WO2024131045A1 - 光伏设备以及提升光伏设备的光伏利用率的方法 - Google Patents

光伏设备以及提升光伏设备的光伏利用率的方法 Download PDF

Info

Publication number
WO2024131045A1
WO2024131045A1 PCT/CN2023/107923 CN2023107923W WO2024131045A1 WO 2024131045 A1 WO2024131045 A1 WO 2024131045A1 CN 2023107923 W CN2023107923 W CN 2023107923W WO 2024131045 A1 WO2024131045 A1 WO 2024131045A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
power
photovoltaic device
energy storage
load
Prior art date
Application number
PCT/CN2023/107923
Other languages
English (en)
French (fr)
Inventor
黄颂儒
黄猛
安宏迪
崔宇
陈宁宁
Original Assignee
珠海格力电器股份有限公司
国创能源互联网创新中心(广东)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司, 国创能源互联网创新中心(广东)有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024131045A1 publication Critical patent/WO2024131045A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present disclosure relates to the technical field of photovoltaic equipment, and in particular to a method for improving photovoltaic utilization rate of photovoltaic equipment.
  • Photovoltaic devices usually have a DC bus, which can be connected to the city grid through a DC/DC converter, so that when photovoltaic power generation is insufficient, the city power can be used to maintain the normal operation of the load of the photovoltaic device.
  • DC/DC Direct Current/Direct Current, DC to DC
  • the photovoltaic device (such as the photovoltaic array) of the photovoltaic device does not have a dedicated DC/DC converter.
  • the photovoltaic device is directly connected to the DC bus, and the energy storage device is connected to the DC bus through a DC/DC converter.
  • the DC/DC converter controls the DC bus, resulting in the photovoltaic solar cell not operating at maximum power, resulting in a certain loss of power generation.
  • photovoltaic air conditioning As an example, with the increase in the application scenarios of photovoltaic DC air conditioning systems, various operating conditions can occur. In certain specific areas, such as islands, remote highlands and mountainous areas, which are long-term off-grid (grid) environments, the supply and demand of energy storage photovoltaics are unbalanced, and the energy utilization rate is low.
  • controlling the photovoltaic device to operate in a power tracking mode or a maximum power output mode
  • the charge and discharge state of the energy storage device and the electrical parameters of the load are adjusted or limited according to the supply and demand relationship between the photovoltaic device, the energy storage device and the load, so that the photovoltaic device, the energy storage device and the load are balanced at the maximum power output point of the photovoltaic device.
  • the electrical parameter characteristic curve of the photovoltaic device is specifically a relationship curve between the output power of the photovoltaic device and the voltage of the DC bus.
  • the photovoltaic device when the power state of the energy storage device is fully charged, if the power of the load is less than the maximum power of the photovoltaic device, the photovoltaic device runs a power tracking mode and continues to monitor the DC bus of the photovoltaic device and the electrical parameters of the photovoltaic device, the energy storage device and the load mounted on the DC bus.
  • the photovoltaic device when the energy storage device is in a fully charged state, if the power of the load is equal to the maximum power of the photovoltaic device, the photovoltaic device operates in a maximum power output mode.
  • the photovoltaic device when the energy storage device is fully charged, if the power of the load is greater than the maximum power of the photovoltaic device, the photovoltaic device operates in a maximum power output mode and limits the power of the load based on the maximum discharge power of the energy storage device.
  • the photovoltaic device runs a power tracking mode and continues to monitor the DC bus of the photovoltaic device and the electrical parameters of the photovoltaic device, the energy storage device and the load mounted on the DC bus.
  • the photovoltaic device when the power state of the energy storage device is not fully charged, if the power of the load is equal to the maximum power of the photovoltaic device minus the maximum charging power of the energy storage device, the photovoltaic device operates in a maximum power output mode.
  • the photovoltaic device when the power state of the energy storage device is not fully charged, if the power of the load is greater than the maximum power of the photovoltaic device minus the maximum charging power of the energy storage device, the photovoltaic device operates in a maximum power output mode and at the same time limits the power of the load based on the maximum discharge power of the energy storage device.
  • the photovoltaic equipment proposed in some embodiments of the present disclosure includes: a photovoltaic device, an energy storage device, and a load, wherein the photovoltaic equipment also includes a detection module and a control module for mutually cooperating to execute the method for improving the photovoltaic utilization rate of the photovoltaic device described in the above technical solution;
  • the detection module is used to monitor the electrical parameters of the DC bus of the photovoltaic equipment and the photovoltaic device, energy storage device and load mounted on the DC bus;
  • the control module controls the photovoltaic device to operate in power tracking mode or maximum power output mode according to the electrical parameter characteristic curve of the photovoltaic device; when the photovoltaic device operates in maximum power output mode, the photovoltaic device and the energy storage device are The supply and demand relationship between the device and the load is adjusted or limited to the charging and discharging state of the energy storage device and the electrical parameters of the load so that the photovoltaic device, the energy storage device and the load are balanced at the maximum power output point of the photovoltaic device.
