WO2024134989A1 - Centrifugal compressor - Google Patents

Centrifugal compressor Download PDF

Info

Publication number
WO2024134989A1
WO2024134989A1 PCT/JP2023/030636 JP2023030636W WO2024134989A1 WO 2024134989 A1 WO2024134989 A1 WO 2024134989A1 JP 2023030636 W JP2023030636 W JP 2023030636W WO 2024134989 A1 WO2024134989 A1 WO 2024134989A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
partition wall
chamber
side flow
passage
Prior art date
Application number
PCT/JP2023/030636
Other languages
French (fr)
Japanese (ja)
Inventor
正悟 伊藤
英文 森
聡 光田
弘晃 加藤
芳之 中根
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2024134989A1 publication Critical patent/WO2024134989A1/en

Links

Images

Definitions

  • This disclosure relates to centrifugal compressors.
  • a centrifugal compressor includes a rotating shaft and an impeller.
  • the impeller compresses the fluid by rotating integrally with the rotating shaft.
  • the centrifugal compressor further includes a motor and a housing.
  • the motor rotates the rotating shaft.
  • the housing defines an impeller chamber, a motor chamber, and a discharge chamber.
  • the impeller chamber houses the impeller.
  • the motor chamber houses the motor.
  • the fluid compressed by the impeller is discharged into the discharge chamber.
  • the housing has a partition wall.
  • the partition wall separates the impeller chamber and the motor chamber from each other.
  • the partition wall has an insertion hole through which the rotating shaft is inserted.
  • some of the fluid compressed by the impeller and discharged into the discharge chamber may flow into the gap between the back surface of the impeller and the partition wall. This may result in the fluid that has flowed into the gap between the back surface of the impeller and the partition wall entering the motor chamber through the insertion hole.
  • the temperature of the fluid compressed by the impeller and discharged into the discharge chamber is high. Therefore, if some of the fluid compressed by the impeller and discharged into the discharge chamber enters the motor chamber through the insertion hole, the motor will be warmed by the fluid that has entered the motor chamber. This will reduce the durability of the centrifugal compressor.
  • a centrifugal compressor includes a rotating shaft, an impeller configured to rotate integrally with the rotating shaft to compress a fluid, a motor configured to rotate the rotating shaft, and a housing that partitions an impeller chamber that houses the impeller, a motor chamber that houses the motor, and a discharge chamber into which the fluid compressed by the impeller is discharged.
  • the housing has a partition wall that separates the impeller chamber and the motor chamber from each other and has a first insertion hole through which the rotating shaft is inserted.
  • the centrifugal compressor further includes a back plate that is fixed to the partition wall between the impeller and the partition wall in the axial direction of the rotating shaft so as to face the back surface of the impeller, and has a second insertion hole through which the rotating shaft is inserted, and a heat transfer promotion member provided on the partition wall.
  • the back plate is configured to divide the fluid leaking to the back surface of the impeller into a fluid flowing in an impeller-side flow passage formed between the back surface of the impeller and the back plate, and a fluid flowing in a partition-side flow passage formed between the back plate and the partition wall.
  • the heat transfer promotion member is configured to promote heat transfer from the fluid flowing in the partition-side flow passage to the partition wall.
  • the back plate is further configured so that the fluid flowing in the partition-side flow passage merges with the fluid flowing in the impeller-side flow passage inside the second insertion hole, and then flows into the motor chamber through the first insertion hole.
  • FIG. 1 is a cross-sectional view of a centrifugal compressor according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1 .
  • centrifugal compressor of the embodiment described below is mounted on a fuel cell vehicle.
  • the centrifugal compressor compresses air, which is the fluid supplied to the fuel cell stack.
  • the centrifugal compressor 10 includes a housing 11.
  • the housing 11 is made of a metal material, for example, aluminum.
  • the housing 11 includes a motor housing 12, a compressor housing 13, a turbine housing 14, a first plate 15, a second plate 16, and a third plate 17.
  • the motor housing 12 is cylindrical with one end closed.
  • the motor housing 12 has an end wall 12a and a peripheral wall 12b.
  • the end wall 12a is plate-shaped.
  • the peripheral wall 12b extends cylindrically from the outer periphery of the end wall 12a.
  • the first plate 15 is connected to the open end of the peripheral wall 12b of the motor housing 12.
  • the first plate 15 closes the opening of the peripheral wall 12b of the motor housing 12.
  • the motor housing 12 and the first plate 15 define a motor chamber 18.
  • the housing 11 defines the motor chamber 18.
  • the second plate 16 is connected to the outer surface of the end wall 12a of the motor housing 12.
  • the second plate 16 is attached to the end wall 12a of the motor housing 12 with the thickness direction of the second plate 16 coinciding with the thickness direction of the end wall 12a of the motor housing 12.
  • the centrifugal compressor 10 is equipped with a motor 20.
  • the motor 20 is housed in the motor chamber 18.
  • the motor chamber 18 houses the motor 20.
  • the motor housing 12 surrounds the motor 20.
  • the centrifugal compressor 10 has a first bearing retaining portion 21.
  • the first bearing retaining portion 21 protrudes from the center of the first plate 15 into the motor chamber 18. Therefore, the first plate 15 has the first bearing retaining portion 21.
  • the first bearing retaining portion 21 is cylindrical. The inside of the first bearing retaining portion 21 is connected to the motor chamber 18.
  • the first plate 15 has a chamber-forming recess 22.
  • the chamber-forming recess 22 is formed on the end face of the first plate 15 opposite the motor housing 12.
  • the chamber-forming recess 22 is a circular hole.
  • the inside of the first bearing retaining portion 21 penetrates the first plate 15 and opens to the bottom face of the chamber-forming recess 22.
  • the axis of the chamber-forming recess 22 and the axis of the first bearing retaining portion 21 are aligned with each other.
  • the third plate 17 has a first connecting surface 17a and a second connecting surface 17b.
  • the first connecting surface 17a and the second connecting surface 17b face opposite each other in the thickness direction of the third plate 17.
  • the first connecting surface 17a of the third plate 17 is connected to the end surface of the first plate 15 opposite the motor housing 12.
  • the third plate 17 is attached to the first plate 15 with the thickness direction of the third plate 17 coinciding with the thickness direction of the first plate 15.
  • the chamber forming recess 22 and the first connecting surface 17a of the third plate 17 define a thrust bearing accommodating chamber 24.
  • the thrust bearing accommodating chamber 24 is connected to the inside of the first bearing retaining portion 21.
  • a passage forming recess 17c is formed in the center of the second connecting surface 17b.
  • the passage forming recess 17c is a circular hole.
  • a fitting hole 17h is formed in the bottom surface of the passage forming recess 17c.
  • the fitting hole 17h is a circular hole.
  • the axis of the fitting hole 17h and the axis of the passage forming recess 17c coincide with each other.
  • the third plate 17 is connected to the first plate 15 in a state in which the axis of the fitting hole 17h and the axis of the passage forming recess 17c coincide with the axis of the chamber forming recess 22 and the axis of the first bearing holder 21.
  • the inside of the first bearing holder 21, the inside of the chamber forming recess 22, and the fitting hole 17h form a first insertion hole 23.
  • the first insertion hole 23 is connected to the motor chamber 18.
  • the centrifugal compressor 10 has a second bearing retaining portion 25.
  • the second bearing retaining portion 25 protrudes from the center of the end wall 12a of the motor housing 12 into the motor chamber 18. Therefore, the motor housing 12 has the second bearing retaining portion 25.
  • the second bearing retaining portion 25 is cylindrical. The inside of the second bearing retaining portion 25 is connected to the motor chamber 18.
  • the housing 11 has a through hole 26.
  • the through hole 26 penetrates the center of the end wall 12a of the motor housing 12 and the center of the second plate 16.
  • the through hole 26 communicates with the inside of the second bearing holder 25.
  • the axis of the through hole 26 coincides with the axis of the second bearing holder 25.
  • the compressor housing 13 is cylindrical and has a circular suction port 27 through which air is drawn.
  • the compressor housing 13 is connected to the end face of the third plate 17 opposite the first plate 15, with the axis of the suction port 27 coinciding with the axis of the first insertion hole 23.
  • the suction port 27 opens to the end face of the compressor housing 13 opposite the third plate 17. Air that has been purified by an air cleaner (not shown) flows through the suction port 27.
  • the centrifugal compressor 10 has an impeller chamber 28, a discharge chamber 29, and a diffuser passage 30.
  • the impeller chamber 28, the discharge chamber 29, and the diffuser passage 30 are formed between the compressor housing 13 and the third plate 17.
  • the housing 11 divides the impeller chamber 28 and the discharge chamber 29.
  • the first plate 15 and the third plate 17 form a partition wall that separates the impeller chamber 28 and the motor chamber 18 from each other.
  • the housing 11 has a partition wall.
  • the impeller chamber 28 is connected to the suction port 27.
  • the discharge chamber 29 extends around the axis of the suction port 27 around the periphery of the impeller chamber 28.
  • the diffuser passage 30 connects the impeller chamber 28 to the discharge chamber 29.
  • the centrifugal compressor 10 has a discharge passage 31.
  • the first end of the discharge passage 31 is connected to the discharge chamber 29.
  • the second end of the discharge passage 31 opens to the outer peripheral surface of the compressor housing 13.
  • the turbine housing 14 is cylindrical and has a circular discharge port 32 through which air is discharged.
  • the turbine housing 14 is connected to the end face of the second plate 16 opposite the motor housing 12 with the axis of the discharge port 32 coinciding with the axis of the insertion hole 26.
  • the discharge port 32 opens into the end face of the turbine housing 14 opposite the second plate 16.
  • the centrifugal compressor 10 includes a turbine chamber 33, a turbine scroll passage 34, and a communication passage 35.
  • the turbine chamber 33, the turbine scroll passage 34, and the communication passage 35 are formed between the turbine housing 14 and the second plate 16.
  • the end wall 12a of the motor housing 12 and the second plate 16 separate the turbine chamber 33 and the motor chamber 18 from each other.
  • the turbine chamber 33 is connected to the discharge port 32.
  • the turbine scroll passage 34 extends around the axis of the discharge port 32 around the turbine chamber 33.
  • the communication passage 35 connects the turbine chamber 33 to the turbine scroll passage 34.
  • the turbine chamber 33 is connected to the insertion hole 26.
  • the centrifugal compressor 10 has an intake passage 36. A first end of the intake passage 36 is connected to the turbine scroll passage 34. A second end of the intake passage 36 opens to the outer peripheral surface of the turbine housing 14.
  • the centrifugal compressor 10 includes a rotating body 40.
  • the rotating body 40 includes a rotating shaft 41, an impeller 42, a turbine wheel 43, and a support portion 44.
  • the centrifugal compressor 10 includes a rotating shaft 41 and an impeller 42.
  • the rotating shaft 41 is accommodated in the housing 11.
  • the rotating shaft 41 crosses the motor chamber 18 while extending along the axis of the motor housing 12.
  • the axial direction of the rotating shaft 41 coincides with the axial direction of the motor housing 12.
  • the first end of the rotating shaft 41 passes through the first insertion hole 23 from the motor chamber 18 and protrudes into the impeller chamber 28. Therefore, the rotating shaft 41 is inserted into the first insertion hole 23.
  • the housing 11 has a partition wall that separates the impeller chamber 28 and the motor chamber 18 from each other and in which the first insertion hole 23 through which the rotating shaft 41 is inserted is formed.
  • the second end of the rotating shaft 41 protrudes from the motor chamber 18 into the turbine chamber 33, passing through the inside of the second bearing holder 25 and the insertion hole 26.
