WO2024134075A1 - Aile d'aeronef a decollage et atterrissage vertical - Google Patents

Aile d'aeronef a decollage et atterrissage vertical Download PDF

Info

Publication number
WO2024134075A1
WO2024134075A1 PCT/FR2023/052040 FR2023052040W WO2024134075A1 WO 2024134075 A1 WO2024134075 A1 WO 2024134075A1 FR 2023052040 W FR2023052040 W FR 2023052040W WO 2024134075 A1 WO2024134075 A1 WO 2024134075A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing portion
conduit
fairing
leading edge
wing
Prior art date
Application number
PCT/FR2023/052040
Other languages
English (en)
Inventor
Benoît FERRAN
Guillermo VILAPLANA
Vincent LHOMME
Risshi JAIN
Original Assignee
Ascendance Flight Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascendance Flight Technologies filed Critical Ascendance Flight Technologies
Publication of WO2024134075A1 publication Critical patent/WO2024134075A1/fr

Links

Definitions

  • the invention relates to the field of vertical take-off and landing aircraft, also referred to in the art as VTOL (from the English equivalent “Vertical Take-Off and Landing”). More particularly, the invention relates to a portion of a VTOL aircraft wing, an aircraft wing comprising this portion and an aircraft comprising this wing.
  • a VTOL aircraft generally comprises a plurality of rotors equipped with blades which, when rotated, are capable of jointly producing an essentially vertical movement of the aircraft, in particular for the take-off and landing phases thereof.
  • a VTOL aircraft can take off from a reduced ground infrastructure and land there, which makes its use particularly suitable in highly constrained environments, such as cities for example.
  • the rotors are installed on the wings, such that the blades of these rotors protrude from the wings.
  • This is the case, for example, of the aircraft known as “VX-4” from the company Vertical Aerospace.
  • VX-4 the aircraft known as “VX-4” from the company Vertical Aerospace.
  • these rotors can either be folded so as to participate in forward flight, or left as they are.
  • the implementation of the fallback results in additional mechanical complexity, without necessarily being accompanied by a notable performance gain.
  • significant drag is generated.
  • the wings comprise a fairing provided with through conduits, each of these conduits connecting the lower surface of the wing to the upper surface of the latter.
  • the rotors are each housed in a respective conduit.
  • VTOL aircraft are known whose wings are associated with shrouded rotors mounted to tilt on these wings. These rotors provide propulsion for the aircraft both in the vertical flight phase and in the forward flight phase. This is the case, for example, of the aircraft known as "Lilium Jet” from the Lilium company, whose propulsion is based on a single engine system, fully electrified, during all phases of flight. Contrary to the intended goal, wings profiled in this way generally do not improve finesse.
  • EP 3532375 Al discloses a wing of the type described above, in which the drag in forward flight is reduced thanks to an acceleration of the air flow on this wing, acceleration resulting from a rotation of an additional propeller, located at the rear of the wing. The presence of this propeller, however, induces additional drag in forward flight.
  • EP 3470332 B1 discloses a wing of the type described above, comprising a fairing, having a leading edge and a trailing edge mutually opposed, an intrados surface and an extrados surface, mutually opposed and connecting each the leading edge to the trailing edge.
  • the fairing also has a through conduit which connects the lower surface to the upper surface. This through conduit houses a rotor.
  • the fairing comprises a front part, extending from the leading edge to the through duct and a profile with a front section, corresponding to its front part.
  • an aircraft wing comprising a fairing, which has a leading edge and a trailing edge mutually opposed, an intrados surface and an extrados surface, mutually opposed and each connecting the leading edge to trailing edge.
  • the fairing also has a through conduit connecting the lower surface to the upper surface.
  • the through conduit is capable of housing a rotor, at least partially.
  • the fairing includes a front portion, extending from the leading edge to the through duct.
  • the fairing presents a profd with a front section, corresponding to its front part.
  • the through duct is closer to the trailing edge than the leading edge, while the depth has a distance between the lower surface and the maximum upper surface on its front section. This front section has less than ten percent camber.
  • the configuration of the proposed wing portion combines a through duct positioned behind this portion and a particular profile of this portion. This configuration significantly reduces drag in forward flight. It also allows the installation of a thicker spar, particularly compared to configurations where the spar passes through the conduit, without affecting drag. This thicker spar makes it possible to add wing portions, devoid of ducts, adjacent to this wing portion. This increases the lift of the wing in forward flight. The result is a wing whose finesse is greatly improved.
  • the front part houses a spar portion, and where the spar portion is closest to the through conduit, the front section has a chord line and the distance between the leading edge and the point of the chord line to the right of which the profd presents the distance between the intrados surface and the maximum extrados surface is between twenty-five and fifty percent of the length of the chord line;
  • the fairing comprises a rear part, extending from the through duct to the trailing edge, said depth comprises a rear section, corresponding to the rear part, and the rear section has a camber of less than ten percent;
  • the wing portion further comprises a rotor, at least partially housed in the through conduit, the rotor comprising at least one blade capable of adopting a vertical flight position relative to the through conduit, the extrados surface and the surface lower surfaces are mutually opposed in one direction of the wing portion and the through conduit comprises a cylindrical part facing said blade, the cylindrical part having a height substantially equal to the overall dimensions of the blade in said direction, the blade being in a vertical flight position;
  • the through conduit comprises a cylindrical part, an upper lip, connecting the cylindrical part to the extrados surface, and a lower lip, connecting the cylindrical part to the intrados surface, and, on the rear section, the upper lip and the lower lip each has a substantially rounded shape, while the intrados surface and the extrados surface each have a substantially rectilinear portion, respectively near the lower lip and the upper lip;
  • the distance between the intrados surface and the extrados surface is maximum near the through conduit
  • the distance from the intrados surface to the extrados surface gradually increases from the through conduit, towards the leading edge;
  • - on the front section of the profile the distance from the lower surface to the upper surface gradually increases from the leading edge, towards the trailing edge;
  • the maximum distance between the intrados surface and the extrados surface is close to 250 millimeters.
  • FIG. 1 represents a wing portion according to the invention, in isometric perspective
  • Figure 4 represents a profile of the wing portion of Figure 1;
  • Figure 7 represents a detail of the wing portion of Figure 1, in isometric perspective
  • FIG. 10 represents an example of an aircraft comprising a plurality of wing portions according to the invention, in isometric perspective;
  • Figure 11 represents the aircraft of Figure 10, seen from behind;
  • Figure 12 represents the aircraft of Figure 10, seen from the side.
  • This wing portion 1 comprises a fairing IA which partially houses a rotor IB.
  • the wing portion 1 further comprises a stator (not shown), shaped so as to support the rotor IB on the fairing IA.
  • the fairing IA has a front part shaped like a leading edge 7 and a rear part shaped like a trailing edge 9.
  • the leading edge 7 and the trailing edge 9 are mutually opposed in a first direction of the wing portion 1, here the longitudinal direction of the wing portion 1.
  • the distance between the leading edge 7 and the trailing edge 9 in this longitudinal direction is constant on the wing portion 1.
  • the fairing IA furthermore has an upper surface shaped like an upper surface 3 and a lower surface shaped like an lower surface 5.
  • the upper surface 3 and the lower surface 5 are mutually opposed in a second direction of the wing portion 1 , here the transverse direction of the wing portion 1.
  • the upper surface 3 and the lower surface 5 each connect the leading edge 7 to the trailing edge 9.