  • the photovoltaic device comprises a photovoltaic air conditioner.
  • Some embodiments of the present disclosure provide a non-transitory computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, implements the steps of a method for improving photovoltaic utilization efficiency of a photovoltaic device.
  • FIG. 1 is a flow chart of a method for improving photovoltaic utilization efficiency of a photovoltaic device according to some embodiments of the present disclosure.
  • FIG2 is a schematic diagram showing the effect of load power changes on the operating point of a photovoltaic device when the energy storage is fully charged in some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram showing the effect of load power changes on the operating point of a photovoltaic device when the energy storage is not fully charged in some embodiments of the present disclosure.
  • FIG4 is a block diagram of the composition of a photovoltaic DC storage air conditioning system (hereinafter referred to as photovoltaic air conditioning) according to some embodiments of the present disclosure.
  • the present disclosure proposes a photovoltaic equipment and a method for improving the photovoltaic utilization rate of the photovoltaic equipment.
  • the present invention utilizes the P-U (power-voltage) characteristic curve of the photovoltaic device to maintain the power balance among the photovoltaic device, the energy storage device and the load. It can automatically adjust the output power of the photovoltaic device to achieve a power tracking control strategy for power balance, and combined with the DC bus voltage control strategy of the energy storage unit, it can achieve rapid switching between power tracking and maximum power output.
  • P-U power-voltage
  • the photovoltaic device of the embodiment of the present disclosure includes a DC bus, a photovoltaic device, an energy storage device and a load, and the photovoltaic device, the energy storage device and the load are all mounted on the DC bus.
  • the energy storage device can be connected to the DC bus through a DC/DC converter, for example, through a bidirectional DC/DC converter.
  • the photovoltaic device lacks a dedicated DC/DC converter. The converter is connected to the DC bus.
  • the method for improving the photovoltaic utilization rate of the photovoltaic equipment mainly includes the following steps.
  • the photovoltaic device of the photovoltaic equipment When the photovoltaic device of the photovoltaic equipment lacks a dedicated DC/DC converter to connect to the DC bus, for example, it is disconnected from the power grid, resulting in the original DC/DC converter between the DC bus and the AC bus being unable to control the photovoltaic device of the photovoltaic device. At this time, the photovoltaic device is directly connected to the DC bus, and the DC/DC converter of the energy storage device controls the DC bus. At this time, the electrical parameters of the DC bus of the photovoltaic device and the photovoltaic device, energy storage device and load mounted on the DC bus are monitored.
  • the embodiments of the present disclosure do not limit the electrical parameters of the photovoltaic device, the energy storage device and the load.
  • the output voltage and output current of the photovoltaic device can be monitored, the charging and discharging state of the energy storage device, as well as the corresponding voltage, current, etc., can be monitored, and the power of the load or the corresponding voltage, current, etc. can be monitored.
  • the embodiment of the present disclosure controls the photovoltaic device to operate in power tracking mode or maximum power output mode. And when the photovoltaic device operates in maximum power output mode, the photovoltaic device adjusts or limits the charge and discharge state of the energy storage device and the electrical parameters of the load according to the supply and demand relationship between the photovoltaic device, the energy storage device and the load, so that the photovoltaic device, the energy storage device and the load are balanced at the maximum power output point of the photovoltaic device.
  • the electrical parameter characteristic curves of photovoltaic devices common ones include the relationship curve between the output power of the photovoltaic device and the voltage of the DC bus, and the relationship curve between the voltage and current of the photovoltaic device.
  • the electrical parameter characteristic curve of the photovoltaic device of the embodiment of the present disclosure is specifically the relationship curve between the output power of the photovoltaic device and the voltage of the DC bus.
  • the relationship curve between the output power of the photovoltaic device and the voltage of the DC bus is also called the P-U characteristic curve of the photovoltaic array.
  • SOC state-of-charge
  • SOC of 1 means that the battery of the energy storage device is fully charged, and the difference power between the photovoltaic device and the load demand is used to charge the battery of the energy storage device, so that the DC bus voltage remains at the maximum power output point.
  • the battery of the energy storage device reaches the maximum charging power or is fully charged, if the power generation power of the photovoltaic device is still in surplus, that is, the output power of the photovoltaic device is greater than the power of the load, the voltage of the DC bus will also increase.
  • the photovoltaic output power will drop sharply after the DC bus voltage increases.
  • the photovoltaic output power and system power consumption reach a balance, the DC bus voltage will stabilize again and will stabilize to the right of the MPPT point on the PU characteristic curve.
  • MPPT Maximum Power. Power Point Tracking
  • MPPT voltage indicates the voltage at the maximum power point of the photovoltaic device
  • MPPT point indicates the maximum power point of the photovoltaic device.
