WO2024131815A1 - 一种水耕栽培营养液流速试验装置、水培***及控制装置 - Google Patents

一种水耕栽培营养液流速试验装置、水培***及控制装置 Download PDF

Info

Publication number
WO2024131815A1
WO2024131815A1 PCT/CN2023/140098 CN2023140098W WO2024131815A1 WO 2024131815 A1 WO2024131815 A1 WO 2024131815A1 CN 2023140098 W CN2023140098 W CN 2023140098W WO 2024131815 A1 WO2024131815 A1 WO 2024131815A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
flow rate
plant
growth
rhizosphere
Prior art date
Application number
PCT/CN2023/140098
Other languages
English (en)
French (fr)
Inventor
杨其长
白音***
向跃
胡江涛
王峥
Original Assignee
中国农业科学院都市农业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业科学院都市农业研究所 filed Critical 中国农业科学院都市农业研究所
Publication of WO2024131815A1 publication Critical patent/WO2024131815A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/51Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/141Control of illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/94Hardware or software architectures specially adapted for image or video understanding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to the technical field of plant factories, and in particular to a hydroponic cultivation nutrient solution flow rate test device, a hydroponic system and a control device.
  • the cultivation medium of hydroponics is fluid. Different cultivation mediums will lead to different root environments, and the way plant nutrients migrate to the root surface will also vary depending on the cultivation medium. In solid matrix cultivation such as soil, inorganic salt ions usually reach the root surface through root interception, diffusion and mass flow to be absorbed by plants. In hydroponics, in addition to the above three migration methods, the flowable cultivation medium (hydroponic nutrient solution) also allows inorganic salt ions to be transported to the root surface through turbulent diffusion (irregular movement of fluid particles). The flow state of the nutrient solution in the cultivation container will affect the turbulent diffusion intensity to affect the circulation and diffusion of the nutrient solution and its collision and contact with the root surface, thereby affecting the nutrient absorption and growth quality of hydroponic plants.
  • hydroponics the yield and quality of vegetables can be improved by adjusting the flow of nutrient solution.
  • the flow control of hydroponic nutrient solution is related to vegetable yield, water and fertilizer resource utilization, and electricity energy consumption.
  • One of the goals of facility horticultural agricultural production is to obtain more crop yields with the least possible resource and energy input, and to improve resource utilization efficiency through reasonable agronomic management. Therefore, it is very necessary to study the mechanism of the influence of nutrient solution flow on vegetable growth in hydroponic cultivation, and summarize the method of nutrient solution flow control in hydroponic cultivation based on the research results.
  • Patent publication number CN112167037A discloses an agricultural hydroponic tray. More specifically, the hydroponic tray can control the liquid flowing through it.
  • the tray includes: an inlet end for fluid inflow and an outlet end for fluid outflow; a slot for fluid flow extending continuously between the inlet end and the outlet end; and at least one fluid regulator device extending transversely through the slot, wherein each fluid regulator device includes a gate plate, which is suitable for allowing the fluid to pass through the surface at a predetermined flow rate. plate, and a control plate movable relative to the gate plate to vary the flow rate of the fluid through the fluid regulator.
  • the patent with publication number CN113940262A discloses a hydroponic planting device, including a basin body and a basin cover, the basin cover has several sockets, the hydroponic planting device also includes a cultivation basket and a functional module, the cultivation basket has a drainage hole; the cultivation basket or the functional module can be detachably installed in the socket, and the functional module includes at least one of a water pump module and an environmental parameter sensor module.
  • the water pump module includes a water pump body and a flow regulating plate, the bottom of the water pump body has a water inlet, and the side of the water pump body has a water outlet; the flow regulating plate is rotatably matched with the water pump body to adjust the flow of the water inlet.
  • the shape and size of the cultivation containers used by existing researchers are not specified. If the size of the cultivation container changes, the flow state may be inconsistent even if the flow rate is the same. This makes the values of the "optimal flow rate" obtained by each study different, and there are doubts whether the results can be applied to containers of different sizes. In addition, the optimal flow rate may not be consistent for different types of plants, or for plants of the same type at different growth stages.
  • the present invention provides a hydroponic cultivation nutrient solution flow rate test device from a first aspect
  • the test device at least includes a planting unit and a processor.
  • the planting unit at least includes a water pump and a detachable transparent growth cultivation tank, the water pump is used to adjust the flow rate of the nutrient solution, and the growth cultivation tank is used to provide a plant planting area.
  • the processor obtains plant information corresponding to nutrient solutions of different flow rates to obtain the nutrient utilization efficiency of the plant at different flow rates, thereby determining the optimal flow rate of the nutrient solution.
  • the plant information at least includes: plant morphology and rhizosphere flow field formed by nutrient solution flowing through plant root system.
  • the test device is also provided with a flow meter for measuring the flow rate of nutrient solution in the growth cultivation tank.
  • the present invention obtains growth information of the same plant in the same growth cultivation trough under different nutrient solution flow rates, and then compares the plant information under different nutrient solution flow rates to screen out the nutrient solution flow rate that allows the best plant growth, and then determines the optimal flow rate of the nutrient solution by obtaining the flow rate of the nutrient solution under the nutrient solution flow rate that allows the best plant growth.
  • the test device is further provided with an image detection unit for acquiring images of the growth cultivation tank.
  • the image detection unit is electrically connected to the processor so that the processor obtains the morphological changes of the plants corresponding to the nutrient solutions with different flow rates.
  • the test device is provided with a plurality of detection methods to detect the growth information of the plant, and provides a plurality of observation means, which can be adapted to different types of plants.
  • the test device can determine the optimum flow rate of the nutrient solution by observing the inorganic salt absorption rate, and then determine the optimum flow rate of the nutrient solution.
  • the test device can select the observation means that best reflects its growth status according to the plant species.
  • the image detection unit acquires the image of the growth cultivation tank including at least an image of the plant leaf portion, an image of the plant root portion, and an image of the rhizosphere flow field formed by the nutrient solution flowing through the plant root system.
  • the image detection unit acquires the image of the rhizosphere flow field by laser development.
  • the processor can determine the leaf area and root length of the plant based on the image acquired by the image detection unit to evaluate the promoting effect of the corresponding nutrient solution flow rate on plant growth.
  • the processor can acquire an image of the plant rhizosphere flow field through the image detection unit.
  • the processor can determine the rhizosphere flow field image of the plant when the nutrient solution is at the optimal flow rate through the image acquired by the image detection unit, and the rhizosphere flow field image can be used as a criterion for the optimal flow rate to determine the optimal flow rate of the plant in the cultivation tanks with different structures.
  • tracer particles are mixed in the nutrient solution
  • the image detection unit includes at least a camera and an illumination component.
  • the laser light generated by the illumination component is emitted into the interior of the growth cultivation tank, and the tracer particles in the nutrient solution are illuminated by the laser and imaged, thereby representing the rhizosphere flow field formed by the current nutrient solution flowing through the plant root system in the image acquired by the image detection unit.
  • the density of the tracer particles in water is similar to that of water, and after the tracer particles are mixed with the nutrient solution, the motion state of the tracer particles can reflect the motion state of the nutrient solution.
  • the image is developed under illumination, so as to accurately characterize the flow field generated by the current nutrient solution and realize the visualization of the rhizosphere flow field.
  • the processor stores the image of the rhizosphere flow field corresponding to the optimum flow rate as historical data.
  • the historical data at least includes: the image of the rhizosphere flow field, the type of plant in the image of the rhizosphere flow field, and the parameters of the nutrient solution in the image of the rhizosphere flow field.
  • the processor obtains a database consisting of plant types, nutrient solution types, and images of the rhizosphere flow field corresponding to the optimum flow rate by summarizing the historical data.
  • the image of the rhizosphere flow field corresponding to the corresponding optimum flow rate can be determined according to the database.
  • the image of the rhizosphere flow field detected by the image detection unit matches the image of the corresponding rhizosphere flow field, the optimum flow rate of the nutrient solution can be determined, thereby saving test time.
  • the method provided by the present invention only needs to adjust the flow rate of the nutrient solution so that the image of the rhizosphere flow field detected by the image detection unit matches the image of the rhizosphere flow field in the database, while the method of observing plant morphology or nutrient solution ion concentration requires observation of plant growth to determine the optimum flow rate of the nutrient solution, and a single test usually takes more than several days.
  • the water pump is connected to the processor by electrical signals.
  • the processor adjusts the working mode of the water pump so that the image of the rhizosphere flow field formed by the nutrient solution flowing through the plant root system conforms to the image of the rhizosphere flow field in the historical data, thereby determining the optimum flow rate of the nutrient solution.
  • the processor can use the image acquired by the image detection unit as a standard image.
  • the planting unit is equipped with a rectifying section, and the nutrient solution flows into the growing cultivation tank through the rectifying section.
  • the rectifying section breaks up the vortex formed by the pumping of the nutrient solution, so that the nutrient solution flows through the growing cultivation tank in a horizontal advection manner.
  • the water pump works to provide power for the nutrient solution. Since the water pump provides power for the nutrient solution by rotating the propeller, the nutrient solution flowing through the water pump has a rotating vortex while flowing.
  • the rectifying section can break up the vortex formed by the nutrient solution flowing through the water pump by setting a grid in the flow direction of the nutrient solution, so that the nutrient solution flows along the axial direction of the growth cultivation tank.
  • the rectifying section forms a water hole, so that the flow rate of the nutrient solution flowing to the growth cultivation tank is consistent, eliminating the interference of the nutrient solution vortex and uneven flow rate on the root flow field.
  • the present invention provides a method for testing the optimum flow rate of a hydroponic nutrient solution from a second aspect.