  • the impeller 42 is connected to a first end of the rotating shaft 41.
  • the impeller 42 is housed in the impeller chamber 28.
  • the impeller chamber 28 houses the impeller 42.
  • the impeller 42 rotates integrally with the rotating shaft 41 to compress the air drawn into the impeller chamber 28.
  • the impeller 42 is cylindrical and its diameter gradually decreases from the back surface 42a to the tip.
  • the back surface 42a of the impeller 42 faces the third plate 17.
  • the impeller 42 has a through hole 42h.
  • the axis of the through hole 42h coincides with the rotation axis of the impeller 42.
  • the rotation axis of the impeller 42 is also the axis of the rotating shaft 41.
  • the impeller 42 has a cylindrical boss portion 42b.
  • the boss portion 42b protrudes from the center of the back surface 42a of the impeller 42.
  • the inside of the boss portion 42b communicates with the through hole 42h.
  • the first end of the rotating shaft 41 passes through the inside of the boss portion 42b and the through hole 42h.
  • the boss portion 42b fits into the fitting hole 17h.
  • the turbine wheel 43 is connected to the second end of the rotating shaft 41.
  • the turbine wheel 43 is housed in the turbine chamber 33.
  • the turbine wheel 43 rotates integrally with the rotating shaft 41.
  • the support portion 44 protrudes in an annular shape from the outer peripheral surface of the rotating shaft 41.
  • the support portion 44 is disk-shaped.
  • the support portion 44 is fixed to the outer peripheral surface of the rotating shaft 41 in a state in which it protrudes in an annular shape radially outward from the outer peripheral surface of the rotating shaft 41. Therefore, the support portion 44 is separate from the rotating shaft 41.
  • the support portion 44 is disposed in the thrust bearing housing chamber 24. The support portion 44 rotates integrally with the rotating shaft 41.
  • the centrifugal compressor 10 is equipped with a seal member 45.
  • the seal member 45 is provided between the insertion hole 26 and the rotating shaft 41.
  • the seal member 45 prevents air from leaking from the turbine chamber 33 toward the motor chamber 18.
  • the seal member 45 is, for example, a seal ring.
  • the motor 20 includes a cylindrical rotor 47 and a cylindrical stator 48.
  • the rotor 47 is fixed to the rotating shaft 41.
  • the stator 48 is fixed to the housing 11.
  • the rotor 47 is disposed radially inside the stator 48.
  • the rotor 47 rotates integrally with the rotating shaft 41.
  • the rotor 47 includes a cylindrical rotor core 49 fixed to the rotating shaft 41, and a plurality of permanent magnets (not shown) provided on the rotor core 49.
  • the stator 48 surrounds the rotor 47.
  • the stator 48 includes a cylindrical stator core 50 and a coil 51.
  • the stator core 50 is fixed to the inner peripheral surface of the motor housing 12.
  • the coil 51 is wound around the stator core 50.
  • the rotating shaft 41 rotates integrally with the rotor 47 by controlling an inverter (not shown) so that a current flows from a battery to the coil 51.
  • the motor 20 rotates the rotating shaft 41.
  • the motor 20 is disposed between the impeller 42 and the turbine wheel 43 in the axial direction of the rotating shaft 41.
  • the centrifugal compressor 10 is equipped with a first radial bearing 52.
  • the first radial bearing 52 is cylindrical.
  • the first radial bearing 52 is held by the first bearing holder 21.
  • the first radial bearing 52 rotatably supports a portion of the rotating shaft 41 that is located closer to the first end of the rotating shaft 41 than the motor 20.
  • the centrifugal compressor 10 is equipped with a second radial bearing 53.
  • the second radial bearing 53 is cylindrical.
  • the second radial bearing 53 is held by the second bearing holder 25.
  • the second radial bearing 53 rotatably supports a portion of the rotating shaft 41 that is located closer to the second end of the rotating shaft 41 than the motor 20.
  • the first radial bearing 52 and the second radial bearing 53 support the rotating shaft 41 so that it can rotate in the radial direction at positions on both sides of the motor 20 in the axial direction of the rotating shaft 41.
  • the "radial direction” is a direction perpendicular to the axial direction of the rotating shaft 41.
  • the centrifugal compressor 10 is equipped with a thrust bearing 54.
  • the thrust bearing 54 is accommodated in the thrust bearing accommodation chamber 24. Therefore, the thrust bearing accommodation chamber 24 accommodates the thrust bearing 54.
  • the thrust bearing 54 rotatably supports the support portion 44 from the thrust direction. Therefore, the thrust bearing 54 rotatably supports the rotating shaft 41 via the support portion 44.
  • the "thrust direction" is a direction parallel to the axial direction of the rotating shaft 41.
  • the centrifugal compressor 10 configured as described above constitutes a part of a fuel cell system 55 mounted on a fuel cell vehicle.
  • the fuel cell system 55 includes a fuel cell stack 56, a supply flow path 57, and a discharge flow path 58.
  • the fuel cell stack 56 is composed of a plurality of battery cells (not shown).
  • the supply flow path 57 connects the discharge passage 31 to the fuel cell stack 56.
  • the discharge flow path 58 connects the fuel cell stack 56 to the suction passage 36.
  • the air discharged into the discharge chamber 29 is discharged into the discharge passage 31.
  • the air discharged into the discharge passage 31 is supplied to the fuel cell stack 56 via the supply flow path 57.
  • the air supplied to the fuel cell stack 56 is used to generate electricity in the fuel cell stack 56.
  • the air passing through the fuel cell stack 56 is then discharged into the exhaust flow path 58 as exhaust air from the fuel cell stack 56.
  • the exhaust gas from the fuel cell stack 56 is drawn into the turbine scroll passage 34 via the exhaust passage 58 and the intake passage 36.
  • the exhaust gas from the fuel cell stack 56 drawn into the turbine scroll passage 34 is introduced into the turbine chamber 33 through the communication passage 35.
  • the turbine wheel 43 rotates due to the exhaust gas from the fuel cell stack 56 introduced into the turbine chamber 33.
  • the rotating shaft 41 rotates due to the rotational force of the turbine wheel 43 caused by the exhaust gas from the fuel cell stack 56, in addition to the rotational force caused by the drive of the motor 20. In other words, the rotation of the rotating shaft 41 is assisted by the rotational force of the turbine wheel 43 caused by the exhaust gas from the fuel cell stack 56.
  • the exhaust gas that has passed through the turbine chamber 33 is discharged to the outside from the discharge port 32.
  • the centrifugal compressor 10 has a discharge passage 59.
  • the discharge passage 59 is formed in the end wall 12a of the motor housing 12.
  • a first end of the discharge passage 59 is connected to a portion of the insertion hole 26 closer to the motor chamber 18 than the seal member 45.
  • a second end of the discharge passage 59 opens to the outer peripheral surface of the end wall 12a of the motor housing 12. Therefore, the discharge passage 59 is connected to the outside of the housing 11.
  • the centrifugal compressor 10 includes a plate-shaped back plate 61 fixed to the third plate 17 between the impeller 42 and the third plate 17 in the axial direction of the rotating shaft 41.
  • the back plate 61 has a cylindrical portion 62 and a flange portion 63.
  • the inside of the cylindrical portion 62 is a second insertion hole 65.
  • the back plate 61 has the second insertion hole 65.
  • the second insertion hole 65 communicates with the first insertion hole 23.
  • the rotating shaft 41 is inserted through the first insertion hole 23 and the second insertion hole 65.
  • the flange portion 63 protrudes in an annular shape from the axial end of the tubular portion 62 toward the radial outside of the tubular portion 62.
  • the flange portion 63 is annular.
  • the end face of the flange portion 63 opposite the tubular portion 62 forms an opposing surface 64 that faces the back surface 42a of the impeller 42. Therefore, the back plate 61 faces the back surface 42a of the impeller 42.
  • a cooling water passage 70 is formed in the third plate 17.
  • the third plate 17 has a wall portion 17d that forms the bottom surface of the passage forming recess 17c.
  • the cooling water passage 70 is formed inside the wall portion 17d so as to be disposed around the fitting hole 17h. Cooling water flows through the cooling water passage 70. The cooling water flowing through the cooling water passage 70 cools the third plate 17.
  • the flange portion 63 of the back plate 61 is disposed inside the passage forming recess 17c.
  • the tubular portion 62 of the back plate 61 is fitted into the fitting hole 17h.
  • An annular first passage 81 is formed between the inner peripheral surface of the passage forming recess 17c and the outer peripheral surface of the flange portion 63.
  • a second passage 82 is formed between the bottom surface of the passage forming recess 17c and the surface of the flange portion 63 opposite to the opposing surface 64.
  • the second passage 82 extends around the entire circumference of the second insertion hole 65.
  • the first passage 81 has a first end portion facing the outer peripheral portion of the back surface 42a of the impeller 42 and a second end portion communicating with the outer peripheral portion of the second passage 82.
  • a plurality of communication holes 83 are formed in the cylindrical portion 62. Each communication hole 83 penetrates the cylindrical portion 62. Each communication hole 83 communicates the inner periphery of the second passage 82 with the second insertion hole 65. The outer periphery of the second passage 82 communicates with the first passage 81. The inner periphery of the second passage 82 communicates with each communication hole 83. The first passage 81, the second passage 82, and each communication hole 83 form the partition wall side flow path 80.
  • the third plate 17, together with the back plate 61, defines the partition wall side flow path 80.
  • the partition wall side flow path 80 is formed between the back plate 61 and the third plate 17.
  • the impeller side flow path 84 is formed between the back surface 42a of the impeller 42 and the back plate 61.
  • the partition wall side flow passage 80 allows a portion of the air compressed by the impeller 42 and discharged into the discharge chamber 29 to bypass the impeller side flow passage 84 and flow inside the second insertion hole 65.
  • the first end of the first passage 81 is the inlet 85 of the partition wall side flow passage 80.
  • the opening area of the inlet 85 of the partition wall side flow passage 80 is larger than the flow passage cross-sectional area of the impeller side flow passage 84 between the back surface 42a of the impeller 42 and the opposing surface 64 of the back plate 61.
  • the inlet 85 of the partition wall side flow passage 80 is connected to a portion of the impeller side flow passage 84 that corresponds to the outer periphery of the back surface 42a of the impeller 42. A part of the air flowing from the impeller chamber 28 toward the impeller side flow passage 84 flows into the partition wall side flow passage 80 through the inlet 85.
  • the distance between the back surface 42a of the impeller 42 and the opposing surface 64 of the back plate 61 is smaller than the distance between the flange portion 63 of the back plate 61 and the third plate 17 in the axial direction of the rotating shaft 41.
  • Air leaking to the rear surface 42a of the impeller 42 is divided by the rear plate 61 into air flowing into the impeller side flow passage 84 and air flowing into the partition wall side flow passage 80.
  • the rear plate 61 is configured to divide the air leaking to the rear surface 42a of the impeller 42 into air flowing into the impeller side flow passage 84 and air flowing into the partition wall side flow passage 80.
  • Air flowing through the partition wall side flow passage 80 flows into the inside of the second insertion hole 65. Air flowing into the inside of the second insertion hole 65 via the impeller side flow passage 84 and air flowing into the inside of the second insertion hole 65 through the partition wall side flow passage 80 merge inside the second insertion hole 65.
  • the back plate 61 is configured so that the air flowing through the partition wall side flow passage 80 merges with the air flowing through the impeller side flow passage 84 inside the second insertion hole 65, and then flows through the first insertion hole 23 into the motor chamber 18.