  • the power regulation of the energy storage unit will stabilize the DC bus voltage at the MPPT point, thereby achieving smooth switching from power tracking to maximum power output.
  • an embodiment of the present disclosure controls the photovoltaic device to operate in power tracking mode or maximum power output mode according to the electrical parameter characteristic curve of the photovoltaic device, and when the photovoltaic device operates in maximum power output mode, the photovoltaic device adjusts or limits the charge and discharge state of the energy storage device and the electrical parameters of the load according to the supply and demand relationship between the photovoltaic device, the energy storage device and the load, so that the photovoltaic device, the energy storage device and the load are balanced at the maximum power output point of the photovoltaic device.
  • the photovoltaic device runs a power tracking mode and continues to monitor the DC bus of the photovoltaic device and the electrical parameters of the photovoltaic device, energy storage device and load mounted on the DC bus.
  • the photovoltaic equipment When the energy storage device is in a fully charged state, if the power of the load is equal to the maximum power of the photovoltaic device, the photovoltaic equipment operates in a maximum power output mode, and the photovoltaic utilization rate of the photovoltaic device is the highest.
  • the photovoltaic device When the energy storage device is fully charged, if the power of the load is greater than the maximum power of the photovoltaic device, the photovoltaic device operates in the maximum power output mode, the photovoltaic utilization rate of the photovoltaic device is the highest, and the power of the load is limited based on the maximum discharge power of the energy storage device.
  • the photovoltaic device runs the power tracking mode and continues to monitor the DC bus of the photovoltaic device and the electrical parameters of the photovoltaic device, energy storage device and load mounted on the DC bus.
  • the photovoltaic equipment When the power state of the energy storage device is not fully charged, if the power of the load is equal to the maximum power of the photovoltaic device minus the maximum charging power of the energy storage device, the photovoltaic equipment operates in the maximum power output mode, and the photovoltaic utilization rate of the photovoltaic device is the highest.
  • the photovoltaic device When the power state of the energy storage device is not fully charged, if the power of the load is greater than the maximum power of the photovoltaic device minus the maximum charging power of the energy storage device, the photovoltaic device operates in the maximum power output mode, the photovoltaic utilization rate of the photovoltaic device is the highest, and the power of the load is limited based on the maximum discharge power of the energy storage device.
  • the power of the load is P m1 , which is equal to the maximum output power of the photovoltaic device, the system power of the entire photovoltaic device is balanced, and the voltage of the DC bus is U1 . At this time, the photovoltaic device is in the maximum power output mode.
  • the power output of the photovoltaic device is greater than the power consumed by the load. Since the SOC of the energy storage device is 1, that is, the battery of the energy storage device is fully charged, it cannot absorb the surplus power of the photovoltaic device, resulting in an increase in the DC bus voltage.
  • the output power of the photovoltaic device is less than the power of the load, and the voltage of the DC bus decreases.
  • the energy storage device will discharge for the load to maintain the MPPT operation of the photovoltaic device, that is, to maintain the maximum power output mode of the photovoltaic device, so as to make up for the insufficient power of the photovoltaic device and stabilize the DC bus voltage at the maximum power output point.
  • the power of the load needs to be limited at this time.
  • P dechmax P m3 -P m1 .
  • the energy storage device can adjust its discharge power so that the photovoltaic array of the photovoltaic device operates in the MPPT mode, that is, the photovoltaic device operates in the maximum power output mode.
  • the photovoltaic device when the energy storage device is fully charged, when the power of the load is less than P m1 , the photovoltaic device operates in power tracking mode; when the power of the load is between P m1 and P m3 , the photovoltaic device operates in MPPT mode, that is, the photovoltaic device operates in maximum power output mode. At the same time, the power of the photovoltaic device controlling the load cannot exceed P m3 , otherwise part of the load needs to be cut off.
  • P chmax is the maximum charging power of the energy storage device
  • P chmax P m1 -P m4 .
  • the energy storage device can adjust the charging power so that the voltage of the DC bus is stabilized at the maximum power output point, that is, the photovoltaic device operates in the maximum power output mode.
  • the output power of the photovoltaic device is greater than the sum of the maximum charging power of the load and the energy storage device.
  • the voltage of the DC bus increases and finally stabilizes at U 3.
  • the output power of the photovoltaic device is equal to the sum of the charging power of the energy storage battery and the load consumption power.
  • the photovoltaic device when the energy storage device is not fully charged, when the load power is less than P m4 , the photovoltaic device operates in power tracking mode; when the load power is between P m4 and P m3 , the photovoltaic device operates in MPPT mode, that is, the photovoltaic device operates in maximum power output mode, and at the same time, the photovoltaic device controls the load power not to exceed P m3 .
  • the disclosed embodiment also protects photovoltaic equipment, which includes: a photovoltaic device, an energy storage device, and a load.
  • the photovoltaic equipment also includes a detection module and a control module, which cooperate with each other to perform the above method for improving the photovoltaic utilization rate of the photovoltaic equipment.
