111をベタ状に形成する。このとき、アノード電極111の電極材料の成膜には、真空蒸着、スパッタ等を用いる。 In the next step S4, the anode electrode 111 is formed (see FIG. 7). Specifically, the anode electrode 111 is formed in a solid state on the top of the mesa M (the second contact layer 109) using, for example, a lift-off method. At this time, the electrode material for the anode electrode 111 is deposited by vacuum deposition, sputtering, or the like.
 次のステップS5では、絶縁膜112を形成する(図8参照)。具体的には、絶縁膜112を全面に成膜する。このとき、絶縁膜112の成膜には、プラズマCVD(Chemical Vapor Deposition)法やスパッタ等を用いる。 In the next step S5, the insulating film 112 is formed (see FIG. 8). Specifically, the insulating film 112 is deposited over the entire surface. At this time, the insulating film 112 is deposited using a plasma CVD (Chemical Vapor Deposition) method, sputtering, or the like.
 次のステップS6では、第1及び第2コンタクトホールCH1、CH2を形成する(図9参照)。具体的には、フォトリソグラフィ及びCF4、SF6やArを用いたプラズマドライエッチングにより、絶縁膜112の、第1コンタクト層102のメサMの周辺の領域を覆う部分の一部を除去してコンタクトホールCH1を形成し、且つ、絶縁膜112のアノード電極111の中央部を覆う部分を除去してコンタクトホールCH2を形成する。この結果、コンタクトホールCH1を介して第1コンタクト層102の一部が露出するとともに、コンタクトホールCH2を介してアノード電極111の中央部が露出する。 In the next step S6, first and second contact holes CH1 and CH2 are formed (see FIG. 9). Specifically, by photolithography and plasma dry etching using CF4, SF6, or Ar, a portion of the insulating film 112 that covers the area around the mesa M of the first contact layer 102 is removed to form contact hole CH1, and a portion of the insulating film 112 that covers the center of the anode electrode 111 is removed to form contact hole CH2. As a result, a portion of the first contact layer 102 is exposed through contact hole CH1, and the center of the anode electrode 111 is exposed through contact hole CH2.
 最後のステップS7では、カソード電極110としての導電膜を形成する(図10参照)。具体的には、例えばリフト法を用いて、絶縁膜112の略全面及びコンタクトホールCH1内にカソード電極110としての導電膜を形成する。このときの導電膜の成膜には、真空蒸着、スパッタ等を用いる。ここでは、メサMの上部でリフトオフ工程を行うことでメサMの側面及びメサMの周辺の全領域に導電膜を形成するが、メッキ法を用いて導電膜を形成してもよいし、全面に導電膜を成膜した後、メサMの上部を覆う導電膜のみをエッチングやミリングで除去してもよい。 In the final step S7, a conductive film is formed as the cathode electrode 110 (see FIG. 10). Specifically, for example, a lift-off method is used to form the conductive film as the cathode electrode 110 on substantially the entire surface of the insulating film 112 and in the contact hole CH1. The conductive film is formed by vacuum deposition, sputtering, or the like. Here, a lift-off process is performed on the top of the mesa M to form the conductive film on the side of the mesa M and on the entire area around the mesa M, but the conductive film may also be formed by a plating method, or after the conductive film is formed on the entire surface, only the conductive film covering the top of the mesa M may be removed by etching or milling.
 以上の一連のステップで製造された面発光レーザ装置10-1は、例えばフリップチップ(ジャンクションダウン)でレーザドライバに実装することが可能である。 The surface-emitting laser device 10-1 manufactured by the above series of steps can be mounted on a laser driver, for example, by flip chip (junction down).
≪面発光レーザ装置及び該面発光レーザ装置の製造方法の効果≫
 以下、面発光レーザ装置10-1の効果について説明する。本技術の一実施形態の実施例1に係る面発光レーザ装置10-1は、基板101上に設けられた、発光層105を有するメサMを含む共振器Rを備える。少なくとも、メサMの側面と、共振器RのメサMの周辺の領域とが絶縁膜112で覆われ、該周辺の領域を覆う絶縁膜112には、開口部としてのコンタクトホールCH1が設けられ、絶縁膜112がカソード電極110(電極)としての導電膜で覆われ、該導電膜がコンタクトホールCH1で該周辺の領域に接している。
<Effects of surface-emitting laser device and method for manufacturing surface-emitting laser device>
The effects of the surface-emitting laser device 10-1 will be described below. The surface-emitting laser device 10-1 according to Example 1 of an embodiment of the present technology includes a resonator R including a mesa M having a light-emitting layer 105 provided on a substrate 101. At least the side surface of the mesa M and a peripheral region of the mesa M of the resonator R are covered with an insulating film 112, and a contact hole CH1 serving as an opening is provided in the insulating film 112 covering the peripheral region, and the insulating film 112 is covered with a conductive film serving as a cathode electrode 110 (electrode), and the conductive film is in contact with the peripheral region through the contact hole CH1.
 面発光レーザ装置10-1では、少なくとも、メサMの側面と、共振器RのメサMの周辺の領域とを覆う絶縁膜112をカソード電極110としての導電膜が覆っているので、該領域に対して例えばリフトオフやエッチングにより電極を形成する必要がなく、メサMの周辺のスペースに制約がある場合(例えばメサM同士の間隔が狭い場合)でも、電極の形成が容易である。 In the surface-emitting laser device 10-1, the insulating film 112 that covers at least the side of the mesa M and the area surrounding the mesa M of the resonator R is covered with a conductive film serving as the cathode electrode 110. This means that there is no need to form an electrode in that area, for example by lift-off or etching, and even if there are restrictions on the space around the mesa M (for example, when the distance between the mesas M is narrow), it is easy to form the electrode.
 結果として、面発光レーザ装置10-1によれば、生産性(歩留まり)を向上可能な面発光レーザ装置を提供することができる。 As a result, the surface-emitting laser device 10-1 can provide a surface-emitting laser device that can improve productivity (yield).
 一方、メサの周辺の領域の全面に電極が設けられるVCSEL(例えば特開2017-147461号)があるが、この構成ではメサの側面にも電極が形成されているため、ショート発生のリスクが高いことが懸念される。 On the other hand, there are VCSELs in which electrodes are provided over the entire area surrounding the mesa (e.g., JP 2017-147461 A), but in this configuration, electrodes are also formed on the sides of the mesa, which raises concerns about the high risk of short circuits.
 カソード電極110としての導電膜は、絶縁膜1
12の、メサMの側面を覆う部分である第2絶縁膜112bと、絶縁膜112の、メサMの周辺の領域を覆う部分である第1絶縁膜112aとに跨るように設けられている。これにより、カソード電極110の形成がより容易となり、生産性をより向上させることが可能となる。
The conductive film serving as the cathode electrode 110 is an insulating film 1
The second insulating film 112b, which is a portion of the insulating film 112 that covers the side surface of the mesa M, is provided so as to straddle the second insulating film 112b, which is a portion of the insulating film 112 that covers the peripheral region of the mesa M. This makes it easier to form the cathode electrode 110, and makes it possible to further improve productivity.
 面発光レーザ装置10-1は、共振器Rを複数備える。これにより、生産性を向上可能な面発光レーザアレイを提供することができる。 The surface-emitting laser device 10-1 has multiple resonators R. This makes it possible to provide a surface-emitting laser array that can improve productivity.
 複数の共振器RのメサMは、平面視において、コンタクトホールCH1と隣接する2つのメサMを有する。これにより、該2つのメサMの各々とカソード電極110とを該コンタクトホールCH1で導通させることが可能となる。 The mesas M of the multiple resonators R have two mesas M adjacent to a contact hole CH1 in a plan view. This makes it possible to electrically connect each of the two mesas M to the cathode electrode 110 via the contact hole CH1.
 平面視において、該2つのメサMの中心と、コンタクトホールCH1の中心とが同一直線上にない。これにより、該2つのメサMの中心と、コンタクトホールCH1とを遠ざけることが可能となり、コンタクトホールCH1の形成及びコンタクトホールCH1内へのカソード電極110の成膜をより容易とすることが可能である。 In a plan view, the centers of the two mesas M and the center of the contact hole CH1 are not on the same line. This makes it possible to separate the centers of the two mesas M from the contact hole CH1, making it easier to form the contact hole CH1 and to deposit the cathode electrode 110 in the contact hole CH1.
 平面視において、該2つのメサMとコンタクトホールCH1とが、同一直線上にない。これにより、該2つのメサMの中心と、コンタクトホールCH1とをより遠ざけることが可能となり、コンタクトホールCH1の形成及びコンタクトホールCH1内へのカソード電極110の成膜をより一層容易とすることが可能である。 In a plan view, the two mesas M and the contact hole CH1 are not on the same line. This allows the centers of the two mesas M and the contact hole CH1 to be spaced apart from each other, making it easier to form the contact hole CH1 and to deposit the cathode electrode 110 in the contact hole CH1.
 平面視において、該2つのメサMの各々の中心とコンタクトホールCH1の中心との距離は、該2つのメサMの中心間の距離の1/2超である。これにより、該2つのメサMの中心と、コンタクトホールCH1とをより一層遠ざけることが可能となり、コンタクトホールCH1の形成及びコンタクトホールCH1内へのカソード電極110の成膜をより更により一層容易とすることが可能である。 In a plan view, the distance between the center of each of the two mesas M and the center of the contact hole CH1 is more than half the distance between the centers of the two mesas M. This makes it possible to further separate the centers of the two mesas M from the contact hole CH1, making it even easier to form the contact hole CH1 and to deposit the cathode electrode 110 in the contact hole CH1.
 平面視において、該2つのメサMの各々の中心とコンタクトホールCH1の中心との距離は、同一である。これにより、該2つのメサMの中心と、コンタクトホールCH1とを確実に遠ざけることが可能となり、コンタクトホールCH1の形成及びコンタクトホールCH1内へのカソード電極110の成膜を確実に容易とすることが可能である。
これにより、
In a plan view, the distance between the center of each of the two mesas M and the center of the contact hole CH1 is the same. This makes it possible to reliably separate the centers of the two mesas M from the contact hole CH1, and reliably facilitates the formation of the contact hole CH1 and the deposition of the cathode electrode 110 in the contact hole CH1.
This means:
 平面視において、複数の共振器RのメサMのうち該2つのメサMを含む少なくとも3つのメサMでコンタクトホールCH1が囲まれている。これにより、該少なくとも3つのメサMとカソード電極110とをコンタクトホールCH1で導通させることが可能となる。 In a plan view, the contact hole CH1 is surrounded by at least three mesas M, including the two mesas M, of the multiple resonators R. This makes it possible to establish electrical continuity between the at least three mesas M and the cathode electrode 110 through the contact hole CH1.
 共振器RのメサMの周辺の領域を覆う絶縁膜112には、コンタクトホールCH1が複数設けられ、平面視において、複数のコンタクトホールCH1の各々が、対応する少なくとも3つのメサMで囲まれている。これにより、該少なくとも3つのメサMとカソード電極110とを各コンタクトホールCH1で導通させることが可能となる。 The insulating film 112 covering the area around the mesa M of the resonator R has a plurality of contact holes CH1, and in a plan view, each of the plurality of contact holes CH1 is surrounded by at least three corresponding mesas M. This makes it possible to establish electrical continuity between the at least three mesas M and the cathode electrode 110 through each contact hole CH1.
 カソード電極110としての導電膜が、共振器RのメサMの周辺の領域を覆う絶縁膜112の全面を覆っている。これにより、カソード電極110の形成をより容易にすることが可能となる。 The conductive film serving as the cathode electrode 110 covers the entire surface of the insulating film 112 that covers the area surrounding the mesa M of the resonator R. This makes it easier to form the cathode electrode 110.