  • the test method at least comprises:
  • a water pump is used to adjust the flow rate of the nutrient solution
  • the processor obtains plant information corresponding to nutrient solutions at different flow rates to evaluate the nutrient utilization efficiency of the plants at the flow rate, thereby determining the optimal flow rate of the nutrient solution;
  • the plant information includes: plant morphology, plant fresh weight, plant dry weight, and one of inorganic salt absorption rates.
  • test method further comprises:
  • the image detection unit acquires the image of the growth cultivation trough including at least the image of the plant leaf portion, the image of the plant root portion, and the image of the rhizosphere flow field formed by the nutrient solution flowing through the plant root system.
  • the present invention also provides a hydroponic method from a third aspect.
  • the hydroponic method at least comprises:
  • the experimental hydroponic plant varieties were located in growth culture tanks during the growth phase, using the optimal flow rate of the hydroponic nutrient solution;
  • the optimum flow rate obtained from the experiment is used to grow and cultivate the hydroponic plants in the growth stage, and the optimum flow rate is re-determined when the growth stage is changed and/or the growth and cultivation tank is changed.
  • an image of the growth cultivation tank including at least plant information for evaluating the effect of the flow rate of the nutrient solution on promoting plant growth is acquired.
  • test hydroponic plant variety is located in a growth culture tank during the growth stage, using the optimal flow rate of the hydroponic nutrient solution, including at least:
  • the plant information includes at least one of plant fresh weight, dry weight, root length, leaf area, and element content.
  • tracer particles are mixed in the nutrient solution
  • the tracer particles in the nutrient solution are visualized by laser development to characterize the rhizosphere flow field of the plant, thereby acquiring an image including the rhizosphere flow field.
  • the hydroponic method further comprises:
  • the image of the rhizosphere flow field corresponding to the optimum flow rate is stored as historical data
  • the rhizosphere flow field formed by the nutrient solution flowing through the plant roots is made to conform to the image of the rhizosphere flow field in the historical data to determine the optimum flow rate of the nutrient solution.
  • the present invention also provides a hydroponic system from a fourth aspect.
  • the hydroponic system includes at least a test section and a growth section, wherein the test section is provided with the hydroponic cultivation nutrient solution flow rate test device provided by the present invention.
  • the test device includes a planting unit, a processor and an image detection unit; the image detection unit collects images of the leaf part, the root part and the rhizosphere flow field of the plant in the planting unit.
  • the processor obtains plant information corresponding to the nutrient solution with different flow rates according to the images of the leaf part, the root part and the rhizosphere flow field of the plant, and determines the optimal flow rate of the nutrient solution according to the nutrient utilization efficiency of the plant at different flow rates.
  • the growth section includes at least a culture tank connected to the nutrient solution circulation flow path of the test device through a connecting valve. After the test section uses the test device to test the optimal flow rate, the nutrient solution circulation flow path of the test device is cut off, and the connecting valve is opened so that the nutrient solution in the test device flows through the culture tank and then flows back to the test device, so as to cultivate and grow the plants planted in the culture tank.
  • the processor obtains growth information of the same plant under different nutrient solution flow rates, compares the plant information under different nutrient solution flow rates, and screens out the nutrient solution flow rate that enables optimal plant growth, and determines the optimal flow rate of the nutrient solution by obtaining the flow rate of the nutrient solution corresponding to the nutrient solution flow rate that enables optimal plant growth.
  • the present invention provides a control device for a hydroponic system from the sixth invention, including a processor, and the processor is configured to: obtain plant information corresponding to nutrient solutions with different flow rates based on images of leaf parts, root parts and rhizosphere flow fields of plants, and determine the optimal flow rate of the nutrient solution based on the nutrient utilization efficiency of the plants at different flow rates.
  • FIG1 is a simplified schematic diagram of a test device according to a preferred embodiment of the present invention.
  • FIG2 is a simplified schematic diagram of a planting unit according to a preferred embodiment of the present invention.
  • FIG3 is a simplified schematic diagram of an image detection unit acquiring a plant rhizosphere flow field according to a preferred embodiment of the present invention.
  • the test device 100 includes at least a planting unit 110 and a processor 120.
  • the planting unit 110 includes at least a water pump 111 and a detachable transparent growth cultivation trough 112.
  • the water pump 111 is used to adjust the flow rate of the nutrient solution.
  • the growth cultivation trough 112 is used to provide a plant planting area.
  • the water pump 111 is connected to the processor 120 by electrical signals, and the water pump 111 is regulated by the processor 120 to adjust the flow rate of the nutrient solution.
  • the nutrient solution after the speed regulation of the water pump 111 enters the growth cultivation trough 112 to provide nutrients for the plants.
  • the processor 120 can be a processor such as a computer.
  • the processor 120 is electrically connected to the image detection unit 130 so that the processor 120 can obtain the morphological changes of the plants corresponding to the nutrient solution with different flow rates.
  • the image detection unit 130 configured in the test device 100 is used to obtain the image of the growth cultivation tank 112.
  • the image detection unit 130 acquires the image of the growth cultivation trough 112 including at least an image of the plant leaf portion, an image of the plant root portion, and an image of the rhizosphere flow field formed by the nutrient solution flowing through the plant root system.
  • the image detection unit 130 acquires the image of the rhizosphere flow field by laser development.
  • the processor 120 can determine the plant leaf area and root length based on the image acquired by the image detection unit 130.
  • the processor 120 obtains plant information corresponding to nutrient solutions of different flow rates to obtain the nutrient utilization efficiency of the plant at different flow rates, thereby determining the optimal flow rate of the nutrient solution.
  • the plant information at least includes: plant morphology and rhizosphere flow field formed by the nutrient solution flowing through the plant root system.
  • the test device 100 is also provided with a flow meter for measuring the flow rate of the nutrient solution in the growth cultivation trough 112.
  • the flow meter can be provided in the growth cultivation trough 112 or at the rear end of the growth cultivation trough 112.
  • the present invention obtains growth information of the same plant in the same growth cultivation trough 112 under different nutrient solution flow rates, and then compares the plant information under different nutrient solution flow rates to screen out the nutrient solution flow rate that allows the best plant growth, and then determines the optimal flow rate of the nutrient solution by obtaining the flow rate of the nutrient solution under the nutrient solution flow rate that allows the best plant growth.
  • the planting unit 110 may include a water pump 111, a growing cultivation trough 112, a rectifying section 113, a first water tank 114, a water injection section 115, a measuring section 116, a second water tank 117, a flow meter 118 and a three-way valve 119.
  • the water pump 111 is connected to the first water tank 114 through a pipeline.
  • One end face of the first water tank 114 is connected to one end face of the rectifying section 113.
  • the other end face of the rectifying section 113 is connected to one end of the growing cultivation trough 112.
  • the other end of the growing cultivation trough 112 is connected to the water injection section 115, which is in turn connected to the second water tank 117.
  • the second water tank 117 is connected to the water pump 111 through the three-way valve 119.
  • the vacant interface of the three-way valve 119 is used as a drain port.
  • a flow meter 118 is provided between the three-way valve 119 and the water pump 111.
  • the flow meter 118 is connected to the processor 120 in electrical signal connection.
  • the processor 120 can obtain the current flow of the water pump 111 through the flow meter 118 .
  • the nutrient solution is added to the planting unit 110 from the water injection section 115.
  • the water pump 111 works to provide power for the nutrient solution, so that the nutrient solution flows in the planting unit 110.
  • the nutrient solution circulates in the planting unit 110.
  • the planting unit 110 is equipped with a rectifying section 113, and the nutrient solution flows into the growth cultivation trough 112 through the rectifying section 113.
  • the rectifying section 113 breaks up the vortex formed by the pumping of the water pump 111, so that the nutrient solution flows through the growth cultivation trough 112 in a horizontal advection manner.
  • the water pump 111 works to provide power for the nutrient solution. Since the water pump 111 provides power for the nutrient solution by rotating the propeller, the nutrient solution flowing through the water pump 111 has a rotating vortex while flowing.
  • the rectifying section 113 can break up the vortex formed by the nutrient solution flowing through the water pump 111 by setting a grid in the flow direction of the nutrient solution, so that the nutrient solution flows along the axial direction of the growth cultivation trough 112.
  • the rectifying section 113 forms a water hole, so that the flow rate of the nutrient solution flowing to the growth cultivation tank 112 is consistent, eliminating the interference of the nutrient solution vortex and uneven flow rate on the root flow field.
  • the measuring section is provided with DO, EC, pH meter, and thermometer to measure the physical and chemical properties of the nutrient solution in real time.
  • the test device 100 is provided with a plurality of detection methods to detect the growth information of the plant, A variety of observation methods are provided to adapt to different types of plants.
  • the test device 100 can determine the optimal flow rate of the nutrient solution by observing the inorganic salt absorption rate, and then obtain the flow rate of the nutrient solution at the optimal flow rate to determine the optimal flow rate of the nutrient solution.
  • the test device 100 can select the observation method that best reflects its growth status according to the plant type.
  • the image detection unit 130 includes at least a camera 131 and an illumination component 132.
  • the image detection unit 130 can be provided with a plurality of cameras 131 to respectively capture images of plant leaf parts and plant root parts.
  • the camera 131 simultaneously captures images of plant rhizosphere flow fields when capturing images of plant root parts.
  • tracer particles 133 are mixed in the nutrient solution. After the tracer particles 133 are mixed with the nutrient solution, they enter the planting unit 110 from the water injection section 115.
  • the laser light generated by the illumination component 132 is emitted into the interior of the growth cultivation tank 112, and the tracer particles 133 in the nutrient solution are imaged by the laser irradiation, thereby representing the rhizosphere flow field formed by the current nutrient solution flowing through the plant root system in the image acquired by the image detection unit 130.