  • the detection module is used to monitor the DC bus of the photovoltaic equipment and the electrical parameters of the photovoltaic device, energy storage device and load mounted on the DC bus.
  • the control module is used to control the photovoltaic device to operate in a power tracking mode or a maximum power output mode according to the electrical parameter characteristic curve of the photovoltaic device.
  • the control module is also used to adjust or limit the charging and discharging state of the energy storage device and the electrical parameters of the load when the photovoltaic device operates in the maximum power output mode, according to the supply and demand relationship between the photovoltaic device, the energy storage device and the load, so that the photovoltaic device, the energy storage device and the load are balanced at the maximum power output point of the photovoltaic device.
  • the electrical parameter characteristic curve of the photovoltaic device is specifically a relationship curve between the output power of the photovoltaic device and the voltage of the DC bus.
  • the control module is used to control the photovoltaic device to operate in a power tracking mode when the energy storage device is in a fully charged state and if the power of the load is less than the maximum power of the photovoltaic device, and continue to monitor the DC bus of the photovoltaic device and the electrical parameters of the photovoltaic device, the energy storage device and the load mounted on the DC bus.
  • the control module is used to control the photovoltaic device to operate in a maximum power output mode when the power state of the energy storage device is fully charged and the power of the load is equal to the maximum power of the photovoltaic device.
  • the control module is used to control the photovoltaic device to operate in a maximum power output mode when the energy storage device is fully charged and the power of the load is greater than the maximum power of the photovoltaic device, and at the same time limit the power of the load based on the maximum discharge power of the energy storage device.
  • the control module is used to control the photovoltaic device to operate in a power tracking mode when the power state of the energy storage device is not fully charged, and if the power of the load is less than the maximum power of the photovoltaic device minus the maximum charging power of the energy storage device, and continue to monitor the DC bus of the photovoltaic device and the electrical parameters of the photovoltaic device, the energy storage device and the load mounted on the DC bus.
  • the control module is used to control the photovoltaic device to operate in a maximum power output mode when the power state of the energy storage device is not fully charged and if the power of the load is equal to the maximum power of the photovoltaic device minus the maximum charging power of the energy storage device.
  • the control module is used to control the photovoltaic device to operate in a maximum power output mode when the power state of the energy storage device is not fully charged and if the power of the load is greater than the maximum power of the photovoltaic device minus the maximum charging power of the energy storage device, and at the same time limit the power of the load based on the maximum discharge power of the energy storage device.
  • the photovoltaic device of the present disclosure includes a photovoltaic air conditioner.
  • FIG4 shows a block diagram of a photovoltaic air conditioner according to an embodiment of the present disclosure.
  • the photovoltaic air conditioner includes a DC bus, a photovoltaic
  • the photovoltaic array, energy storage battery and air conditioning load are all mounted on the DC bus.
  • the energy storage battery can be connected to the DC bus through a DC/DC converter, for example, through a bidirectional DC/DC converter.
  • the DC bus is connected to the AC bus through a bidirectional AC/DC converter.
  • the AC load is mounted on the AC bus, and the power grid provides power to the AC bus.
  • the bidirectional AC/DC converter is responsible for power interaction with the power grid.
  • the city power is controlled to provide power to the air conditioning load and the energy storage battery.
  • the photovoltaic array of the photovoltaic air conditioner When the photovoltaic array of the photovoltaic air conditioner generates sufficient power, the photovoltaic air conditioner is off-grid, and the bidirectional AC/DC converter between the DC bus and the AC bus does not work.