 共振器Rでは、基板101側から第1反射鏡103、第1クラッド層104、発光層105、第2クラッド層106及び第2反射鏡108がこの順に積層され、メサMの底面は、第1反射鏡103と基板101との間に位置する。 In the resonator R, the first reflector 103, the first cladding layer 104, the light-emitting layer 105, the second cladding layer 106, and the second reflector 108 are layered in this order from the substrate 101 side, and the bottom surface of the mesa M is located between the first reflector 103 and the substrate 101.
 コンタクトホールCH1の平面視形状とメサMの平面視形状とが、互いに相似である。これにより、コンタクトホールCH1の形成をより容易にすることが可能となる。 The planar shape of the contact hole CH1 and the planar shape of the mesa M are similar to each other. This makes it easier to form the contact hole CH1.
 該2つのメサMの中心間の距離は、20μm以下である。これにより、同一のアレイ面積において、発光層105の発光領域を大きくして、高出力化を図ることができる。 The distance between the centers of the two mesas M is 20 μm or less. This allows the light-emitting region of the light-emitting layer 105 to be enlarged for the same array area, thereby achieving higher output.
 メサMの頂部上にアノード電極(別の電極)が設けられ、絶縁膜112は、アノード電極111を露出させる別の開口部としてのコンタクトホールCH2を有し、カソード電極110としての導電膜は、コンタクトホールCH2を露出させるように開口している。これにより、アノード電極111とカソード電極110とを絶縁した状態で、アノード電極111を露出させることができる。 An anode electrode (another electrode) is provided on the top of the mesa M, the insulating film 112 has a contact hole CH2 as another opening that exposes the anode electrode 111, and the conductive film as the cathode electrode 110 has an opening to expose the contact hole CH2. This allows the anode electrode 111 to be exposed while the anode electrode 111 and the cathode electrode 110 are insulated from each other.
 メサMは、アノード電極111と接する第2コンタクト層109を頂部に有する。これにより、アノード電極111とメサMとのコンタクト抵抗を低減することができる。 The mesa M has a second contact layer 109 at its top that contacts the anode electrode 111. This reduces the contact resistance between the anode electrode 111 and the mesa M.
 基板101とメサMとの間にカソード電極110と接する第1コンタクト層102が設けられている。これにより、カソード電極110とメサMとのコンタクト抵抗を低減することができる。 A first contact layer 102 that contacts the cathode electrode 110 is provided between the substrate 101 and the mesa M. This makes it possible to reduce the contact resistance between the cathode electrode 110 and the mesa M.
 本技術の一実施形態の実施例1に係る面発光レーザ装置10-1の製造方法は、基板101及び第1コンタクト層102を含む構造上に複数の層が積層された積層体を生成する工程と、該積層体をエッチングしてメサを形成する工程と、該メサの頂部上にアノード電極111(第1電極)を形成する工程と、該メサにアノード電極111が形成された積層体に絶縁膜112を成膜する工程と、アノード電極111を覆う絶縁膜112の少なくとも一部及び上記構造のメサの周辺の領域を覆う絶縁膜112の一部をエッチングにより除去する工程と、メサの側面を覆う絶縁膜112及び該周辺の領域を覆う絶縁膜112上にカソード電極110(第2電極)としての導電膜を形成する工程と、を含む。 The method for manufacturing the surface-emitting laser device 10-1 according to Example 1 of an embodiment of the present technology includes the steps of: generating a laminate in which multiple layers are stacked on a structure including a substrate 101 and a first contact layer 102; etching the laminate to form a mesa; forming an anode electrode 111 (first electrode) on the top of the mesa; depositing an insulating film 112 on the laminate in which the anode electrode 111 is formed on the mesa; removing by etching at least a portion of the insulating film 112 covering the anode electrode 111 and a portion of the insulating film 112 covering the peripheral area of the mesa of the above structure; and forming a conductive film as a cathode electrode 110 (second electrode) on the insulating film 112 covering the side surface of the mesa and the insulating film 112 covering the peripheral area.
 面発光レーザ装置10-1の製造方法によれば、カソード電極110を容易に形成できるので、生産性(歩留まり)を向上することができる。 The manufacturing method for the surface-emitting laser device 10-1 allows the cathode electrode 110 to be easily formed, improving productivity (yield).
<2.本技術の一実施形態の実施例2に係る面発光レーザ装置>
≪面発光レーザ装置の構成≫
 図11は、本技術の一実施形態の実施例2に係る面発光レーザ装置10-2の断面図である。図12は、本技術の一実施形態の実施例2に係る面発光レーザ装置10-2の平面図である。図11は、図12の11-11線断面図である。
2. Surface-emitting laser device according to Example 2 of an embodiment of the present technology
<Configuration of surface-emitting laser device>
Fig. 11 is a cross-sectional view of a surface-emitting laser device 10-2 according to Example 2 of an embodiment of the present technology. Fig. 12 is a plan view of a surface-emitting laser device 10-2 according to Example 2 of an embodiment of the present technology. Fig. 11 is a cross-sectional view taken along line 11-11 in Fig. 12.
 面発光レーザ装置10-2は、図11に示すように、アノード電極111及びカソード電極110が共振器Rに設置されるイントラキャビティ構造を有する点を除いて、実施例1に係る面発光レーザ装置10-1と同様の構成を有する。 As shown in FIG. 11, the surface-emitting laser device 10-2 has a similar configuration to the surface-emitting laser device 10-1 of Example 1, except that it has an intra-cavity structure in which the anode electrode 111 and the cathode electrode 110 are installed in the resonator R.
 面発光レーザ装置10-2では、第1コンタクト層102が第1反射鏡103と第1クラッド層104との間に配置され、且つ、メサMの底面が第1コンタクト層102と第1クラッド層104との間に位置している。ここでは、メサMの高さが、例えば約6μmとなっている。 In the surface-emitting laser device 10-2, the first contact layer 102 is disposed between the first reflector 103 and the first cladding layer 104, and the bottom surface of the mesa M is located between the first contact layer 102 and the first cladding layer 104. Here, the height of the mesa M is, for example, about 6 μm.
 面発光レーザ装置10-2では、第1反射鏡103にアンドープの半導体多層膜反射鏡(例えばGaAs系半導体多層膜反射鏡)を用いることが好ましい。これにより、第1コンタクト層102を介した、第1クラッド層104とカソード電極110との間の導通性を向上することができる。 In the surface-emitting laser device 10-2, it is preferable to use an undoped semiconductor multilayer reflector (e.g., a GaAs-based semiconductor multilayer reflector) for the first reflector 103. This can improve the conductivity between the first cladding layer 104 and the cathode electrode 110 via the first contact layer 102.
 ここでは、第1コンタクト層102が、例えばInGaP層等のエッチング選択比が高い層からなるエッチングストップ層と、GaAs層とが積層された積層構造を有している。これにより、ドライエッチングを第1コンタクト層102でより正確に止めることが可能となる。該積層構造の光学厚さは、発振波長λ以下(例えばλ、3λ/4、λ/2等)に設定されている。第1コンタクト層102には、不純物として濃度1~5×1018cm-3のSiがドープされている。 Here, the first contact layer 102 has a laminated structure in which an etching stop layer made of a layer with a high etching selectivity, such as an InGaP layer, and a GaAs layer are laminated. This makes it possible to more accurately stop dry etching at the first contact layer 102. The optical thickness of the laminated structure is set to be equal to or less than the oscillation wavelength λ (for example, λ, 3λ/4, λ/2, etc.). The first contact layer 102 is doped with Si as an impurity at a concentration of 1 to 5×10 18 cm -3 .
 面発光レーザ装置10-2では、一例として図12に示すように、平面視において、複数(例えば9つ)の共振器Rが2次元配置(例えばマトリクス配置)されている。平面視において、複数(例えば9つ)の共振器RのメサMのうち4つのメサMで各コンタクトホールCH1が囲まれている。すなわち、面発光レーザ装置10-2には、4つのメサM及び該4つのメサMに囲まれた1つのコンタクトホールCH1の組が4組存在する。ここでは、該4つのメサMの中心(面積重心)が、それぞれ平面視において正方形の4つの頂点に位置する。 In the surface-emitting laser device 10-2, as shown in FIG. 12 as an example, a plurality of (e.g., nine) resonators R are arranged two-dimensionally (e.g., arranged in a matrix) in a planar view. In a planar view, each contact hole CH1 is surrounded by four mesas M out of the plurality of (e.g., nine) resonators R. That is, in the surface-emitting laser device 10-2, there are four sets of four mesas M and one contact hole CH1 surrounded by the four mesas M. Here, the centers (area centers of gravity) of the four mesas M are located at the four vertices of a square in a planar view.
 該4つのメサMは、平面視において、対応するコンタクトホールCH1と隣接する2つのメサMの組を4組有する。平面視において、該2つのメサMの中心と、対応するコンタクトホールCH1の中心とが同一直線上にないことが好ましい。すなわち、平面視において、該コンタクトホールCH1の中心が、該4つのメサMの頂点を頂点とする正方形の内部に位置することが好ましい。なお、平面視において、該2つのメサMの中心と、対応するコンタクトホールCH1の中心とが同一直線上にあってもよい。 The four mesas M include four pairs of two mesas M adjacent to a corresponding contact hole CH1 in a planar view. In a planar view, it is preferable that the centers of the two mesas M and the center of the corresponding contact hole CH1 are not on the same line. In other words, in a planar view, it is preferable that the center of the contact hole CH1 is located inside a square whose vertices are the vertices of the four mesas M. Note that in a planar view, the centers of the two mesas M and the center of the corresponding contact hole CH1 may be on the same line.
 さらには、平面視において、該2つのメサMと、対応するコンタクトホールCH1とが、同一直線上にないことが好ましい。すなわち、平面視において、該コンタクトホールCH1の全体が、該4つのメサMの頂点を頂点とする正方形の内部に位置することが好ましい。なお、平面視において、該2つのメサMと、対応するコンタクトホールCH1とが、同一直線上にあってもよい。 Furthermore, in a planar view, it is preferable that the two mesas M and the corresponding contact hole CH1 are not on the same line. In other words, in a planar view, it is preferable that the entire contact hole CH1 is located inside a square whose vertices are the vertices of the four mesas M. Note that in a planar view, the two mesas M and the corresponding contact hole CH1 may be on the same line.
 さらには、平面視において、該2つのメサMの各々の中心と、対応するコンタクトホールCH1の中心との距離は、該2つのメサMの中心間の距離の1/2超であることが好ましい。なお、平面視において、該2つのメサMの各々の中心と、対応するコンタクトホールCH1の中心との距離の少なくとも一方は、該2つのメサMの中心間の距離の1/2以下であってもよい。 Furthermore, in a planar view, it is preferable that the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 is more than 1/2 the distance between the centers of the two mesas M. Note that, in a planar view, at least one of the distances between the center of each of the two mesas M and the center of the corresponding contact hole CH1 may be 1/2 or less the distance between the centers of the two mesas M.
 さらには、平面視において、該2つのメサMの各々の中心と、対応するコンタクトホールCH1の中心との距離は、同一であることが好ましい。なお、平面視において、該2つのメサMの各々の中心と、対応するコンタクトホールCH1の中心との距離は、同一でなくてもよい。 Furthermore, in a planar view, it is preferable that the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 is the same. However, in a planar view, the distance between the center of each of the two mesas M and the center of the corresponding contact hole CH1 does not have to be the same.