  • the density of the tracer particles 133 in water is similar to that of water.
  • the motion state of the tracer particles can reflect the motion state of the nutrient solution.
  • the tracer particles 133 are developed under laser irradiation, thereby accurately characterizing the flow field generated by the nutrient solution at the current flow rate/flow rate, and realizing the visualization of the rhizosphere flow field.
  • the lighting assembly 132 can illuminate the inside of the growth cultivation trough 112 in the manner of linear light source lighting, thereby forming a plane along the flow direction of the nutrient solution inside the growth cultivation trough 112, and the tracer particles 133 in the plane are irradiated by the laser to be imaged.
  • the camera 131 obtains an image inside the growth cultivation trough 112 from one side of the growth cultivation trough 112.
  • the image inside the growth cultivation trough 112 includes an image of the plant root system and an image of the plant rhizosphere flow field.
  • the lighting assembly 132 can illuminate different planes inside the growth cultivation trough 112 by scanning with a line light source.
  • the camera 131 continuously shoots as the scanning light moves, thereby obtaining images at different positions of the same rhizosphere flow field.
  • the processor 120 can obtain a three-dimensional model of the rhizosphere flow field based on the images at different positions of the same rhizosphere flow field obtained using a preset modeling program.
  • the lighting assembly 132 can illuminate the inside of the growth cultivation tank 112 by means of a surface light source, so that the tracer particles 133 in the growth cultivation tank 112 are all imaged due to the laser irradiation.
  • the image detection unit 130 simultaneously uses at least two cameras 131 with non-parallel shooting angles.
  • the growth cultivation trough 112 is photographed to obtain images of the same rhizosphere flow field at different shooting angles.
  • a three-dimensional model of the rhizosphere flow field can be modeled through a preset program.
  • the water pump 111 is electrically connected to the processor 120.
  • the processor 120 can generate nutrient solutions with different flow rates by adjusting the working state of the water pump 111.
  • the processor 120 obtains plant information corresponding to nutrient solutions with different flow rates through the image detection unit 130 to evaluate the nutrient utilization efficiency of the plant under the nutrient solution flow rate, thereby screening out the nutrient solution flow rate with the best nutrient utilization efficiency, and then determining the optimal flow rate of the nutrient solution through the flow meter set in the growth cultivation tank 112.
  • the processor 120 can determine the leaf area and root length of the plant according to the image acquired by the image detection unit 130, and evaluate the promoting effect of the corresponding nutrient solution flow rate on the plant growth according to the leaf area and root length of the plant.
  • the plant used for the optimal flow rate test of the hydroponic cultivation nutrient solution may be beet 200.
  • the plant used for the optimal flow rate test of the hydroponic cultivation nutrient solution may also be lettuce, wheat, tomato, etc.
  • a plurality of beets 200 are arranged in a planting area above the growing cultivation trough 112, and the nutrient solution flows through the growing cultivation trough 112 to provide nutrients for the beets 200.
  • the test device 100 when conducting the optimum flow rate test of the nutrient solution of the beet 200 , the test device 100 respectively tests the nutrient solution with a flow rate of 0 to 10 L/min.
  • the processor 120 adjusts the flow rate of the water pump 111 and collects the growth information of the beet 200 through the image detection unit 130 .
  • each group of test devices 100 only has a difference in the flow rate of the nutrient solution.
  • the nutrient solution can be OAT fertilizer.
  • the beets 200 cultivated in each group of test devices 100 are harvested after 14 days, and the fresh weight, dry weight, leaf area and root length of the plants are measured.
  • the leaf area and root length of the plants can be obtained by the plant image taken by the image detection unit 130.
  • the nutritional components of the plants can also be measured.
  • the dried plants are crushed, and the total nitrogen content in the stem and leaf part or the root part of the plants is measured using an organic element analyzer (CN corder JM1000CN, J-SCIENCE GROUR Tokyo).
  • the contents of elements such as phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) are measured using an inductively coupled plasma mass spectrometer (ICP-MS Agilent 8900, Agilent Technologies Inc., Santa Clara, CAZ USA).
  • the nutrient uptake by the whole plant is calculated based on the dry weight of the plant and the content of each nutrient element.
  • the nutrient utilization efficiency of each nutrient element is calculated by dividing the dry weight value by the nutrient uptake value of the whole plant. to calculate.
  • test data with flow rates of 2L/min, 4L/min, 6L/min, and 8L/min for the water pump 111 are taken as examples.
  • flow rates 2L/min, 4L/min, 6L/min, and 8L/min for the water pump 111 are taken as examples.
  • the leaf area increased by 12.8% when the nutrient solution flow rate increased from 2L/min to 4L/min, but the leaf area decreased as the flow rate increased from 4L/min to 8L/min. Compared with 4L/min, the leaf area decreased by 27.1% and 45.9% at the rates of 6L/min and 8L/min, respectively.
  • the average dry weight of the plants increased with the increase of the nutrient solution flow rate.
  • the average dry weight of the plants decreased with the increase of the nutrient solution flow rate, especially when the nutrient solution flow rate was 8L/min, the dry weight of the plants decreased significantly, which was 30.0% lower than the dry weight of the plants with a nutrient solution flow rate of 4L/min.
  • the change in root length of plants grown under different nutrient solution flow rates is that as the nutrient solution flow rate increases from 2L/min to 4L/min, the root length increases by 36.4%. However, as the nutrient solution flow rate increases from 4L/min to 8L/min, the root length decreases. Compared with the nutrient solution flow rate of 4L/min, the root length of nutrient solution flow rates of 6L/min and 8L/min decreased by 29.6% and 50.3%, respectively.
  • Leaf area was significantly positively correlated with plant freshness, dry weight, root length and nutrient (N, Mg, K, Ca, S) absorption. Root length was strongly positively correlated with plant fresh weight, leaf area and nutrient (K and P) absorption. Fresh weight was significantly positively correlated with nutrient (N, Mg, K and S) absorption, and dry weight was significantly correlated with all nutrient absorption, especially nitrogen absorption.
  • Crop yields can be increased by adjusting the flow rate.
  • the appropriate flow rate allows the roots and inorganic salt ions in the nutrient solution to have sufficient contact time and collision frequency. This can promote the plant's absorption of nutrients, thereby increasing plant growth.
  • Increasing the nutrient solution flow rate will promote the diffusion of the nutrient solution and affect the transport of inorganic salt ions to the root surface, but too fast a nutrient solution flow rate may cause excessive physical stimulation to the plant, which may have a negative impact on plant growth.
  • the optimal flow rate is determined from the perspective of considering both production and nutrient utilization efficiency. Test results show that the optimal flow rate of the nutrient solution is 6 L/min.
  • the processor 120 obtains the flow rate of the nutrient solution in the growth cultivation tank 112 when the nutrient solution flow rate is 6 L/min through a flow meter to determine the optimal flow rate of the nutrient solution.
  • the structure of the growth cultivation tank 112 in this embodiment is the same as the cultivation tank structure used for hydroponic cultivation in a plant factory.
  • the flow rate of the nutrient solution in the plant factory can be set to promote plant growth.
  • the processor 120 can summarize the test data to obtain the absorption efficiency of each element by the plant under different nutrient solution flow rates.
  • the plant factory can adjust the test data summarized by the processor. Control the flow rate of nutrient solution to promote the absorption of this element by plants.
  • the plant factory can reduce the nutrient solution flow rate to the nutrient solution flow rate in the growth cultivation trough 112 corresponding to the nutrient solution flow rate of 4L/min in the experimental device 100, thereby promoting the absorption of calcium by the beet while avoiding weakening the growth-promoting effect of the nutrient solution flow on the plant as much as possible.
  • plant factories will change the culture tank structure and nutrient solution type according to production needs.
  • the optimal flow rate of the nutrient solution previously tested may not be the optimal flow rate of the nutrient solution suitable for the existing plant factory.
  • the test device 100 can replace the growth cultivation tank 112 with a growth cultivation tank 112 with the same structure as the existing culture tank for testing, and only the flow rate of the water pump 111 needs to be adjusted, without waiting for the plants to grow, which greatly saves the test time.
  • the processor 120 can obtain an image of the plant rhizosphere flow field through the image detection unit 130.
  • the processor 120 can determine the rhizosphere flow field image of the plant when the nutrient solution is at the optimum flow rate through the image obtained by the image detection unit 130, and the rhizosphere flow field image can be used as a criterion for the optimum flow rate to determine the optimum flow rate of the plant in the cultivation tanks 112 with different structures.
  • the processor 120 stores the image of the rhizosphere flow field corresponding to the optimum flow rate as historical data.
  • the historical data at least includes: the image of the rhizosphere flow field, the type of plant in the image of the rhizosphere flow field, and the parameters of the nutrient solution in the image of the rhizosphere flow field.
  • the processor 120 obtains a database consisting of images of rhizosphere flow fields corresponding to plant species, nutrient solution types and optimal flow rates by summarizing historical data.
  • the image of the rhizosphere flow field corresponding to the optimum flow rate can be determined according to the database.
  • the rhizosphere flow field image detected by the image detection unit 130 matches the corresponding rhizosphere flow field image, the optimum flow rate of the nutrient solution can be determined, thereby saving test time.
  • the method provided in this embodiment only needs to adjust the nutrient solution flow rate, so that when the rhizosphere flow field image detected by the image detection unit 130 is consistent with the corresponding rhizosphere flow field image, the optimum flow rate of the nutrient solution can be determined. It only needs to match the rhizosphere flow field image in the database, while the method of observing plant morphology or ion concentration of nutrient solution requires observing plant growth to determine the optimal flow rate of the nutrient solution. A single experiment usually takes more than several days.
  • the processor 120 adjusts the working mode of the water pump 111 so that the rhizosphere flow field formed by the nutrient solution flowing through the plant roots conforms to the image of the rhizosphere flow field in the historical data, thereby determining the optimum flow rate of the nutrient solution.
  • the processor 120 may use the image acquired by the image detection unit 130 as a standard image.
  • the processor 120 can obtain the image corresponding to the optimum flow rate as the standard image according to the image detection unit 130.
  • the test device 100 tests that the optimum flow rate of the nutrient solution is the flow rate of the nutrient solution in the growth cultivation tank 112 when the flow rate of the water pump 111 is 6 L/min.