  • the photovoltaic device automatically adjusts the output power of the photovoltaic array according to the PU characteristic curve of its photovoltaic array to achieve a power tracking control strategy of power balance, and combines the DC bus voltage control strategy of the energy storage battery to achieve fast switching between power tracking and maximum power output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种光伏设备以及提升光伏设备的光伏利用率的方法。其中提升光伏设备的光伏利用率的方法,包括:当光伏设备与电网脱离且光伏设备的光伏装置与直流母线直接连接时,监控光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数;根据光伏装置的电参数特性曲线,控制光伏设备运行功率跟踪模式或者最大功率输出模式;当光伏设备运行最大功率输出模式时,根据光伏装置、储能装置以及负载之间的供需关系,对储能装置的充放电状态以及负载的电参数进行调节或限制,以使得光伏装置、储能装置以及负载在光伏装置的最大功率输出点达到平衡。可以使光伏设备的光伏装置尽可能运行在最大功率输出模式。

Description

光伏设备以及提升光伏设备的光伏利用率的方法
相关申请的交叉引用
本申请是以CN申请号为202211659366.0,申请日为2022年12月22日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及光伏设备的技术领域,尤其涉及一种提升光伏设备的光伏利用率的方法。
背景技术
随着能源的紧缺以及大众环保意识的增强,目前出现了很多光伏设备,光伏设备通常都具有直流母线,直流母线可以通过DC/DC变换器连接到市网,以便光伏发电不足时,可以采用市电维持光伏设备的负载的正常运行。但是当光伏发电充足时或者是一些特殊情况下,光伏设备通常都与市电断开,因而直流母线与交流母线之间的DC/DC(Direct Current/Direct Current,直流到直流)变换器暂停工作,此时光伏设备的光伏装置(如光伏阵列)并没有专用的DC/DC变换器,光伏装置与直流母线直连,储能装置通过DC/DC变换器连接直流母线,该DC/DC变换器对直流母线进行控制,导致光伏太阳能电池没有运行在最大功率,损失了一定的发电量。
以光伏空调为例,随着光伏储直流空调***应用场景的增多,各种的运行情况均能出现。在某些特定区域,比如海岛,偏远高地及山区等长期离网(电网)的环境,储能光伏等供需不平衡,能源利用率低下。
因而,如何提供一种方法使得光伏设备离网状态下与直流母线直连时,尽可能使得光伏太阳能电池可以运行在最大功率,提升光伏设备的光伏利用率是待解决的技术问题。
发明内容
本公开一些实施例提出的提升光伏设备的光伏利用率的方法,包括:
当光伏设备与电网脱离且所述光伏设备的光伏装置与直流母线直接连接时,监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数;
根据光伏装置的电参数特性曲线,控制所述光伏设备运行功率跟踪模式或者最大功率输出模式;
当所述光伏设备运行最大功率输出模式时,根据光伏装置、储能装置以及负载之间的供需关系,对所述储能装置的充放电状态以及负载的电参数进行调节或限制,以使得光伏装置、储能装置以及负载在光伏装置的最大功率输出点达到平衡。
在一些实施例中,所述光伏装置的电参数特性曲线具体为光伏装置的输出功率与直流母线的电压之间的关系曲线。
在一些实施例中,当储能装置的电量状态为满电状态时,若负载的功率小于光伏装置的最大功率,所述光伏设备运行功率跟踪模式,继续监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
在一些实施例中,当储能装置的电量状态为满电状态时,若负载的功率等于光伏装置的最大功率,所述光伏设备运行最大功率输出模式。
在一些实施例中,当储能装置的电量状态为满电状态时,若负载的功率大于光伏装置的最大功率,所述光伏设备运行最大功率输出模式,同时基于所述储能设备的最大放电功率,对所述负载的功率进行限制。
在一些实施例中,当储能装置的电量状态为非满电状态时,若负载的功率小于光伏装置的最大功率减去储能装置的最大充电功率,所述光伏设备运行功率跟踪模式,继续监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
在一些实施例中,当储能装置的电量状态为非满电状态时,若负载的功率等于光伏装置的最大功率减去储能装置的最大充电功率,所述光伏设备运行最大功率输出模式。
在一些实施例中,当储能装置的电量状态为非满电状态时,若负载的功率大于光伏装置的最大功率减去储能装置的最大充电功率,所述光伏设备运行最大功率输出模式,同时基于所述储能设备的最大放电功率,对所述负载的功率进行限制。