 コンタクトホールCH1の平面視形状とメサMの平面視形状とが、互いに相似であることが好ましい。ここでは、コンタクトホールCH1及びメサMの平面視形状の各々は、円形であり、互いに相似である。これにより、メサMとコンタクトホールCH1との間のスペースを大きくすることができ、コンタクトホールCH1を形成することが容易となる。なお、コンタクトホールCH1の平面視形状は、円形に限らず、楕円形、多角形等の他の如何なる形状であってもよい。 It is preferable that the planar shape of the contact hole CH1 and the planar shape of the mesa M are similar to each other. Here, the planar shapes of the contact hole CH1 and the mesa M are both circular and similar to each other. This allows the space between the mesa M and the contact hole CH1 to be increased, making it easier to form the contact hole CH1. Note that the planar shape of the contact hole CH1 is not limited to a circle, and may be any other shape such as an ellipse or a polygon.
 ここでは、一例として、各コンタクトホールCH1の中心が、対応する4つのメサMの中心を頂点とする正方形の重心Gに一致しており、上記好ましい条件を全て満たしている。 Here, as an example, the center of each contact hole CH1 coincides with the center of gravity G of a square whose vertices are the centers of the corresponding four mesas M, satisfying all of the above preferred conditions.
≪面発光レーザの製造方法≫
 以下、面発光レーザ装置10-2の製造方法について説明する。ここでは、一例として、半導体製造装置を用いた半導体製造方法により、基板101の基材である1枚のウェハ(以下では、便宜上「基板101」とも呼ぶ)上に複数の面発光レーザ装置10-2を同時に生成する。次いで、一連一体の複数の面発光レーザ装置10-2を互いに分離して、チップ状の複数の面発光レーザ装置10-2を得る。
<Manufacturing method of surface-emitting laser>
A method for manufacturing the surface-emitting laser device 10-2 will be described below. As an example, a semiconductor manufacturing method using a semiconductor manufacturing apparatus is used to simultaneously produce a plurality of surface-emitting laser devices 10-2 on a single wafer (hereinafter, also referred to as "substrate 101" for convenience) which is the base material of the substrate 101. Next, the series of the surface-emitting laser devices 10-2 is separated from one another to obtain a plurality of chip-shaped surface-emitting laser devices 10-2.
 第1ステップでは、積層体を生成する(図13参照)。具体的には、例えば有機金属気層成長(MOCVD)法により、成長基板としての基板101(例えば半絶縁の基板)上に第1反射鏡103、第1コンタクト層102、第1クラッド層104、発光層105、被酸化層107S(例えばAlGaAs層)が内部に配置された第2クラッド層106、第2反射鏡108及び第2コンタクト層109をこの順に積層して(例えば成長温度605℃にてエピタキシャル成長させて)、積層体を生成する。なお、MOCVDを行う際、ガリウムの原料ガスとしては、例えばトリメチルガリウム((CH33Ga)、アルミニウムの原料ガスとしては、例えばトリメチルアルミニウム((CH33Al)、インジウムの原料ガスとしては、例えばトリメチルインジウム((CH33In)、Asの原料ガスとしては、例えばトリメチルヒ素((CHAs)をそれぞれ用いる。また、ケイ素の原料ガスとしては、例えばモノシラン(SiH4)を用い、炭素の原料ガスとしては、例えば、四臭化炭素(CBr4)を用いる。 In the first step, a laminate is produced (see FIG. 13). Specifically, for example, by metal-organic chemical vapor deposition (MOCVD), a first reflecting mirror 103, a first contact layer 102, a first cladding layer 104, a light-emitting layer 105, a second cladding layer 106 having an oxidized layer 107S (e.g., an AlGaAs layer) disposed therein, a second reflecting mirror 108, and a second contact layer 109 are laminated in this order on a substrate 101 (e.g., a semi-insulating substrate) as a growth substrate (epitaxially grown at a growth temperature of 605° C.). When MOCVD is performed, the gallium source gas may be, for example, trimethylgallium (( CH3 ) 3Ga ), the aluminum source gas may be, for example, trimethylaluminum (( CH3 ) 3Al ), the indium source gas may be, for example, trimethylindium (( CH3 ) 3In ), and the As source gas may be, for example, trimethylarsenic (( CH3 ) 3As ). The silicon source gas may be, for example, monosilane ( SiH4 ), and the carbon source gas may be, for example, carbon tetrabromide ( CBr4 ).
 第2ステップでは、メサMを形成する(図14参照)。具体的には、先ず、フォトリソグラフィにより、積層体の第2コンタクト層109側の表面(上面)のメサMが形成されることとなる箇所を覆うレジストパターンを形成する。次いで、該レジストパターンをマスクとして、積層体を例えばClやSiCl、Arを用いたICP(Inductively Coupled Plasma)ドライエッチングにより第1コンタクト層102が露出するまでエッチングし、第1コンタクト層102上に高さ約6μmのメサMを形成する。このとき、第1コンタクト層102のエッチングストップ層の作用により、エッチングを第1コンタクト層102で正確に停止させることができる。その後、該レジストパターンを除去する。 In the second step, the mesa M is formed (see FIG. 14). Specifically, first, a resist pattern is formed by photolithography to cover the portion of the surface (upper surface) of the laminate on the second contact layer 109 side where the mesa M is to be formed. Next, using the resist pattern as a mask, the laminate is etched by ICP (Inductively Coupled Plasma) dry etching using, for example, Cl 2 , SiCl 4 , or Ar until the first contact layer 102 is exposed, and a mesa M with a height of about 6 μm is formed on the first contact layer 102. At this time, the etching can be accurately stopped at the first contact layer 102 due to the action of the etching stop layer of the first contact layer 102. Then, the resist pattern is removed.
 第3ステップでは、酸化狭窄層107を形成する(図15参照)。具体的には、先ず、メサMを高温の水蒸気雰囲気中に曝し、メサMを側面から酸化する。このとき、Al組成の大きい被酸化層107SのAlのみが選択的に酸化され、非酸化領域107aを酸化領域107b(Al)で取り囲んだ酸化狭窄層107が形成される。 In the third step, the oxidized constriction layer 107 is formed (see FIG. 15). Specifically, the mesa M is first exposed to a high-temperature water vapor atmosphere to oxidize the side surface of the mesa M. At this time, only Al in the oxidized layer 107S having a large Al composition is selectively oxidized, and an oxidized constriction layer 107 in which the non-oxidized region 107a is surrounded by the oxidized region 107b (Al x O y ) is formed.
 第4ステップでは、アノード電極111を形成する(図16参照)。具体的には、例えばリフトオフ法を用いて、メサMの頂部(第2コンタクト層109)上にアノード電極111をベタ状に形成する。このとき、アノード電極111の電極材料の成膜には、真空蒸着、スパッタ等を用いる。 In the fourth step, the anode electrode 111 is formed (see FIG. 16). Specifically, the anode electrode 111 is formed in a solid state on the top of the mesa M (the second contact layer 109) using, for example, a lift-off method. At this time, the electrode material of the anode electrode 111 is deposited by vacuum deposition, sputtering, or the like.
 第5ステップでは、絶縁膜112を形成する(図17参照)。具体的には、絶縁膜112を全面に成膜する。このとき、絶縁膜112の成膜には、プラズマCVD(Chemical Vapor Deposition)法やスパッタ等を用いる。 In the fifth step, the insulating film 112 is formed (see FIG. 17). Specifically, the insulating film 112 is deposited over the entire surface. At this time, the insulating film 112 is deposited using a plasma CVD (Chemical Vapor Deposition) method, sputtering, or the like.
 第6ステップでは、第1及び第2コンタクトホールCH1、CH2を形成する(図18参照)。具体的には、フォトリソグラフィ及びCF4、SF6やArを用いたプラズマドライエッチングにより、絶縁膜112の、第1コンタクト層102のメサMの周辺の領域を覆う部分の一部を除去してコンタクトホールCH1を形成し、且つ、絶縁膜112のアノード電極111の中央部を覆う部分を除去してコンタクトホールCH2を形成する。この結果、コンタクトホールCH1を介して第1コンタクト層102の一部が露出するとともに、コンタクトホールCH2を介してアノード電極111の中央部が露出する。 In the sixth step, the first and second contact holes CH1 and CH2 are formed (see FIG. 18). Specifically, by photolithography and plasma dry etching using CF4, SF6, or Ar, a part of the insulating film 112 that covers the area around the mesa M of the first contact layer 102 is removed to form contact hole CH1, and a part of the insulating film 112 that covers the center of the anode electrode 111 is removed to form contact hole CH2. As a result, a part of the first contact layer 102 is exposed through contact hole CH1, and the center of the anode electrode 111 is exposed through contact hole CH2.
 第7ステップでは、カソード電極110としての導電膜を形成する(図19参照)。具体的には、例えばリフト法を用いて、絶縁膜112の略全面及びコンタクトホールCH1内にカソード電極110としての導電膜を形成する。このときの導電膜の成膜には、真空蒸着、スパッタ等を用いる。ここでは、メサMの上部でリフトオフ工程を行うことでメサMの周辺の全領域に導電膜を形成するが、メッキ法を用いて導電膜を形成してもよいし、全面に導電膜を成膜した後、メサMの上部を覆う導電膜のみをエッチングやミリングで除去してもよい。 In the seventh step, a conductive film is formed as the cathode electrode 110 (see FIG. 19). Specifically, for example, a lift-off method is used to form the conductive film as the cathode electrode 110 on substantially the entire surface of the insulating film 112 and in the contact hole CH1. The conductive film is formed by vacuum deposition, sputtering, or the like. Here, a lift-off process is performed on the top of the mesa M to form the conductive film over the entire area around the mesa M, but the conductive film may also be formed using a plating method, or after the conductive film is formed over the entire surface, only the conductive film covering the top of the mesa M may be removed by etching or milling.
 以上の一連のステップで製造された面発光レーザ装置10-2は、例えばフリップチップ(ジャンクションダウン)でレーザドライバに実装することが可能である。 The surface-emitting laser device 10-2 manufactured by the above series of steps can be mounted on a laser driver, for example, by flip chip (junction down).
≪面発光レーザ及び面発光レーザの製造方法の効果≫
 面発光レーザ装置10-2によれば、実施例1に係る面発光レーザ装置10-1と同様の効果が得られるとともに、直列抵抗を低減可能な面発光レーザ装置を提供することができる。面発光レーザ装置10-2の製造方法によれば、実施例1に係る面発光レーザ装置10-1の製造方法と同様の効果が得られる。
<Effects of surface-emitting laser and method for manufacturing surface-emitting laser>
According to the surface-emitting laser device 10-2, it is possible to provide a surface-emitting laser device capable of reducing the series resistance while obtaining the same effects as the surface-emitting laser device 10-1 according to the first embodiment. According to the manufacturing method of the surface-emitting laser device 10-2, it is possible to obtain the same effects as the manufacturing method of the surface-emitting laser device 10-1 according to the first embodiment.
 なお、図11の断面構成を有する面発光レーザ装置10-2において、図2のアレイ配置(平面構成)を採用してもよい。また、図1の断面構成を有する面発光レーザ装置10-1において、図12のアレイ配置(平面構成)を採用してもよい。以下の実施例及び変形例でも、断面構成及びアレイ配置(平面構成)の組み合わせは、適宜変更可能である。 In addition, the array arrangement (planar configuration) of FIG. 2 may be adopted in the surface-emitting laser device 10-2 having the cross-sectional configuration of FIG. 11. Also, the array arrangement (planar configuration) of FIG. 12 may be adopted in the surface-emitting laser device 10-1 having the cross-sectional configuration of FIG. 1. In the following examples and modified examples, the combination of the cross-sectional configuration and the array arrangement (planar configuration) may be changed as appropriate.
<3.本技術の一実施形態の実施例3に係る面発光レーザ装置>
 図20は、本技術の一実施形態の実施例3に係る面発光レーザ装置10-3の断面図である。面発光レーザ装置10-3は、第1及び第2コンタクト層102、109を有してない点を除いて、実施例2に係る面発光レーザ装置10-2と同様の構成を有する。
<3. Surface-emitting laser device according to Example 3 of an embodiment of the present technology>
20 is a cross-sectional view of a surface-emitting laser device 10-3 according to Example 3 of an embodiment of the present technology. The surface-emitting laser device 10-3 has a similar configuration to the surface-emitting laser device 10-2 according to Example 2, except that the surface-emitting laser device 10-3 does not have the first and second contact layers 102 and 109.