  • the rear plate 61 is attached to the third plate 17 by a number of bolts 86. Specifically, each bolt 86 that passes through the flange portion 63 of the rear plate 61 is screwed into the bottom surface of the passage-forming recess 17c of the third plate 17. In this way, the rear plate 61 is attached to the third plate 17.
  • the third plate 17 is provided with a heat transfer promotion member 90.
  • the heat transfer promotion member 90 is a disk-shaped metal mesh.
  • the metal mesh is made of, for example, stainless steel.
  • the heat transfer promotion member 90 is disposed in the partition wall side flow passage 80 in a state of contacting the bottom surface of the passage forming recess 17c. Therefore, the heat transfer promotion member 90 is thermally coupled to the third plate 17.
  • the heat transfer promotion member 90 is disposed in the partition wall side flow passage 80 in a state in which the movement of the rotating shaft 41 in the circumferential direction is restricted by each bolt 86.
  • the heat transfer promotion member 90 extends from the outer periphery to the inner periphery of the second passage 82.
  • the heat transfer promotion member 90 extends around the entire circumference of the second insertion hole 65.
  • the heat transfer promotion member 90 transfers the heat of the air flowing through the second passage 82 to the third plate 17.
  • a part of the heat transfer promotion member 90 is disposed inside each communication hole 83.
  • the part of the heat transfer promotion member 90 disposed inside each communication hole 83 is in contact with a part of the inner peripheral surface of each communication hole 83.
  • the part of the heat transfer promotion member 90 disposed inside each communication hole 83 is thermally coupled to the third plate 17 via the cylindrical portion 62 of the back plate 61.
  • the heat transfer promotion member 90 transfers the heat of the air flowing through each communication hole 83 to the third plate 17 via the cylindrical portion 62. Therefore, the heat transfer promotion member 90 promotes the heat transfer from the air flowing through the partition wall side flow path 80 to the third plate 17.
  • the air flowing through the partition wall side flow path 80 is cooled by the heat transfer promotion member 90.
  • the heat transfer promotion member 90 is cooled by the cooling water flowing through the cooling water passage 70. Therefore, the cooling water that cools the heat transfer promotion member 90 flows through the cooling water passage 70.
  • the air that passes through the impeller side flow passage 84 and flows into the inside of the second insertion hole 65 and the air that passes through the partition wall side flow passage 80 and flows into the inside of the second insertion hole 65 join together.
  • the air that passes through the impeller side flow passage 84 and flows into the inside of the second insertion hole 65 is cooled by the air that passes through the partition wall side flow passage 80 and flows into the inside of the second insertion hole 65.
  • the joined air then flows into the motor chamber 18 via the first insertion hole 23, thereby cooling the motor 20.
  • the thrust bearing 54 is cooled by air passing through the thrust bearing accommodating chamber 24. Furthermore, the first radial bearing 52 is cooled by air passing inside the first bearing retaining portion 21. Air introduced into the motor chamber 18 passes inside the second bearing retaining portion 25. The second radial bearing 53 is cooled by air passing inside the second bearing retaining portion 25. The air that has passed inside the second bearing retaining portion 25 is exhausted to the outside of the housing 11 via the exhaust passage 59.
  • the above embodiment can provide the following effects.
  • the motor 20 can be cooled by using the air that leaks to the back surface 42a of the impeller 42 and enters the motor chamber 18.
  • the durability of the centrifugal compressor 10 can be improved.
  • the heat transfer promotion member 90 is cooled by the cooling water flowing through the cooling water passage 70, so that the air flowing through the partition wall side flow passage 80 can be efficiently cooled by the heat transfer promotion member 90.
  • the distance between the back surface 42a of the impeller 42 and the opposing surface 64 of the back plate 61 is smaller than the distance between the flange portion 63 of the back plate 61 and the third plate 17 in the axial direction of the rotating shaft 41. This makes it easier for air to flow into the partition wall side flow path 80. Therefore, the air flowing through the partition wall side flow path 80 can be efficiently cooled by the heat transfer promotion member 90.
  • the heat transfer promotion member 90 is a disk-shaped metal mesh.
  • the disk-shaped metal mesh is provided on the third plate 17 and is suitable as the heat transfer promotion member 90 that promotes heat transfer from the air flowing through the partition wall side flow path 80 to the third plate 17.
  • the heat transfer promotion member 90 is not limited to a metal mesh, and may be, for example, a metal foamed porous body. In short, the heat transfer promotion member 90 may be configured to promote the transfer of heat from the air flowing through the partition wall side flow path 80 to the third plate 17.
  • the distance between the rear surface 42a of the impeller 42 and the opposing surface 64 of the rear plate 61 in the axial direction of the rotating shaft 41 may be greater than or equal to the distance between the flange portion 63 of the rear plate 61 and the third plate 17 in the axial direction of the rotating shaft 41.
  • the opening area of the inlet 85 of the partition-wall-side passage 80 may be equal to or smaller than the cross-sectional area of the impeller-side passage 84 .
  • the second passage 82 does not have to extend around the entire circumference of the second insertion hole 65.
  • the second passage 82 may be, for example, a plurality of passages extending radially to connect the first passage 81 to each of the communication holes 83.
  • the cooling water passages 70 do not necessarily have to be formed in the third plate 17 .
  • the boss portion 42b may not be inserted into the second insertion hole 65, and for example, only the rotation shaft 41 may be inserted into the second insertion hole 65.
  • the centrifugal compressor 10 does not need to include the turbine wheel 43 .
  • the centrifugal compressor 10 may be configured to include an impeller instead of the turbine wheel 43. That is, the centrifugal compressor 10 may be configured such that impellers are attached to both ends of the rotating shaft 41, and air compressed by one impeller is compressed again by the other impeller.
  • the centrifugal compressor 10 does not have to be mounted on a fuel cell vehicle. In other words, the centrifugal compressor 10 is not limited to being mounted on a vehicle. In the above-mentioned embodiment, the centrifugal compressor 10 is not limited to be used for compressing the air supplied to the fuel cell stack 56. In short, the centrifugal compressor 10 may be used for compressing a fluid.

Abstract

A centrifugal compressor (10) is provided with: a back surface plate (61) fixed to a partition wall so as to be opposed to a back surface (42a) of an impeller (42), the back surface plate (61) having a second insertion hole (65) into which a rotation shaft (41) is inserted; and a heat transfer promotion member (90) provided in the partition wall. The back surface plate 61 is configured to divide a fluid leaking to the back surface (42a) of the impeller (42) into a fluid flowing to an impeller side flow path (84) and a fluid flowing to a partition wall side flow path (80). The heat transfer promotion member (90) is configured to promote heat transfer from the fluid flowing through the partition wall side flow path (80) to the partition wall. The back surface plate (61) is further configured so that the fluid, which has flowed through the partition wall side flow path (80), merges with the fluid, which has flowed through the impeller side flow path (84), inside the second insertion hole (65) and then flows to a motor chamber (18) via a first insertion hole (23).

Description

遠心圧縮機Centrifugal Compressor
 本開示は、遠心圧縮機に関する。 This disclosure relates to centrifugal compressors.
 例えば特許文献1に開示されているように、遠心圧縮機は、回転軸と、インペラと、を備えている。インペラは、回転軸と一体的に回転することで流体を圧縮する。遠心圧縮機は、モータと、ハウジングと、をさらに備えている。モータは、回転軸を回転させる。ハウジングは、インペラ室、モータ室、及び吐出室を区画する。インペラ室は、インペラを収容する。モータ室は、モータを収容する。吐出室には、インペラによって圧縮された流体が吐出される。ハウジングは、仕切壁を有している。仕切壁は、インペラ室とモータ室とを互いから仕切る。仕切壁には、回転軸が挿通される挿通孔が形成されている。 For example, as disclosed in Patent Document 1, a centrifugal compressor includes a rotating shaft and an impeller. The impeller compresses the fluid by rotating integrally with the rotating shaft. The centrifugal compressor further includes a motor and a housing. The motor rotates the rotating shaft. The housing defines an impeller chamber, a motor chamber, and a discharge chamber. The impeller chamber houses the impeller. The motor chamber houses the motor. The fluid compressed by the impeller is discharged into the discharge chamber. The housing has a partition wall. The partition wall separates the impeller chamber and the motor chamber from each other. The partition wall has an insertion hole through which the rotating shaft is inserted.
特開2015-155696号公報JP 2015-155696 A
 このような遠心圧縮機においては、インペラによって圧縮されて吐出室に吐出される流体の一部が、インペラの背面と仕切壁との間の空隙に流れ込む場合がある。すると、インペラの背面と仕切壁との間の空隙に流れ込んだ流体が、挿通孔を介してモータ室内に侵入してしまう虞がある。インペラによって圧縮されて吐出室に吐出される流体の温度は高い。したがって、インペラによって圧縮されて吐出室に吐出される流体の一部が、挿通孔を介してモータ室内に侵入してしまうと、モータ室内に侵入した流体によってモータが暖められてしまう。すると、遠心圧縮機の耐久性が低下する。 In such centrifugal compressors, some of the fluid compressed by the impeller and discharged into the discharge chamber may flow into the gap between the back surface of the impeller and the partition wall. This may result in the fluid that has flowed into the gap between the back surface of the impeller and the partition wall entering the motor chamber through the insertion hole. The temperature of the fluid compressed by the impeller and discharged into the discharge chamber is high. Therefore, if some of the fluid compressed by the impeller and discharged into the discharge chamber enters the motor chamber through the insertion hole, the motor will be warmed by the fluid that has entered the motor chamber. This will reduce the durability of the centrifugal compressor.
 本開示の一態様に係る遠心圧縮機は、回転軸と、前記回転軸と一体的に回転することで流体を圧縮するように構成されるインペラと、前記回転軸を回転させるように構成されるモータと、前記インペラを収容するインペラ室、前記モータを収容するモータ室、及び前記インペラによって圧縮された流体が吐出される吐出室を区画するハウジングと、を備える。前記ハウジングは、前記インペラ室と前記モータ室とを互いから仕切るとともに前記回転軸が挿通される第1挿通孔が形成されている仕切壁を有している。前記遠心圧縮機は、前記回転軸の軸方向における前記インペラと前記仕切壁との間において、前記インペラの背面に対向するように前記仕切壁に固定される背面板であって、前記回転軸が挿通される第2挿通孔を有している、背面板と、前記仕切壁に設けられる伝熱促進部材と、をさらに備える。前記背面板は、前記インペラの背面に洩れる流体を、前記インペラの背面と前記背面板との間に形成されるインペラ側流路に流れる流体と、前記背面板と前記仕切壁との間に形成される仕切壁側流路に流れる流体と、に分流するように構成される。前記伝熱促進部材は、前記仕切壁側流路を流れる流体から前記仕切壁への伝熱を促進させるように構成される。前記背面板は、前記仕切壁側流路を流れた流体が前記インペラ側流路を流れた流体と前記第2挿通孔の内側で合流した後に前記第1挿通孔を通って前記モータ室に流れるようにさらに構成される。 A centrifugal compressor according to one embodiment of the present disclosure includes a rotating shaft, an impeller configured to rotate integrally with the rotating shaft to compress a fluid, a motor configured to rotate the rotating shaft, and a housing that partitions an impeller chamber that houses the impeller, a motor chamber that houses the motor, and a discharge chamber into which the fluid compressed by the impeller is discharged. The housing has a partition wall that separates the impeller chamber and the motor chamber from each other and has a first insertion hole through which the rotating shaft is inserted. The centrifugal compressor further includes a back plate that is fixed to the partition wall between the impeller and the partition wall in the axial direction of the rotating shaft so as to face the back surface of the impeller, and has a second insertion hole through which the rotating shaft is inserted, and a heat transfer promotion member provided on the partition wall. The back plate is configured to divide the fluid leaking to the back surface of the impeller into a fluid flowing in an impeller-side flow passage formed between the back surface of the impeller and the back plate, and a fluid flowing in a partition-side flow passage formed between the back plate and the partition wall. The heat transfer promotion member is configured to promote heat transfer from the fluid flowing in the partition-side flow passage to the partition wall. The back plate is further configured so that the fluid flowing in the partition-side flow passage merges with the fluid flowing in the impeller-side flow passage inside the second insertion hole, and then flows into the motor chamber through the first insertion hole.