本公开一些实施例提出的光伏设备,包括:光伏装置、储能装置、负载,其中,还包括用于相互协作执行上述技术方案所述的提升光伏设备的光伏利用率的方法的检测模块和控制模块;
所述检测模块用于监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数;
所述控制模块根据光伏装置的电参数特性曲线,控制所述光伏设备运行功率跟踪模式或者最大功率输出模式;当所述光伏设备运行最大功率输出模式时,根据光伏装置、储能 装置以及负载之间的供需关系,对所述储能装置的充放电状态以及负载的电参数进行调节或限制,以使得光伏装置、储能装置以及负载在光伏装置的最大功率输出点达到平衡。
在一些实施例中,所述光伏设备包括光伏空调。
本公开一些实施例提出一种非瞬时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现提升光伏设备的光伏利用率的方法的步骤。
附图说明
下面结合实施例和附图对本公开实施例进行详细说明,其中:
图1是本公开一些实施例的提升光伏设备的光伏利用率的方法的流程图。
图2是本公开一些实施例的储能满电时负载功率变化对光伏装置运行点的影响示意图。
图3是本公开一些实施例的储能非满电时负载功率变化对光伏装置运行点的影响示意图。
图4是本公开一些实施例的光伏储直流空调***(简称光伏空调)的组成框图。
具体实施方式
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行在一些实施例中详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
由此,本说明书中所指出的一个特征将用于说明本公开的一个实施方式的其中一个特征,而不是暗示本公开的每个实施方式必须具有所说明的特征。此外,应当注意的是本说明书描述了许多特征。尽管某些特征可以组合在一起以示出可能的***设计,但是这些特征也可用于其他的未明确说明的组合。由此,除非另有说明,所说明的组合并非旨在限制。
为了解决相关技术中光伏设备的光伏利用率不高的技术问题,本公开提出了光伏设备以及提升光伏设备的光伏利用率的方法。
本公开利用光伏装置的P-U(功率-电压)特性曲线,保持光伏装置、储能装置以及负载三者功率的平衡,可自动调节光伏装置的输出功率以达到功率平衡的功率跟踪控制策略,且结合储能单元的直流母线电压控制策略,可实现功率跟踪和最大功率输出的快速切换。
如图1所示,本公开实施例的光伏设备包括直流母线、光伏装置、储能装置和负载,光伏装置、储能装置以及负载均挂载在直流母线上。储能装置可以通过DC/DC变换器连接直流母线,例如通过双向DC/DC变换器连接直流母线。而光伏装置缺乏专用的DC/DC变换 器连接直流母线。
基于上述描述的光伏设备,本公开实施例的的提升光伏设备的光伏利用率的方法,主要包括以下步骤。
当光伏设备的光伏装置缺乏专用的DC/DC变换器连接直流母线时,例如脱离电网运行,导致原来直流母线与交流母线之间的DC/DC变换器无法对光伏设备的光伏装置进行控制,此时光伏装置直接与直流母线连接,储能装置的DC/DC变换器对直流母线进行控制。此时监控光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。鉴于电参数之间是可以相互换算的,因而本公开实施例不限定光伏装置、储能装置以及负载的电参数,例如,可以监控光伏装置的输出电压和输出电流,监控储能装置的充放电状态,以及相应的电压、电流等,监控负载的功率或者是对应的电压、电流等。
接着本公开实施例的根据光伏装置的电参数特性曲线,控制光伏设备运行功率跟踪模式或者最大功率输出模式。并且当光伏设备运行最大功率输出模式时,光伏设备根据光伏装置、储能装置以及负载之间的供需关系,对储能装置的充放电状态以及负载的电参数进行调节或限制,以使得光伏装置、储能装置以及负载在光伏装置的最大功率输出点达到平衡。
关于光伏装置的电参数特征曲线,常见的有光伏装置的输出功率与直流母线的电压之间的关系曲线,以及光伏装置的电压与电流之间的关系曲线。在一个实施例中,本公开实施例的光伏装置的电参数特性曲线具体为光伏装置的输出功率与直流母线的电压之间的关系曲线。当光伏装置为光伏阵列时,光伏装置的输出功率与直流母线的电压之间的关系曲线也称之为光伏阵列的P-U特性曲线。
本公开实施例的发明构思的原理主要是基于以下原理。
在较强光照条件下,若光伏设备的光伏装置仍位于最大功率输出点,光伏装置的输出功率大于负载消耗功率,这将导致直流母线的电压上升。若此时储能装置的SOC不为1,SOC全称为state-of-charge,指的是电池的充电状态,又称剩余容量,表示电池继续工作的能力。SOC为1代表储能装置的电池充满,则利用光伏装置与负载需求之间的差额功率给储能装置的电池充电,使得直流母线电压保持在最大功率输出点。
当储能装置的电池达到最大充电功率或充满电后,若光伏设备的发电功率仍有盈余,即光伏设备的输出功率大于负载的功率,也将使得直流母线的电压升高。
根据光伏阵列的P-U特性曲线可知,当直流母线电压大于MPPT电压时,直流母线电压升高后光伏输出功率会急剧下降,当光伏输出功率和***消耗功率达到平衡时直流母线电压再次稳定,并且将稳定在P-U特性曲线MPPT点的右侧。这里的MPPT全称为称Maximum  Power Point Tracking,MPPT电压表示光伏装置的最大功率点的电压,MPPT点表示光伏装置的最大功率点。