  • the processor 120 stores the image of the rhizosphere flow field with a nutrient solution flow rate of 6 L/min taken by the image detection unit 130 as historical data.
  • the processor 120 uses the image of the rhizosphere flow field with a nutrient solution flow rate of 6 L/min as a standard image.
  • the processor 120 sends an instruction to the water pump 111 to change the flow rate of the nutrient solution, and the processor 120 obtains rhizosphere flow field images corresponding to different nutrient solution flow rates through the image detection unit 130.
  • the processor 120 compares the obtained rhizosphere flow field images corresponding to different nutrient solution flow rates with the standard image.
  • the nutrient solution flow rate corresponding to the rhizosphere flow field image is the optimal flow rate of the nutrient solution
  • the optimal flow rate of the nutrient solution in the corresponding growth cultivation tank 112 is the optimal flow rate of the existing cultivation tank in the plant factory.
  • the cross section of the original culture tank in the plant factory is a rectangle with a length of 50 cm and a width of 20 cm.
  • the flow rate of the nutrient solution in the growth cultivation tank 112 when the nutrient solution flow rate is 6 L/min is the optimal flow rate of the nutrient solution in the plant factory.
  • the processor 120 uses the image of the rhizosphere flow field with a nutrient solution flow rate of 6 L/min as the standard image.
  • the test device 100 replaces the growth cultivation tank 112 with a rectangular culture tank with a cross-section length of 100 cm and a width of 25 cm.
  • the processor 120 sends a command to the water pump 111 to change the flow rate of the nutrient solution, and the processor 120 obtains the rhizosphere flow field image corresponding to the different nutrient solution flow rates through the image detection unit 130.
  • the image of the rhizosphere flow field with a nutrient solution flow rate of 8L/min obtained by the processor 120 is consistent with the standard image, then 8L/min is the optimal flow rate of the nutrient solution, and the optimal flow rate of the nutrient solution in the growth cultivation trough 112 when the nutrient solution flow rate is 8L/min is the optimal flow rate of the plant factory when the cultivation trough is replaced with a rectangular cultivation trough with a cross-section length of 100cm and a width of 25cm.
  • Embodiment 1 is a further improvement on Embodiment 1, and repeated contents will not be repeated here.
  • This embodiment provides a method for testing the optimum flow rate of a hydroponic nutrient solution.
  • the test method includes:
  • a plant planting area is provided by a detachable transparent growth cultivation trough 112; a water pump 111 is used to adjust the flow rate of the nutrient solution; and a processor 120 is used to obtain plant information corresponding to nutrient solutions of different flow rates to evaluate the nutrient utilization efficiency of the plant at the flow rate, thereby determining the optimal flow rate of the nutrient solution.
  • the plant information includes at least one of: plant morphology, plant fresh weight, plant dry weight, and inorganic salt absorption rate.
  • the test method further comprises: acquiring an image of the growth cultivation trough 112 by the image detection unit 130.
  • the image of the growth cultivation trough 112 acquired by the image detection unit 130 comprises at least an image of a plant leaf portion, an image of a plant root portion, and an image of a rhizosphere flow field formed by the nutrient solution flowing through the plant root system.
  • the water pump 111 is electrically connected to the processor 120.
  • the processor 120 can adjust the working state of the water pump 111 to generate nutrient solutions with different flow rates.
  • the processor 120 obtains plant information corresponding to nutrient solutions with different flow rates through the image detection unit 130 to evaluate the nutrient utilization efficiency of the plant under the nutrient solution flow rate, thereby screening out the nutrient solution flow rate with the best nutrient utilization efficiency, and then determines the optimal flow rate of the nutrient solution through the flow meter set in the growth cultivation tank 112.
  • the processor 120 can determine the leaf area and root length of the plant according to the image acquired by the image detection unit 130, and evaluate the promoting effect of the corresponding nutrient solution flow rate on the plant growth according to the leaf area and root length of the plant.
  • the processor 120 can summarize the test data to obtain the absorption efficiency of each element by the plant under different nutrient solution flow rates.
  • the plant factory can adjust the test data summarized by the processor. Regulate the flow rate of nutrient solution to promote the absorption of this element by plants.
  • the processor 120 stores the image of the rhizosphere flow field corresponding to the optimum flow rate as historical data.
  • the historical data at least includes: the image of the rhizosphere flow field, the type of plant in the image of the rhizosphere flow field, and the parameters of the nutrient solution in the image of the rhizosphere flow field.
  • the processor 120 obtains a database consisting of images of rhizosphere flow fields corresponding to plant species, nutrient solution types and optimal flow rates by summarizing historical data.
  • the processor 120 may use the image acquired by the image detection unit 130 as a standard image.
  • the processor 120 adjusts the working mode of the water pump 111 so that the rhizosphere flow field formed by the nutrient solution flowing through the plant roots conforms to the image of the rhizosphere flow field in the historical data, thereby determining the optimum flow rate of the nutrient solution.
  • the test device 100 can replace the growth cultivation tank 112 with a growth cultivation tank 112 with the same structure as the existing culture tank for testing, and only the flow rate of the water pump 111 needs to be adjusted, without waiting for the plants to grow, which greatly saves the test time.
  • Embodiment 1 is a further improvement based on Embodiment 1 and Embodiment 2, and the repeated contents will not be repeated here.
  • a hydroponic method comprises: determining the hydroponic plant variety, the hydroponic growing and cultivating tank and the growth stage of the plant; planting the plant in the growing and cultivating tank; determining the hydroponic nutrient solution; using the optimal flow rate obtained from the experiment to grow and cultivate the hydroponic plant at the growth stage and re-determining the optimal flow rate when the growth stage changes and/or the growing and cultivating tank changes.
  • an image of the growth cultivation tank including at least plant information for evaluating the effect of the flow rate of the nutrient solution on promoting plant growth is acquired.
  • the test hydroponic plant variety is placed in a growth culture tank during the growth stage, and the plant is cultured using the optimal flow rate of the hydroponic nutrient solution, including: using nutrient solutions with at least two flow rates.
  • the plant strains are collected and the plant information used to evaluate the effect of the nutrient solution flow rate on the plant growth promotion effect is measured.
  • the plant information includes one of plant fresh weight, dry weight, root length, leaf area, and element content.
  • the nutrient solution is mixed with tracer particles 133.
  • the tracer particles 133 in the nutrient solution are developed by laser development to characterize the rhizosphere flow field of the plant, thereby acquiring an image including the rhizosphere flow field.
  • the hydroponic method further comprises: after determining the optimum flow rate of the nutrient solution, storing the image of the rhizosphere flow field corresponding to the optimum flow rate as historical data.
  • the rhizosphere flow field formed by the nutrient solution flowing through the plant root system is made to conform to the image of the rhizosphere flow field in the historical data to determine the optimum flow rate of the nutrient solution.
  • the flow of the culture solution is not only affected by the shape of the culture device, but also by the growth condition of the plant root system.
  • the image of the growth cultivation tank 112 acquired by the image detection unit 130 includes an image of the plant root system.
  • the processor 120 can acquire the image of the growth cultivation tank 112 through the image detection unit 130 to collect the morphology of the plant roots. When the morphological difference of the roots exceeds a set threshold, it is necessary to redetermine the optimal flow rate.
  • the root morphology can be the initial root length, root area, curvature, etc. of the plant root system at the beginning of the experiment.
  • the preset threshold can be set by accumulating a large amount of test data and combining theoretical calculations.
  • the preset threshold can be set between 5% and 10%.
  • the preset threshold can be set to 6%.
  • the difference in the morphology of the plant root system is the similarity between the morphology of the plant root under test and the morphology of the root system in the historical data.
  • the similarity is lower than 94%, the optimum flow rate needs to be re-determined.
  • Embodiment 1 is a further improvement based on Embodiment 1, Embodiment 2 and Embodiment 3, and the repeated contents will not be repeated here.
  • the hydroponic system includes at least a test section and a growth section.
  • the test section is provided with a hydroponic cultivation nutrient solution flow rate test device provided by the present invention.
  • the growth section includes at least a culture tank connected to the nutrient solution circulation flow path of the test device through a connecting valve. After the test section uses the test device to test the optimal flow rate, the nutrient solution circulation flow path of the test device is cut off, and the connecting valve is opened so that the test section can The nutrient solution in the test device flows through the culture tank and then flows back to the test device to cultivate and grow the plants planted in the culture tank.
  • the water inlet of the culture tank can be connected to between the three-way valve 119 and the second water tank 117 through a valve.
  • the water outlet of the culture tank can be connected to between the three-way valve 119 and the flow meter 118 through a valve.
  • the valve connecting the water inlet/outlet of the culture tank is closed, and the nutrient solution circulates in the test device 100, so that the test of the optimal flow rate is carried out with less nutrient solution.
  • the three-way valve 119 is closed, and the valve connecting the water inlet/outlet of the culture tank is opened, so that the test device 100 is connected to the culture tank to form a circulating flow path.
  • the staff adds nutrient solution to the water injection section 115 so that the nutrient solution fills the test device 100 and the culture tank.
  • the cross-sectional shape of the culture tank and the growth cultivation tank 112 in the direction perpendicular to the flow of the nutrient solution is the same, and the water inlet of the culture tank is also connected to a rectifying section 113, so that when the nutrient solution flows in the flow path formed by the test device 100 and the culture tank, the nutrient solution in the growth cultivation tank 112 has similar physical and chemical properties to the nutrient solution in the culture tank, so that the growth of the plants in the growth cultivation tank 112 can reflect the growth of the plants in the culture tank.
  • the processor 120 can monitor the growth of the plants in the growth cultivation tank 112 through the image detection unit 130 to obtain the growth of the plants in the culture tank, thereby adjusting the flow rate of the nutrient solution according to the monitored growth of the plants, or adjusting other devices connected to the processor 120 by electrical signals, and adjusting the parameters such as light, humidity, and temperature in the plant growth environment, thereby promoting the growth of the plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Environmental Sciences (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Hydroponics (AREA)