実施形態における遠心圧縮機の断面図である。FIG. 1 is a cross-sectional view of a centrifugal compressor according to an embodiment. 図1の遠心圧縮機の一部分を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1 .
 以下、遠心圧縮機を具体化した一実施形態を図1及び図2にしたがって説明する。なお、以下に説明する実施形態の遠心圧縮機は、燃料電池車に搭載されている。遠心圧縮機は、燃料電池スタックに供給される流体である空気を圧縮する。 Below, one embodiment of a centrifugal compressor will be described with reference to Figures 1 and 2. The centrifugal compressor of the embodiment described below is mounted on a fuel cell vehicle. The centrifugal compressor compresses air, which is the fluid supplied to the fuel cell stack.
 <遠心圧縮機10の基本構成>
 図1に示すように、遠心圧縮機10は、ハウジング11を備えている。ハウジング11は、金属材料製である。ハウジング11は、例えば、アルミニウム製である。ハウジング11は、モータハウジング12、コンプレッサハウジング13、タービンハウジング14、第1プレート15、第2プレート16、及び第3プレート17を有している。
<Basic configuration of centrifugal compressor 10>
As shown in Fig. 1, the centrifugal compressor 10 includes a housing 11. The housing 11 is made of a metal material, for example, aluminum. The housing 11 includes a motor housing 12, a compressor housing 13, a turbine housing 14, a first plate 15, a second plate 16, and a third plate 17.
 モータハウジング12は、一端が閉塞された筒状である。モータハウジング12は、端壁12aと、周壁12bと、を有している。端壁12aは、板状である。周壁12bは、端壁12aの外周部から筒状に延びている。第1プレート15は、モータハウジング12の周壁12bの開口端部に連結されている。第1プレート15は、モータハウジング12の周壁12bの開口を閉塞している。そして、モータハウジング12及び第1プレート15によってモータ室18が区画されている。したがって、ハウジング11は、モータ室18を区画する。 The motor housing 12 is cylindrical with one end closed. The motor housing 12 has an end wall 12a and a peripheral wall 12b. The end wall 12a is plate-shaped. The peripheral wall 12b extends cylindrically from the outer periphery of the end wall 12a. The first plate 15 is connected to the open end of the peripheral wall 12b of the motor housing 12. The first plate 15 closes the opening of the peripheral wall 12b of the motor housing 12. The motor housing 12 and the first plate 15 define a motor chamber 18. Thus, the housing 11 defines the motor chamber 18.
 第2プレート16は、モータハウジング12の端壁12aの外面に連結されている。第2プレート16は、第2プレート16の厚み方向がモータハウジング12の端壁12aの厚み方向に一致した状態で、モータハウジング12の端壁12aに取り付けられている。 The second plate 16 is connected to the outer surface of the end wall 12a of the motor housing 12. The second plate 16 is attached to the end wall 12a of the motor housing 12 with the thickness direction of the second plate 16 coinciding with the thickness direction of the end wall 12a of the motor housing 12.
 遠心圧縮機10は、モータ20を備えている。モータ20は、モータ室18に収容されている。したがって、モータ室18は、モータ20を収容する。モータハウジング12は、モータ20を取り囲んでいる。 The centrifugal compressor 10 is equipped with a motor 20. The motor 20 is housed in the motor chamber 18. Thus, the motor chamber 18 houses the motor 20. The motor housing 12 surrounds the motor 20.
 遠心圧縮機10は、第1軸受保持部21を備えている。第1軸受保持部21は、第1プレート15の中央部からモータ室18内に突出している。したがって、第1プレート15は、第1軸受保持部21を有している。第1軸受保持部21は、円筒状である。第1軸受保持部21の内側は、モータ室18内に連通している。 The centrifugal compressor 10 has a first bearing retaining portion 21. The first bearing retaining portion 21 protrudes from the center of the first plate 15 into the motor chamber 18. Therefore, the first plate 15 has the first bearing retaining portion 21. The first bearing retaining portion 21 is cylindrical. The inside of the first bearing retaining portion 21 is connected to the motor chamber 18.
 第1プレート15は、室形成凹部22を有している。室形成凹部22は、第1プレート15におけるモータハウジング12とは反対側の端面に形成されている。室形成凹部22は、円孔状である。第1軸受保持部21の内側は、第1プレート15を貫通して室形成凹部22の底面に開口している。室形成凹部22の軸線と第1軸受保持部21の軸線とは互いに一致している。 The first plate 15 has a chamber-forming recess 22. The chamber-forming recess 22 is formed on the end face of the first plate 15 opposite the motor housing 12. The chamber-forming recess 22 is a circular hole. The inside of the first bearing retaining portion 21 penetrates the first plate 15 and opens to the bottom face of the chamber-forming recess 22. The axis of the chamber-forming recess 22 and the axis of the first bearing retaining portion 21 are aligned with each other.
 図2に示すように、第3プレート17は、第1連結面17aと、第2連結面17bと、を有している。第1連結面17a及び第2連結面17bは、第3プレート17の厚み方向において互いに反対側を向いている。第3プレート17の第1連結面17aは、第1プレート15におけるモータハウジング12とは反対側の端面に連結されている。第3プレート17は、第3プレート17の厚み方向が第1プレート15の厚み方向に一致した状態で、第1プレート15に取り付けられている。そして、室形成凹部22と第3プレート17の第1連結面17aとによって、スラスト軸受収容室24が区画されている。スラスト軸受収容室24は、第1軸受保持部21の内側に連通している。 As shown in FIG. 2, the third plate 17 has a first connecting surface 17a and a second connecting surface 17b. The first connecting surface 17a and the second connecting surface 17b face opposite each other in the thickness direction of the third plate 17. The first connecting surface 17a of the third plate 17 is connected to the end surface of the first plate 15 opposite the motor housing 12. The third plate 17 is attached to the first plate 15 with the thickness direction of the third plate 17 coinciding with the thickness direction of the first plate 15. The chamber forming recess 22 and the first connecting surface 17a of the third plate 17 define a thrust bearing accommodating chamber 24. The thrust bearing accommodating chamber 24 is connected to the inside of the first bearing retaining portion 21.
 第2連結面17bの中央部には、通路形成凹部17cが形成されている。通路形成凹部17cは、円孔状である。通路形成凹部17cの底面には、嵌合孔17hが形成されている。嵌合孔17hは円孔状である。嵌合孔17hの軸線と通路形成凹部17cの軸線とは互いに一致している。第3プレート17は、嵌合孔17hの軸線及び通路形成凹部17cの軸線が、室形成凹部22の軸線及び第1軸受保持部21の軸線と一致した状態で、第1プレート15に連結されている。第1軸受保持部21の内側、室形成凹部22の内側、及び嵌合孔17hは、第1挿通孔23を形成している。第1挿通孔23は、モータ室18に連通している。 A passage forming recess 17c is formed in the center of the second connecting surface 17b. The passage forming recess 17c is a circular hole. A fitting hole 17h is formed in the bottom surface of the passage forming recess 17c. The fitting hole 17h is a circular hole. The axis of the fitting hole 17h and the axis of the passage forming recess 17c coincide with each other. The third plate 17 is connected to the first plate 15 in a state in which the axis of the fitting hole 17h and the axis of the passage forming recess 17c coincide with the axis of the chamber forming recess 22 and the axis of the first bearing holder 21. The inside of the first bearing holder 21, the inside of the chamber forming recess 22, and the fitting hole 17h form a first insertion hole 23. The first insertion hole 23 is connected to the motor chamber 18.
 図1に示すように、遠心圧縮機10は、第2軸受保持部25を備えている。第2軸受保持部25は、モータハウジング12の端壁12aの中央部からモータ室18内に突出している。したがって、モータハウジング12は、第2軸受保持部25を有している。第2軸受保持部25は、円筒状である。第2軸受保持部25の内側は、モータ室18内に連通している。 As shown in FIG. 1, the centrifugal compressor 10 has a second bearing retaining portion 25. The second bearing retaining portion 25 protrudes from the center of the end wall 12a of the motor housing 12 into the motor chamber 18. Therefore, the motor housing 12 has the second bearing retaining portion 25. The second bearing retaining portion 25 is cylindrical. The inside of the second bearing retaining portion 25 is connected to the motor chamber 18.
 ハウジング11は、挿通孔26を有している。挿通孔26は、モータハウジング12の端壁12aの中央部、及び第2プレート16の中央部を貫通している。挿通孔26は、第2軸受保持部25の内側に連通している。挿通孔26の軸線は、第2軸受保持部25の軸線と一致している。 The housing 11 has a through hole 26. The through hole 26 penetrates the center of the end wall 12a of the motor housing 12 and the center of the second plate 16. The through hole 26 communicates with the inside of the second bearing holder 25. The axis of the through hole 26 coincides with the axis of the second bearing holder 25.
 コンプレッサハウジング13は、空気が吸入される円孔状の吸入口27を有する筒状である。コンプレッサハウジング13は、吸入口27の軸線が、第1挿通孔23の軸線と一致した状態で第3プレート17における第1プレート15とは反対側の端面に連結されている。吸入口27は、コンプレッサハウジング13における第3プレート17とは反対側の端面に開口している。吸入口27には、図示しないエアクリーナによって清浄化された空気が流れる。 The compressor housing 13 is cylindrical and has a circular suction port 27 through which air is drawn. The compressor housing 13 is connected to the end face of the third plate 17 opposite the first plate 15, with the axis of the suction port 27 coinciding with the axis of the first insertion hole 23. The suction port 27 opens to the end face of the compressor housing 13 opposite the third plate 17. Air that has been purified by an air cleaner (not shown) flows through the suction port 27.
 遠心圧縮機10は、インペラ室28、吐出室29、及びディフューザ流路30を備えている。インペラ室28、吐出室29、及びディフューザ流路30は、コンプレッサハウジング13と第3プレート17との間に形成されている。したがって、ハウジング11は、インペラ室28、及び吐出室29を区画する。第1プレート15及び第3プレート17は、インペラ室28とモータ室18とを互いから仕切る仕切壁を構成している。したがって、ハウジング11は、仕切壁を有している。インペラ室28は、吸入口27に連通している。吐出室29は、インペラ室28の周囲で吸入口27の軸線周りに延びている。ディフューザ流路30は、インペラ室28を吐出室29に連通している。 The centrifugal compressor 10 has an impeller chamber 28, a discharge chamber 29, and a diffuser passage 30. The impeller chamber 28, the discharge chamber 29, and the diffuser passage 30 are formed between the compressor housing 13 and the third plate 17. Thus, the housing 11 divides the impeller chamber 28 and the discharge chamber 29. The first plate 15 and the third plate 17 form a partition wall that separates the impeller chamber 28 and the motor chamber 18 from each other. Thus, the housing 11 has a partition wall. The impeller chamber 28 is connected to the suction port 27. The discharge chamber 29 extends around the axis of the suction port 27 around the periphery of the impeller chamber 28. The diffuser passage 30 connects the impeller chamber 28 to the discharge chamber 29.