当光伏设备的发电功率的盈余功率减小时,会导致直流母线电压下降,而直流母线电压的下降使得光伏输出功率增大,再次达到供需平衡。
当直流母线电压降低到MPPT点左侧时,储能单元的功率调节会使得直流母线电压稳定在MPPT点,从而实现功率跟踪到最大功率输出的平滑切换。
因而基于上述原理,下面描述本公开实施例根据光伏装置的电参数特性曲线,控制光伏设备运行功率跟踪模式或者最大功率输出模式,并且当光伏设备运行最大功率输出模式时,光伏设备根据光伏装置、储能装置以及负载之间的供需关系,对储能装置的充放电状态以及负载的电参数进行调节或限制,以使得光伏装置、储能装置以及负载在光伏装置的最大功率输出点达到平衡的具体技术方案。
当储能装置的电量状态为满电状态时,若负载的功率小于光伏装置的最大功率,光伏设备运行功率跟踪模式,继续监控光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
当储能装置的电量状态为满电状态时,若负载的功率等于光伏装置的最大功率,光伏设备运行最大功率输出模式,光伏装置的光伏利用率最高。
当储能装置的电量状态为满电状态时,若负载的功率大于光伏装置的最大功率,光伏设备运行最大功率输出模式,光伏装置的光伏利用率最高,同时基于储能设备的最大放电功率,对负载的功率进行限制。
当储能装置的电量状态为非满电状态时,若负载的功率小于光伏装置的最大功率减去储能装置的最大充电功率,光伏设备运行功率跟踪模式,继续监控光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
当储能装置的电量状态为非满电状态时,若负载的功率等于光伏装置的最大功率减去储能装置的最大充电功率,光伏设备运行最大功率输出模式,光伏装置的光伏利用率最高。
当储能装置的电量状态为非满电状态时,若负载的功率大于光伏装置的最大功率减去储能装置的最大充电功率,光伏设备运行最大功率输出模式,光伏装置的光伏利用率最高,同时基于储能设备的最大放电功率,对负载的功率进行限制。
下面结合图2、图3中所示出的光伏装置的输出功率与直流母线的电压之间的关系曲线,详细分析负载的功率、储能装置的状态、光伏装置的运行模式对直流母线电压的影响。
假设光照强度和温度不变,储能装置充满了电,为满电状态时,直流母线的电压大小随负载功率变化的变化如图2所示。
假设初始时,负载的功率为Pm1,与光伏装置的最大输出功率相等,整个光伏设备的***功率平衡,直流母线的电压为U1,此时光伏设备为最大功率输出模式。
当负载的功率减小到Pm2时,光伏装置输出的功率大于负载消耗的功率,由于储能装置的SOC为1,即储能装置的电池为满电状态,不能吸收光伏装置盈余的功率,因此导致直流母线电压升高。
当直流母线电压升高到U2时光伏装置的输出功率和负载的功率再次平衡,直流母线的电压稳定在U2
当负载的功率增大到Pm3时,光伏装置的输出功率小于负载的功率,直流母线的电压减小,减小到直流母线的电压小于MPPT电压时,储能装置为了维持光伏设备的MPPT运行,即为了维持光伏设备的最大功率输出模式,储能装置将会放电供负载使用,以弥补光伏装置不足的功率,使得直流母线电压稳定在最大功率输出点。同时由于储能装置的最大放电功率有限,因此此时需要限制负载的功率。
设Pdechmax为储能装置的最大放电功率,Pdechmax=Pm3-Pm1,当负载的功率在Pm1与Pm3之间变化时,储能装置可以通过调整其放电功率,使得光伏装置的光伏阵列运行在MPPT模式,即光伏设备运行在最大功率输出模式。
综上所述,储能装置在满电状态下,当负载的功率小于Pm1时,光伏设备运行在功率跟踪模式,负载的功率位于Pm1与Pm3之间时,光伏设备运行在MPPT模式,即光伏设备运行在最大功率输出模式,同时光伏设备控制负载的功率不能超过Pm3,否则需要切除部分负载。
当储能装置非满电时,若是光伏装置的发电量充足,则储能装置可以吸收一部分光伏装置的盈余功率,此时负载变化对直流母线电压的影响如图3所示。
图3中,Pchmax为储能装置的最大充电功率,Pchmax=Pm1-Pm4,当负载的功率位于Pm1与Pm4之间时,储能装置可以通过调整充电功率,使得直流母线的电压稳定在最大功率输出点,即光伏设备运行在最大功率输出模式。
当负载的功率减小到Pm2时,此时的光伏装置的输出功率大于负载和储能装置的最大充电功率之和,直流母线的电压随之升高并最终稳定在U3,此时光伏装置的输出功率等于储能电池充电功率与负载消耗功率之和。
综上所述,储能装置在非满电状态下,当负载的功率小于Pm4时,光伏设备运行在功率跟踪模式,负载的功率处于Pm4与Pm3之间时,光伏设备运行在MPPT模式,即光伏设备运行在最大功率输出模式,同时光伏设备控制负载的功率不能超过Pm3
通过上述储能装置的满电状态以及非满电状态各种控制的对比,可以发现,相较于满电状态,在储能装置为非满电状态时,可运行在MPPT模式的负载功率范围更广。
本公开实施例还保护光伏设备,该光伏设备包括:光伏装置、储能装置、负载。在此基础上,该光伏设备还包括检测模块和控制模块,检测模块和控制模块相互协作一起执行上述提升光伏设备的光伏利用率的方法。
检测模块用于监控光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
控制模块用于根据光伏装置的电参数特性曲线,控制光伏设备运行功率跟踪模式或者最大功率输出模式。