  • the distance between the upper surface 3 and the lower surface 5 according to this transverse direction is variable on the wing portion 1. This distance can be seen as the thickness of the wing portion 1.
  • the wing portion 1 further comprises a through conduit 11, provided in the fairing IA and connecting the lower surface 5 to the upper surface 3.
  • the through conduit 11 comprises a cylindrical part 31, the visible portion of which is shown here with hatching.
  • the cylindrical part 31 has a generally circular cross section.
  • the cylindrical part 31 has a substantially constant height on its circumference.
  • the through conduit 11 further comprises a part forming an upper lip 19, connecting the cylindrical part 31 to the extrados 3, and a part forming a lower lip 21, connecting the cylindrical part 31 to the intrados 5.
  • the lip upper 19 has a profile of substantially rounded shape, of substantially constant curvature, on its circumference.
  • the lower lip 21 has a profile of substantially rounded shape, of substantially constant curvature, on its circumference.
  • the through conduit 11 extends mainly in the transverse direction of the wing portion 1.
  • the through conduit 11 partially houses the rotor IB.
  • the through conduit 11 is closer to the leaking edge 9 than to the leading edge 7.
  • the minimum distance which separates the leading edge 7 from the upper lip 19 is significantly greater at the minimum distance which separates the trailing edge 9 from this lip.
  • the fairing IA further has a front part 27, extending from the leading edge 7 to the through conduit 11, and a rear part 29, extending from the through conduit 11 to the edge leakage 9.
  • the front part 27 and the rear part 29 are hollow.
  • the front part 27 of the wing portion 1 houses a segment of spar (not shown), or supporting beam, which crosses a wing from its root onto a fuselage at its end.
  • the rotor IB is held in the through conduit 11 in such a way that its axis of rotation forms with the transverse direction of the wing portion 1 a rotor inclination angle of between approximately 0° and approximately 30°. Here, this angle is close to 0°.
  • the inclination of the axis of rotation of the rotor IB relative to the transverse direction of the wing portion 1 improves yaw control.
  • Any plane orthogonal to the axis of rotation of the rotor IB is called the rotor plane.
  • the rotor IB comprises a hub 23 and a plurality of blades 17 each mounted on the hub 23 with the possibility of pivoting.
  • each IB rotor includes 7 blades.
  • the blades 17 are inclined relative to the hub 23 and this inclination can be modified during flight, at least as a whole.
  • the end of the blades 17 opposite the hub 23 is free.
  • the end of a blade 17 forms a blade inclination angle with the planes of the rotor.
  • the blades 17 can be pivoted between a feathered position, more effective in forward flight, corresponding to a blade inclination angle close to 0°, and an inclined position, more suitable for vertical flight, corresponding to a blade inclination angle between approximately 20° and approximately 40°.
  • the rotation speed of the hub 23 relative to the through conduit 11 can be controlled at different values during the flight.
  • the rotor 1 B and the through conduit 11 are arranged in mutual correspondence so that the blades 17 face the cylindrical part 31 of the through conduit 11, for the flagged position and the inclined position.
  • the spar segment is most often placed across the through conduit housing the rotor.
  • the spar segment is positioned in the front part 27, which frees the through conduit 11.
  • the wing portion 1 offers better performance of the IB rotor, particularly in vertical flight, and reduces drag, particularly in forward flight.
  • the positioning of the spar segment in the front part 27 allows a thicker spar than in the state of the art.
  • a thicker spar makes it possible in particular to support at the end of the wing portion 1 a wing portion ensuring more lift in forward flight.
  • This positioning also makes it possible to reduce the height of the through conduit 11, which here corresponds to the size of the blades 17, and not to the thickness of the spar. This further reduces the drag that the through conduit 11 tends to generate in forward flight.
  • the configuration described here reduces the lift discontinuity on the wing portion 1 generated by the presence of the through duct 11, and the drag induced by this discontinuity.
  • This configuration also makes it possible to accelerate the transition between the different phases of flight, by improving the suction effect in the through conduit 11.
  • Figure 3 shows, in dashed lines, a profile 35 of the fairing IA, in a longitudinal section of the wing portion 1 passing through a diameter of the cylindrical part 31.
  • the ends of the cylindrical part 31 are represented in solid line for the visible parts and dashed line for the parts hidden by the AI fairing.
  • the visible portion of the cylindrical part 31 is hatched.
  • FIG. 3 The section shown in Figure 3 is a longitudinal section where the through conduit 11 is closest to the leading edge 7.
  • this longitudinal section also corresponds to the section on which the through conduit 11 is closest close to the trailing edge 9.
  • Figure 4 shows this profile 35 and a profile of the hub 23.
  • the profile 35 has a front section 37 (shown in Figure 5), corresponding to the front part 27 of the fairing IA, and a rear section 39 (shown in Figure 6), corresponding to the rear part 29 of that -this.
  • the front section 37 and the rear section 39 respectively have a front chord line Co37 (of front chord value L37), and a rear chord line Co39 (of rear chord value L39).
  • the front chord line Co37 is shown in Figures 4 and 5 in dashed lines.
  • the rear chord line Co39 is shown in Figures 4 and 6 in dashed lines.
  • the front chord line Co37 corresponds to the shortest of the straight lines which connect the leading edge 7 to the rear end of the front section 37, here the cylindrical part 31 of the through conduit 11.
  • the value of front rope L37 corresponds to the length of the front rope line Co37, and is between 450 and 840 millimeters, for example 700 millimeters.
  • the rear chord line Co39 corresponds to the shortest of the straight lines which connect the front end of the rear section 39, here the cylindrical part 31 of the through conduit 11, to the trailing edge 9.
  • the chord value rear L39 corresponds to the length of the rear chord line Co39, and is between 200 and 336 millimeters, for example 280 millimeters.
  • the depth 35 of the fairing IA has a variable thickness from the leading edge 7 to the trailing edge 9. This thickness takes a maximum value E35 on the front section 37, at a distance L35 from the leading edge 7.
  • L The maximum thickness E35 corresponds to the location of the spar segment.
  • the maximum E35 thickness is between 150 and 270 millimeters, for example 244 millimeters.
  • the distance L35 between the leading edge 7 and the point of the front chord line Co37 to the right of which the depth 35 has the maximum thickness E35 is between twenty-five and fifty percent of the front chord value L37. In Figure 5, this distance L35 is substantially equal to fifty percent of the front chord value L37.
  • the front section 37 is refined near the leading edge 7. Its thickness gradually increases from the leading edge 7 towards the leaking edge 9, until it reaches the maximum thickness value E35, then gradually decreases up to the through conduit 11.
  • the rear section 39 has a maximum thickness E39 at a distance L40 from the through conduit 11, then its thickness gradually decreases towards the trailing edge 9.
  • the maximum thickness E39 of the section rear 39 is between 77 and 177 millimeters, for example 97 millimeters.
  • the maximum thickness E39 of the rear section 39 is less than the maximum thickness E35 of the profile 35.
  • the maximum thickness E39 of the rear section 39 is located substantially to the right of a point located between fifteen and twenty-two percent of the rear chord line Co39, which corresponds to a distance L40 between this maximum thickness E39 and the through conduit 11 substantially equal to 44 millimeters.
  • the front section 37 and the rear section 39 have a front camber Ca37 and a rear camber Ca39, respectively.
  • the front camber Ca37 (resp. the rear camber Ca39) is equal to the ratio of the maximum deflection of the front section 37 (resp. the rear section 39) to the front chord value L37 (resp. the rear chord value L39 ).