 遠心圧縮機10は、吐出通路31を有している。吐出通路31の第1端は、吐出室29に連通している。吐出通路31の第2端は、コンプレッサハウジング13の外周面に開口している。 The centrifugal compressor 10 has a discharge passage 31. The first end of the discharge passage 31 is connected to the discharge chamber 29. The second end of the discharge passage 31 opens to the outer peripheral surface of the compressor housing 13.
 タービンハウジング14は、空気が吐出される円孔状の吐出口32を有する筒状である。タービンハウジング14は、吐出口32の軸線が、挿通孔26の軸線と一致した状態で第2プレート16におけるモータハウジング12とは反対側の端面に連結されている。吐出口32は、タービンハウジング14における第2プレート16とは反対側の端面に開口している。 The turbine housing 14 is cylindrical and has a circular discharge port 32 through which air is discharged. The turbine housing 14 is connected to the end face of the second plate 16 opposite the motor housing 12 with the axis of the discharge port 32 coinciding with the axis of the insertion hole 26. The discharge port 32 opens into the end face of the turbine housing 14 opposite the second plate 16.
 遠心圧縮機10は、タービン室33、タービンスクロール流路34、及び連通通路35を備えている。タービン室33、タービンスクロール流路34、及び連通通路35は、タービンハウジング14と第2プレート16との間に形成されている。モータハウジング12の端壁12a、及び第2プレート16は、タービン室33とモータ室18とを互いから仕切っている。タービン室33は、吐出口32に連通している。タービンスクロール流路34は、タービン室33の周囲で吐出口32の軸線周りに延びている。連通通路35は、タービン室33をタービンスクロール流路34に連通している。タービン室33は、挿通孔26に連通している。 The centrifugal compressor 10 includes a turbine chamber 33, a turbine scroll passage 34, and a communication passage 35. The turbine chamber 33, the turbine scroll passage 34, and the communication passage 35 are formed between the turbine housing 14 and the second plate 16. The end wall 12a of the motor housing 12 and the second plate 16 separate the turbine chamber 33 and the motor chamber 18 from each other. The turbine chamber 33 is connected to the discharge port 32. The turbine scroll passage 34 extends around the axis of the discharge port 32 around the turbine chamber 33. The communication passage 35 connects the turbine chamber 33 to the turbine scroll passage 34. The turbine chamber 33 is connected to the insertion hole 26.
 遠心圧縮機10は、吸入通路36を有している。吸入通路36の第1端は、タービンスクロール流路34に連通している。吸入通路36の第2端は、タービンハウジング14の外周面に開口している。 The centrifugal compressor 10 has an intake passage 36. A first end of the intake passage 36 is connected to the turbine scroll passage 34. A second end of the intake passage 36 opens to the outer peripheral surface of the turbine housing 14.
 遠心圧縮機10は、回転体40を備えている。回転体40は、回転軸41、インペラ42、タービンホイール43、及び支持部44を含む。したがって、遠心圧縮機10は、回転軸41と、インペラ42と、を備えている。回転軸41は、ハウジング11内に収容されている。 The centrifugal compressor 10 includes a rotating body 40. The rotating body 40 includes a rotating shaft 41, an impeller 42, a turbine wheel 43, and a support portion 44. Thus, the centrifugal compressor 10 includes a rotating shaft 41 and an impeller 42. The rotating shaft 41 is accommodated in the housing 11.
 回転軸41は、モータハウジング12の軸線に沿って延びた状態で、モータ室18を横切っている。回転軸41の軸方向は、モータハウジング12の軸方向に一致している。回転軸41の第1端部は、モータ室18から第1挿通孔23を通過して、インペラ室28内に突出している。したがって、第1挿通孔23には、回転軸41が挿通されている。このように、ハウジング11は、インペラ室28とモータ室18とを互いから仕切るとともに回転軸41が挿通される第1挿通孔23が形成されている仕切壁を有している。回転軸41の第2端部は、モータ室18から第2軸受保持部25の内側、及び挿通孔26を通過して、タービン室33内に突出している。 The rotating shaft 41 crosses the motor chamber 18 while extending along the axis of the motor housing 12. The axial direction of the rotating shaft 41 coincides with the axial direction of the motor housing 12. The first end of the rotating shaft 41 passes through the first insertion hole 23 from the motor chamber 18 and protrudes into the impeller chamber 28. Therefore, the rotating shaft 41 is inserted into the first insertion hole 23. In this way, the housing 11 has a partition wall that separates the impeller chamber 28 and the motor chamber 18 from each other and in which the first insertion hole 23 through which the rotating shaft 41 is inserted is formed. The second end of the rotating shaft 41 protrudes from the motor chamber 18 into the turbine chamber 33, passing through the inside of the second bearing holder 25 and the insertion hole 26.
 図2に示すように、インペラ42は、回転軸41の第1端に連結されている。インペラ42は、インペラ室28に収容されている。したがって、インペラ室28は、インペラ42を収容する。インペラ42は、回転軸41と一体的に回転することでインペラ室28に吸入された空気を圧縮する。 As shown in FIG. 2, the impeller 42 is connected to a first end of the rotating shaft 41. The impeller 42 is housed in the impeller chamber 28. Thus, the impeller chamber 28 houses the impeller 42. The impeller 42 rotates integrally with the rotating shaft 41 to compress the air drawn into the impeller chamber 28.
 インペラ42は、背面42aから先端に向かうに従って徐々に縮径した筒状である。インペラ42の背面42aは、第3プレート17に対向している。インペラ42は、貫通孔42hを有している。貫通孔42hの軸線は、インペラ42の回転軸線と一致している。なお、インペラ42の回転軸線は、回転軸41の軸線でもある。 The impeller 42 is cylindrical and its diameter gradually decreases from the back surface 42a to the tip. The back surface 42a of the impeller 42 faces the third plate 17. The impeller 42 has a through hole 42h. The axis of the through hole 42h coincides with the rotation axis of the impeller 42. The rotation axis of the impeller 42 is also the axis of the rotating shaft 41.
 インペラ42は、円筒状のボス部42bを有している。ボス部42bは、インペラ42の背面42aの中央部から突出している。ボス部42bの内側は、貫通孔42hに連通している。回転軸41の第1端は、ボス部42bの内側及び貫通孔42hを通過している。ボス部42bは、嵌合孔17hに入り込んでいる。 The impeller 42 has a cylindrical boss portion 42b. The boss portion 42b protrudes from the center of the back surface 42a of the impeller 42. The inside of the boss portion 42b communicates with the through hole 42h. The first end of the rotating shaft 41 passes through the inside of the boss portion 42b and the through hole 42h. The boss portion 42b fits into the fitting hole 17h.
 図1に示すように、タービンホイール43は、回転軸41の第2端に連結されている。タービンホイール43は、タービン室33に収容されている。タービンホイール43は、回転軸41と一体的に回転する。 As shown in FIG. 1, the turbine wheel 43 is connected to the second end of the rotating shaft 41. The turbine wheel 43 is housed in the turbine chamber 33. The turbine wheel 43 rotates integrally with the rotating shaft 41.
 支持部44は、回転軸41の外周面から環状に突出している。支持部44は、円板状である。支持部44は、回転軸41の外周面から径方向外側へ環状に突出した状態で、回転軸41の外周面に固定されている。したがって、支持部44は、回転軸41とは別体である。支持部44は、スラスト軸受収容室24内に配置されている。支持部44は、回転軸41と一体的に回転する。 The support portion 44 protrudes in an annular shape from the outer peripheral surface of the rotating shaft 41. The support portion 44 is disk-shaped. The support portion 44 is fixed to the outer peripheral surface of the rotating shaft 41 in a state in which it protrudes in an annular shape radially outward from the outer peripheral surface of the rotating shaft 41. Therefore, the support portion 44 is separate from the rotating shaft 41. The support portion 44 is disposed in the thrust bearing housing chamber 24. The support portion 44 rotates integrally with the rotating shaft 41.
 遠心圧縮機10は、シール部材45を備えている。シール部材45は、挿通孔26と回転軸41との間に設けられている。シール部材45は、タービン室33からモータ室18に向かう空気の洩れを抑制する。シール部材45は、例えば、シールリングである。 The centrifugal compressor 10 is equipped with a seal member 45. The seal member 45 is provided between the insertion hole 26 and the rotating shaft 41. The seal member 45 prevents air from leaking from the turbine chamber 33 toward the motor chamber 18. The seal member 45 is, for example, a seal ring.
 モータ20は、筒状のロータ47と、筒状のステータ48と、を備えている。ロータ47は、回転軸41に固定されている。ステータ48は、ハウジング11に固定されている。ロータ47は、ステータ48の径方向内側に配置されている。ロータ47は、回転軸41と一体的に回転する。ロータ47は、回転軸41に固定された円筒状のロータコア49と、ロータコア49に設けられた図示しない複数の永久磁石と、を有している。ステータ48は、ロータ47を取り囲んでいる。ステータ48は、円筒状のステータコア50と、コイル51と、を有している。ステータコア50は、モータハウジング12の内周面に固定されている。コイル51は、ステータコア50に巻回されている。 The motor 20 includes a cylindrical rotor 47 and a cylindrical stator 48. The rotor 47 is fixed to the rotating shaft 41. The stator 48 is fixed to the housing 11. The rotor 47 is disposed radially inside the stator 48. The rotor 47 rotates integrally with the rotating shaft 41. The rotor 47 includes a cylindrical rotor core 49 fixed to the rotating shaft 41, and a plurality of permanent magnets (not shown) provided on the rotor core 49. The stator 48 surrounds the rotor 47. The stator 48 includes a cylindrical stator core 50 and a coil 51. The stator core 50 is fixed to the inner peripheral surface of the motor housing 12. The coil 51 is wound around the stator core 50.
 回転軸41は、図示しないインバータをバッテリからコイル51に電流が流れるように制御することによって、ロータ47と一体的に回転する。したがって、モータ20は、回転軸41を回転させる。モータ20は、回転軸41の軸方向において、インペラ42とタービンホイール43との間に配置されている。 The rotating shaft 41 rotates integrally with the rotor 47 by controlling an inverter (not shown) so that a current flows from a battery to the coil 51. Thus, the motor 20 rotates the rotating shaft 41. The motor 20 is disposed between the impeller 42 and the turbine wheel 43 in the axial direction of the rotating shaft 41.
 遠心圧縮機10は、第1ラジアル軸受52を備えている。第1ラジアル軸受52は円筒状である。第1ラジアル軸受52は、第1軸受保持部21に保持されている。第1ラジアル軸受52は、回転軸41におけるモータ20よりも回転軸41の第1端部寄りに位置する部位を回転可能に支持する。 The centrifugal compressor 10 is equipped with a first radial bearing 52. The first radial bearing 52 is cylindrical. The first radial bearing 52 is held by the first bearing holder 21. The first radial bearing 52 rotatably supports a portion of the rotating shaft 41 that is located closer to the first end of the rotating shaft 41 than the motor 20.
 遠心圧縮機10は、第2ラジアル軸受53を備えている。第2ラジアル軸受53は円筒状である。第2ラジアル軸受53は、第2軸受保持部25に保持されている。第2ラジアル軸受53は、回転軸41におけるモータ20よりも回転軸41の第2端部寄りに位置する部位を回転可能に支持する。 The centrifugal compressor 10 is equipped with a second radial bearing 53. The second radial bearing 53 is cylindrical. The second radial bearing 53 is held by the second bearing holder 25. The second radial bearing 53 rotatably supports a portion of the rotating shaft 41 that is located closer to the second end of the rotating shaft 41 than the motor 20.