Abstract

本发明涉及一种水耕栽培营养液流速试验装置、水培***及控制装置。试验装置包括种植单元、处理器和图像检测单元;图像检测单元采集种植单元中的植物的叶片部分、根系部分和根际流场的图像;处理器根据植物的叶片部分、根系部分和根际流场的图像获取与不同流速的营养液对应的植物信息,根据植物在不同流速下的养分利用效率来确定营养液的最适流速。针对现有的栽培容器的形状和尺寸存在差异,导致各项试验得到的最适流速不能直接应用于生产。本发明通过对植物的根际流场的图像来调节流速,能够获得适用于不同栽培容器的最适流速,摆脱了栽培容器的影响,使得植株能够以恰当的营养液流速来生产。

Description

一种水耕栽培营养液流速试验装置、水培***及控制装置 技术领域
本发明涉及植物工厂技术领域,尤其涉及一种水耕栽培营养液流速试验装置、水培***及控制装置。
背景技术
水培与其他栽培方式相比,最显著的区别就是水培的栽培基质是流体。栽培基质的不同会导致根系环境不同,并且植物营养向根表面的运移方式也会因栽培基质而异。在土壤等固体基质栽培中,无机盐离子通常通过根系截获、扩散和质流的方式到达根表面以被植物吸收。而在水培中,除以上三种运移方式之外,可流动的栽培基质(水培营养液)还允许无机盐离子通过湍流扩散(流体颗粒的不规则运动)的方式被输送到根表面。栽培容器内营养液流动状态会影响湍流扩散强度来影响营养液的循环扩散及其与根表面的碰撞接触,进而影响水培植物的养分吸收和生长品质。
在水培中,通过调节营养液流量可以提高蔬菜产量和品质,但流量设定过快或过慢,产量都不会得到充分提高,而加快流量会增加水泵耗电和运营成本。水培营养液流量调控,关系到蔬菜产量和水肥资源利用以及电力能源消耗。以尽可能少的资源、能源投入量获取更多的作物产量,通过合理的农艺管理来提高资源利用效率,是设施园艺农业生产的目标之一。因此,对水耕栽培中营养液流动对蔬菜生长的影响机理进行研究,并基于研究结果总结出水耕栽培营养液流量调控方法是非常必要的。
以往的研究结果表明,存在使作物收获量最大化的最适流量。在最适流量条件下,根系和无机盐离子的碰撞频率合理,植物可吸收更多养分促进植物生长。
公开号为CN112167037A的专利公开了一种农用水培托盘。更具体地说,水培托盘可以控制流经其中的液体。所述托盘包括:用于流体流入的入口端和用于流体流出的出口端;在所述入口端和所述出口端之间连续延伸的用于流体流动的槽;以及至少一个横向延伸穿过槽的流体调节器装置,其中每个流体调节器装置包括一个闸门板,其适于使流体以预定的流速通过该面 板,以及一个可相对于闸门板移动以改变通过流体调节器的流体流速的控制板。
公开号为CN113940262A的专利公开了一种水培种植装置,包括盆体和盆盖,盆盖具有数个插孔,所述水培种植装置还包括栽培篮和功能模块,栽培篮具有排水孔;所述插孔内可拆卸式安装栽培篮或功能模块,功能模块包括水泵模块、环境参数传感模块中的至少一种。所述水泵模块包括水泵主体和流量调节板,水泵主体的底部具有进水口,水泵主体的侧部具有出水口;流量调节板转动配合于水泵主体,以调节进水口的流量。
但是,现有研究者使用的栽培容器的形状和尺寸没有详细说明。如果栽培容器尺寸变了,即使流量相同,流动状态也有可能不一致。这使得各个研究得出的“最适流量”的数值并不相同,其结果是否能通用在尺寸不同的容器上也存在疑问。而且不同种类的植物,以及相同种类不同生长期的植物的最适流量也有可能不一致。
此外,一方面由于对本领域技术人员的理解存在差异;另一方面由于申请人做出本发明时研究了大量文献和专利,但篇幅所限并未详细罗列所有的细节与内容,然而这绝非本发明不具备这些现有技术的特征,相反本发明已经具备现有技术的所有特征,而且申请人保留在背景技术中增加相关现有技术之权利。
发明内容
现有技术因为研究者使用的栽培容器的形状和尺寸存在差异,从而导致各研究得出的“最适流量”的数值也存在差异,使得各“最适流量”不能直接应用于实际生产,但是植物在各“最适流量”下的营养液的流场状态(包括但不仅限于营养液流速、温度、密度等)是相似的,所以研究人员可以通过获取植物在“最适流量”下的营养液流速以确定物的“最适流速”,并依据“最适流速”进行实际生产。因此需要一种能够测试植物最适流速的装置。
针对现有技术之不足,本发明从第一方面提供了一种水耕栽培营养液流速试验装置,试验装置至少包括种植单元和处理器。种植单元至少包括水泵和可拆卸的透明的生长栽培槽,水泵用于调节营养液的流速,生长栽培槽用于提供植物种植区域。处理器获取不同流速的营养液对应的植物信息,以获取植物在不同流速下的养分利用效率,从而确定营养液的最适流速。优选地, 植物信息至少包括:植株形态和营养液流经植物根系形成的根际流场。优选地,试验装置还设置有流速计,用于测量生长栽培槽中营养液的流速。
优选地,本发明通过获取同一植物在同一生长栽培槽在不同营养液流量情况下的生长信息,再对不同营养液流量情况下的植物信息进行比较,从而筛选出使得植物生长最佳的营养液流量,再通过获取使得植物生长最佳的营养液流量下营养液的流速,以确定营养液的最适流速。
根据一种优选实施方式,试验装置还配置有用于获取生长栽培槽图像的图像检测单元。图像检测单元与处理器电信号连接,使得处理器获得不同流速的营养液对应的植株的形态变化。
优选地,试验装置设置有多种检测方式对物生长信息进行检测,提供了多种观测手段,可以适配不同种类的植株。当植株在不同营养液流量下的植株形态不具有明显差异时,试验装置可以通过观测无机盐吸收率来判断确定营养液的最适流量,进而确定营养液的最适流速。优选地,试验装置可以根据植物种类选择最能反应其生长状态的观测手段。
根据一种优选实施方式,图像检测单元获取生长栽培槽的图像至少包括植物叶片部分的图像、植物根系部分的图像以及营养液流经植物根系形成的根际流场的图像。优选地,图像检测单元通过激光显影的方式获取根际流场的图像。
优选地,处理器可以根据图像检测单元获取的图像确定植物叶面积和根长,以评价相应营养液流量对植物生长的促进效果。优选地,处理器可以通过图像检测单元获取植物根际流场的图像。优选地,当试验装置确定营养液的最适流速后,处理器可以通过图像检测单元获取的图像,确定营养液处于最适流速时植物的根际流场图像,并且该根际流场图像可以作为最适流速的评判标准以确定,植物在不同结构生长栽培槽中的最适流速。
根据一种优选实施方式,营养液中混合有示踪粒子,图像检测单元至少包括摄像头和照明组件。优选地,照明组件产生的激光光线射入生长栽培槽内部,营养液中的示踪粒子受到激光照射而显像,从而在图像检测单元获取的图像中表征当前营养液流经植物根系形成的根际流场。
优选地,示踪粒子在水中的密度与水相近,示踪粒子与营养液混合后,示踪粒子的运动状态可以反应营养液的运动状态。优选地,示踪粒子在激光 照射下显影,从而准确表征当前营养液产生的流场,实现根际流场的可视化。
根据一种优选实施方式,处理器在确定营养液的最适流速后,将获取的最适流速对应的根际流场的图像作为历史数据进行存储。优选地,历史数据至少包括:根际流场的图像,根际流场的图像中植物的种类,以及根际流场的图像中营养液的参数。优选地,处理器通过汇总历史数据,得到由植物种类、营养液种类和最适流速对应的根际流场的图像组成的数据库。
在试验营养液最适流速时,对于任意结构的生长栽培槽,在确定植物种类和营养液种类的情况下,都可以根据数据库可以确定相应的最适流速对应的根际流场的图像。当图像检测单元检测到的根际流场图像与对应的根际流场的图像吻合时,即可确定营养液的最适流速,从而可以节省试验时间,相较于观测植物形态或者营养液离子浓度的方式,本发明提供的方式只需要调节营养液流速,使得当图像检测单元检测到的根际流场图像与数据库中的根际流场图像吻合即可,而观测植物形态或者营养液离子浓度的方式需要观测植物生长才能确定营养液的最适流速,单次试验耗费时间通常在数日以上。
根据一种优选实施方式,水泵与处理器电信号连接。在已确定营养液的最适流速且仅更换不同形状的生长栽培槽进行试验的情况下,处理器调节水泵的工作方式,使得营养液流经植物根系形成的根际流场的图像符合历史数据中的根际流场的图像,从而确定营养液的最适流速。
优选地,确定某一结构的生长栽培槽的最适流速后,处理器可以根据图像检测单元获取的图像作为标准图像。
根据一种优选实施方式,种植单元配置有整流段,营养液在经整流段流入生长栽培槽。整流段将营养液因水泵泵送形成的涡流击碎,使得营养液以横向平流的方式流经生长栽培槽。
优选地,水泵工作,为营养液提供动力,由于水泵是通过螺旋桨转动为营养液提供动力,使得流经水泵的营养液在流动的同时,存在旋转的涡流。整流段可以通过在营养液流动方向上设置格栅的方式,将营养液流经水泵形成的涡流击碎,使得营养液沿生长栽培槽轴向流动。
换言之,由于水泵中螺旋桨的转动,使得流经水泵的营养液流速分布不均。优选地,整流段构成水洞,使得流向生长栽培槽的营养液流速一致,消除营养液漩涡和流速不均对根系流场的干扰。
本发明从第二方面提供一种水耕栽培营养液最适流速试验方法。试验方法至少包括:
通过可拆卸的透明的生长栽培槽提供植物种植区域;
通过水泵用于调节营养液的流速;
通过处理器获取不同流速的营养液对应的植物信息,以评价植物在该流速下的养分利用效率,从而确定营养液的最适流速;
其中,植物信息包括:植株形态、植株鲜重,植株干重、无机盐吸收率中的一种。
根据一种优选实施方式,试验方法还包括:
通过图像检测单元获取生长栽培槽图像;
其中,图像检测单元获取生长栽培槽的图像至少包括植物叶片部分的图像、植物根系部分的图像以及营养液流经植物根系形成的根际流场的图像。
本发明从第三方面还提供一种水培方法。水培方法至少包括:
确定水培植物品种、水培的生长栽培槽和植物的生长阶段;
将植物栽入生长栽培槽中;
确定水培营养液;
试验水培植物品种在生长阶段位于生长培养槽中,利用水培营养液的最适流速;
利用试验得到的最适流速进行水培植物在该生长阶段的生长培养并在生长阶段改变和/或生长培养槽改变时重新确定最适流速。
优选地,在进行营养液最适流速试验时,获取至少包括用于评价营养液流速对植物生长促进效果的植物信息的生长栽培槽中的图像。
根据一种优选实施方式,试验水培植物品种在生长阶段位于生长培养槽中,利用水培营养液的最适流速,至少包括:
利用至少两种流速的营养液对植物进行培养;
培养结束后,收集植物,测定用于评价营养液流速对植物生长促进效果的植物信息。
优选地,植物信息至少包括植物鲜重、干重、根长、叶面积、元素含量中的一种。
根据一种优选实施方式,营养液中混合有示踪粒子;
获取生长栽培槽中的图像时,通过激光显影的方式使得营养液中的示踪粒子显像以表征植物的根际流场,从而获取包含根际流场的图像。
根据一种优选实施方式,水培方法还包括:
在确定营养液的最适流速后,将获取的最适流速对应的根际流场的图像作为历史数据进行存储;
在因生长培养槽改变而重新确定营养液最适流速的情况下,使营养液流经植物根系形成的根际流场符合历史数据中的根际流场的图像,以确定营养液的最适流速。
本发明从第四方面还提供一种水培***。优选地,水培***至少包括试验段和生长段,其中,试验段设置本发明提供的水耕栽培营养液流速试验装置。试验装置包括种植单元、处理器和图像检测单元;图像检测单元采集种植单元中的植物的叶片部分、根系部分和根际流场的图像。处理器根据植物的叶片部分、根系部分和根际流场的图像获取与不同流速的营养液对应的植物信息,根据植物在不同流速下的养分利用效率来确定营养液的最适流速。生长段至少包括通过连接阀连接试验装置营养液循环流路的培养槽。试验段利用试验装置试验出最适流速后,切断试验装置的营养液循环流路,开启连接阀,使得试验装置中的营养液流经培养槽后回流至试验装置,以对培养槽中种植的植物进行栽培生长。
根据一个优选实施方式,处理器获取同一植物在不同营养液流量情况下的生长信息,对在不同营养液流量情况下的植物信息进行比较,从而筛选出使得植物生长最佳的营养液流量,通过获取与使得植物生长最佳的营养液流量对应的营养液的流速,以确定营养液的最适流速。
本发明从第六发明提供一种水培***的控制装置,包括处理器,处理器被配置为:根据植物的叶片部分、根系部分和根际流场的图像获取与不同流速的营养液对应的植物信息,根据植物在不同流速下的养分利用效率来确定营养液的最适流速。
附图说明
图1是本发明提供的一种优选实施方式的试验装置的简化示意图;
图2是本发明提供的一种优选实施方式的种植单元的简化示意图;
图3是本发明提供的一种优选实施方式的图像检测单元获取植物根际流场的简化示意图。
附图标记列表