  • the arrow of the front section 37 corresponds to the distance between the front chord line Co37 (resp. the rear chord line Co39), to the right of this chord line, and the average line of the front section 37 (resp. the rear section 39).
  • the average line of the front section 37, respectively of the rear section 39 is made up of all the points on this section equidistant from the intrados 5 and the extrados 3.
  • the front camber Ca37 and the rear camber Ca39 are both less than ten percent.
  • Figures 4 and 5 show that, on the front section 37 of profile 35, the upper surface 3 and the lower surface 5 are essentially symmetrical to each other.
  • Figures 4 and 5 show that, on the front section 37 of profile 35, the upper surface 3 is convex.
  • Figures 4 and 5 show that, on the front section 37 of profile 35, the intrados 5 is convex.
  • the cylindrical part 31 of the through conduit 11 has a diameter L31.
  • this diameter L31 is between 900 and 1350 millimeters, for example 1120 millimeters.
  • the profile 35 of the wing portion 1 presents a bulk in the longitudinal direction of the wing portion 1 of value Ll.
  • the bulk value L1 corresponds to the sum of the front chord value L37, the diameter L31 of the cylindrical part 31 and the rear chord value L39.
  • the size value Ll is for example 2100 millimeters.
  • the depths of the upper surface 3 and the lower surface 5 each follow a Bézier curve.
  • the parameters of these curves correspond to characteristic curvature values.
  • the curvature of the extrados 3 is minimal near the through conduit 11. There, this curvature takes a first characteristic value VL From the through conduit 11, towards the edge of attack 7, this curvature gradually increases until reaching, near the location of the spar, a second characteristic value V2. This value corresponds to a local maximum. The curvature of the extrados 3 then decreases slightly before increasing again until reaching its maximum on the leading edge 7. There, the curvature takes a third characteristic value V3.
  • these characteristic values VI, V2 and V3 are respectively 4.10 -3 , 1.10 -3 and 2.10 -2 per millimeter.
  • the profd of the upper surface 3 has a substantially rectilinear portion, which extends from the upper lip 19 to the edge of the leak 9.
  • This profd takes a first characteristic value of curvature V4 , near the upper lip 19, and a second characteristic value of curvature V5, near the trailing edge 9.
  • these characteristic values V4 and V5 are respectively 1.10 -3 and 2.10 -4 per millimeter.
  • the profd of the lower surface 5 has a substantially rectilinear portion, which extends from the lower lip 21 to the edge of the leak 9.
  • This profd takes a first characteristic value of curvature V4 ', near the lower lip 21, and a second characteristic curvature value V5', near the leak edge 9.
  • these characteristic values V4' and V5' are respectively 3.10 -2 and 1.10 -4 per millimeter .
  • the depth of the wing portion described above contributes to reducing drag in the forward flight phase, in particular the component of this drag generated by the thickness of the spar.
  • This profile makes it possible to guide the air flow from the leading edge 7 towards the trailing edge 9 without stalling.
  • This profile also improves the guidance of the air flow on the lower surface 5 and the upper surface 3 at the entrance and exit of the IB rotor, during vertical flight.
  • the positioning and thickness of the spar segment are identical whatever the longitudinal section of the fairing IA. In this case, whatever this cut, it has a maximum thickness value close to the maximum thickness value E35 of the depth 35, associated with the same distance L35 from the leading edge 7.
  • FIGS. 7 and 9 show details of the through conduit, near the front part 27 (figure 7), between the front part 27 and the rear part 29 (figure 8) and near the rear part 29 (figure 9) .
  • the ends of the cylindrical part 31 of the through conduit are shown in solid lines for the visible parts and dashed line for the parts hidden by the fairing.
  • the visible portion of the cylindrical part 31 is hatched.
  • Figures 7 and 9 show, in dashed lines, part of the front section 37 and the rear section 39 of the profile 35 of the fairing IA, respectively.
  • the height H31 of the cylindrical part 31 corresponds to the minimum height for which the blades 17 in the inclined position do not protrude from the cylindrical part 31 in the transverse direction of the wing portion 1.
  • the height H31 is substantially equal to the size of the blades 17 in the inclined position in this transverse direction.
  • this height H31 is approximately equal to 34 millimeters.
  • the aircraft 101 comprises a fuselage 103 provided with a pair of low wings 105 and a pair of high wings 107.
  • the low wings 105 are positioned at the front of the fuselage 103 relative to the high wings 107.
  • the low 105 and high 107 wings are generally parallel to each other, and can be equipped with a winglet at their end.
  • the aircraft 101 further comprises a tail unit 109, positioned at the rear of the fuselage 103.
  • each front wing 105 comprises two mutually adjacent rotor wing portions 1 and a wing portion 113 at the wing end.
  • Each rear wing 107 comprises two mutually adjacent rotor wing portions 1 and a wing portion 111 at the wing end.
  • the wing portions 113 and 111 do not have a rotor.
  • Each wing portion 113 and 111 houses a spar segment, positioning and thickness substantially similar to those of the spar segment housed in the adjacent rotor wing portion 1.
  • the wing portions 113 and 111 increase the lift of the aircraft 101 in forward flight.
  • the configuration of the rotor wing portions 1 as described above makes it possible to obtain a gain in drag of thirty to forty percent compared to a drag value for a portion similar wing, that is to say housing a rotor in a through duct, without this configuration.
  • the through conduit 11 can have an increased total height, for a constant height value H31 of the cylindrical part 31, so as to increase the performance of the rotor IB in vertical flight;
  • the wing portion 1 may have a mechanical closing system for the through conduit 11, to be activated in the forward flight phase;
  • the leaking edge 9 can be shaped so as to follow the shape of the through conduit 11 on the side of the rear part 29.

Abstract

Une portion d'aile d'aéronef comprend un carénage (1A). Ce carénage (1A) présente un bord d'attaque (7) et un bord de fuite (9), une surface d'intrados (5) et une surface d'extrados (3). Le carénage (1A) présente en outre un conduit traversant (11) reliant la surface d'intrados (5) à la surface d'extrados (3). Le conduit traversant (11) loge un rotor (1B). Le carénage (1A) comprend une partie avant (27), s'étendant du bord d'attaque (7) au conduit traversant (11). Le carénage (1A) présente un profil (35) avec une section avant (37), correspondant à sa partie avant (27). Le conduit traversant (11) est plus proche du bord de fuite (9) que du bord d'attaque (7), tandis que le profil (35) présente une distance entre la surface d'intrados (5) et la surface d'extrados (3) maximale sur sa section avant (37). Cette section avant (37) présente une cambrure inférieure à dix pour cent.

Description

Aile d’aéronef à décollage et aterrissage vertical
[001] L’invention concerne le domaine des aéronefs à décollage et aterrissage vertical, aussi désignés VTOL dans la technique (de l’équivalent anglais "Vertical Take-Off and Landing"). Plus particulièrement, l’invention se rapporte à une portion d’aile d’aéronef VTOL, une aile d’aéronef comportant cette portion et un aéronef comprenant cette aile.
[002] Un aéronef VTOL comprend généralement une pluralité de rotors équipés de pales qui, mis en rotation, sont capables de produire conjointement un mouvement essentiellement vertical de l’aéronef, notamment pour les phases de décollage et d’atterrissage de celui-ci. Un aéronef VTOL peut décoller d’une infrastructure au sol réduite, et y atterrir, ce qui rend son utilisation particulièrement adaptée en environnement fortement contraint, comme les villes par exemple.