 面発光レーザ装置10-3では、カソード電極110としての導電膜がコンタクトホールCH1で第1反射鏡103に接している。ここでは、第1反射鏡103は、n型の半導体多層膜反射鏡(例えばn-GaAs/n-AlGaAs)からなる。第1反射鏡103には、通電時に横方向の電流パスが形成される。面発光レーザ装置10-3では、アノード電極111が第2反射鏡108に接している。 In the surface-emitting laser device 10-3, the conductive film serving as the cathode electrode 110 contacts the first reflector 103 through the contact hole CH1. Here, the first reflector 103 is made of an n-type semiconductor multilayer film reflector (e.g., n-GaAs/n-AlGaAs). When current is applied, a lateral current path is formed in the first reflector 103. In the surface-emitting laser device 10-3, the anode electrode 111 contacts the second reflector 108.
 面発光レーザ装置10-3は、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の製法により製造することができる。 The surface-emitting laser device 10-3 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
 面発光レーザ装置10-3によれば、実施例2に係る面発光レーザ装置10-2と概ね同様の効果が得られる。面発光レーザ装置10-3の製造方法によれば、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-3 provides substantially the same effects as the surface-emitting laser device 10-2 according to Example 2. The manufacturing method for the surface-emitting laser device 10-3 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-2 according to Example 2.
 面発光レーザ装置10-3は、第2コンタクト層109を有していてもよい。 The surface-emitting laser device 10-3 may have a second contact layer 109.
<4.本技術の一実施形態の実施例4に係る面発光レーザ装置>
 図21は、本技術の一実施形態の実施例4に係る面発光レーザ装置10-4の断面図である。
<4. Surface-emitting laser device according to Example 4 of an embodiment of the present technology>
FIG. 21 is a cross-sectional view of a surface-emitting laser device 10-4 according to Example 4 of an embodiment of the present technology.
 面発光レーザ装置10-4は、メサMの底面が第1反射鏡103内に位置する点を除いて、実施例3に係る面発光レーザ装置10-3と同様の構成を有する。 The surface-emitting laser device 10-4 has a similar configuration to the surface-emitting laser device 10-3 of Example 3, except that the bottom surface of the mesa M is located inside the first reflector 103.
 面発光レーザ装置10-4は、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の製法により製造することができる。 The surface-emitting laser device 10-4 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
 面発光レーザ装置10-4によれば、実施例3に係る面発光レーザ装置10-3と概ね同様の効果が得られる。面発光レーザ装置10-4の製造方法によれば、実施例3に係る面発光レーザ装置10-3の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-4 provides substantially the same effects as the surface-emitting laser device 10-3 according to Example 3. The manufacturing method for the surface-emitting laser device 10-4 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-3 according to Example 3.
 面発光レーザ装置10-4は、第2コンタクト層109を有していてもよい。 The surface-emitting laser device 10-4 may have a second contact layer 109.
<5.本技術の一実施形態の実施例5に係る面発光レーザ装置>
 図22は、本技術の一実施形態の実施例5に係る面発光レーザ装置10-5の断面図である。
<5. Surface-emitting laser device according to Example 5 of an embodiment of the present technology>
FIG. 22 is a cross-sectional view of a surface-emitting laser device 10-5 according to a fifth example of an embodiment of the present technology.
 面発光レーザ装置10-5は、メサMの底面が第1クラッド層104内に位置する点を除いて、実施例3に係る面発光レーザ装置10-3と同様の構成を有する。 The surface-emitting laser device 10-5 has a similar configuration to the surface-emitting laser device 10-3 of Example 3, except that the bottom surface of the mesa M is located within the first cladding layer 104.
 面発光レーザ装置10-5は、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の製法により製造することができる。 The surface-emitting laser device 10-5 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
 面発光レーザ装置10-5によれば、実施例3に係る面発光レーザ装置10-3と概ね同様の効果が得られる。面発光レーザ装置10-5の製造方法によれば、実施例3に係る面発光レーザ装置10-3の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-5 provides substantially the same effects as the surface-emitting laser device 10-3 according to Example 3. The manufacturing method for the surface-emitting laser device 10-5 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-3 according to Example 3.
 面発光レーザ装置10-5は、第2コンタクト層109を有していてもよい。 The surface-emitting laser device 10-5 may have a second contact layer 109.
<6.本技術の一実施形態の実施例6に係る面発光レーザ装置>
 図23は、本技術の一実施形態の実施例6に係る面発光レーザ装置10-6の断面図である。図24は、本技術の一実施形態の実施例6に係る面発光レーザ装置10-6の平面図である。図23は、図24の23-23線断面図である。
<6. Surface-emitting laser device according to Example 6 of an embodiment of the present technology>
Fig. 23 is a cross-sectional view of a surface-emitting laser device 10-6 according to Example 6 of an embodiment of the present technology. Fig. 24 is a plan view of a surface-emitting laser device 10-6 according to Example 6 of an embodiment of the present technology. Fig. 23 is a cross-sectional view taken along line 23-23 in Fig. 24.
 面発光レーザ装置10-6は、カソード電極110としての導電膜が第3電極部110cを有していない点を除いて、実施例2に係る面発光レーザ装置10-2と概ね同様の構成を有する。 The surface-emitting laser device 10-6 has a configuration generally similar to that of the surface-emitting laser device 10-2 according to the second embodiment, except that the conductive film serving as the cathode electrode 110 does not have the third electrode portion 110c.
 面発光レーザ装置10-6では、カソード電極110の第2電極部110bが、メサMの側面を覆う絶縁膜112の一部(例えば下半部)を覆っている。なお、第2電極部110bは、メサMの側面を覆う絶縁膜112の少なくとも一部を覆っていればよい。 In the surface-emitting laser device 10-6, the second electrode portion 110b of the cathode electrode 110 covers a portion (e.g., the lower half) of the insulating film 112 that covers the side surface of the mesa M. Note that it is sufficient that the second electrode portion 110b covers at least a portion of the insulating film 112 that covers the side surface of the mesa M.
 面発光レーザ装置10-6は、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の製法により製造することができる。 The surface-emitting laser device 10-6 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
 面発光レーザ装置10-6によれば、実施例2に係る面発光レーザ装置10-2と概ね同様の効果が得られる。面発光レーザ装置10-6の製造方法によれば、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-6 provides substantially the same effects as the surface-emitting laser device 10-2 according to Example 2. The manufacturing method for the surface-emitting laser device 10-6 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-2 according to Example 2.
<7.本技術の一実施形態の実施例7に係る面発光レーザ装置>
 図25は、本技術の一実施形態の実施例7に係る面発光レーザ装置10-7の断面図である。
7. Surface-emitting laser device according to Example 7 of an embodiment of the present technology
FIG. 25 is a cross-sectional view of a surface-emitting laser device 10-7 according to Example 7 of an embodiment of the present technology.
 面発光レーザ装置10-7は、カソード電極110としての導電膜が第2及び第3電極部110b、110cを有していない点を除いて、実施例2に係る面発光レーザ装置10-2と同様の構成を有する。 The surface-emitting laser device 10-7 has a similar configuration to the surface-emitting laser device 10-2 of Example 2, except that the conductive film serving as the cathode electrode 110 does not have the second and third electrode portions 110b and 110c.
 面発光レーザ装置10-7では、カソード電極110の第1電極部110aが、メサMの側面を覆う絶縁膜112の一部(例えば下部)を覆っている。 In the surface-emitting laser device 10-7, the first electrode portion 110a of the cathode electrode 110 covers a portion (e.g., the lower portion) of the insulating film 112 that covers the side surface of the mesa M.
 面発光レーザ装置10-7は、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の製法により製造することができる。 The surface-emitting laser device 10-7 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
 面発光レーザ装置10-7によれば、生産性の低下を抑制することに関して若干劣るものの、実施例2に係る面発光レーザ装置10-2と概ね同様の効果が得られる。面発光レーザ装置10-7の製造方法によれば、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-7 is slightly inferior in terms of suppressing declines in productivity, but provides roughly the same effects as the surface-emitting laser device 10-2 of Example 2. The manufacturing method for the surface-emitting laser device 10-7 provides roughly the same effects as the manufacturing method for the surface-emitting laser device 10-2 of Example 2.
<8.本技術の一実施形態の実施例8に係る面発光レーザ装置>
 図26は、本技術の一実施形態の実施例8に係る面発光レーザ装置10-8の断面図である。
8. Surface-emitting laser device according to Example 8 of an embodiment of the present technology
FIG. 26 is a cross-sectional view of a surface-emitting laser device 10-8 according to an eighth example of an embodiment of the present technology.
 面発光レーザ装置10-8は、図26に示すように、酸化狭窄層107に代えてイオン注入領域IIA(図19のメサMの灰色部分)が設けられている点を除いて、実施例2に係る面発光レーザ装置10-2と同様の構成を有する。 As shown in FIG. 26, the surface-emitting laser device 10-8 has a similar configuration to the surface-emitting laser device 10-2 according to the second embodiment, except that an ion-implanted region IIA (the gray portion of the mesa M in FIG. 19) is provided instead of the oxide constriction layer 107.
 イオン注入領域IIAは、メサMに周回状に設けられ、電流狭窄領域として機能する。メサMのイオン注入領域IIAにより取り囲まれた領域が電流通過領域として機能する。ここでは、イオン注入領域IIAは、メサMの高さ方向の全域に設けられているが、要は、メサMの高さ方向の少なくとも一部に設けられればよい。イオン注入領域IIAに用いられるイオン種としては、例えばH、B等が挙げられる。 The ion implantation region IIA is provided in a circumferential shape on the mesa M and functions as a current confinement region. The region of the mesa M surrounded by the ion implantation region IIA functions as a current passing region. Here, the ion implantation region IIA is provided over the entire area in the height direction of the mesa M, but it is sufficient that the ion implantation region IIA is provided over at least a portion of the height direction of the mesa M. Examples of ion species used in the ion implantation region IIA include H + and B + .
 面発光レーザ装置10-8は、酸化狭窄層107の代わりにイオン注入領域IIAを形成する点を除いて、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の製法により製造することができる。 The surface-emitting laser device 10-8 can be manufactured by a method generally similar to that of the surface-emitting laser device 10-2 according to the second embodiment, except that an ion-implanted region IIA is formed instead of the oxide constriction layer 107.
 面発光レーザ装置10-8によれば、実施例2に係る面発光レーザ装置10-2と概ね同様の効果が得られる。面発光レーザ装置10-8の製造方法によれば、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-8 provides substantially the same effects as the surface-emitting laser device 10-2 according to Example 2. The manufacturing method for the surface-emitting laser device 10-8 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-2 according to Example 2.
<9.本技術の一実施形態の実施例9に係る面発光レーザ装置>
 図27は、本技術の一実施形態の実施例9に係る面発光レーザ装置10-9の断面図である。図28は、本技術の一実施形態の実施例9に係る面発光レーザ装置10-9の平面図である。図27は、図28の27-27線断面図である。
9. Surface-emitting laser device according to Example 9 of an embodiment of the present technology
Fig. 27 is a cross-sectional view of a surface-emitting laser device 10-9 according to Example 9 of an embodiment of the present technology. Fig. 28 is a plan view of a surface-emitting laser device 10-9 according to Example 9 of an embodiment of the present technology. Fig. 27 is a cross-sectional view taken along line 27-27 in Fig. 28.