 第1ラジアル軸受52及び第2ラジアル軸受53は、回転軸41の軸方向においてモータ20の両側の位置で、回転軸41をラジアル方向から回転可能に支持する。なお、「ラジアル方向」とは、回転軸41の軸方向に対して直交する方向である。 The first radial bearing 52 and the second radial bearing 53 support the rotating shaft 41 so that it can rotate in the radial direction at positions on both sides of the motor 20 in the axial direction of the rotating shaft 41. Note that the "radial direction" is a direction perpendicular to the axial direction of the rotating shaft 41.
 遠心圧縮機10は、スラスト軸受54を備えている。スラスト軸受54は、スラスト軸受収容室24に収容されている。したがって、スラスト軸受収容室24は、スラスト軸受54を収容する。スラスト軸受54は、支持部44をスラスト方向から回転可能に支持する。したがって、スラスト軸受54は、支持部44を介して回転軸41を回転可能に支持する。なお、「スラスト方向」とは、回転軸41の軸線方向に対して平行な方向である。 The centrifugal compressor 10 is equipped with a thrust bearing 54. The thrust bearing 54 is accommodated in the thrust bearing accommodation chamber 24. Therefore, the thrust bearing accommodation chamber 24 accommodates the thrust bearing 54. The thrust bearing 54 rotatably supports the support portion 44 from the thrust direction. Therefore, the thrust bearing 54 rotatably supports the rotating shaft 41 via the support portion 44. Note that the "thrust direction" is a direction parallel to the axial direction of the rotating shaft 41.
 <燃料電池システム55>
 上記構成の遠心圧縮機10は、燃料電池車に搭載された燃料電池システム55の一部を構成している。燃料電池システム55は、遠心圧縮機10の他に、燃料電池スタック56と、供給流路57と、排出流路58と、を備えている。燃料電池スタック56は、図示しない複数の電池セルから構成されている。供給流路57は、吐出通路31を燃料電池スタック56に接続する。排出流路58は、燃料電池スタック56を吸入通路36に接続する。
<Fuel Cell System 55>
The centrifugal compressor 10 configured as described above constitutes a part of a fuel cell system 55 mounted on a fuel cell vehicle. In addition to the centrifugal compressor 10, the fuel cell system 55 includes a fuel cell stack 56, a supply flow path 57, and a discharge flow path 58. The fuel cell stack 56 is composed of a plurality of battery cells (not shown). The supply flow path 57 connects the discharge passage 31 to the fuel cell stack 56. The discharge flow path 58 connects the fuel cell stack 56 to the suction passage 36.
 インペラ42が回転すると、吸入口27からインペラ室28に空気が吸入される。インペラ室28に吸入された空気は、インペラ42の回転によって加速されながら、ディフューザ流路30に送り込まれて、ディフューザ流路30を通過することにより昇圧される。そして、ディフューザ流路30を通過した空気は、吐出室29に吐出される。したがって、吐出室29には、インペラ42によって圧縮された空気が吐出される。 When the impeller 42 rotates, air is drawn into the impeller chamber 28 from the intake port 27. The air drawn into the impeller chamber 28 is accelerated by the rotation of the impeller 42 and sent into the diffuser passage 30, where it is pressurized by passing through the diffuser passage 30. The air that has passed through the diffuser passage 30 is then discharged into the discharge chamber 29. Therefore, air compressed by the impeller 42 is discharged into the discharge chamber 29.
 吐出室29に吐出された空気は、吐出通路31に吐出される。吐出通路31に吐出された空気は、供給流路57を介して燃料電池スタック56に供給される。燃料電池スタック56に供給された空気は、燃料電池スタック56を発電するために使用される。その後、燃料電池スタック56を通過する空気は、燃料電池スタック56の排気として排出流路58へ排出される。 The air discharged into the discharge chamber 29 is discharged into the discharge passage 31. The air discharged into the discharge passage 31 is supplied to the fuel cell stack 56 via the supply flow path 57. The air supplied to the fuel cell stack 56 is used to generate electricity in the fuel cell stack 56. The air passing through the fuel cell stack 56 is then discharged into the exhaust flow path 58 as exhaust air from the fuel cell stack 56.
 燃料電池スタック56の排気は、排出流路58及び吸入通路36を介してタービンスクロール流路34に吸入される。タービンスクロール流路34に吸入される燃料電池スタック56の排気は、連通通路35を通じてタービン室33に導入される。タービンホイール43は、タービン室33に導入された燃料電池スタック56の排気により回転する。回転軸41は、モータ20の駆動による回転力に加え、燃料電池スタック56の排気によるタービンホイール43の回転力によっても回転する。つまり、燃料電池スタック56の排気によるタービンホイール43の回転力により回転軸41の回転が補助される。タービン室33を通過した排気は、吐出口32から外部へ吐出される。 The exhaust gas from the fuel cell stack 56 is drawn into the turbine scroll passage 34 via the exhaust passage 58 and the intake passage 36. The exhaust gas from the fuel cell stack 56 drawn into the turbine scroll passage 34 is introduced into the turbine chamber 33 through the communication passage 35. The turbine wheel 43 rotates due to the exhaust gas from the fuel cell stack 56 introduced into the turbine chamber 33. The rotating shaft 41 rotates due to the rotational force of the turbine wheel 43 caused by the exhaust gas from the fuel cell stack 56, in addition to the rotational force caused by the drive of the motor 20. In other words, the rotation of the rotating shaft 41 is assisted by the rotational force of the turbine wheel 43 caused by the exhaust gas from the fuel cell stack 56. The exhaust gas that has passed through the turbine chamber 33 is discharged to the outside from the discharge port 32.
 遠心圧縮機10は、排出路59を備えている。排出路59は、モータハウジング12の端壁12aに形成されている。排出路59の第1端は、挿通孔26におけるシール部材45よりもモータ室18寄りの部分に連通している。排出路59の第2端は、モータハウジング12の端壁12aの外周面に開口している。したがって、排出路59は、ハウジング11の外部に連通している。 The centrifugal compressor 10 has a discharge passage 59. The discharge passage 59 is formed in the end wall 12a of the motor housing 12. A first end of the discharge passage 59 is connected to a portion of the insertion hole 26 closer to the motor chamber 18 than the seal member 45. A second end of the discharge passage 59 opens to the outer peripheral surface of the end wall 12a of the motor housing 12. Therefore, the discharge passage 59 is connected to the outside of the housing 11.
 <背面板61>
 図2に示すように、遠心圧縮機10は、回転軸41の軸方向におけるインペラ42と第3プレート17との間において、第3プレート17に固定される板状の背面板61を備えている。背面板61は、筒部62と、フランジ部63と、を有している。筒部62の内側は、第2挿通孔65になっている。したがって、背面板61は、第2挿通孔65を有している。第2挿通孔65は、第1挿通孔23に連通している。第1挿通孔23及び第2挿通孔65には、回転軸41が挿通されている。
<Rear Panel 61>
As shown in Fig. 2, the centrifugal compressor 10 includes a plate-shaped back plate 61 fixed to the third plate 17 between the impeller 42 and the third plate 17 in the axial direction of the rotating shaft 41. The back plate 61 has a cylindrical portion 62 and a flange portion 63. The inside of the cylindrical portion 62 is a second insertion hole 65. Thus, the back plate 61 has the second insertion hole 65. The second insertion hole 65 communicates with the first insertion hole 23. The rotating shaft 41 is inserted through the first insertion hole 23 and the second insertion hole 65.
 フランジ部63は、筒部62の軸方向の端部から筒部62の径方向外側へ環状に突出している。フランジ部63は円環状である。フランジ部63における筒部62とは反対側の端面は、インペラ42の背面42aに対向する対向面64になっている。したがって、背面板61は、インペラ42の背面42aに対向する。 The flange portion 63 protrudes in an annular shape from the axial end of the tubular portion 62 toward the radial outside of the tubular portion 62. The flange portion 63 is annular. The end face of the flange portion 63 opposite the tubular portion 62 forms an opposing surface 64 that faces the back surface 42a of the impeller 42. Therefore, the back plate 61 faces the back surface 42a of the impeller 42.
 <冷却水通路70>
 第3プレート17には、冷却水通路70が形成されている。第3プレート17は、通路形成凹部17cの底面を形成する壁部17dを有している。冷却水通路70は、嵌合孔17hの周囲に配置されるように、壁部17dの内部に形成されている。冷却水通路70には、冷却水が流れている。冷却水通路70を流れる冷却水は、第3プレート17を冷却する。
<Cooling Water Passage 70>
A cooling water passage 70 is formed in the third plate 17. The third plate 17 has a wall portion 17d that forms the bottom surface of the passage forming recess 17c. The cooling water passage 70 is formed inside the wall portion 17d so as to be disposed around the fitting hole 17h. Cooling water flows through the cooling water passage 70. The cooling water flowing through the cooling water passage 70 cools the third plate 17.
 <仕切壁側流路80及びインペラ側流路84>
 通路形成凹部17cの内側には、背面板61のフランジ部63が配置されている。嵌合孔17hには、背面板61の筒部62が嵌合されている。通路形成凹部17cの内周面とフランジ部63の外周面との間には、環状の第1通路81が形成されている。また、通路形成凹部17cの底面とフランジ部63における対向面64とは反対側の面との間には、第2通路82が形成されている。第2通路82は、第2挿通孔65の周囲に全周に亘って延びている。回転軸41の軸方向において、第1通路81は、インペラ42の背面42aの外周部に対向する第1端部と、第2通路82の外周部に連通する第2端部と、を有している。
<Partition wall side flow passage 80 and impeller side flow passage 84>
The flange portion 63 of the back plate 61 is disposed inside the passage forming recess 17c. The tubular portion 62 of the back plate 61 is fitted into the fitting hole 17h. An annular first passage 81 is formed between the inner peripheral surface of the passage forming recess 17c and the outer peripheral surface of the flange portion 63. A second passage 82 is formed between the bottom surface of the passage forming recess 17c and the surface of the flange portion 63 opposite to the opposing surface 64. The second passage 82 extends around the entire circumference of the second insertion hole 65. In the axial direction of the rotating shaft 41, the first passage 81 has a first end portion facing the outer peripheral portion of the back surface 42a of the impeller 42 and a second end portion communicating with the outer peripheral portion of the second passage 82.
 筒部62には、連通孔83が複数形成されている。各連通孔83は、筒部62を貫通している。各連通孔83は、第2通路82の内周部と第2挿通孔65とを互いに連通する。第2通路82の外周部は、第1通路81に連通している。第2通路82の内周部は、各連通孔83に連通している。第1通路81、第2通路82、及び各連通孔83は、仕切壁側流路80を構成している。第3プレート17は、背面板61と共に仕切壁側流路80を区画している。仕切壁側流路80は、背面板61と第3プレート17との間に形成されている。インペラ側流路84は、インペラ42の背面42aと背面板61との間に形成されている。仕切壁側流路80は、インペラ42によって圧縮されて吐出室29に吐出される空気の一部を、インペラ側流路84を迂回させて第2挿通孔65の内側に流す。 A plurality of communication holes 83 are formed in the cylindrical portion 62. Each communication hole 83 penetrates the cylindrical portion 62. Each communication hole 83 communicates the inner periphery of the second passage 82 with the second insertion hole 65. The outer periphery of the second passage 82 communicates with the first passage 81. The inner periphery of the second passage 82 communicates with each communication hole 83. The first passage 81, the second passage 82, and each communication hole 83 form the partition wall side flow path 80. The third plate 17, together with the back plate 61, defines the partition wall side flow path 80. The partition wall side flow path 80 is formed between the back plate 61 and the third plate 17. The impeller side flow path 84 is formed between the back surface 42a of the impeller 42 and the back plate 61. The partition wall side flow passage 80 allows a portion of the air compressed by the impeller 42 and discharged into the discharge chamber 29 to bypass the impeller side flow passage 84 and flow inside the second insertion hole 65.