100:试验装置;110:种植单元;111:水泵;112:生长栽培槽;
113:整流段;114:第一水箱;115:注水段;116:测量段;117:第二水箱;118:流量表;119:三通阀门;120:处理器;130:图像检测单元;131:摄像头;132:照明组件;133:示踪粒子;200:甜菜。
具体实施方式
下面结合附图1至3进行详细说明。
实施例1
本实施例提供了一种水耕栽培营养液流速试验装置100。参见图1,优选地,试验装置100至少包括种植单元110和处理器120。种植单元110至少包括水泵111和可拆卸的透明的生长栽培槽112。水泵111用于调节营养液的流速。生长栽培槽112用于提供植物种植区域。水泵111与处理器120电信号连接,水泵111受处理器120的调控以调节营养液的流速。经水泵111调速后的营养液进入生长栽培槽112为植物提供养分。优选地,处理器120可以是电脑等处理器。
处理器120与图像检测单元130电信号连接,使得处理器120可以获得不同流速的营养液对应的植株的形态变化。优选地,试验装置100配置的图像检测单元130用于获取生长栽培槽112图像。
优选地,图像检测单元130获取生长栽培槽112的图像至少包括植物叶片部分的图像、植物根系部分的图像以及营养液流经植物根系形成的根际流场的图像。优选地,图像检测单元130通过激光显影的方式获取根际流场的图像。优选地,处理器120可以根据图像检测单元130获取的图像确定植物叶面积和根长。
优选地,处理器120获取不同流速的营养液对应的植物信息,以获取植物在不同流速下的养分利用效率,从而确定营养液的最适流速。优选地,植物信息至少包括:植株形态和营养液流经植物根系形成的根际流场。优选地,试验装置100还设置有流速计,用于测量生长栽培槽112中营养液的流速。优选地,流速计可以设置在生长栽培槽112中或者生长栽培槽112的后端。
优选地,本发明通过获取同一植物在同一生长栽培槽112在不同营养液流量情况下的生长信息,再对不同营养液流量情况下的植物信息进行比较,从而筛选出使得植物生长最佳的营养液流量,再通过获取使得植物生长最佳的营养液流量下营养液的流速,以确定营养液的最适流速。
优选地,种植单元110可以包括水泵111、生长栽培槽112、整流段113、第一水箱114、注水段115、测量段116、第二水箱117、流量表118和三通阀门119。参见图2,优选地,水泵111通过管道连接第一水箱114。第一水箱114的一个端面连接整流段113的一个端面。整流段113另一端面连接生长栽培槽112的一端。生长栽培槽112的另一端连接注水段115,注水段又连接第二水箱117。第二水箱117通过三通阀门119连接水泵111。优选地,三通阀门119空置的接口作为排水口。优选地,三通阀门119与水泵111之间设置有流量表118。优选地,流量表118与处理器120电信号连接。优选地,处理器120可以通过流量表118获取水泵111当前的流量。
优选地,营养液从注水段115中加入种植单元110。水泵111工作为营养液提供动力,使得营养液在种植单元110中流动。优选地,营养液在种植单元110中循环流动。优选地,种植单元110配置有整流段113,营养液在经整流段113流入生长栽培槽112。整流段113将营养液因水泵111泵送形成的涡流击碎,使得营养液以横向平流的方式流经生长栽培槽112。
优选地,水泵111工作,为营养液提供动力,由于水泵111是通过螺旋桨转动为营养液提供动力,使得流经水泵111的营养液在流动的同时,存在旋转的涡流。整流段113可以通过在营养液流动方向上设置格栅的方式,将营养液流经水泵111形成的涡流击碎,使得营养液沿生长栽培槽112的轴向流动。
换言之,由于水泵111中螺旋桨的转动,使得流经水泵111的营养液流速分布不均。优选地,整流段113构成水洞,使得流向生长栽培槽112的营养液流速一致,消除营养液漩涡和流速不均对根系流场的干扰。
优选地,测量段设置有DO,EC,pH计,温度计来实时测量营养液理化性质。
优选地,试验装置100设置有多种检测方式对物生长信息进行检测,提 供了多种观测手段,可以适配不同种类的植株。当植株在不同营养液流量下的植株形态不具有明显差异时,试验装置100可以通过观测无机盐吸收率来判断确定营养液的最适流量,进而获取营养液在最适流量下的流速以确定营养液的最适流速。优选地,试验装置100可以根据植物种类选择最能反应其生长状态的观测手段。
优选地,图像检测单元130至少包括摄像头131和照明组件132。优选地,图像检测单元130可以设置多个摄像头131分别采集植物叶片部分的图像和植物根系部分的图像。优选地,摄像头131在采集植物根系部分的图像时同时采集植物根际流场的图像。参见图3,优选地,营养液中混合有示踪粒子133。示踪粒子133与营养液混合后从注水段115进入种植单元110。优选地,照明组件132产生的激光光线射入生长栽培槽112内部,营养液中的示踪粒子133受到激光照射而显像,从而在图像检测单元130获取的图像中表征当前营养液流经植物根系形成的根际流场。优选地,示踪粒子133在水中的密度与水相近。在示踪粒子133与营养液混合后,示踪粒子的运动状态可以反应营养液的运动状态。优选地,示踪粒子133在激光照射下显影,从而准确表征当前流速/流量的营养液产生的流场,实现根际流场的可视化。
参见图3,优选地,照明组件132可以以线光源照明的方式,对生长栽培槽112内部进行照明,从而在生长栽培槽112内部形成沿营养液流动方向的平面,平面内的示踪粒子133受到激光照射而得以显像。摄像头131从生长栽培槽112的一侧获取生长栽培槽112内的图像。优选地,生长栽培槽112内的图像包含植物根系部分的图像和植物根际流场的图像。
优选地,照明组件132可以通过线光源扫描的方式照射生长栽培槽112内部的不同平面。摄像头131随着扫描光线的移动进行连续拍摄,从而获得同一根际流场的不同位置处的图像。优选地,处理器120可以基于获得的同一根际流场的不同位置处的图像,利用预设的建模程序获取根际流场的三维模型。
优选地,照明组件132可以通过面光源照明的方式照射生长栽培槽112内部,使得生长栽培槽112内的示踪粒子133都因受到激光照射而显像,此时,图像检测单元130通过至少两个拍摄角度不平行的摄像头131同时 对生长栽培槽112进行拍摄,从而获取同一根际流场在不同拍摄角度的图像。优选地,处理器120获取同一根际流场在不同拍摄角度的图像后,可以通过预设程序建模出根际流场的三维模型。
优选地,水泵111与处理器120电信号连接。优选地,在进行水耕栽培营养液最适流速试验时,处理器120可以通过调节水泵111的工作状态,从而产生不同流量的营养液。处理器120通过图像检测单元130获取不同流量的营养液对应的植物信息,以评价植物在该营养液流量下的养分利用效率,从而中筛选出养分利用效率最佳的营养液流量,再通过设置在生长栽培槽112中的流速计确定营养液的最适流速。
优选地,处理器120可以根据图像检测单元130获取的图像确定植物叶面积和根长,并根据植物叶面积和根长评价相应营养液流量对植物生长的促进效果。
优选地,进行水耕栽培营养液最适流速试验所用的植物可以是甜菜200。优选地,进行水耕栽培营养液最适流速试验所用的植物还可以是生菜、小麦、番茄等。参见图2,优选地,若干甜菜200设置在生长栽培槽112上方的种植区域中,营养液流经生长栽培槽112为甜菜200提供养分。
优选地,在进行甜菜200的营养液最适流速试验时,试验装置100对流量为0~10L/min的营养液分别进行试验。优选地,处理器120通过调节水泵111的流量,并通过图像检测单元130采集甜菜200的生长信息。
优选地,在进行试验时,设置有多组试验装置100,每组实验装置100仅存在营养液流速差异。优选地,营养液可以采用OAT肥料。优选地,每组实验装置100栽培的甜菜200在14天后收获,并测量植株的鲜重、干重、叶面积和根长等。优选地,植株的叶面积和根长可以通过图像检测单元130拍摄的植株图像得到。优选地,进行试验时,还可以测量植株的营养成分。优选地,将干燥后的植株压碎,使用有机元素分析仪(CN corder JM1000CN,J-SCIENCE GROUR Tokyo)测量植株茎叶部分或根部分中的总氮含量。使用电感耦合等离子体质谱仪(ICP-MS Agilent 8900,Agilent Technologies Inc.,Santa Clara,CAZ USA)测量磷(P)、钾(K)、钙(Ca)、镁(Mg)和硫(S)等元素的含量。根据植物的干重和每种营养元素的含量计算全株对养分的吸收。每种养分元素的养分利用效率由干重值除以全株养分吸收值 来计算。
优选地,水泵111流量分别为2L/min,4L/min,6L/min,8L/min的四组试验数据为例。优选地,汇总试验数据后,得出:
营养液流量从2L/min增加到4L/min,叶面积增加了12.8%,但随着流量从4L/min增加到8L/min,叶面积减小。与4L/min相比,6L/min和8L/min的速率下叶面积分别减少了27.1%和45.9%。
当营养液流量从2L/min增加到4L/min时,鲜重增加了26.7%。相反,随着营养液流量从4L/min增加到8L/min,鲜重减少。与4L/min的速率相比,在6L/min和8L/min的流量下生长的植物鲜重分别下降了36.2%和51.4%。
当营养液流量从2L/min增加到4L/min时,植株的平均干重随着营养液流量的增加而增加。当营养液流量从4L/min增加到8L/min时,植株的平均干重随着营养液流量的增加而降低,特别是当营养液流量为8L/min时,植物的干重显着下降,与营养液流量为4L/min的植物干重相比降低了30.0%。
在不同营养液流量下生长的植物的根长的变化是,随着营养液流量从2L/min增加到4L/min,根长增加了36.4%。然而,随着营养液流量从4L/min增加到8L/min,根长减短。与4L/min的营养液流量相比,营养液流量为6L/min和8L/min的根长分别降低了29.6%和50.3%。
叶面积与植株鲜度、干重、根长和养分(N、Mg、K、Ca、S)吸收呈极显著正相关。根长与植株鲜重、叶面积和养分(K和P)吸收呈极强正相关。鲜重与养分(N、Mg、K和S)吸收呈显著正相关,干重与所有养分吸收显著相关,尤其是与氮吸收相关。
当营养液流量从2L/min增加到4L/min时,氮的利用效率下降了3.5%。而营养液流量从4L/min增加到6L/min,从6L/min增加到8L/min;氮的利用效率分别提高了19.3%和26.0%。
磷利用效率和镁利用效率在营养液流量不同时没有显着差异。
当营养液流量从2L/min增加到4L/min时,钾利用效率降低了22.0%。营养液流量进一步增强至6L/min和8L/min时,钾利用效率分别提高了17.1%和36.6%。
随着营养液流量从2L/min增加到4L/min,钙利用效率提高了45.2%。而营养液流量从4L/min增加到6L/min,钙利用效率降低了27.6%;营养液流量从6L/min提高到8L/min,使钙利用效率增加了76.7%。
当营养液流量从2L/min增加到4L/min时,硫利用效率提高了9.2%。营养液流量从4L/min增加到6L/min,硫利用效率降低了8.5%;营养液流量从6L/min提高到8L/min,硫利用效率显着增加,达到了54%。
通过上述试验数据可以确定在一定范围内,随着营养液流量的增加,植物的生长得到增强。然而,当流量过快时,连续增加流量不利于植物的生长。优选地,植物在不同营养液流量下对不同元素的吸收利用效率存在差异。植物对不同元素的利用效率随着营养液流量变化的变化趋势存在不同。例如,当营养液流量从2L/min增加到4L/min时,植物对氮和钾的利用效率降低。当营养液流量从4L/min增加到8L/min时,植物对氮和钾的利用效率增加。当营养液流量从2L/min增加到4L/min时,植物对钙的利用效率增加。当营养液流量从4L/min增加到6L/min时,植物对钙的利用效率降低。当营养液流量从6L/min增加到8L/min时,植物对钙的利用效率增加。
通过调节流速可以提高作物产量。适宜的流速使得营养液中的根和无机盐离子具有充足的接触时间和碰撞频率。这可以促进植物对养分的吸收,从而增加植物生长。增加营养液流速会促进营养液扩散并影响无机盐离子向根表面的运输,但营养液流速过快可能对植物产生过度的物理刺激,可能会对植物生长产生负面影响。