 面発光レーザ装置10-9は、図27及び図28に示すように、表面出射型である点を除いて、実施例2に係る面発光レーザ装置10-2と概ね同様の構成を有する。 As shown in Figures 27 and 28, the surface-emitting laser device 10-9 has a configuration similar to that of the surface-emitting laser device 10-2 according to the second embodiment, except that it is a surface-emitting type.
 面発光レーザ装置10-9では、アノード電極111がメサMの頂部上に周回状(例えばリング状)に設けられている。アノード電極111は、発光層105の発光領域に対応する位置に開口する、出射口となる開口部を有している。ここでは、カソード電極110が第3電極部110cを有していない。 In the surface-emitting laser device 10-9, the anode electrode 111 is provided in a circumferential shape (e.g., in a ring shape) on the top of the mesa M. The anode electrode 111 has an opening that serves as an emission port, which opens at a position corresponding to the light-emitting region of the light-emitting layer 105. Here, the cathode electrode 110 does not have a third electrode portion 110c.
 面発光レーザ装置10-9は、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の製法により製造することができる。 The surface-emitting laser device 10-9 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-2 according to the second embodiment.
 面発光レーザ装置10-9によれば、実施例2に係る面発光レーザ装置10-2と概ね同様の効果が得られる。面発光レーザ装置10-6の製造方法によれば、実施例2に係る面発光レーザ装置10-2の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-9 provides substantially the same effects as the surface-emitting laser device 10-2 according to Example 2. The manufacturing method for the surface-emitting laser device 10-6 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-2 according to Example 2.
<10.本技術の一実施形態の実施例10に係る面発光レーザ装置>
 図29は、本技術の一実施形態の実施例10に係る面発光レーザ装置10-10の断面図である。
<10. Surface-emitting laser device according to Example 10 of an embodiment of the present technology>
FIG. 29 is a cross-sectional view of a surface-emitting laser device 10-10 according to a tenth example of an embodiment of the present technology.
 面発光レーザ装置10-10は、図29に示すように、第1及び第2コンタクト層102、109を有していない点を除いて、実施例1に係る面発光レーザ装置10-1と同様の構成を有する。 As shown in FIG. 29, the surface-emitting laser device 10-10 has the same configuration as the surface-emitting laser device 10-1 of Example 1, except that it does not have the first and second contact layers 102, 109.
 面発光レーザ装置10-10では、カソード電極110としての導電膜がコンタクトホールCH1で基板101に接している。ここでは、基板101は、n型の半導体基板(例えばn-GaAs基板)からなる。基板101には、通電時に横方向の電流パスが形成される。面発光レーザ装置10-10では、アノード電極111が第2反射鏡108に接している。 In the surface-emitting laser device 10-10, a conductive film serving as the cathode electrode 110 contacts the substrate 101 through a contact hole CH1. Here, the substrate 101 is made of an n-type semiconductor substrate (e.g., an n-GaAs substrate). A lateral current path is formed in the substrate 101 when a current is applied. In the surface-emitting laser device 10-10, the anode electrode 111 contacts the second reflector 108.
 面発光レーザ装置10-10は、実施例1に係る面発光レーザ装置10-1の製造方法と概ね同様の製法により製造することができる。 The surface-emitting laser device 10-10 can be manufactured by a method generally similar to the manufacturing method of the surface-emitting laser device 10-1 according to the first embodiment.
 面発光レーザ装置10-10によれば、実施例1に係る面発光レーザ装置10-1と概ね同様の効果が得られる。面発光レーザ装置10-10の製造方法によれば、実施例1に係る面発光レーザ装置10-1の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-10 provides substantially the same effects as the surface-emitting laser device 10-1 of Example 1. The manufacturing method for the surface-emitting laser device 10-10 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-1 of Example 1.
 面発光レーザ装置10-10は、第2コンタクト層109を有していてもよい。 The surface-emitting laser device 10-10 may have a second contact layer 109.
<11.本技術の一実施形態の実施例11に係る面発光レーザ装置>
 図30は、本技術の一実施形態の実施例11に係る面発光レーザ装置10-11の断面図である。図31は、本技術の一実施形態の実施例11に係る面発光レーザ装置10-11の平面図である。図30は、図31の30-30線断面図である。
<11. Surface-emitting laser device according to Example 11 of an embodiment of the present technology>
Fig. 30 is a cross-sectional view of a surface-emitting laser device 10-11 according to an eleventh example of an embodiment of the present technology. Fig. 31 is a plan view of a surface-emitting laser device 10-11 according to an eleventh example of an embodiment of the present technology. Fig. 30 is a cross-sectional view taken along line 30-30 in Fig. 31.
 面発光レーザ装置10-11は、図30及び図31に示すように、絶縁膜112の第1絶縁膜112aがメサMを取り囲む部分のみを有する点を除いて、実施例1に係る面発光レーザ装置10-1と同様の構成を有する。 As shown in Figures 30 and 31, the surface-emitting laser device 10-11 has a similar configuration to the surface-emitting laser device 10-1 of Example 1, except that the first insulating film 112a of the insulating film 112 only has a portion surrounding the mesa M.
 面発光レーザ装置10-11では、コンタクトホールCH1が各メサMの周辺の領域に跨るように一連に設けられている。カソード電極110の第1電極部110aがコンタクトホールCH1で第1コンタクト層102に接している。ここでは、コンタクトホールCH1は、貫通孔状の開口部であってもよいし、切り欠き状の開口部であってもよい。 In the surface-emitting laser device 10-11, contact holes CH1 are provided in a series across the peripheral area of each mesa M. The first electrode portion 110a of the cathode electrode 110 contacts the first contact layer 102 through the contact hole CH1. Here, the contact hole CH1 may be a through-hole-shaped opening or a notch-shaped opening.
 面発光レーザ装置10-11は、実施例1に係る面発光レーザ装置10-1の製造方法と概ね同様の製法により製造することができる。但し、絶縁膜112を比較的広範囲に除去する必要がある。 The surface-emitting laser device 10-11 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser device 10-1 according to the first embodiment. However, it is necessary to remove the insulating film 112 over a relatively wide area.
 面発光レーザ装置10-11によれば、実施例1に係る面発光レーザ装置10-1と概ね同様の効果が得られる。面発光レーザ装置10-11の製造方法によれば、実施例1に係る面発光レーザ装置10-1の製造方法と概ね同様の効果が得られる。 The surface-emitting laser device 10-11 provides substantially the same effects as the surface-emitting laser device 10-1 of Example 1. The manufacturing method for the surface-emitting laser device 10-11 provides substantially the same effects as the manufacturing method for the surface-emitting laser device 10-1 of Example 1.
 本技術の一実施形態は、上記各実施例に限定されることなく、種々の変形が可能である。 An embodiment of the present technology is not limited to the above examples, and various modifications are possible.
<12.本技術の一実施形態の変形例1に係る面発光レーザ装置>
 図32は、本技術の一実施形態の変形例1に係る面発光レーザ装置10-M1の平面図である。
<12. Surface-emitting laser device according to modification 1 of an embodiment of the present technology>
FIG. 32 is a plan view of a surface-emitting laser device 10-M1 according to a first modification of an embodiment of the present technology.
 面発光レーザ装置10-M1では、図32に示すように、各コンタクトホールCH1の平面視形状(例えば正三角形)と、該コンタクトホールCH1を囲む3つのメサMの中心を頂点とする多角形(例えば正三角形)とが、互いに相似である。面発光レーザ装置10-M1は、実施例1~11に係る面発光レーザ装置10-1~10-11のいずれかと同じ断面構成を有する。 In the surface-emitting laser device 10-M1, as shown in FIG. 32, the planar shape of each contact hole CH1 (e.g., an equilateral triangle) is similar to the polygon (e.g., an equilateral triangle) whose vertices are the centers of the three mesas M surrounding the contact hole CH1. The surface-emitting laser device 10-M1 has the same cross-sectional configuration as any of the surface-emitting laser devices 10-1 to 10-11 according to Examples 1 to 11.
 面発光レーザ装置10-M1では、コンタクトホールCH1の平面視形状である正三角形と、該コンタクトホールCH1を囲む3つのメサMの中心を頂点とする正三角形とが互いに出射方向の周りに60°ずれた向きになっている。これにより、各メサMとコンタクトホールCH1との距離を極力短く(好ましくは最小に)することができ、コンタクトホールCH1の形成をより容易にすることができる。なお、両正三角形の出射方向の周りのずれ角は、60°に限らず、例えば0°、15°、30°、45°等の角度であってもよい。 In the surface-emitting laser device 10-M1, the equilateral triangle that is the planar shape of the contact hole CH1 and the equilateral triangle whose vertex is the center of the three mesas M that surround the contact hole CH1 are oriented 60° apart from each other around the emission direction. This allows the distance between each mesa M and the contact hole CH1 to be as short as possible (preferably minimized), making it easier to form the contact hole CH1. Note that the angle of deviation between the two equilateral triangles around the emission direction is not limited to 60° and may be, for example, 0°, 15°, 30°, 45°, etc.
<13.本技術の一実施形態の変形例2に係る面発光レーザ装置>
 図33は、本技術の一実施形態の変形例2に係る面発光レーザ装置10-M2の平面図である。
<13. Surface-emitting laser device according to modification 2 of an embodiment of the present technology>
FIG. 33 is a plan view of a surface-emitting laser device 10-M2 according to a second modification of an embodiment of the present technology.
 面発光レーザ装置10-M2では、図33に示すように、各コンタクトホールCH1の平面視形状(例えば正方形)と、該コンタクトホールCH1を囲む4つのメサMの中心を頂点とする多角形(例えば正方形)とが、互いに相似である。面発光レーザ装置10-M2は、実施例1~11に係る面発光レーザ装置10-1~10-11のいずれかと同じ断面構成を有する。 In the surface-emitting laser device 10-M2, as shown in FIG. 33, the planar shape (e.g., a square) of each contact hole CH1 is similar to the polygon (e.g., a square) whose vertices are the centers of the four mesas M surrounding the contact hole CH1. The surface-emitting laser device 10-M2 has the same cross-sectional configuration as any of the surface-emitting laser devices 10-1 to 10-11 according to Examples 1 to 11.
 面発光レーザ装置10-M2では、コンタクトホールCH1の平面視形状である正方形と、該コンタクトホールCH1を囲む4つのメサMの中心を頂点とする正方形とが互いに出射方向の周りに45°ずれた向きになっている。これにより、各メサMとコンタクトホールCH1との距離を極力短く(好ましくは最小に)することができ、コンタクトホールCH1の形成をより容易にすることができる。なお、両正方形の出射方向の周りのずれ角は、45°に限らず、例えば0°、15°、30°等であってもよい。 In the surface-emitting laser device 10-M2, the square shape of the contact hole CH1 in plan view and the squares whose vertices are the centers of the four mesas M surrounding the contact hole CH1 are oriented in a 45° offset direction relative to each other around the emission direction. This allows the distance between each mesa M and the contact hole CH1 to be as short as possible (preferably minimized), making it easier to form the contact hole CH1. Note that the offset angle of the two squares around the emission direction is not limited to 45° and may be, for example, 0°, 15°, 30°, etc.
<14.本技術の一実施形態の変形例3に係る面発光レーザ装置>
 図34は、本技術の一実施形態の変形例3に係る面発光レーザ装置10-M3の断面図である。
<14. Surface-emitting laser device according to modification 3 of an embodiment of the present technology>
FIG. 34 is a cross-sectional view of a surface-emitting laser device 10-M3 according to a third modification of an embodiment of the present technology.
 面発光レーザ装置10-M3では、図34に示すように、メサMに酸化狭窄層107に加えてイオン注入領域IIAが設けられている点を除いて、実施例8に係る面発光レーザ装置10-8と同様の構成を有する。 As shown in FIG. 34, the surface-emitting laser device 10-M3 has the same configuration as the surface-emitting laser device 10-8 according to Example 8, except that the mesa M is provided with an ion-implanted region IIA in addition to an oxide constriction layer 107.