 第1通路81の第1端部は、仕切壁側流路80の入口85になっている。仕切壁側流路80の入口85の開口面積は、インペラ42の背面42aと背面板61の対向面64との間のインペラ側流路84の流路断面積よりも大きい。仕切壁側流路80の入口85は、インペラ側流路84におけるインペラ42の背面42aの外周部に対応する部分に連通している。そして、インペラ室28からインペラ側流路84に向かって流れる空気の一部は、入口85を介して仕切壁側流路80内に流れ込む。回転軸41の軸方向において、インペラ42の背面42aと背面板61の対向面64との間隔は、回転軸41の軸方向における背面板61のフランジ部63と第3プレート17との間隔よりも小さい。 The first end of the first passage 81 is the inlet 85 of the partition wall side flow passage 80. The opening area of the inlet 85 of the partition wall side flow passage 80 is larger than the flow passage cross-sectional area of the impeller side flow passage 84 between the back surface 42a of the impeller 42 and the opposing surface 64 of the back plate 61. The inlet 85 of the partition wall side flow passage 80 is connected to a portion of the impeller side flow passage 84 that corresponds to the outer periphery of the back surface 42a of the impeller 42. A part of the air flowing from the impeller chamber 28 toward the impeller side flow passage 84 flows into the partition wall side flow passage 80 through the inlet 85. In the axial direction of the rotating shaft 41, the distance between the back surface 42a of the impeller 42 and the opposing surface 64 of the back plate 61 is smaller than the distance between the flange portion 63 of the back plate 61 and the third plate 17 in the axial direction of the rotating shaft 41.
 インペラ42の背面42aに洩れる空気は、背面板61によって、インペラ側流路84に流れる空気と、仕切壁側流路80に流れる空気と、に分流される。つまり、背面板61は、インペラ42の背面42aに洩れる空気を、インペラ側流路84に流れる空気と、仕切壁側流路80に流れる空気と、に分流するように構成されている。仕切壁側流路80を流れる空気は、第2挿通孔65の内側に流れ込む。インペラ側流路84を介して第2挿通孔65の内側に流れ込む空気と、仕切壁側流路80を通過して第2挿通孔65の内側に流れ込む空気とは、第2挿通孔65の内側で合流する。そして、第2挿通孔65の内側で合流した空気は、第1挿通孔23を通ってモータ室18に流れる。したがって、背面板61は、仕切壁側流路80を流れた空気がインペラ側流路84を流れた空気と第2挿通孔65の内側で合流した後に第1挿通孔23を通ってモータ室18に流れるように構成されている。 Air leaking to the rear surface 42a of the impeller 42 is divided by the rear plate 61 into air flowing into the impeller side flow passage 84 and air flowing into the partition wall side flow passage 80. In other words, the rear plate 61 is configured to divide the air leaking to the rear surface 42a of the impeller 42 into air flowing into the impeller side flow passage 84 and air flowing into the partition wall side flow passage 80. Air flowing through the partition wall side flow passage 80 flows into the inside of the second insertion hole 65. Air flowing into the inside of the second insertion hole 65 via the impeller side flow passage 84 and air flowing into the inside of the second insertion hole 65 through the partition wall side flow passage 80 merge inside the second insertion hole 65. The air that merges inside the second insertion hole 65 then flows through the first insertion hole 23 into the motor chamber 18. Therefore, the back plate 61 is configured so that the air flowing through the partition wall side flow passage 80 merges with the air flowing through the impeller side flow passage 84 inside the second insertion hole 65, and then flows through the first insertion hole 23 into the motor chamber 18.
 背面板61は、複数のボルト86によって第3プレート17に取り付けられている。具体的には、背面板61のフランジ部63を貫通する各ボルト86が、第3プレート17の通路形成凹部17cの底面にねじ込まれる。これにより、背面板61が第3プレート17に取り付けられている。 The rear plate 61 is attached to the third plate 17 by a number of bolts 86. Specifically, each bolt 86 that passes through the flange portion 63 of the rear plate 61 is screwed into the bottom surface of the passage-forming recess 17c of the third plate 17. In this way, the rear plate 61 is attached to the third plate 17.
 <伝熱促進部材90>
 第3プレート17には、伝熱促進部材90が設けられている。伝熱促進部材90は、円盤状の金属製のメッシュである。金属メッシュは、例えば、ステンレス鋼により形成されている。伝熱促進部材90は、通路形成凹部17cの底面に接触した状態で仕切壁側流路80内に配置されている。したがって、伝熱促進部材90は、第3プレート17に熱的に結合されている。伝熱促進部材90は、各ボルト86によって回転軸41の周方向への移動が規制された状態で仕切壁側流路80内に配置されている。伝熱促進部材90は、第2通路82の外周部から内周部にかけて延びている。伝熱促進部材90は、第2挿通孔65の周囲に全周に亘って延びている。伝熱促進部材90は、第2通路82を流れる空気の熱を第3プレート17に伝達する。
<Heat transfer promotion member 90>
The third plate 17 is provided with a heat transfer promotion member 90. The heat transfer promotion member 90 is a disk-shaped metal mesh. The metal mesh is made of, for example, stainless steel. The heat transfer promotion member 90 is disposed in the partition wall side flow passage 80 in a state of contacting the bottom surface of the passage forming recess 17c. Therefore, the heat transfer promotion member 90 is thermally coupled to the third plate 17. The heat transfer promotion member 90 is disposed in the partition wall side flow passage 80 in a state in which the movement of the rotating shaft 41 in the circumferential direction is restricted by each bolt 86. The heat transfer promotion member 90 extends from the outer periphery to the inner periphery of the second passage 82. The heat transfer promotion member 90 extends around the entire circumference of the second insertion hole 65. The heat transfer promotion member 90 transfers the heat of the air flowing through the second passage 82 to the third plate 17.
 また、伝熱促進部材90の一部は、各連通孔83の内側に配置されている。伝熱促進部材90における各連通孔83の内側に配置されている部分は、各連通孔83の内周面の一部分に接触している。そして、伝熱促進部材90における各連通孔83の内側に配置されている部分は、背面板61の筒部62を介して第3プレート17に熱的に結合されている。伝熱促進部材90は、各連通孔83を流れる空気の熱を筒部62を介して第3プレート17に伝達する。したがって、伝熱促進部材90は、仕切壁側流路80を流れる空気から第3プレート17への伝熱を促進させる。仕切壁側流路80を流れる空気は、伝熱促進部材90によって冷却される。伝熱促進部材90は、冷却水通路70を流れる冷却水によって冷却されている。したがって、冷却水通路70には、伝熱促進部材90を冷却する冷却水が流れる。 A part of the heat transfer promotion member 90 is disposed inside each communication hole 83. The part of the heat transfer promotion member 90 disposed inside each communication hole 83 is in contact with a part of the inner peripheral surface of each communication hole 83. The part of the heat transfer promotion member 90 disposed inside each communication hole 83 is thermally coupled to the third plate 17 via the cylindrical portion 62 of the back plate 61. The heat transfer promotion member 90 transfers the heat of the air flowing through each communication hole 83 to the third plate 17 via the cylindrical portion 62. Therefore, the heat transfer promotion member 90 promotes the heat transfer from the air flowing through the partition wall side flow path 80 to the third plate 17. The air flowing through the partition wall side flow path 80 is cooled by the heat transfer promotion member 90. The heat transfer promotion member 90 is cooled by the cooling water flowing through the cooling water passage 70. Therefore, the cooling water that cools the heat transfer promotion member 90 flows through the cooling water passage 70.
 [実施形態の作用]
 次に、本実施形態の作用について説明する。
 インペラ42によって圧縮されて吐出室29に吐出される空気の一部は、インペラ側流路84に流れ込む。このとき、インペラ室28からインペラ側流路84に向かって流れる空気の一部は、入口85を介して仕切壁側流路80内に流れ込む。仕切壁側流路80を流れる空気の熱は、伝熱促進部材90を介して第3プレート17に伝達される。これにより、仕切壁側流路80を流れる空気の熱が伝熱促進部材90を介して第3プレート17に伝達される。第3プレート17に伝達された空気の熱は、冷却水通路70を流れる冷却水にも伝達される。したがって、仕切壁側流路80を流れる空気が冷却される。
[Operation of the embodiment]
Next, the operation of this embodiment will be described.
A portion of the air compressed by the impeller 42 and discharged to the discharge chamber 29 flows into the impeller-side flow passage 84. At this time, a portion of the air flowing from the impeller chamber 28 toward the impeller-side flow passage 84 flows into the partition-wall-side flow passage 80 through the inlet 85. The heat of the air flowing through the partition-wall-side flow passage 80 is transferred to the third plate 17 through the heat transfer promotion member 90. As a result, the heat of the air flowing through the partition-wall-side flow passage 80 is transferred to the third plate 17 through the heat transfer promotion member 90. The heat of the air transferred to the third plate 17 is also transferred to the cooling water flowing through the cooling water passage 70. Therefore, the air flowing through the partition-wall-side flow passage 80 is cooled.
 そして、インペラ側流路84を通過して第2挿通孔65の内側に流れ込む空気と、仕切壁側流路80を通過して第2挿通孔65の内側に流れ込む空気とが合流する。これにより、インペラ側流路84を通過して第2挿通孔65の内側に流れ込む空気が、仕切壁側流路80を通過して第2挿通孔65の内側に流れ込む空気により冷却される。そして、合流した空気が第1挿通孔23を介してモータ室18内に流れることによりモータ20が冷却される。 Then, the air that passes through the impeller side flow passage 84 and flows into the inside of the second insertion hole 65 and the air that passes through the partition wall side flow passage 80 and flows into the inside of the second insertion hole 65 join together. As a result, the air that passes through the impeller side flow passage 84 and flows into the inside of the second insertion hole 65 is cooled by the air that passes through the partition wall side flow passage 80 and flows into the inside of the second insertion hole 65. The joined air then flows into the motor chamber 18 via the first insertion hole 23, thereby cooling the motor 20.
 なお、スラスト軸受54は、スラスト軸受収容室24内を通過する空気によって冷却される。さらに、第1ラジアル軸受52は、第1軸受保持部21の内側を通過する空気によって冷却される。モータ室18内に導入された空気は、第2軸受保持部25の内側を通過する。第2ラジアル軸受53は、第2軸受保持部25の内側を通過する空気によって冷却される。第2軸受保持部25の内側を通過した空気は、排出路59を介してハウジング11の外部へ排出される。 The thrust bearing 54 is cooled by air passing through the thrust bearing accommodating chamber 24. Furthermore, the first radial bearing 52 is cooled by air passing inside the first bearing retaining portion 21. Air introduced into the motor chamber 18 passes inside the second bearing retaining portion 25. The second radial bearing 53 is cooled by air passing inside the second bearing retaining portion 25. The air that has passed inside the second bearing retaining portion 25 is exhausted to the outside of the housing 11 via the exhaust passage 59.
 [実施形態の効果]
 上記実施形態では以下の効果を得ることができる。
 (1)仕切壁側流路80を流れた空気がインペラ側流路84を流れた空気と第2挿通孔65の内側で合流した後に、第1挿通孔23を通ってモータ室18に流れることによりモータ20が冷却される。このようにして、インペラ42の背面42aに洩れてモータ室18内に侵入する空気を利用して、モータ20を冷却することができる。その結果、遠心圧縮機10の耐久性の向上を図ることができる。
[Effects of the embodiment]
The above embodiment can provide the following effects.