[003] On connaît une première configuration d’aéronefs VTOL, dans laquelle la rotation des rotors assure seule la portance de l’aéronef, non seulement dans les phases de vol vertical, mais aussi dans les phases de vol d’avancement. C’est le cas par exemple de la configuration de l’aéronef connu sous le nom "Velocity" de la société Volocopter. L’aéronef est alors généralement dépourvu d’ailes. Cependant, les aéronefs de cette première configuration présentent une vitesse en vol d’avancement assez faible, une autonomie énergétique faible et des nuisances sonores importantes.
[004] C’est pourquoi Ton préfère généralement une deuxième configuration, dans laquelle les aéronefs sont pourvus d’ailes. Ces ailes produisent l’essentiel de la portance de l’aéronef en vol d’avancement, tandis qu’en vol vertical, cete portance reste principalement générée par les rotors.
[005] Selon un premier type d’aéronefs présentant cette deuxième configuration, les rotors sont installés sur les ailes, de manière telle que les pales de ces rotors dépassent des ailes. C’est le cas, par exemple, de l’aéronef connu sous le nom "VX-4" de la société Vertical Aerospace. En vol d’avancement, ces rotors peuvent être soit repliés de manière à participer au vol d’avancement, soit laissés tels quels. Dans le premier cas, la mise en œuvre du repli entraîne une complexité mécanique additionnelle, sans nécessairement s’accompagner d’un gain de performances notable. Dans le second cas, on génère une traînée importante.
[006] Selon un deuxième type d’aéronefs présentant cette deuxième configuration, les ailes comprennent un carénage muni de conduits traversants, chacun de ces conduits reliant la surface d’intrados de l’aile à la surface d’extrados de cette dernière. Les rotors sont logés chacun dans un conduit respectif.
[007] Pour les aéronefs de ce type, on cherche alors à concevoir des ailes dont le carénage présente des conduits propres à loger les rotors et dont le rapport entre la portance et la traînée (aussi appelé "finesse" dans la technique) soit maximal.
[008] Il est difficile de concevoir de telles ailes, car les dispositions constructives visant à améliorer la traînée nuisent en général à la portance, et inversement. Par ailleurs, ces dispositions produisent souvent des effets différents selon que l’aéronef soit en vol d’avancement ou en vol vertical.
[009] Par exemple, en logeant les rotors dans des conduits traversants, on améliore leur efficacité en vol vertical. Cependant, la présence de conduits traversant le carénage génère une discontinuité de portance sur l’aile et augmente localement la traînée, notamment en vol d’avancement.
[010] On connaît des aéronefs VTOL dont les ailes sont associées à des rotors carénés et montés à basculement sur ces ailes. Ces rotors assurent la propulsion de l’aéronef à la fois en phase de vol vertical et en phase de vol d’avancement. C’est le cas, par exemple, de l’aéronef connu sous le nom "Lilium Jet" de la société Lilium, dont la propulsion repose sur un système de motorisation unique, entièrement électrifié, pendant toutes les phases de vol. Contrairement au but poursuivi, les ailes profilées de cette manière ne permettent généralement pas d’améliorer la finesse.
[011] De ce fait, on s’intéresse ici, de manière privilégiée, aux ailes d’aéronefs VTOL dont le carénage présente des conduits traversants, lesquels logent des rotors dédiés à la propulsion en phase de vol vertical uniquement, ou du moins principalement.
[012] US 11001377 Bl, EP 3431385 Al, EP 3290334 Al, CN 105711831 A et CN 104176250 A divulguent des ailes du type décrit plus haut, dont la traînée en vol d’avancement se trouve réduite par l’adjonction d’un mécanisme de couverture des rotors. Un tel mécanisme est néanmoins difficile à mettre en œuvre et pose problème pour l’obtention d’un certificat de conformité aux exigences réglementaires nécessaire à la commercialisation de tout aéronef commercial.
[013] EP 3532375 Al divulgue une aile du type décrit plus haut, dans laquelle la traînée en vol d’avancement se trouve réduite grâce à une accélération du flux d’air sur cette aile, accélération résultant d’une mise en rotation d’une hélice supplémentaire, disposée à l’arrière de l’aile. La présence de cette hélice induit cependant une traînée additionnelle en vol d’avancement.
[014] EP 3470332 B1 divulgue une aile du type décrit plus haut, comprenant un carénage, présentant un bord d’attaque et un bord de fuite mutuellement opposés, une surface d’intrados et une surface d’extrados, mutuellement opposées et reliant chacune le bord d’attaque au bord de fuite. Le carénage présente en outre un conduit traversant qui relie la surface d’intrados à la surface d’extrados. Ce conduit traversant loge un rotor. Le carénage comprend une partie avant, s’étendant du bord d’attaque au conduit traversant et un profil avec une section avant, correspondant à sa partie avant. [015] L’aile de EP 3470332 B1 présente une portance améliorée en vol d’avancement, mais au détriment de la traînée, en sorte que globalement, cette aile ne donne pas entière satisfaction.
[016] Dans ce contexte, la Demanderesse a cherché à améliorer la situation.
[017] On propose une portion d’aile d’aéronef comprenant un carénage, lequel présente un bord d’attaque et un bord de fuite mutuellement opposés, une surface d’intrados et une surface d’extrados, mutuellement opposées et reliant chacune le bord d’attaque au bord de fuite. Le carénage présente en outre un conduit traversant reliant la surface d’intrados à la surface d’extrados. Le conduit traversant est apte à loger un rotor, au moins partiellement. Le carénage comprend une partie avant, s’étendant du bord d’attaque au conduit traversant. Le carénage présente un profd avec une section avant, correspondant à sa partie avant. Le conduit traversant est plus proche du bord de fùite que du bord d’attaque, tandis que le profd présente une distance entre la surface d’intrados et la surface d’extrados maximale sur sa section avant. Cette section avant présente une cambrure inférieure à dix pour cent.
[018] La configuration de la portion d’aile proposée associe un conduit traversant positionné en arrière de cette portion et un profil particulier de cette portion. Cette configuration réduit considérablement la traînée en vol d’avancement. Elle permet en outre d’installer un longeron plus épais, en particulier en comparaison de configurations où le longeron traverse le conduit, sans nuire à la traînée. Ce longeron plus épais permet d’ajouter des portions de voilure, dépourvues de conduit, de manière adjacente à cette portion d’aile. Ceci augmente la portance de l’aile, en vol d’avancement. Il en résulte une aile dont la finesse est grandement améliorée.