 面発光レーザ装置10-M3によれば、より十分な電流狭窄効果を得ることができる。 The surface-emitting laser device 10-M3 can achieve a more sufficient current confinement effect.
<15.本技術のその他の変形例>
 本技術は、上記各実施例及び各変形例に限らず、以下のように適宜変更可能である。
<15. Other Modifications of the Present Technology>
The present technology is not limited to the above-described embodiments and modifications, and can be modified as appropriate as follows.
 例えば、上記各実施例及び各変形例の面発光レーザ装置において、共振器Rの数は、適宜変更可能である。共振器Rの数は、例えば1、2以上6以下、8又は10以上であってもよい。 For example, in the surface-emitting laser device of each of the above embodiments and modifications, the number of resonators R can be changed as appropriate. The number of resonators R may be, for example, 1, 2 or more and 6 or less, 8, or 10 or more.
 例えば、上記各実施例及び各変形例の面発光レーザ装置において、開口部としてのコンタクトホールCH1数は、適宜変更可能である。コンタクトホールCH1の数は、例えば1~3、5又は7以上であってもよい。 For example, in the surface-emitting laser devices of the above-mentioned embodiments and modifications, the number of contact holes CH1 as openings can be changed as appropriate. The number of contact holes CH1 may be, for example, 1 to 3, 5, or 7 or more.
 例えば、上記各実施例及び各変形例の面発光レーザ装置において、開口部としてのコンタクトホールCH1とメサMの配置は、適宜変更可能である。 For example, in the surface-emitting laser devices of the above embodiments and modifications, the arrangement of the contact hole CH1 and mesa M as the opening can be changed as appropriate.
 例えば、酸化狭窄層107は、第2クラッド層106内に限らず、第2反射鏡108内、第1クラッド層104内、第1反射鏡103内のいずれかに配置されてもよい。酸化狭窄層107は、複数設けられてもよい。 For example, the oxide constriction layer 107 is not limited to being disposed in the second cladding layer 106, but may be disposed in any of the second reflecting mirror 108, the first cladding layer 104, and the first reflecting mirror 103. A plurality of oxide constriction layers 107 may be provided.
 例えば、面発光レーザ装置における電流閉じ込めは、酸化狭窄層やイオン注入領域によるものに限らない。例えばGa空孔拡散によりアパーチャの内外でバンドギャップエネルギー差を設けてキャリアを閉じ込めるQWI、埋め込みトンネルジャンクション、イオン拡散、量子井戸インターミキシング等により電流狭窄を行ってもよい。 For example, current confinement in a surface-emitting laser device is not limited to that achieved by an oxide confinement layer or an ion-implanted region. For example, current confinement may be achieved by QWI, which creates a band gap energy difference between the inside and outside of the aperture by Ga vacancy diffusion to confine carriers, buried tunnel junction, ion diffusion, quantum well intermixing, etc.
 例えば、面発光レーザ装置における光閉じ込めは、酸化狭窄層によるものに限らない。例えば段差構造、埋め込みトンネルジャンクション等の高屈折率領域を低屈折率領域で取り囲んだ構造のように、屈折率差を生じさせ、高屈折率領域に光を閉じ込める構造全般で光閉じ込めを行うことができる。 For example, light confinement in a surface-emitting laser device is not limited to that achieved by an oxide constriction layer. Light confinement can be achieved by any structure that creates a refractive index difference and confines light in a high refractive index region, such as a step structure or a buried tunnel junction, in which a high refractive index region is surrounded by a low refractive index region.
 例えば、面発光レーザ装置の第1及び第2反射鏡の少なくとも一方は、互いに積層された、異種材料からなる複数の構成層を含んでいてもよい。具体的には、第1及び第2反射鏡は、半導体多層膜反射鏡及び誘電体多層膜反射鏡を含むハイブリッドミラーであってもよいし、半導体多層膜反射鏡及び金属反射鏡を含むハイブリッドミラーであってもよいし、誘電体多層膜反射鏡及び金属反射鏡を含むハイブリッドミラーであってもよいし、半導体多層膜反射鏡、誘電体多層膜反射鏡及び金属反射鏡を含むハイブリッドミラーであってもよい。 For example, at least one of the first and second reflectors of the surface-emitting laser device may include multiple constituent layers made of different materials stacked on top of each other. Specifically, the first and second reflectors may be hybrid mirrors including a semiconductor multilayer reflector and a dielectric multilayer reflector, or a hybrid mirror including a semiconductor multilayer reflector and a metal reflector, or a hybrid mirror including a dielectric multilayer reflector and a metal reflector, or a hybrid mirror including a semiconductor multilayer reflector, a dielectric multilayer reflector, and a metal reflector.
 例えば、基板101は、Si基板、Ge基板、GaN基板、InP基板等であってもよい。いずれの場合も、基板101上に該基板101に格子整合する材料を積層してもよいし、異種材料同士を接合してもよい。面発光レーザ装置には、波長帯200~2000nmに含まれるいずれの発振波長となる材料も用いることが可能である。 For example, the substrate 101 may be a Si substrate, a Ge substrate, a GaN substrate, an InP substrate, or the like. In any case, a material that is lattice-matched to the substrate 101 may be laminated on the substrate 101, or different materials may be bonded together. The surface-emitting laser device can use any material that has an oscillation wavelength in the wavelength band of 200 to 2000 nm.
 上記各実施例及び各変形例の面発光レーザ装置の発光層105を上下に挟む両側の構造の導電型(p型及びn型)を入れ替えてもよい。 The conductivity types (p-type and n-type) of the structures on both sides sandwiching the light-emitting layer 105 of the surface-emitting laser device in each of the above-mentioned embodiments and modifications may be interchanged.
 上記各変形例及び各変形例の面発光レーザ装置の構成の一部を相互に矛盾しない範囲内で組み合わせてもよい。 The above-mentioned variations and parts of the configuration of the surface-emitting laser device of each variation may be combined to the extent that they are not mutually inconsistent.
 以上説明した各実施例及び各変形例において、面発光レーザ装置を構成する各層の材料、導電型、厚さ、幅、数値、形状、大きさ等は、面発光レーザ装置として機能する範囲内で適宜変更可能である。 In each of the embodiments and modifications described above, the material, conductivity type, thickness, width, value, shape, size, etc. of each layer constituting the surface-emitting laser device can be changed as appropriate within the range in which the surface-emitting laser device functions.
<16.電子機器への応用例>
 本開示に係る技術(本技術)は、様々な製品(電子機器)へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体や、低消費電力デバイス(例えばスマートフォン、スマートウォッチ、マウス、タブレット等)に搭載される装置として実現されてもよい。
<16. Application examples to electronic devices>
The technology according to the present disclosure (the present technology) can be applied to various products (electronic devices). For example, the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, or a low-power device (e.g., a smartphone, a smart watch, a mouse, a tablet, etc.).
 本技術に係る面発光レーザ装置は、例えば、レーザ光により画像を形成又は表示する機器(例えばレーザプリンタ、レーザ複写機、プロジェクタ、ヘッドマウントディスプレイ、ヘッドアップディスプレイ等)の光源としても応用可能である。 The surface-emitting laser device according to this technology can also be used as a light source for devices that form or display images using laser light (e.g., laser printers, laser copiers, projectors, head-mounted displays, head-up displays, etc.).
<17.面発光レーザ装置を距離測定装置に適用した例>
 以下に、上記各実施例及び各変形例に係る面発光レーザ装置の適用例について説明する。
17. Example of application of surface emitting laser device to distance measuring device
Application examples of the surface emitting laser devices according to the above embodiments and modifications will be described below.
 図35は、本技術に係る電子機器の一例としての、面発光レーザ装置10-1を備えた距離測定装置1000の概略構成の一例を表したものである。距離測定装置1000は、TOF(Time Of Flight)方式により被検体Sまでの距離を測定するものである。距離測定装置1000は、光源として面発光レーザ装置10-1を備えている。距離測定装置1000は、例えば、面発光レーザ装置10-1、受光装置125、レンズ115、130、信号処理部140、制御部150、表示部160および記憶部170を備えている。 FIG. 35 shows an example of the schematic configuration of a distance measurement device 1000 equipped with a surface-emitting laser device 10-1 as an example of electronic equipment related to the present technology. The distance measurement device 1000 measures the distance to a subject S using a TOF (Time Of Flight) method. The distance measurement device 1000 is equipped with a surface-emitting laser device 10-1 as a light source. The distance measurement device 1000 is equipped with, for example, the surface-emitting laser device 10-1, a light receiving device 125, lenses 115 and 130, a signal processing unit 140, a control unit 150, a display unit 160, and a memory unit 170.
 受光装置125は、被検体Sで反射された光を検出する。レンズ115は、面発光レーザ装置10-1から出射された光を平行光化するためのレンズであり、コリメートレンズである。レンズ130は、被検体Sで反射された光を集光し、受光装置125に導くためのレンズであり、集光レンズである。 The light receiving device 125 detects the light reflected by the subject S. The lens 115 is a collimating lens that collimates the light emitted from the surface emitting laser device 10-1. The lens 130 is a focusing lens that collects the light reflected by the subject S and guides it to the light receiving device 125.
 信号処理部140は、受光装置125から入力された信号と、制御部150から入力された参照信号との差分に対応する信号を生成するための回路である。制御部150は、例えば、Time to Digital Converter (TDC)を含んで構成されている。参照信号は、制御部150から入力される信号であってもよいし、面発光レーザ装置10-1の出力を直接検出する検出部の出力信号であってもよい。制御部150は、例えば、面発光レーザ装置10-1、受光装置125、信号処理部140、表示部160および記憶部170を制御するプロセッサである。制御部150は、信号処理部140で生成された信号に基づいて、被検体Sまでの距離を計測する回路である。制御部150は、被検体Sまでの距離についての情報を表示するための映像信号を生成し、表示部160に出力する。表示部160は、制御部150から入力された映像信号に基づいて、被検体Sまでの距離についての情報を表示する。制御部150は、被検体Sまでの距離についての情報を記憶部170に格納する。 The signal processing unit 140 is a circuit for generating a signal corresponding to the difference between the signal input from the light receiving device 125 and the reference signal input from the control unit 150. The control unit 150 is configured to include, for example, a Time to Digital Converter (TDC). The reference signal may be a signal input from the control unit 150, or may be an output signal of a detection unit that directly detects the output of the surface-emitting laser device 10-1. The control unit 150 is, for example, a processor that controls the surface-emitting laser device 10-1, the light receiving device 125, the signal processing unit 140, the display unit 160, and the storage unit 170. The control unit 150 is a circuit that measures the distance to the specimen S based on the signal generated by the signal processing unit 140. The control unit 150 generates a video signal for displaying information about the distance to the specimen S and outputs it to the display unit 160. The display unit 160 displays information about the distance to the specimen S based on the video signal input from the control unit 150. The control unit 150 stores information about the distance to the subject S in the memory unit 170.
 本適用例において、面発光レーザ装置10-1に代えて、上記面発光レーザ装置10-1~10-11、10-M1~10-M3のいずれかを距離測定装置1000に適用することもできる。 In this application example, any of the above surface-emitting laser devices 10-1 to 10-11 and 10-M1 to 10-M3 can be applied to the distance measurement device 1000 instead of the surface-emitting laser device 10-1.