优选地,如果从同时考虑生产和养分利用效率的角度确定最佳流速。试验结果表明,营养液的最佳流量为6L/min。优选地,处理器120通过流速计获取营养液流量为6L/min时生长栽培槽112中的营养液流速,即可确定营养液的最适流速。
优选地,本实施例中的生长栽培槽112的结构与植物工厂进行水耕栽培所用的培养槽结构相同。利用本试验装置100获得营养液的最适流速后,即可对植物工厂中的营养液流速进行设置,从而促进植物生长。
优选地,在处理器120可以对试验数据进行汇总,从而得到不同营养液流速下植物对各元素的吸收效率。优选地,当植物工厂中的植物因缺少某一元素而发生病变或生长不佳时,植物工厂可以根据处理器汇总的试验数据调 节营养液流速,从而促进植物对该元素的吸收。
优选地,当甜菜200缺少钙元素时,植物工厂可以降低营养液流速,将营养液流速降低至试验装置100营养液流量为4L/min时对应的生长栽培槽112中的营养液流速,从而在促进甜菜吸收钙元素的同时,尽可能避免减弱营养液流动对植物的生长促进作用。
植物工厂在实际生产中会根据生产需要改变培养槽结构和营养液种类。当培养槽结构或营养液种类发生改变后,之前试验出的营养液最适流速不一定培养槽结构或营养液种类发生改变的植物工厂,需要重新利用试验装置100进行试验以确定适合现有植物工厂的营养液最适流速。
优选地,对于仅改变了培养槽结构的植物工厂,试验装置100可以将生长栽培槽112替换为与现有培养槽结构相同的生长栽培槽112进行试验,并且只需进行水泵111的流量调节即可,无需等待植物生长,大大节省试验时间。
优选地,处理器120可以通过图像检测单元130获取植物根际流场的图像。优选地,当试验装置100确定营养液的最适流速后,处理器120可以通过图像检测单元130获取的图像,确定营养液处于最适流速时植物的根际流场图像,并且该根际流场图像可以作为最适流速的评判标准以确定,植物在不同结构生长栽培槽112中的最适流速。
优选地,处理器120在确定营养液的最适流速后,将获取的最适流速对应的根际流场的图像作为历史数据进行存储。优选地,历史数据至少包括:根际流场的图像,根际流场的图像中植物的种类,以及根际流场的图像中营养液的参数。
优选地,处理器120通过汇总历史数据,得到由植物种类、营养液种类和最适流速对应的根际流场的图像组成的数据库。
在试验营养液最适流速时,对于任意结构的生长栽培槽112,在确定植物种类和营养液种类的情况下,都可以根据数据库可以确定相应的最适流速对应的根际流场的图像。当图像检测单元130检测到的根际流场图像与对应的根际流场的图像吻合时,即可确定营养液的最适流速,从而可以节省试验时间,相较于观测植物形态或者营养液离子浓度的方式,本实施例提供的方式只需要调节营养液流速,使得当图像检测单元130检测到的根际流场图像 与数据库中的根际流场图像吻合即可,而观测植物形态或者营养液离子浓度的方式需要观测植物生长才能确定营养液的最适流速,单次试验耗费时间通常在数日以上。
在已确定营养液的最适流速后,仅更换不同形状的生长栽培槽112进行试验的情况下,处理器120调节水泵111的工作方式,使得营养液流经植物根系形成的根际流场符合历史数据中的根际流场的图像,从而确定营养液的最适流速。
优选地,确定某一结构的生长栽培槽112的最适流速后,处理器120可以根据图像检测单元130获取的图像作为标准图像。
优选地,在植物工厂培养槽结构未改变时,试验装置100在测试出营养液的最适流速后,处理器120可以根据图像检测单元130获取最适流速对应的图像作为标准图像。
优选地,在植物工厂培养槽结构未改变时,试验装置100测试出营养液的最适流速为水泵111的流量为6L/min时,生长栽培槽112中的营养液流速。处理器120将通过图像检测单元130拍摄的营养液流量为6L/min的根际流场的图像作为历史数据进行存储。处理器120将营养液流量为6L/min的根际流场的图像作为标准图像。
优选地,试验装置100将生长栽培槽112替换为与现有培养槽结构相同的生长栽培槽112后,处理器120发送指令至水泵111改变营养液的流量,并且处理器120通过图像检测单元130获取不同营养液流量对应的根际流场图像。优选地,处理器120将获取的不同营养液流量对应的根际流场图像与标准图像进行对比,当处理器120将获取的根际流场图像与标准图像吻合时,该根际流场图像对应的营养液流量即为营养液的最适流量,其对应生长栽培槽112中的营养液最适流速即为植物工厂现有培养槽的最适流速。
例如,植物工厂原有培养槽的截面为长50cm,宽20cm的矩形,利用试验装置100进行试验后,确定营养液流量为6L/min时生长栽培槽112中的营养液流速为植物工厂中营养液的最适流速。处理器120将营养液流量为6L/min的根际流场的图像作为标准图像。
当植物工厂将培养槽更换为截面长100cm,宽25cm矩形的培养槽后,试验装置100将生长栽培槽112更换为截面长100cm,宽25cm矩形的生 长栽培槽112,处理器120发送指令至水泵111改变营养液的流量,并且处理器120通过图像检测单元130获取不同营养液流量对应的根际流场图像。在更换生长栽培槽112后,处理器120获取的营养液流量为8L/min的根际流场的图像与标准图像吻合,则8L/min为营养液的最适流量,营养液流量为8L/min时生长栽培槽112中的营养液最适流速为将培养槽更换为截面长100cm,宽25cm矩形的培养槽植物工厂的最适流速。
实施例2
本实施例是对实施例1的进一步改进,重复的内容不再赘述。
本实施例提供一种水耕栽培营养液最适流速试验方法。试验方法包括:
通过可拆卸的透明的生长栽培槽112提供植物种植区域;通过水泵111用于调节营养液的流速;通过处理器120获取不同流速的营养液对应的植物信息,以评价植物在该流速下的养分利用效率,从而确定营养液的最适流速。
植物信息至少包括:植株形态、植株鲜重,植株干重、无机盐吸收率中的一种。
优选地,试验方法还包括:通过图像检测单元130获取生长栽培槽112图像。图像检测单元130获取生长栽培槽112的图像至少包括植物叶片部分的图像、植物根系部分的图像以及营养液流经植物根系形成的根际流场的图像。
优选地,水泵111与处理器120电信号连接。优选地,在进行水耕栽培营养液最适流速试验时,处理器120可以通过调节水泵111的工作状态,从而产生不同流量的营养液。处理器120通过图像检测单元130获取不同流量的营养液对应的植物信息,以评价植物在该营养液流量下的养分利用效率,从而中筛选出养分利用效率最佳的营养液流量,再通过设置在生长栽培槽112中的流速计确定营养液的最适流速。
优选地,处理器120可以根据图像检测单元130获取的图像确定植物叶面积和根长,并根据植物叶面积和根长评价相应营养液流量对植物生长的促进效果。
优选地,在处理器120可以对试验数据进行汇总,从而得到不同营养液流速下植物对各元素的吸收效率。优选地,当植物工厂中的植物因缺少某一元素而发生病变或生长不佳时,植物工厂可以根据处理器汇总的试验数据调 节营养液流速,从而促进植物对该元素的吸收。
优选地,处理器120在确定营养液的最适流速后,将获取的最适流速对应的根际流场的图像作为历史数据进行存储。优选地,历史数据至少包括:根际流场的图像,根际流场的图像中植物的种类,以及根际流场的图像中营养液的参数。
优选地,处理器120通过汇总历史数据,得到由植物种类、营养液种类和最适流速对应的根际流场的图像组成的数据库。
优选地,确定某一结构的生长栽培槽112的最适流速后,处理器120可以根据图像检测单元130获取的图像作为标准图像。
在已确定营养液的最适流速后,仅更换不同形状的生长栽培槽112进行试验的情况下,处理器120调节水泵111的工作方式,使得营养液流经植物根系形成的根际流场符合历史数据中的根际流场的图像,从而确定营养液的最适流速。
优选地,对于仅改变了培养槽结构的植物工厂,试验装置100可以将生长栽培槽112替换为与现有培养槽结构相同的生长栽培槽112进行试验,并且只需进行水泵111的流量调节即可,无需等待植物生长,大大节省试验时间。
实施例3
本实施例是基于实施例1和实施例2进行的进一步改进,重复的内容不再赘述。
一种水培方法。水培方法包括:确定水培植物品种、水培的生长栽培槽和植物的生长阶段;将植物栽入生长栽培槽中;确定水培营养液;利用试验得到的最适流速进行水培植物在该生长阶段的生长培养并在生长阶段改变和/或生长培养槽改变时重新确定最适流速。
优选地,在进行营养液最适流速试验时,获取至少包括用于评价营养液流速对植物生长促进效果的植物信息的生长栽培槽中的图像。
优选地,试验水培植物品种在生长阶段位于生长培养槽中,利用水培营养液的最适流速,包括:利用至少两种流速的营养液对植物进行培养。在培养结束后,收集植物的植株,测定用于评价营养液流速对植物生长促进效果的植物信息。
优选地,植物信息包括植物鲜重、干重、根长、叶面积、元素含量中的一种。
优选地,营养液中混合有示踪粒子133。获取生长栽培槽中的图像时,通过激光显影的方式使得营养液中的示踪粒子133显像以表征植物的根际流场,从而获取包含根际流场的图像。
优选地,水培方法还包括:在确定营养液的最适流速后,将获取的最适流速对应的根际流场的图像作为历史数据进行存储。在因生长培养槽改变而重新确定营养液最适流速的情况下,使营养液流经植物根系形成的根际流场符合历史数据中的根际流场的图像,以确定营养液的最适流速。
优选地,培养液的流动不仅受到培养装置形状的影响,还会受到植物根系生长状况的影响。优选地,图像检测单元130获取的生长栽培槽112的图象中包含植物根系部分的图像。优选地,处理器120可以通过图像检测单元130获取生长栽培槽112的图象,以采集植物根的形态,当根的形态差异超过设定阈值时,需要重新确定最适流速。优选地,根的形态可以是试验开始时植物根系的初始根长、根面积、弯曲程度等。
优选地,在因生长培养槽改变而重新确定营养液最适流速的情况下,即使营养液流经植物根系形成的根际流场符合历史数据中的根际流场的图像,若被测植物根的形态与历史数据中根系的形态的差异超过设定阈值时,需要重新确定最适流速。优选地,预设阈值可以通过对大量试验数据的积累并结合理论计算进行设置。优选地,预设阈值可以设置在5%至10%之间。优选地,预设阈值可以设置为6%。优选地,植物根系的形态的差异即为被测植物根的形态与历史数据中根系的形态的相似度。优选地,当相似度低于94%时,便需要重新确定最适流速。
实施例4
本实施例是基于实施例1、实施例2和实施例3进行的进一步改进,重复的内容不再赘述。
本实施例提供一种水培***。优选地,水培***至少包括试验段和生长段。试验段设置本发明提供的水耕栽培营养液流速试验装置。生长段至少包括通过连接阀连接试验装置营养液循环流路的培养槽。试验段利用试验装置试验出最适流速后,切断试验装置的营养液循环流路,开启连接阀,使得试 验装置中的营养液流经培养槽后回流至试验装置,以对培养槽中种植的植物进行栽培生长。
优选地,培养槽的进水口可以通过一个阀门连接至三通阀门119与第二水箱117之间。培养槽的出水口可以通过一个阀门连接至三通阀门119与流量表118之间。优选地,在进行试验时,连接培养槽的进水口/出水口的阀门关闭,营养液在试验装置100中循环流动,从而使用较少的营养液进行最适流速的试验。当营养液的最适流速确定后,三通阀门119关闭,连接培养槽进水口/出水口的阀门开启,使得试验装置100与培养槽连接成循环流路。优选地,工作人员向注水段115中添加营养液,使得营养液充满试验装置100和培养槽。优选地,培养槽和生长栽培槽112在垂直营养液流动方向上的截面形状相同,并且培养槽进水口同样连接有整流段113,使得营养液在试验装置100与培养槽组成的流路中流动时,生长栽培槽112中的营养液与培养槽中的营养液具有近似的理化性质,使得生长栽培槽112中植物的生长情况可以反应培养槽中植物的生长情况。试验出最适流速后,处理器120可以通过图像检测单元130监测生长栽培槽112中植物的生长情况,以获取培养槽中植物的生长情况,从而根据监测到的植物的生长情况调节营养液流速,或者调节其他与处理器120电信号连接的设备,对植物生长环境中的光照,湿度、温度等参数进行调节,从而促进植物的生长。
需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。在全文中,“优选地”所引导的特征仅为一种可选方式,不应理解为必须设置,故此申请人保留随时放弃或删除相关优选特征之权利。本发明说明书包含多项发明构思,诸如“优选地”、“根据一个优选实施方式”或“可选地”均表示相应段落公开了一个独立的构思,申请人保留根据每项发明构思提出分案申请的权利。