[019] On propose également une aile d’aéronef comprenant cette portion d’aile, et un aéronef comprenant une ou plusieurs de ces ailes. [020] Des caractéristiques optionnelles de l’invention, complémentaires ou de substitution, sont énoncées ci-après :
- la partie avant loge une portion de longeron, et là où la portion de longeron est la plus proche du conduit traversant, la section avant présente une ligne de corde et la distance entre le bord d’attaque et le point de la ligne de corde au droit duquel le profd présente la distance entre la surface d’intrados et la surface d’extrados maximale est comprise entre vingt-cinq et cinquante pour cent de la longueur de la ligne de corde ;
- le carénage comprend une partie arrière, s’étendant du conduit traversant au bord de fuite, ledit profd comprend une section arrière, correspondant à la partie arrière, et la section arrière présente une cambrure inférieure à dix pour cent ;
- la portion d’aile comprend en outre un rotor, au moins partiellement logé dans le conduit traversant, le rotor comprenant au moins une pale apte à adopter une position de vol vertical par rapport au conduit traversant, la surface d’extrados et la surface d’intrados sont mutuellement opposées selon une direction de la portion d’aile et le conduit traversant comprend une partie cylindrique en regard de ladite pale, la partie cylindrique présentant une hauteur sensiblement égale à l’encombrement de la pale selon ladite direction, la pale étant en position de vol vertical ;
- le conduit traversant comprend une partie cylindrique, une lèvre supérieure, raccordant la partie cylindrique à la surface d’extrados, et une lèvre inférieure, raccordant la partie cylindrique à la surface d’intrados, et, sur la section arrière, la lèvre supérieure et la lèvre inférieure présentent chacune une forme sensiblement arrondie, tandis que la surface d’intrados et la surface d’extrados présentent chacune une portion sensiblement rectiligne, respectivement à proximité de la lèvre inférieure et de la lèvre supérieure ;
- sur la section arrière, la distance entre la surface d’intrados et la surface d’extrados est maximale à proximité du conduit traversant ;
- sur la section avant du profd, la distance de la surface d’intrados à la surface d’extrados augmente progressivement depuis le conduit traversant, en direction du bord d’attaque ; - sur la section avant du profil, la distance de la surface d’intrados à la surface d’extrados augmente progressivement depuis le bord d’attaque, en direction du bord de fuite ;
- la distance maximale entre la surface d’intrados et la surface d’extrados est voisine de 250 millimètres.
[021] D’autres caractéristiques et avantages de l’invention apparaîtront mieux à la lecture de la description qui suit, tirée d’exemples donnés à titre illustratif et non limitatif, et des dessins sur lesquels :
- la figure 1 représente une portion d’aile selon l’invention, en perspective isométrique ;
- la figure 2 est analogue à la figure 1 ;
- la figure 3 est analogue à la figure 1 ;
- la figure 4 représente un profil de la portion d’aile de la figure 1 ;
- la figure 5 représente un détail de la figure 4 ;
- la figure 6 représente un détail de la figure 4 ;
- la figure 7 représente un détail de la portion d’aile de la figure 1, en perspective isométrique ;
- la figure 8 est analogue à la figure 7 ;
- la figure 9 est analogue à la figure 7 ;
- la figure 10 représente un exemple d’aéronef comprenant une pluralité de portions d’aile selon l’invention, en perspective isométrique ;
- la figure 11 représente l’aéronef de la figure 10, vu de dos ;
- la figure 12 représente l’aéronef de la figure 10, vu de côté.
[022] Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
[023] On fait référence aux figures 1 et 2. [024] Ces figures montrent une portion d’aile 1 pour un aéronef de type VTOL.
[025] Cette portion d’aile 1 comprend un carénage IA qui loge partiellement un rotor IB. La portion d’aile 1 comprend en outre un stator (non représenté), conformé de manière à supporter le rotor IB sur le carénage IA.
[026] Le carénage IA présente une partie avant conformée en un bord d’attaque 7 et une partie arrière conformée en un bord de fùite 9. Le bord d’attaque 7 et le bord de fuite 9 sont mutuellement opposés selon une première direction de la portion d’aile 1, ici la direction longitudinale de la portion d’aile 1. Ici, la distance entre le bord d’attaque 7 et le bord de fuite 9 selon cette direction longitudinale est constante sur la portion d’aile 1.
[027] Le carénage IA présente en outre une surface supérieure conformée en un extrados 3 et une surface inférieure conformée en un intrados 5. L’extrados 3 et l’intrados 5 sont mutuellement opposés selon une seconde direction de la portion d’aile 1, ici la direction transversale de la portion d’aile 1. L’extrados 3 et l’intrados 5 relient chacun le bord d’attaque 7 au bord de fùite 9. Ici, la distance entre l’extrados 3 et l’intrados 5 selon cette direction transversale est variable sur la portion d’aile 1. Cette distance peut être vue comme l’épaisseur de la portion d’aile 1.
[028] La portion d’aile 1 comporte en outre un conduit traversant 11, ménagé dans le carénage IA et reliant l’intrados 5 à l’extrados 3. Le conduit traversant 11 comprend une partie cylindrique 31, dont la portion visible est représentée ici avec des hachures. Ici, la partie cylindrique 31 présente une section transversale généralement circulaire. Ici, la partie cylindrique 31 présente une hauteur sensiblement constante sur sa circonférence.
[029] Le conduit traversant 11 comprend en outre une partie formant lèvre supérieure 19, raccordant la partie cylindrique 31 à l’extrados 3, et une partie formant lèvre inférieure 21, raccordant la partie cylindrique 31 à l’intrados 5. Ici, la lèvre supérieure 19 présente un profil de forme sensiblement arrondie, de courbure sensiblement constante, sur sa circonférence. Ici, la lèvre inférieure 21 présente un profil de forme sensiblement arrondie, de courbure sensiblement constante, sur sa circonférence.
[030] De manière générale, le conduit traversant 11 s’étend principalement selon la direction transversale de la portion d’aile 1. Le conduit traversant 11 loge partiellement le rotor IB.
[031] Le conduit traversant 11 est plus proche du bord de fùite 9 que du bord d’attaque 7. La distance minimale qui sépare le bord d’attaque 7 de la lèvre supérieure 19 (resp. la lèvre inférieure 21) est sensiblement supérieure à la distance minimale qui sépare le bord de fuite 9 de cette lèvre.
[032] Au voisinage du conduit traversant 11, le carénage IA présente en outre une partie avant 27, s’étendant du bord d’attaque 7 au conduit traversant 11, et une partie arrière 29, s’étendant du conduit traversant 11 au bord de fuite 9. La partie avant 27 et la partie arrière 29 sont creuses.
[033] La partie avant 27 de la portion d’aile 1 loge un segment de longeron (non représenté), ou poutre porteuse, qui traverse une aile de son emplanture sur un fùselage à son extrémité.
[034] Le rotor IB est maintenu dans le conduit traversant 11 de manière telle que son axe de rotation forme avec la direction transversale de la portion d’aile 1 un angle d’inclinaison de rotor compris entre environ 0° et environ 30°. Ici, cet angle est voisin de 0°. L’inclinaison de l’axe de rotation du rotor IB par rapport à la direction transversale de la portion d’aile 1 améliore la maîtrise du lacet. Tout plan orthogonal à l’axe de rotation du rotor IB est appelé plan du rotor.
[035] Le rotor IB comprend un moyeu 23 et une pluralité de pales 17 montées chacune sur le moyeu 23 avec possibilité de pivotement. Ici, chaque rotor IB comprend 7 pales. Les pales 17 sont inclinées relativement au moyeu 23 et cette inclinaison peut être modifiée en cours de vol, au moins dans leur ensemble. L’extrémité des pales 17 opposée au moyeu 23 est libre. L’extrémité d’une pale 17 forme avec les plans du rotor un angle d’inclinaison de pale. Ici, les pales 17 peuvent être pivotées entre une position en drapeau, plus efficace en vol d’avancement, correspondant à un angle d’inclinaison de pale voisin de 0°, et une position inclinée, plus adaptée au vol vertical, correspondant à un angle d’inclinaison de pale compris entre environ 20° et environ 40°.
[036] La vitesse de rotation du moyeu 23 relativement au conduit traversant 11 peut être commandée à des valeurs différente au cours du vol.
[037] Ici, le rotor 1 B et le conduit traversant 11 sont agencés en correspondance mutuelle de manière que les pales 17 soient en regard de la partie cylindrique 31 du conduit traversant 11, pour la position en drapeau et la position inclinée. Il existe un jeu radial entre l’extrémité libre des pales 17 et la partie cylindrique 31 du conduit 11. Ce jeu est aussi petit que possible, par exemple compris entre 0,5 et 5 millimètres.