<18.距離測定装置を移動体に搭載した例>
 図36は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
<18. Example of distance measuring device installed on a moving object>
FIG. 36 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図36に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 36, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps. In this case, radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020. The body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、距離測定装置12031が接続される。距離測定装置12031には、上述の距離測定装置1000が含まれる。車外情報検出ユニット12030は、距離測定装置12031に車外の物体(被検体S)との距離を計測させ、それにより得られた距離データを取得する。車外情報検出ユニット12030は、取得した距離データに基づいて、人、車、障害物、標識等の物体検出処理を行ってもよい。 The outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, a distance measurement device 12031 is connected to the outside-vehicle information detection unit 12030. The distance measurement device 12031 includes the distance measurement device 1000 described above. The outside-vehicle information detection unit 12030 causes the distance measurement device 12031 to measure the distance to an object outside the vehicle (subject S), and acquires the distance data obtained thereby. The outside-vehicle information detection unit 12030 may perform object detection processing of people, cars, obstacles, signs, etc. based on the acquired distance data.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects information inside the vehicle. To the in-vehicle information detection unit 12040, for example, a driver state detection unit 12041 that detects the state of the driver is connected. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 can calculate control target values for the driving force generating device, steering mechanism, or braking device based on information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output control commands to the drive system control unit 12010. For example, the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including vehicle collision avoidance or impact mitigation, following driving based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 The microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 The microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図36の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information. In the example of FIG. 36, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
 図37は、距離測定装置12031の設置位置の例を示す図である。 Figure 37 shows an example of the installation location of the distance measuring device 12031.
 図37では、車両12100は、距離測定装置12031として、距離測定装置12101,12102,12103,12104,12105を有する。 In FIG. 37, the vehicle 12100 has distance measurement devices 12101, 12102, 12103, 12104, and 12105 as the distance measurement device 12031.
 距離測定装置12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる距離測定装置12101及び車室内のフロントガラスの上部に備えられる距離測定装置12105は、主として車両12100の前方のデータを取得する。サイドミラーに備えられる距離測定装置12102,12103は、主として車両12100の側方のデータを取得する。リアバンパ又はバックドアに備えられる距離測定装置12104は、主として車両12100の後方のデータを取得する。距離測定装置12101及び12105で取得される前方のデータは、主として先行車両又は、歩行者、障害物、信号機、交通標識等の検出に用いられる。 The distance measuring devices 12101, 12102, 12103, 12104, and 12105 are provided, for example, on the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100. The distance measuring device 12101 provided on the front nose and the distance measuring device 12105 provided on the top of the windshield inside the vehicle cabin mainly obtain data in front of the vehicle 12100. The distance measuring devices 12102 and 12103 provided on the side mirrors mainly obtain data on the sides of the vehicle 12100. The distance measuring device 12104 provided on the rear bumper or back door mainly obtains data on the rear of the vehicle 12100. The forward data obtained by the distance measuring devices 12101 and 12105 is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, etc.
 なお、図37には、距離測定装置12101ないし12104の検出範囲の一例が示されている。検出範囲12111は、フロントノーズに設けられた距離測定装置12101の検出範囲を示し、検出範囲12112,12113は、それぞれサイドミラーに設けられた距離測定装置12102,12103の検出範囲を示し、検出範囲12114は、リアバンパ又はバックドアに設けられた距離測定装置12104の検出範囲を示す。 In addition, FIG. 37 shows an example of the detection ranges of the distance measuring devices 12101 to 12104. Detection range 12111 indicates the detection range of the distance measuring device 12101 provided on the front nose, detection ranges 12112 and 12113 indicate the detection ranges of the distance measuring devices 12102 and 12103 provided on the side mirrors, respectively, and detection range 12114 indicates the detection range of the distance measuring device 12104 provided on the rear bumper or back door.
 例えば、マイクロコンピュータ12051は、距離測定装置12101ないし12104から得られた距離データを基に、検出範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 can determine the distance to each three-dimensional object within the detection ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance data obtained from the distance measuring devices 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest three-dimensional object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
 例えば、マイクロコンピュータ12051は、距離測定装置12101ないし12104から得られた距離データを元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance data obtained from the distance measuring devices 12101 to 12104, and can use the data to automatically avoid obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 then determines the collision risk, which indicates the degree of risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by performing forced deceleration or avoidance steering via the drive system control unit 12010.
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、距離測定装置12031に適用され得る。 The above describes an example of a mobile object control system to which the technology disclosed herein can be applied. The technology disclosed herein can be applied to the distance measuring device 12031 of the configuration described above.
 また、本技術は、以下のような構成をとることもできる。
(1)基板上に設けられた、発光層を有するメサを含む共振器を備え、
 少なくとも、前記メサの側面と、前記共振器又は前記基板の、前記メサの周辺の領域とが絶縁膜で覆われ、
 前記周辺の領域を覆う前記絶縁膜には、開口部が設けられ、
 前記絶縁膜が電極としての導電膜で覆われ、
 前記導電膜が前記開口部で前記周辺の領域に接している、面発光レーザ装置。
(2)前記導電膜は、前記絶縁膜の前記側面を覆う部分と、前記絶縁膜の前記周辺の領域を覆う部分とに跨るように設けられている、(1)に記載の面発光レーザ装置。
(3)前記共振器を複数備える、(1)又は(2)に記載の面発光レーザ装置。
(4)複数の前記共振器の前記メサは、平面視において、前記開口部と隣接する2つのメサを有する、(3)に記載の面発光レーザ装置。
(5)前記2つのメサの中心と、前記開口部の中心とが同一直線上にない、(4)に記載の面発光レーザ装置。
(6)平面視において、前記2つのメサと前記開口部とが、同一直線上にない、(4)又は(5)に記載の面発光レーザ装置。
(7)平面視において、前記2つのメサの各々の中心と前記開口部の中心との距離は、前記2つのメサの中心間の距離の1/2超である、(4)~(6)のいずれか1つに記載の面発光レーザ装置。
(8)平面視において、前記2つのメサの各々の中心と前記開口部の中心との距離は、同一である、(4)~(7)のいずれか1つに記載の面発光レーザ装置。
(9)平面視において、複数の前記共振器の前記メサのうち前記2つのメサを含む少なくとも3つのメサで前記開口部が囲まれている、(4)~(8)のいずれか1つに記載の面発光レーザ装置。
(10)前記周辺の領域を覆う前記絶縁膜には、前記開口部が複数設けられ、平面視において、複数の前記開口部の各々が、対応する前記少なくとも3つのメサで囲まれている、(9)に記載の面発光レーザ装置。
(11)前記導電膜が、前記周辺の領域を覆う前記絶縁膜の全面を覆っている、(1)~(10)のいずれか1つに記載の面発光レーザ装置。
(12)前記共振器では、前記基板側から第1反射鏡、発光層及び第2反射鏡がこの順に積層され、前記メサの底面は、前記第1反射鏡と前記発光層との間、又は、前記第1反射鏡内、又は、前記基板と前記第1反射鏡との間に位置する、(1)~(11)のいずれか1つに記載の面発光レーザ装置。
(13)前記開口部の平面視形状と前記メサの平面視形状とが、互いに相似である、(1)~(12)のいずれか1つに記載の面発光レーザ装置。
(14)前記開口部の平面視形状と、該開口部を囲む前記少なくとも3つのメサの中心を頂点とする多角形とが、互いに相似である、(9)~(13)のいずれか1つに記載の面発光レーザ装置。
(15)前記2つのメサの中心間の距離は、20μm以下である、(1)~(14)のいずれか1つに記載の面発光レーザ装置。
(16)前記メサの頂部上に別の電極が設けられ、前記絶縁膜は、前記別の電極を露出させる別の開口部を有し、前記導電膜は、前記別の開口部を露出させるように開口している、(1)~(15)のいずれか1つに記載の面発光レーザ装置。
(17)前記メサは、前記別の電極と接するコンタクト層を頂部に有する、(16)に記載の面発光レーザ装置。
(18)前記基板と前記メサとの間に前記電極と接するコンタクト層が設けられている、(1)~(17)のいずれか1つに記載の面発光レーザ装置。
(19)(1)~(18)のいずれか1つに記載の面発光レーザ装置を備える、電子機器。
(20)基板を含む構造上に複数の層が積層された積層体を生成する工程と、
 前記積層体をエッチングしてメサを形成する工程と、
 前記メサの頂部上に第1電極を形成する工程と、
 前記メサに前記第1電極が形成された前記積層体に絶縁膜を成膜する工程と、
 前記第1電極を覆う前記絶縁膜の少なくとも一部及び前記構造の前記メサの周辺の領域を覆う絶縁膜の一部をエッチングにより除去する工程と、
 前記メサの側面を覆う前記絶縁膜上及び前記周辺の領域を覆う前記絶縁膜上に第2電極としての導電膜を形成する工程と、
 を含む、面発光レーザ装置の製造方法。
The present technology can also be configured as follows.
(1) A light emitting device comprising: a resonator including a mesa having a light emitting layer provided on a substrate;
At least a side surface of the mesa and a region of the resonator or the substrate surrounding the mesa are covered with an insulating film;
an opening is provided in the insulating film covering the peripheral region;
the insulating film is covered with a conductive film as an electrode,
The conductive film is in contact with the peripheral region at the opening.
(2) The surface-emitting laser device according to (1), wherein the conductive film is provided so as to straddle a portion covering the side surface of the insulating film and a portion covering the peripheral region of the insulating film.
(3) The surface-emitting laser device according to (1) or (2), further comprising a plurality of the resonators.
(4) The surface-emitting laser device according to (3), wherein the mesas of the plurality of resonators include two mesas adjacent to the opening in a plan view.
(5) The surface-emitting laser device according to (4), wherein the centers of the two mesas and the center of the opening are not on the same line.
(6) The surface-emitting laser device according to (4) or (5), in which the two mesas and the opening are not on the same line in a plan view.
(7) A surface-emitting laser device according to any one of (4) to (6), wherein, in a planar view, the distance between the center of each of the two mesas and the center of the opening is more than 1/2 the distance between the centers of the two mesas.
(8) The surface-emitting laser device according to any one of (4) to (7), wherein in a plan view, the distance between the center of each of the two mesas and the center of the opening is the same.
(9) The surface-emitting laser device according to any one of (4) to (8), wherein, in a planar view, the opening is surrounded by at least three mesas, including the two mesas, among the mesas of the plurality of resonators.
(10) The surface-emitting laser device described in (9), wherein the insulating film covering the peripheral region has a plurality of the openings, and each of the plurality of openings is surrounded by a corresponding one of the at least three mesas in a planar view.
(11) The surface-emitting laser device according to any one of (1) to (10), wherein the conductive film covers the entire surface of the insulating film that covers the peripheral region.
(12) A surface-emitting laser device described in any one of (1) to (11), wherein in the resonator, a first reflector, an emission layer, and a second reflector are stacked in this order from the substrate side, and the bottom surface of the mesa is located between the first reflector and the emission layer, or within the first reflector, or between the substrate and the first reflector.
(13) The surface-emitting laser device according to any one of (1) to (12), wherein a planar shape of the opening and a planar shape of the mesa are similar to each other.
(14) A surface-emitting laser device according to any one of (9) to (13), wherein the planar shape of the opening and a polygon having vertices at the centers of the at least three mesas surrounding the opening are similar to each other.
(15) The surface-emitting laser device according to any one of (1) to (14), wherein the distance between the centers of the two mesas is 20 μm or less.
(16) A surface-emitting laser device described in any one of (1) to (15), wherein another electrode is provided on the top of the mesa, the insulating film has another opening that exposes the other electrode, and the conductive film is opened to expose the other opening.
(17) The surface-emitting laser device according to (16), wherein the mesa has a contact layer at its top that contacts the other electrode.
(18) The surface-emitting laser device according to any one of (1) to (17), further comprising a contact layer between the substrate and the mesa, the contact layer being in contact with the electrode.
(19) An electronic device comprising the surface-emitting laser device according to any one of (1) to (18).