(1) The air flowing through the partition wall side passage 80 merges with the air flowing through the impeller side passage 84 inside the second insertion hole 65, and then flows through the first insertion hole 23 into the motor chamber 18, thereby cooling the motor 20. In this way, the motor 20 can be cooled by using the air that leaks to the back surface 42a of the impeller 42 and enters the motor chamber 18. As a result, the durability of the centrifugal compressor 10 can be improved.
 (2)冷却水通路70を流れる冷却水によって伝熱促進部材90が冷却されるため、仕切壁側流路80を流れる空気を伝熱促進部材90によって効率良く冷却することができる。 (2) The heat transfer promotion member 90 is cooled by the cooling water flowing through the cooling water passage 70, so that the air flowing through the partition wall side flow passage 80 can be efficiently cooled by the heat transfer promotion member 90.
 (3)回転軸41の軸方向において、インペラ42の背面42aと背面板61の対向面64との間隔は、回転軸41の軸方向における背面板61のフランジ部63と第3プレート17との間隔よりも小さい。これによれば、仕切壁側流路80に空気が流れ込み易くなる。よって、仕切壁側流路80を流れる空気を伝熱促進部材90によって効率良く冷却することができる。 (3) In the axial direction of the rotating shaft 41, the distance between the back surface 42a of the impeller 42 and the opposing surface 64 of the back plate 61 is smaller than the distance between the flange portion 63 of the back plate 61 and the third plate 17 in the axial direction of the rotating shaft 41. This makes it easier for air to flow into the partition wall side flow path 80. Therefore, the air flowing through the partition wall side flow path 80 can be efficiently cooled by the heat transfer promotion member 90.
 (4)伝熱促進部材90は、円盤状の金属製のメッシュである。円盤状の金属製のメッシュは、第3プレート17に設けられるとともに仕切壁側流路80を流れる空気から第3プレート17への伝熱を促進させる伝熱促進部材90として好適である。 (4) The heat transfer promotion member 90 is a disk-shaped metal mesh. The disk-shaped metal mesh is provided on the third plate 17 and is suitable as the heat transfer promotion member 90 that promotes heat transfer from the air flowing through the partition wall side flow path 80 to the third plate 17.
 [変更例]
 なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
[Example of change]
The above embodiment can be modified as follows: The above embodiment and the following modifications can be combined with each other to the extent that no technical contradiction occurs.
 ○ 実施形態において、伝熱促進部材90は、金属製のメッシュに限らず、例えば、金属製の発泡多孔質体であってもよい。要は、伝熱促進部材90は、仕切壁側流路80を流れる空気から第3プレート17への熱の伝達を促進させることが可能である構成であればよい。 In the embodiment, the heat transfer promotion member 90 is not limited to a metal mesh, and may be, for example, a metal foamed porous body. In short, the heat transfer promotion member 90 may be configured to promote the transfer of heat from the air flowing through the partition wall side flow path 80 to the third plate 17.
 ○ 実施形態において、回転軸41の軸方向におけるインペラ42の背面42aと背面板61の対向面64との間隔が、回転軸41の軸方向における背面板61のフランジ部63と第3プレート17との間隔以上であってもよい。 ○ In an embodiment, the distance between the rear surface 42a of the impeller 42 and the opposing surface 64 of the rear plate 61 in the axial direction of the rotating shaft 41 may be greater than or equal to the distance between the flange portion 63 of the rear plate 61 and the third plate 17 in the axial direction of the rotating shaft 41.
 ○ 実施形態において、仕切壁側流路80の入口85の開口面積が、インペラ側流路84の流路断面積以下であってもよい。
 ○ 実施形態において、第2通路82は、第2挿通孔65の周囲に全周に亘って延びていなくてもよい。第2通路82は、例えば、第1通路81を各連通孔83に接続するように放射状に延びる複数の通路であってもよい。
In the above embodiment, the opening area of the inlet 85 of the partition-wall-side passage 80 may be equal to or smaller than the cross-sectional area of the impeller-side passage 84 .
In the embodiment, the second passage 82 does not have to extend around the entire circumference of the second insertion hole 65. The second passage 82 may be, for example, a plurality of passages extending radially to connect the first passage 81 to each of the communication holes 83.
 ○ 実施形態において、第3プレート17に冷却水通路70が形成されていなくてもよい。
 ○ 実施形態において、第2挿通孔65の内側にボス部42bが入り込んでおらず、例えば、回転軸41のみが挿通されている構成であってもよい。
In the above embodiment, the cooling water passages 70 do not necessarily have to be formed in the third plate 17 .
In the above embodiment, the boss portion 42b may not be inserted into the second insertion hole 65, and for example, only the rotation shaft 41 may be inserted into the second insertion hole 65.
 ○ 実施形態において、遠心圧縮機10は、タービンホイール43を備えていない構成であってもよい。
 ○ 実施形態において、遠心圧縮機10は、タービンホイール43に代えて、インペラを備えている構成であってもよい。つまり、遠心圧縮機10は、回転軸41の両端にインペラが取り付けられており、一方のインペラによって圧縮された空気が、他方のインペラによって再び圧縮されるような構成であってもよい。
In the above embodiment, the centrifugal compressor 10 does not need to include the turbine wheel 43 .
In the embodiment, the centrifugal compressor 10 may be configured to include an impeller instead of the turbine wheel 43. That is, the centrifugal compressor 10 may be configured such that impellers are attached to both ends of the rotating shaft 41, and air compressed by one impeller is compressed again by the other impeller.
 ○ 実施形態において、遠心圧縮機10は、燃料電池車に搭載されていなくてもよい。要は、遠心圧縮機10は、車両に搭載されるものに限定されるものではない。
 ○ 実施形態において、遠心圧縮機10は、燃料電池スタック56に供給される空気を圧縮するために用いられるものに限らない。要は、遠心圧縮機10は、流体を圧縮するものであればよい。
In the above-mentioned embodiment, the centrifugal compressor 10 does not have to be mounted on a fuel cell vehicle. In other words, the centrifugal compressor 10 is not limited to being mounted on a vehicle.
In the above-mentioned embodiment, the centrifugal compressor 10 is not limited to be used for compressing the air supplied to the fuel cell stack 56. In short, the centrifugal compressor 10 may be used for compressing a fluid.

Claims (4)

  1.  回転軸と、
     前記回転軸と一体的に回転することで流体を圧縮するように構成されるインペラと、
     前記回転軸を回転させるように構成されるモータと、
     前記インペラを収容するインペラ室、前記モータを収容するモータ室、及び前記インペラによって圧縮された流体が吐出される吐出室を区画するハウジングと、を備え、
     前記ハウジングは、前記インペラ室と前記モータ室とを互いから仕切るとともに前記回転軸が挿通される第1挿通孔が形成されている仕切壁を有している遠心圧縮機であって、
     前記回転軸の軸方向における前記インペラと前記仕切壁との間において、前記インペラの背面に対向するように前記仕切壁に固定される背面板であって、前記回転軸が挿通される第2挿通孔を有している、背面板と、
     前記仕切壁に設けられる伝熱促進部材と、をさらに備え、
     前記背面板は、前記インペラの背面に洩れる流体を、前記インペラの背面と前記背面板との間に形成されるインペラ側流路に流れる流体と、前記背面板と前記仕切壁との間に形成される仕切壁側流路に流れる流体と、に分流するように構成され、
     前記伝熱促進部材は、前記仕切壁側流路を流れる流体から前記仕切壁への伝熱を促進させるように構成され、
     前記背面板は、前記仕切壁側流路を流れた流体が前記インペラ側流路を流れた流体と前記第2挿通孔の内側で合流した後に前記第1挿通孔を通って前記モータ室に流れるようにさらに構成される、遠心圧縮機。
    A rotation axis;
    an impeller configured to rotate integrally with the rotary shaft to compress a fluid;
    a motor configured to rotate the rotary shaft;
    a housing defining an impeller chamber that accommodates the impeller, a motor chamber that accommodates the motor, and a discharge chamber from which the fluid compressed by the impeller is discharged,
    the housing has a partition wall that separates the impeller chamber and the motor chamber from each other and has a first insertion hole through which the rotating shaft is inserted,
    a back plate fixed to the partition wall between the impeller and the partition wall in the axial direction of the rotating shaft so as to face a back surface of the impeller, the back plate having a second insertion hole through which the rotating shaft is inserted;
    A heat transfer promotion member provided on the partition wall,
    the back plate is configured to divide a fluid leaking to a back surface of the impeller into a fluid flowing in an impeller-side flow passage formed between the back surface of the impeller and the back plate, and a fluid flowing in a partition-wall-side flow passage formed between the back plate and the partition wall,
    the heat transfer promotion member is configured to promote heat transfer from a fluid flowing through the partition wall side flow path to the partition wall,
    the back plate is further configured such that the fluid that has flowed through the partition-wall-side flow passage merges with the fluid that has flowed through the impeller-side flow passage inside the second insertion hole, and then flows into the motor chamber through the first insertion hole.
  2.  前記仕切壁には、前記伝熱促進部材を冷却する冷却水が流れる冷却水通路が形成されている、請求項1に記載の遠心圧縮機。 The centrifugal compressor according to claim 1, wherein the partition wall is formed with a cooling water passage through which cooling water flows to cool the heat transfer promotion member.
  3.  前記回転軸の軸方向において、前記インペラの背面と前記背面板との間隔は、前記背面板と前記仕切壁との間隔よりも小さい、請求項1又は請求項2に記載の遠心圧縮機。 The centrifugal compressor according to claim 1 or 2, wherein the distance between the back surface of the impeller and the back plate in the axial direction of the rotating shaft is smaller than the distance between the back plate and the partition wall.
  4.  前記伝熱促進部材は、円盤状の金属製のメッシュである、請求項1~請求項3のいずれか一項に記載の遠心圧縮機。 The centrifugal compressor according to any one of claims 1 to 3, wherein the heat transfer promotion member is a disk-shaped metal mesh.
PCT/JP2023/030636 2022-12-20 2023-08-25 Centrifugal compressor WO2024134989A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-203291 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024134989A1 true WO2024134989A1 (en) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
JP6579649B2 (en) Electric motor driven compressor with a heat shield that forms the wall of the diffuser
US20020057975A1 (en) Scroll compressors
JP2002106485A (en) Motor type scroll compressor
CN113482973A (en) Compressor with cooling air and liquid coolant passages in axial heat exchanger device
EP1571343B1 (en) Automotive motor-compressor assembly
WO2024134989A1 (en) Centrifugal compressor
US20230117537A1 (en) Centrifugal compressor
US20230336047A1 (en) Fluid machine
CN113556016B (en) Motor and centrifugal compressor integrated device
WO2024079950A1 (en) Centrifugal compressor
WO2024111584A1 (en) Centrifugal compressor
WO2024062714A1 (en) Centrifugal compressor
WO2024062715A1 (en) Centrifugal compressor
JP7162122B2 (en) turbo machinery
WO2023243264A1 (en) Centrifugal compressor
US20230296107A1 (en) Centrifugal compressor
WO2023228760A1 (en) Centrifugal compressor
JP2023172660A (en) Electric fluid machinery
JP2023135590A (en) centrifugal compressor
US20230160390A1 (en) Centrifugal compressor
JP2023174294A (en) centrifugal compressor
JP2023135071A (en) centrifugal compressor
JP2024034733A (en) centrifugal compressor
US20240133379A1 (en) Scroll compressor
JP2024014301A (en) centrifugal compressor