[038] Dans l’art antérieur, le segment de longeron est le plus souvent placé en travers du conduit traversant logeant le rotor. Au contraire, dans la portion d’aile 1 proposée, le segment de longeron est positionné dans la partie avant 27, ce qui libère le conduit traversant 11. Par rapport à l’art antérieur, la portion d’aile 1 offre de meilleures performances du rotor IB, notamment en vol vertical, et réduit la traînée, particulièrement en vol d’avancement. De plus, le positionnement du segment de longeron dans la partie avant 27 autorise un longeron plus épais que dans l’état de la technique. Un longeron plus épais permet notamment de supporter à l’extrémité de la portion d’aile 1 une portion de voilure assurant plus de portance en vol d’avancement. Ce positionnement permet également de réduire la hauteur du conduit traversant 11, laquelle correspond ici à l’encombrement des pales 17, et non à l’épaisseur du longeron. Cela réduit encore la traînée que le conduit traversant 11 tend à générer en vol d’avancement.
[039] De manière générale, la configuration décrite ici réduit la discontinuité de portance sur la portion d’aile 1 générée par la présence du conduit traversant 11, et la traînée induite par cette discontinuité. Cette configuration permet également d’accélérer la transition entre les différentes phases de vol, en améliorant l’effet de succion dans le conduit traversant 11.
[040] On fait référence aux figures 3 à 6.
[041] La figure 3 montre, en traits tiretés, un profil 35 du carénage IA, selon une coupe longitudinale de la portion d’aile 1 passant par un diamètre de la partie cylindrique 31. Les extrémités de la partie cylindrique 31 sont représentées en trait plein pour les parties visibles et en trait tireté pour les parties cachées par le carénage IA. La portion visible de la partie cylindrique 31 est hachurée.
[042] La coupe représentée sur la figure 3 est une coupe longitudinale là où le conduit traversant 11 est le plus proche du bord d’attaque 7. Ici, cette coupe longitudinale correspond également à la coupe sur laquelle le conduit traversant 11 est le plus proche du bord de fuite 9. La figure 4 montre ce profil 35 et un profil du moyeu 23.
[043] Le profil 35 présente une section avant 37 (représentée sur la figure 5), correspondant à la partie avant 27 du carénage IA, et une section arrière 39 (représentée sur la figure 6), correspondant à la partie arrière 29 de celui-ci. La section avant 37 et la section arrière 39 présentent respectivement une ligne de corde avant Co37 (de valeur de corde avant L37), et une ligne de corde arrière Co39 (de valeur de corde arrière L39). La ligne de corde avant Co37 est représentée sur les figures 4 et 5 en trait tireté. La ligne de corde arrière Co39 est représentée sur les figures 4 et 6 en trait tireté. [044] La ligne de corde avant Co37 correspond à la plus courte des lignes droites qui relient le bord d’attaque 7 à l’extrémité arrière de la section avant 37, ici la partie cylindrique 31 du conduit traversant 11. Ici, la valeur de corde avant L37 correspond à la longueur de la ligne de corde avant Co37, et est comprise entre 450 et 840 millimètres, par exemple 700 millimètres.
[045] La ligne de corde arrière Co39 correspond à la plus courte des lignes droites qui relient l’extrémité avant de la section arrière 39, ici la partie cylindrique 31 du conduit traversant 11, au bord de fuite 9. Ici la valeur de corde arrière L39 correspond à la longueur de la ligne de corde arrière Co39, et est comprise entre 200 et 336 millimètres, par exemple 280 millimètres.
[046] Le profd 35 du carénage IA présente une épaisseur variable du bord d’attaque 7 au bord de fuite 9. Cette épaisseur prend une valeur maximale E35 sur la section avant 37, à une distance L35 du bord d’attaque 7. L’épaisseur maximale E35 correspond à l’emplacement du segment de longeron. Ici, l’épaisseur maximale E35 est comprise entre 150 et 270 millimètres, par exemple 244 millimètres. La distance L35 entre le bord d’attaque 7 et le point de la ligne de corde avant Co37 au droit duquel le profd 35 présente l’épaisseur maximale E35 est comprise entre vingt-cinq et cinquante pour cent de la valeur de corde avant L37. Sur la figure 5, cette distance L35 est sensiblement égale à cinquante pour cent de la valeur de corde avant L37.
[047] La section avant 37 est affinée à proximité du bord d’attaque 7. Son épaisseur augmente progressivement depuis le bord d’attaque 7 en direction du bord de fùite 9, jusqu’à atteindre la valeur d’épaisseur maximale E35, puis diminue progressivement jusqu’au conduit traversant 11. La section arrière 39 présente une épaisseur maximale E39 à une distance L40 du conduit traversant 11, puis son épaisseur diminue progressivement en direction du bord de fuite 9. Ici, l’épaisseur maximale E39 de la section arrière 39 est comprise entre 77 et 177 millimètres, par exemple 97 millimètres. L’épaisseur maximale E39 de la section arrière 39 est inférieure à l’épaisseur maximale E35 du profil 35. Sur la figure 6, l’épaisseur maximale E39 de la section arrière 39 est située sensiblement au droit d’un point situé entre quinze et vingt-deux pour cent de la ligne de corde arrière Co39, ce qui correspond à une distance L40 entre cette épaisseur maximale E39 et le conduit traversant 11 sensiblement égale à 44 millimètres.
[048] Sur le profil 35, l’extrados 3 et l’intrados 5 sont généralement symétriques l’un de l’autre. La section avant 37 et la section arrière 39 présentent une cambrure avant Ca37 et une cambrure arrière Ca39, respectivement. La cambrure avant Ca37 (resp. la cambrure arrière Ca39) est égale au rapport de la flèche maximale de la section avant 37 (resp. de la section arrière 39) sur la valeur de corde avant L37 (resp. la valeur de corde arrière L39). La flèche de la section avant 37 (resp. la section arrière 39) correspond à la distance entre la ligne de corde avant Co37 (resp. la ligne de corde arrière Co39), au droit de cette ligne de corde, et la ligne moyenne de la section avant 37 (resp. la section arrière 39). La ligne moyenne de la section avant 37, respectivement de la section arrière 39, est constituée de l’ensemble des points sur cette section à égale distance de l’intrados 5 et de l’extrados 3.
[049] La cambrure avant Ca37 et la cambrure arrière Ca39 sont toutes deux inférieures à dix pour cent.
[050] Les figures 4 et 5 montrent que, sur la section avant 37 du profil 35, l’extrados 3 et l’intrados 5 sont essentiellement symétriques l’un de l’autre. Les figures 4 et 5 montrent que, sur la section avant 37 du profil 35, l’extrados 3 est convexe. Les figures 4 et 5 montrent que, sur la section avant 37 du profil 35, l’intrados 5 est convexe.
[051] La partie cylindrique 31 du conduit traversant 11 présente un diamètre L31. Ici, ce diamètre L31 est compris entre 900 et 1350 millimètres, par exemple 1120 millimètres. [052] Le profil 35 de la portion d’aile 1 présente un encombrement selon la direction longitudinale de la portion d’aile 1 de valeur Ll. La valeur d’encombrement L1 correspond à la somme de la valeur de corde avant L37, du diamètre L31 de la partie cylindrique 31 et de la valeur de corde arrière L39. Ici, la valeur d’encombrement Ll est par exemple de 2100 millimètres.