(20) Producing a laminate in which a plurality of layers are laminated on a structure including a substrate;
Etching the stack to form a mesa;
forming a first electrode on the top of the mesa;
forming an insulating film on the stacked body having the first electrode formed on the mesa;
removing by etching at least a portion of the insulating film covering the first electrode and a portion of the insulating film covering a region around the mesa of the structure;
forming a conductive film as a second electrode on the insulating film covering a side surface of the mesa and on the insulating film covering the peripheral region;
A method for manufacturing a surface emitting laser device, comprising:
 10-1~10-11、10-M1~M3:面発光レーザ装置
 101:基板
 102:第1コンタクト層(コンタクト層)
 103:第1反射鏡
 105:発光層
 108:第2反射鏡
 109:第2コンタクト層(コンタクト層)
 110:カソード電極(電極、導電膜)
 111:アノード電極
 112:絶縁膜
 1000:距離測定装置(電子機器)
 CH1:コンタクトホール(開口部)
 CH2:コンタクトホール(別の開口部)
 M:メサ
 R:共振器
 1000:距離測定装置(電子機器) 
10-1 to 10-11, 10-M1 to M3: surface emitting laser device 101: substrate 102: first contact layer (contact layer)
103: First reflecting mirror 105: Light emitting layer 108: Second reflecting mirror 109: Second contact layer (contact layer)
110: Cathode electrode (electrode, conductive film)
111: Anode electrode 112: Insulating film 1000: Distance measuring device (electronic device)
CH1: Contact hole (opening)
CH2: Contact hole (another opening)
M: Mesa R: Resonator 1000: Distance measuring device (electronic device)

Claims (20)

  1.  基板上に設けられた、発光層を有するメサを含む共振器を備え、
     少なくとも、前記メサの側面と、前記共振器又は前記基板の、前記メサの周辺の領域とが絶縁膜で覆われ、
     前記周辺の領域を覆う前記絶縁膜には、開口部が設けられ、
     前記絶縁膜が電極としての導電膜で覆われ、
     前記導電膜が前記開口部で前記周辺の領域に接している、面発光レーザ装置。
    a resonator including a mesa having a light emitting layer provided on a substrate;
    At least a side surface of the mesa and a region of the resonator or the substrate surrounding the mesa are covered with an insulating film;
    an opening is provided in the insulating film covering the peripheral region;
    The insulating film is covered with a conductive film as an electrode,
    The conductive film is in contact with the peripheral region at the opening.
  2.  前記導電膜は、前記絶縁膜の前記側面を覆う部分と、前記絶縁膜の前記周辺の領域を覆う部分とに跨るように設けられている、請求項1に記載の面発光レーザ装置。 The surface-emitting laser device according to claim 1, wherein the conductive film is provided so as to straddle a portion covering the side surface of the insulating film and a portion covering the peripheral region of the insulating film.
  3.  前記共振器を複数備える、請求項1に記載の面発光レーザ装置。 The surface-emitting laser device according to claim 1, comprising a plurality of the resonators.
  4.  複数の前記共振器の前記メサは、平面視において、前記開口部と隣接する2つのメサを有する、請求項3に記載の面発光レーザ装置。 The surface-emitting laser device according to claim 3, wherein the mesas of the plurality of resonators have two mesas adjacent to the opening in a plan view.
  5.  前記2つのメサの中心と、前記開口部の中心とが同一直線上にない、請求項4に記載の面発光レーザ装置。 The surface-emitting laser device of claim 4, wherein the centers of the two mesas and the center of the opening are not on the same line.
  6.  平面視において、前記2つのメサと前記開口部とが、同一直線上にない、請求項4に記載の面発光レーザ装置。 The surface-emitting laser device of claim 4, wherein the two mesas and the opening are not on the same straight line in a plan view.
  7.  平面視において、前記2つのメサの各々の中心と前記開口部の中心との距離は、前記2つのメサの中心間の距離の1/2超である、請求項4に記載の面発光レーザ装置。 The surface-emitting laser device of claim 4, wherein, in a plan view, the distance between the center of each of the two mesas and the center of the opening is more than 1/2 the distance between the centers of the two mesas.
  8.  平面視において、前記2つのメサの各々の中心と前記開口部の中心との距離は、同一である、請求項4に記載の面発光レーザ装置。 The surface-emitting laser device of claim 4, wherein, in a plan view, the distance between the center of each of the two mesas and the center of the opening is the same.
  9.  平面視において、複数の前記共振器の前記メサのうち前記2つのメサを含む少なくとも3つのメサで前記開口部が囲まれている、請求項4に記載の面発光レーザ装置。 The surface-emitting laser device according to claim 4, wherein, in a plan view, the opening is surrounded by at least three mesas including the two mesas among the mesas of the plurality of resonators.
  10.  前記周辺の領域を覆う前記絶縁膜には、前記開口部が複数設けられ、
     平面視において、複数の前記開口部の各々が、対応する前記少なくとも3つのメサで囲まれている、請求項9に記載の面発光レーザ装置。
    The insulating film covering the peripheral region is provided with a plurality of the openings,
    10. The surface-emitting laser device according to claim 9, wherein each of the plurality of openings is surrounded by a corresponding one of the at least three mesas in a plan view.
  11.  前記導電膜が、前記周辺の領域を覆う前記絶縁膜の全面を覆っている、請求項1に記載の面発光レーザ装置。 The surface-emitting laser device of claim 1, wherein the conductive film covers the entire surface of the insulating film that covers the peripheral region.
  12.  前記共振器では、前記基板側から第1反射鏡、発光層及び第2反射鏡がこの順に積層され、
     前記メサの底面は、前記第1反射鏡と前記発光層との間、又は、前記第1反射鏡内、又は、前記基板と前記第1反射鏡との間に位置する、請求項1に記載の面発光レーザ装置。
    In the resonator, a first reflecting mirror, a light emitting layer, and a second reflecting mirror are laminated in this order from the substrate side,
    2. The surface-emitting laser device according to claim 1, wherein a bottom surface of the mesa is located between the first reflector and the light-emitting layer, within the first reflector, or between the substrate and the first reflector.
  13.  前記開口部の平面視形状と前記メサの平面視形状とが、互いに相似である、請求項1に記載の面発光レーザ装置。 The surface-emitting laser device of claim 1, wherein the planar shape of the opening and the planar shape of the mesa are similar to each other.
  14.  前記開口部の平面視形状と、該開口部を囲む前記少なくとも3つのメサの中心を頂点とする多角形とが、互いに相似である、請求項9に記載の面発光レーザ装置。 The surface-emitting laser device according to claim 9, wherein the planar shape of the opening and a polygon having vertices at the centers of the at least three mesas surrounding the opening are similar to each other.
  15.  前記2つのメサの中心間の距離は、20μm以下である、請求項1に記載の面発光レーザ装置。 The surface-emitting laser device of claim 1, wherein the distance between the centers of the two mesas is 20 μm or less.
  16.  前記メサの頂部上に別の電極が設けられ、
     前記絶縁膜は、前記別の電極を露出させる別の開口部を有し、
     前記導電膜は、前記別の開口部を露出させるように開口している、請求項1に記載の面発光レーザ装置。
    a second electrode is provided on the top of the mesa;
    the insulating film has another opening for exposing the another electrode,
    The surface emitting laser device according to claim 1 , wherein the conductive film has an opening to expose the other opening.
  17.  前記メサは、前記別の電極と接するコンタクト層を頂部に有する、請求項16に記載の面発光レーザ装置。 The surface-emitting laser device according to claim 16, wherein the mesa has a contact layer at its top that contacts the other electrode.
  18.  前記基板と前記メサとの間に前記電極と接するコンタクト層が設けられている、請求項1に記載の面発光レーザ装置。 The surface-emitting laser device according to claim 1, wherein a contact layer that contacts the electrode is provided between the substrate and the mesa.
  19.  請求項1に記載の面発光レーザ装置を備える、電子機器。 An electronic device comprising the surface-emitting laser device according to claim 1.
  20.  基板を含む構造上に複数の層が積層された積層体を生成する工程と、
     前記積層体をエッチングしてメサを形成する工程と、
     前記メサの頂部上に第1電極を形成する工程と、
     前記メサに前記第1電極が形成された前記積層体に絶縁膜を成膜する工程と、
     前記第1電極を覆う前記絶縁膜の少なくとも一部及び前記構造の前記メサの周辺の領域を覆う絶縁膜の一部をエッチングにより除去する工程と、
     前記メサの側面を覆う前記絶縁膜上及び前記周辺の領域を覆う前記絶縁膜上に第2電極としての導電膜を形成する工程と、
     を含む、面発光レーザ装置の製造方法。 
    Producing a laminate in which a plurality of layers are laminated on a structure including a substrate;
    Etching the stack to form a mesa;
    forming a first electrode on the top of the mesa;
    forming an insulating film on the stacked body having the first electrode formed on the mesa;
    removing by etching at least a portion of the insulating film covering the first electrode and a portion of the insulating film covering a region around the mesa of the structure;
    forming a conductive film as a second electrode on the insulating film covering a side surface of the mesa and on the insulating film covering the peripheral region;
    A method for manufacturing a surface emitting laser device, comprising:
PCT/JP2023/040720 2022-12-19 2023-11-13 Surface-emitting laser device, electronic appliance, and method for producing surface-emitting laser device WO2024135157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-202185 2022-12-19
JP2022202185 2022-12-19

Publications (1)

Publication Number Publication Date
WO2024135157A1 true WO2024135157A1 (en) 2024-06-27

Family

ID=91588326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040720 WO2024135157A1 (en) 2022-12-19 2023-11-13 Surface-emitting laser device, electronic appliance, and method for producing surface-emitting laser device

Country Status (1)

Country Link
WO (1) WO2024135157A1 (en)

Similar Documents

Publication Publication Date Title
WO2024135157A1 (en) Surface-emitting laser device, electronic appliance, and method for producing surface-emitting laser device
WO2022239330A1 (en) Surface-emitting laser, surface-emitting laser array, and electronic apparatus
US20220247153A1 (en) Surface light-emission laser device
US20230283048A1 (en) Surface emitting laser apparatus, electronic device, and method for manufacturing surface emitting laser apparatus
WO2023238621A1 (en) Surface emission laser
WO2022158312A1 (en) Surface-emitting laser
WO2022158301A1 (en) Surface-emitting laser, electronic apparatus, and method for manufacturing surface-emitting laser
WO2023181658A1 (en) Surface-emitting laser, light source device, and electronic apparatus
WO2023149087A1 (en) Surface-emitting laser, surface-emitting laser array, and light source device
WO2024014140A1 (en) Surface emitting laser and method for manufacturing surface emitting laser
WO2022201772A1 (en) Surface emitting laser, light source device, electronic apparatus, and method for producing surface emitting laser
WO2023067890A1 (en) Surface emitting laser and method for manufacturing surface emitting laser
WO2022176482A1 (en) Surface-emitting laser
WO2023233850A1 (en) Surface light emitting element
WO2024135133A1 (en) Surface-emitting laser
WO2023162488A1 (en) Surface emitting laser, light source device, and ranging device
US20240235167A1 (en) Surface emitting laser element, electronic device, and method for manufacturing surface emitting laser element
WO2023171148A1 (en) Surface-emitting laser, surface-emitting laser array, and method for manufacturing surface-emitting laser
WO2023153084A1 (en) Surface emitting laser and method for manufacturing surface emitting laser
WO2023145148A1 (en) Surface-emitting laser and method for manufacturing surface-emitting laser
WO2023248654A1 (en) Surface-emitting laser and ranging device
US20240146026A1 (en) Surface emitting laser and method for manufacturing surface emitting laser
WO2023233818A1 (en) Surface light emitting element
WO2022185765A1 (en) Surface-emitting laser and electronic device
WO2023176308A1 (en) Light-emitting device, ranging device, and on-board device