Claims (15)

  1. 一种水耕栽培营养液流速试验装置,所述试验装置包括种植单元(110)、处理器(120)和图像检测单元(130);其特征在于,
    所述图像检测单元(130)采集所述种植单元(110)中的植物的叶片部分、根系部分和根际流场的图像;
    所述处理器(120)根据所述植物的叶片部分、根系部分和根际流场的图像获取与不同流速的营养液对应的植物信息,根据植物在不同流速下的养分利用效率来确定营养液的最适流速。
  2. 根据权利要求1所述的水耕栽培营养液流速试验装置,其特征在于,所述处理器(120)获取同一植物在不同营养液流量情况下的生长信息,
    对在不同营养液流量情况下的所述植物信息进行比较,从而筛选出使得植物生长最佳的营养液流量,
    通过获取与使得植物生长最佳的所述营养液流量对应的营养液的流速,以确定营养液的最适流速。
  3. 根据权利要求1或2所述的水耕栽培营养液流速试验装置,其特征在于,所述种植单元(110)包括水泵(111)和可透视的生长栽培槽(112),
    由所述水泵(111)调速的营养液流入所述生长栽培槽(112)并向培养的植物提供养分;
    所述营养液中混合有用于在图像中表征当前营养液流经植物根系形成的根际流场的示踪粒子(133)。
  4. 根据权利要求1~3任一项所述的水耕栽培营养液流速试验装置,其特征在于,所述图像检测单元(130)包括摄像头(131)和照明组件(132),
    在所述照明组件(132)产生的激光光线射入所述生长栽培槽(112)内部的情况下,所述营养液中的示踪粒子(133)受到激光照射并显像,从而在所述图像检测单元(130)获取的图像中根据所述示踪粒子(133)确定根际流场。
  5. 根据权利要求1~4任一项所述的水耕栽培营养液流速试验装置,其特征在于,所述种植单元(110)还包括整流段(113),
    所述整流段(113)的一个端面通过第一水箱(114)与水泵(111) 连接,所述整流段(113)的另一个端面与生长栽培槽(112)连接;
    所述营养液经过所述整流段(113)流入所述生长栽培槽(112),所述整流段(113)将所述营养液中的由所述水泵(111)形成的涡流击碎,使得所述营养液以横向平流的方式流经所述生长栽培槽(112)。
  6. 根据权利要求1~5任一项所述的水耕栽培营养液流速试验装置,其特征在于,在确定营养液的最适流速后,所述处理器(120)将获取的与最适流速对应的根际流场的图像作为历史数据进行存储,
    在更换生长栽培槽(112)的情况下,所述处理器(120)按照使得营养液流经植物根系形成的根际流场符合历史数据中的根际流场的图像的方式调节水泵(111),从而确定营养液的所述最适流速。
  7. 根据权利要求1~6任一项所述的水耕栽培营养液流速试验装置,其特征在于,所述图像检测单元(130)中的照明组件(132)通过线光源扫描的方式照射生长栽培槽(112)内部的不同平面,
    摄像头(131)随着扫描光线的移动进行连续拍摄,从而获得同一根际流场的不同位置处的图像;
    所述处理器(120)基于获得的同一根际流场的不同位置处的图像,利用预设的建模模型获取根际流场的三维模型。
  8. 一种水培方法,其特征在于,所述水培方法至少包括:
    确定水培植物品种、水培的生长栽培槽和所述植物的生长阶段;
    将植物栽入所述生长栽培槽中;
    确定水培营养液;
    利用试验得到的最适流速进行所述水培植物在该生长阶段的生长培养;并且在生长阶段改变和/或生长栽培槽改变时重新确定最适流速;
    其中,最适流速的实验获取方式包括:
    处理器(120)根据植物的叶片部分、根系部分和根际流场的图像获取与不同流速的营养液对应的植物信息,根据植物在不同流速下的养分利用效率来确定营养液的所述最适流速。
  9. 根据权利要求8所述的水培方法,其特征在于,诉搜狐利用试验得到的最适流速进行所述水培植物在该生长阶段的生长培养的步骤包括:
    利用至少两种流速的营养液对植物进行培养;
    在植物培养结束后,收集植物的植株,测定用于评价营养液流速对植物生长促进效果的植物信息。
  10. 根据权利要求8或9所述的水培方法,其特征在于,用于种植植物的种植单元(110)包括水泵(111)和可透视的生长栽培槽(112),
    由所述水泵(111)调速的营养液流入所述生长栽培槽(112)并向培养的植物提供养分;
    所述营养液中混合有用于在图像中表征当前营养液流经植物根系形成的根际流场的示踪粒子(133)。
  11. 根据权利要求8~10任一项所述的水培方法,其特征在于,所述水培方法还包括:
    当获取所述生长栽培槽中的图像时,通过激光显影的方式使得所述营养液中的所述示踪粒子(133)显像以表征植物的根际流场,从而获取包含所述根际流场的图像。
  12. 根据权利要求8~11任一项所述的水培方法,其特征在于,所述水培方法还包括:
    在确定营养液的最适流速后,将获取的与最适流速对应的根际流场的图像作为历史数据进行存储;
    在因生长栽培槽改变而重新确定营养液最适流速的情况下,使所述营养液流经植物根系形成的根际流场符合历史数据中的根际流场的图像,以确定营养液的最适流速。
  13. 一种水培***,其特征在于,所述水培***至少包括试验段和生长段,所述试验段设置有水耕栽培营养液流速试验装置;
    所述试验装置包括种植单元(110)、处理器(120)和图像检测单元(130);所述图像检测单元(130)采集所述种植单元(110)中的植物的叶片部分、根系部分和根际流场的图像;
    所述处理器(120)根据所述植物的叶片部分、根系部分和根际流场的图像获取与不同流速的营养液对应的植物信息,根据植物在不同流速下的养分利用效率来确定营养液的最适流速;
    所述生长段至少包括通过连接阀连接所述试验装置营养液循环流路的培养槽;所述试验段利用所述试验装置试验出最适流速后,切断所述试验装 置的营养液循环流路,开启连接阀,使得所述试验装置中的营养液流经所述培养槽后回流至所述试验装置,以对培养槽中种植的植物进行栽培生长。
  14. 根据权利要求13所述的水培***,其特征在于,所述处理器(120)获取同一植物在不同营养液流量情况下的生长信息,
    对在不同营养液流量情况下的所述植物信息进行比较,从而筛选出使得植物生长最佳的营养液流量,
    通过获取与使得植物生长最佳的所述营养液流量对应的营养液的流速,以确定营养液的最适流速。
  15. 一种水培***的控制装置,包括处理器(120),其特征在于,所述处理器(120)被配置为:
    根据所述植物的叶片部分、根系部分和根际流场的图像获取与不同流速的营养液对应的植物信息,根据植物在不同流速下的养分利用效率来确定营养液的最适流速。
PCT/CN2023/140098 2022-12-20 2023-12-20 一种水耕栽培营养液流速试验装置、水培***及控制装置 WO2024131815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211646612.9A CN115885837A (zh) 2022-12-20 2022-12-20 一种水耕栽培营养液流速试验装置及方法
CN202211646612.9 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024131815A1 true WO2024131815A1 (zh) 2024-06-27

Family

ID=86481786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/140098 WO2024131815A1 (zh) 2022-12-20 2023-12-20 一种水耕栽培营养液流速试验装置、水培***及控制装置

Country Status (2)

Country Link
CN (1) CN115885837A (zh)
WO (1) WO2024131815A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115885837A (zh) * 2022-12-20 2023-04-04 中国农业科学院都市农业研究所 一种水耕栽培营养液流速试验装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7810319A (nl) * 1977-12-16 1979-06-19 Kyowa Kagaku Kogyo Kk Werkwijze voor het kweken van planten in hydrocultuur.
CN103843651A (zh) * 2014-02-24 2014-06-11 中国农业科学院农业环境与可持续发展研究所 一种根与根茎类药用植物的设施半水培栽培装置及方法
JP2015053882A (ja) * 2013-09-11 2015-03-23 パナソニック株式会社 水耕栽培装置
US20150177041A1 (en) * 2013-12-25 2015-06-25 Honda Motor Co., Ltd. Particle photographing device and flow velocity measurement device
CN109673499A (zh) * 2019-01-25 2019-04-26 江苏大学 一种植物雾培控制装置及方法
CN115885837A (zh) * 2022-12-20 2023-04-04 中国农业科学院都市农业研究所 一种水耕栽培营养液流速试验装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220131574A (ko) * 2021-03-22 2022-09-29 김송강 스마트팜 디지털 트윈 빅데이터 플랫폼 시스템
AU2021436233A1 (en) * 2021-03-26 2023-10-05 Vector Vitale Ip Llc Foods to promote better health and/or to maintain homeostasis and method of production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7810319A (nl) * 1977-12-16 1979-06-19 Kyowa Kagaku Kogyo Kk Werkwijze voor het kweken van planten in hydrocultuur.
JP2015053882A (ja) * 2013-09-11 2015-03-23 パナソニック株式会社 水耕栽培装置
US20150177041A1 (en) * 2013-12-25 2015-06-25 Honda Motor Co., Ltd. Particle photographing device and flow velocity measurement device
CN103843651A (zh) * 2014-02-24 2014-06-11 中国农业科学院农业环境与可持续发展研究所 一种根与根茎类药用植物的设施半水培栽培装置及方法
CN109673499A (zh) * 2019-01-25 2019-04-26 江苏大学 一种植物雾培控制装置及方法
CN115885837A (zh) * 2022-12-20 2023-04-04 中国农业科学院都市农业研究所 一种水耕栽培营养液流速试验装置及方法

Also Published As

Publication number Publication date
CN115885837A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2019109384A1 (zh) 一种基于多尺度生境信息的苗期作物水肥检测和控制方法及装置
WO2024131815A1 (zh) 一种水耕栽培营养液流速试验装置、水培***及控制装置
CN104798627B (zh) 植物生长环境的自动控制装置
KR20180034015A (ko) 에이치엠아이 기반의 자동화 고설재배 시스템
CN107341734A (zh) 一种基于生理参数的设施作物苗期生长预测模型的建立方法
CN103583351B (zh) 室内全天候全自动无土栽培试验仓
CN109902879A (zh) 基于综合适宜度指数的甘蔗种植区划方法
Zhao et al. A modified SWAP model for soil water and heat dynamics and seed–maize growth under film mulching
CN108834873A (zh) 一种自动化水培种植***和方法
CN103238449B (zh) 一种室内快速鉴选耐盐型花生品种的方法
CN107037090A (zh) 一种基于叶片紧张度变化的光合作用预测方法
CN108739074A (zh) 一种基于物联网的菌菇自动化栽培***
CN104255343A (zh) 日光型多层潮汐式绿叶菜工厂化生产***
CN106212116B (zh) 一种克隆植物uv-b辐射实验***
Selvaraj et al. A low-cost aeroponic phenotyping system for storage root development: unravelling the below-ground secrets of cassava (Manihot esculenta)
CN203523480U (zh) 室内全天候全自动无土栽培试验仓
Jo et al. Development of a transpiration model for precise tomato (Solanum lycopersicum L.) irrigation control under various environmental conditions in greenhouse
CN103207258B (zh) 利用指示植物的需水信息确定被考察植物需水量的方法
Perwiratama et al. Smart hydroponic farming with IoT-based climate and nutrient manipulation system
Karaşahin et al. The way of yield increasing and cost reducing in agriculture: Smart irrigation and fertigation
CN208924893U (zh) 一种自动化水培种植***
Liu et al. Assessing soil water recovery after converting planted shrubs and grass to natural grass in the northern Loess Plateau of China
US20230143014A1 (en) Optimizing growing process in a hybrid growing environment using computer vision and artificial intelligence
CN206575785U (zh) 一种种子萌发或幼苗水培装置
Putri et al. Monitoring and controlling of vertical farming system using Internet of Things (IoT)