[053] Sur la section avant 37 et la section arrière 39 du carénage IA, les profds de l’extrados 3 et de l’intrados 5 suivent chacun une courbe de Bézier. Les paramètres de ces courbes correspondent à des valeurs caractéristiques de courbure.
[054] Sur la section avant 37 du carénage IA, la courbure de l’extrados 3 est minimale à proximité du conduit traversant 11. Là, cette courbure prend une première valeur caractéristique VL Depuis le conduit traversant 11, en direction du bord d’attaque 7, cette courbure augmente progressivement jusqu’à atteindre, à proximité de l’emplacement du longeron, une deuxième valeur caractéristique V2. Cette valeur correspond à un maximum local. La courbure de l’extrados 3 diminue ensuite légèrement avant d’augmenter à nouveau jusqu’à atteindre son maximum sur le bord d’attaque 7. Là, la courbure prend une troisième valeur caractéristique V3. Ici, ces valeurs caractéristiques VI, V2 et V3 sont respectivement de 4.10-3, 1.10-3 et 2.10-2 par millimètre.
[055] La courbure de l’intrados 5 sur la section avant 37 varie de manière similaire à celle décrite ci-dessus. Cette courbure prend, du conduit traversant 11 au bord d’attaque 7, des valeurs caractéristiques VI’, NT et V3’, dans cet ordre. Ici, ces valeurs caractéristiques VI’, NT et V3’ sont respectivement de 3.10’4, 1.10’3 et 2.10-2 par millimètre.
[056] Sur la section arrière 39 du carénage IA, le profd de l’extrados 3 présente une portion sensiblement rectiligne, qui s’étend de la lèvre supérieure 19 au bord de fùite 9. Ce profd prend une première valeur caractéristique de courbure V4, à proximité de la lèvre supérieure 19, et une deuxième valeur caractéristique de courbure V5, à proximité du bord de fuite 9. Ici, ces valeurs caractéristiques V4 et V5 sont respectivement de 1.10-3 et 2.10-4 par millimètre.
[057] Sur la section arrière 39 du carénage IA, le profd de l’intrados 5 présente une portion sensiblement rectiligne, qui s’étend de la lèvre inférieure 21 au bord de fùite 9. Ce profd prend une première valeur caractéristique de courbure V4’, à proximité de la lèvre inférieure 21, et une deuxième valeur caractéristique de courbure V5’, à proximité du bord de fùite 9. Ici, ces valeurs caractéristiques V4’ et V5’ sont respectivement de 3.10-2 et 1.10-4 par millimètre.
[058] Le profd de la portion d’aile décrit ci-dessus contribue à réduire la traînée en phase de vol d’avancement, en particulier la composante de cette traînée générée par l’épaisseur du longeron. Ce profd permet de guider le flux d’air du bord d’attaque 7 en direction du bord de fuite 9 sans décrochage. Ce profd améliore également le guidage du flux d’air sur l’intrados 5 et l’extrados 3 en entrée et en sortie du rotor IB, en phase de vol vertical.
[059] De préférence, le positionnement et l’épaisseur du segment de longeron sont identiques quelle que soit la coupe longitudinale du carénage IA. Dans ce cas, quelle que soit cette coupe, celle-ci présente une valeur d’épaisseur maximale voisine de la valeur d’épaisseur maximale E35 du profd 35, associée à la même distance L35 du bord d’attaque 7.
[060] Ici, quelle que soit la coupe longitudinale du carénage IA, celle-ci présente également la même valeur L1 d’encombrement longitudinal.
[061] On fait référence aux figures 7 à 9.
[062] Ces figures montrent des détails du conduit traversant, à proximité de la partie avant 27 (figure 7), entre la partie avant 27 et la partie arrière 29 (figure 8) et à proximité de la partie arrière 29 (figure 9). Les extrémités de la partie cylindrique 31 du conduit traversant sont représentées en trait plein pour les parties visibles et en trait tireté pour les parties cachées par le carénage. La portion visible de la partie cylindrique 31 est hachurée. Les figures 7 et 9 font apparaître, en traits tiretés, une partie de la section avant 37 et la section arrière 39 du profil 35 du carénage IA, respectivement.
[063] La hauteur H31 de la partie cylindrique 31 correspond à la hauteur minimale pour laquelle les pales 17 en position inclinée ne dépassent pas de la partie cylindrique 31 selon la direction transversale de la portion d’aile 1. La hauteur H31 est sensiblement égale à l’encombrement des pales 17 en position inclinée selon cette direction transversale. Ici, cette hauteur H31 est sensiblement égale à 34 millimètres.
[064] On fait référence aux figures 10, 11 et 12.
[065] Ces figures présentent un exemple d’aéronef 101 comprenant une pluralité de portions d’aile à rotor du type de la portion d’aile 1 décrite plus haut.
[066] L’aéronef 101 comprend un fùselage 103 pourvu d’une paire d’ailes basses 105 et d’une paire d’ailes hautes 107. Les ailes basses 105 sont positionnées à l’avant du fuselage 103 par rapport aux ailes hautes 107. Les ailes basses 105 et hautes 107 sont généralement parallèles entre elles, et peuvent être équipées d’un winglet à leur extrémité. L’aéronef 101 comprend en outre un empennage 109, positionné à l’arrière du fuselage 103.
[067] Ici, chaque aile avant 105 comprend deux portions d’aile à rotor 1 mutuellement adjacentes et une portion de voilure 113 en extrémité d’aile. Chaque aile arrière 107 comprend deux portions d’aile à rotor 1 mutuellement adjacentes et une portion de voilure 111 en extrémité d’aile. Les portions de voilure 113 et 111 sont dépourvues de rotor. Chaque portion de voilure 113 et 111 loge un segment de longeron, de positionnement et d’épaisseur sensiblement similaires à ceux du segment de longeron logé dans la portion d’aile à rotor 1 adjacente. [068] Les portions de voilure 113 et 111 augmentent la portance de l’aéronef 101 en vol d’avancement.
[069] Selon les essais de la Demanderesse, la configuration des portions d’aile à rotor 1 telle que décrite ci-dessus permet d’obtenir un gain en traînée de trente à quarante pour cent par rapport à une valeur de traînée pour une portion d’aile semblable, c’est-à-dire logeant un rotor dans un conduit traversant, sans cette configuration.
[070] L'invention n'est pas limitée aux modes de réalisation décrits plus hauts, mais englobe toutes les variantes envisageables par l'homme de l'art. En particulier :
- le conduit traversant 11 peut présenter une hauteur totale augmentée, pour une valeur de hauteur H31 de la partie cylindrique 31 constante, de manière à augmenter les performances du rotor IB en vol vertical ;
- la portion d’aile 1 peut présenter un système de fermeture mécanique du conduit traversant 11, à activer en phase de vol d’avancement ;
- le bord de fùite 9 peut être conformé de manière à suivre la forme du conduit traversant 11 du côté de la partie arrière 29.

Claims

Revendications
1. Portion d’aile d’aéronef, comprenant : un carénage (IA), présentant un bord d’attaque (7) et un bord de fùite (9) mutuellement opposés, une surface d’intrados (5) et une surface d’extrados (3), mutuellement opposées et reliant chacune le bord d’attaque (7) au bord de fuite (9) ; le carénage (IA) présentant en outre un conduit traversant (11) reliant la surface d’intrados (5) à la surface d’extrados (3), le conduit traversant (11) étant apte à loger un rotor (IB), au moins partiellement ; le carénage (IA) comprenant une partie avant (27), s’étendant du bord d’attaque (7) au conduit traversant (11) ; le carénage (IA) présentant un profil (35) avec une section avant (37), correspondant à sa partie avant (27) ; caractérisé en ce que : le conduit traversant (11) est plus proche du bord de fùite (9) que du bord d’attaque (7), tandis que le profil (35) présente une distance entre la surface d’intrados (5) et la surface d’extrados (3) maximale sur sa section avant (37), cette section avant (37) présentant une cambrure (Ca37) inférieure à dix pour cent.
2. Portion d’aile selon la revendication 1, dans laquelle la partie avant (27) loge une portion de longeron, et là où la portion de longeron est la plus proche du conduit traversant (11), la section avant (37) présente une ligne de corde (Co37) et la distance (L35) entre le bord d’attaque (7) et le point de la ligne de corde (Co37) au droit duquel le profd (35) présente la distance entre la surface d’intrados (5) et la surface d’extrados (3) maximale est comprise entre vingt-cinq et cinquante pour cent de la longueur de la ligne de corde (Co37).
3. Portion d’aile selon l’une des revendications 1 et 2, dans laquelle le carénage (IA) comprend une partie arrière (29), s’étendant du conduit traversant (11) au bord de fuite (9), ledit profd (35) comprend une section arrière (39), correspondant à la partie arrière (39), et la section arrière (39) présente une cambrure (Ca39) inférieure à dix pour cent.
4. Portion d’aile selon l’une des revendications précédentes comprenant en outre un rotor (IB), au moins partiellement logé dans le conduit traversant (11), le rotor (IB) comprenant au moins une pale (17) apte à adopter une position de vol vertical par rapport au conduit traversant (11), dans laquelle la surface d’extrados (3) et la surface d’intrados (5) sont mutuellement opposées selon une direction de la portion d’aile et le conduit traversant (11) comprend une partie cylindrique (31) en regard de ladite pale (17), la partie cylindrique (31) présentant une hauteur sensiblement égale à l’encombrement de la pale (17) selon ladite direction, la pale (17) étant en position de vol vertical.
5. Portion d’aile selon l’une des revendications précédentes, dans laquelle le carénage (IA) comprend une partie arrière (29), s’étendant du conduit traversant (11) au bord de fùite (9), et ledit profd (35) comprend une section arrière (39), correspondant à la partie arrière (29), dans laquelle le conduit traversant (11) comprend une partie cylindrique
(31), une lèvre supérieure (19), raccordant la partie cylindrique (31) à la surface d’extrados (3), et une lèvre inférieure (21), raccordant la partie cylindrique (31) à la surface d’intrados (5), et dans laquelle, sur la section arrière (39), la lèvre supérieure (19) et la lèvre inférieure (21) présentent chacune une forme sensiblement arrondie, tandis que la surface d’intrados (5) et la surface d’extrados (3) présentent chacune une portion sensiblement rectiligne, respectivement à proximité de la lèvre inférieure (21) et de la lèvre supérieure (19).
6. Portion d’aile selon l’une des revendications précédentes, dans laquelle le carénage (IA) comprend une partie arrière (29), s’étendant du conduit traversant (11) au bord de fùite (9), et ledit profd (35) comprend une section arrière (39), correspondant à la partie arrière (29), dans laquelle, sur la section arrière (39), la distance entre la surface d’intrados (5) et la surface d’extrados (3) est maximale à proximité du conduit traversant (11).
7. Portion d’aile selon l’une des revendications précédentes, dans laquelle, sur la section avant (37) du profd (35), la distance de la surface d’intrados (5) à la surface d’extrados (3) augmente progressivement depuis le conduit traversant (11), en direction du bord d’attaque (7).
8. Portion d’aile selon l’une des revendications précédentes, dans laquelle, sur la section avant (37) du profd (35), la distance de la surface d’intrados (5) à la surface d’extrados (3) augmente progressivement depuis le bord d’attaque (7), en direction du bord de fuite (9).
9. Portion d’aile selon l’une des revendications précédentes, dans laquelle la distance maximale entre la surface d’intrados (5) et la surface d’extrados (3) est voisine de 250 millimètres.
10. Portion d’aile selon l’une des revendications précédentes, dans laquelle, sur la section avant (37) du profil (35), la surface d’extrados (3) et la surface d’intrados (5) sont essentiellement symétriques l’une de l’autre.
11. Portion d’aile selon l’une des revendications précédentes, dans laquelle, sur la section avant (37) du profil (35), la surface d’extrados (3) est convexe et la surface d’intrados (5) est convexe.
12. Aile d’aéronef comprenant au moins une portion d’aile selon l’une des revendications 1 à 11.
13. Aéronef comprenant une ou plusieurs ailes selon la revendication 12.
PCT/FR2023/052040 2022-12-19 2023-12-18 Aile d'aeronef a decollage et atterrissage vertical WO2024134075A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FRFR2213793 2022-12-19

Publications (1)

Publication Number Publication Date
WO2024134075A1 true WO2024134075A1 (fr) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
EP0901961B1 (fr) Pale à signature sonore réduite pour voilure tournante d'aéronef
EP1921324B1 (fr) Aube en flèche de turbomachine
EP0298826B1 (fr) Pale à extrémité courbe pour voilure tournante d'aéronef
CA2759763C (fr) Pale pour dispositif anti-couple d'helicoptere
CA2951073C (fr) Pale de rotor d'aeronef a geometrie adaptee pour l'amelioration acoustique lors de vols d'approche et l'amelioration des performances en vols stationnaire et d'avancement
EP2855847B1 (fr) Aube de soufflante pour turboreacteur d'avion a profil cambre en sections de pied
CA2951069C (fr) Pale de rotor d'aeronef a geometrie adaptee pour l'amelioration acoustique lors d'un vol d'approche et l'amelioration des performances en vol d'avancement
CA2458417C (fr) Aube en fleche de turboreacteur
EP2720941A2 (fr) Pale, en particulier a calage variable, helice comprenant de telles pales, et turbomachine correspondante
FR2902758A1 (fr) Ensemble propulsif d'aeronef comportant un conduit d'ejection avec un bord de fuite echancre
EP0036825A1 (fr) Pale à hautes performances pour rotor d'hélicoptère
WO2019158875A1 (fr) Turbomachine à bec de séparation de flux à profil en serrations inclinées
EP0067097B1 (fr) Extrémité de pale pour voilure tournante d'aéronef
FR2980818A1 (fr) Pale pour une helice de turbomachine, notamment a soufflante non carenee, helice et turbomachine correspondantes.
FR2772715A1 (fr) Pale pour aeronef a voilure tournante
FR3105315A1 (fr) Module de compresseur pour turbomachine
EP2432684B1 (fr) Procédé pour l'amélioration de l'efficacité aérodynamique de l'empennage vertical d'un aéronef
WO2024134075A1 (fr) Aile d'aeronef a decollage et atterrissage vertical
EP2839168B1 (fr) Carter pour roue a aubes de turbomachine ameliore et turbomachine equipee dudit carter
FR2793766A1 (fr) Pale pour voilure tournante d'aeronef
FR2948094A1 (fr) Structure portante ou aeromotrice a effet magnus
EP3442864B1 (fr) Manchon de pale de rotor d'un aéronef muni d'une protubérance en zone arrière et rotor muni d'un tel manchon
WO2022148940A1 (fr) Dispositif d'attenuation acoustique ameliore pour ensemble propulsif d'aeronef
CA1315259C (fr) Pale a extremite courbe pour voilure tournante d'aeronef
WO2023281193A1 (fr) Propulseur aeronautique