控制模块还用于当光伏设备运行最大功率输出模式时,根据光伏装置、储能装置以及负载之间的供需关系,控制模块对储能装置的充放电状态以及负载的电参数进行调节或限制,以使得光伏装置、储能装置以及负载在光伏装置的最大功率输出点达到平衡。
所述光伏装置的电参数特性曲线具体为光伏装置的输出功率与直流母线的电压之间的关系曲线。
控制模块用于当储能装置的电量状态为满电状态时,若负载的功率小于光伏装置的最大功率,控制所述光伏设备运行功率跟踪模式,继续监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
控制模块用于当储能装置的电量状态为满电状态时,若负载的功率等于光伏装置的最大功率,控制所述光伏设备运行最大功率输出模式。
控制模块用于当储能装置的电量状态为满电状态时,若负载的功率大于光伏装置的最大功率,控制所述光伏设备运行最大功率输出模式,同时基于所述储能设备的最大放电功率,对所述负载的功率进行限制。
控制模块用于当储能装置的电量状态为非满电状态时,若负载的功率小于光伏装置的最大功率减去储能装置的最大充电功率,控制所述光伏设备运行功率跟踪模式,继续监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
控制模块用于当储能装置的电量状态为非满电状态时,若负载的功率等于光伏装置的最大功率减去储能装置的最大充电功率,控制所述光伏设备运行最大功率输出模式。
控制模块用于当储能装置的电量状态为非满电状态时,若负载的功率大于光伏装置的最大功率减去储能装置的最大充电功率,控制所述光伏设备运行最大功率输出模式,同时基于所述储能设备的最大放电功率,对所述负载的功率进行限制。
在一个实施例中,本公开实施例的光伏设备包括光伏空调。
图4示出了本公开实施例的光伏空调的一个组成框图。光伏空调包括直流母线、光伏 阵列(即光伏装置)、储能电池(即储能装置)和空调负载,光伏阵列、储能电池以及空调负载均挂载在直流母线上。储能电池可以通过DC/DC变换器连接直流母线,例如通过双向DC/DC变换器连接直流母线。直流母线通过双向AC/DC变换器与交流母线连接。交流母线上挂载着交流负载,电网为交流母线提供电力。双向AC/DC变换器负责与电网进行功率交互,在光伏空调的光伏阵列发电量不足时,控制市电为空调负载和储能电池提供电量,在光伏空调的光伏阵列发电量充足时,光伏空调处于离网状态,直流母线与交流母线之间的双向AC/DC变换器不发挥作用,由光伏设备根据其光伏阵列的P-U特性曲线,自动调节光伏阵列的输出功率以达到功率平衡的功率跟踪控制策略,且结合储能电池的直流母线电压控制策略,实现功率跟踪和最大功率输出的快速切换。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种提升光伏设备的光伏利用率的方法,包括:
    当光伏设备与电网脱离且所述光伏设备的光伏装置与直流母线直接连接时,监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数;
    根据光伏装置的电参数特性曲线,控制所述光伏设备运行功率跟踪模式或者最大功率输出模式;
    当所述光伏设备运行最大功率输出模式时,根据光伏装置、储能装置以及负载之间的供需关系,对所述储能装置的充放电状态以及负载的电参数进行调节或限制,以使得光伏装置、储能装置以及负载在光伏装置的最大功率输出点达到平衡。
  2. 如权利要求1所述的提升光伏设备的光伏利用率的方法,其中,所述光伏装置的电参数特性曲线具体为光伏装置的输出功率与直流母线的电压之间的关系曲线。
  3. 如权利要求2所述的提升光伏设备的光伏利用率的方法,其中,当储能装置的电量状态为满电状态时,若负载的功率小于光伏装置的最大功率,所述光伏设备运行功率跟踪模式,继续监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
  4. 如权利要求2所述的提升光伏设备的光伏利用率的方法,其中,当储能装置的电量状态为满电状态时,若负载的功率等于光伏装置的最大功率,所述光伏设备运行最大功率输出模式。
  5. 如权利要求2所述的提升光伏设备的光伏利用率的方法,其中,当储能装置的电量状态为满电状态时,若负载的功率大于光伏装置的最大功率,所述光伏设备运行最大功率输出模式,同时基于所述储能设备的最大放电功率,对所述负载的功率进行限制。
  6. 如权利要求2所述的提升光伏设备的光伏利用率的方法,其中,当储能装置的电量状态为非满电状态时,若负载的功率小于光伏装置的最大功率减去储能装置的最大充电功率,所述光伏设备运行功率跟踪模式,继续监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数。
  7. 如权利要求2所述的提升光伏设备的光伏利用率的方法,其中,当储能装置的电量状态为非满电状态时,若负载的功率等于光伏装置的最大功率减去储能装置的最大充电功率,所述光伏设备运行最大功率输出模式。
  8. 如权利要求2所述的提升光伏设备的光伏利用率的方法,其中,当储能装置的电量状态为非满电状态时,若负载的功率大于光伏装置的最大功率减去储能装置的最大充电功率,所述光伏设备运行最大功率输出模式,同时基于所述储能设备的最大放电功率,对所述负载的功率进行限制。
  9. 一种光伏设备,包括:光伏装置、储能装置、负载,还包括用于相互协作执行如权利要求1至8任意一项所述的提升光伏设备的光伏利用率的方法的检测模块和控制模块;
    所述检测模块用于监控所述光伏设备的直流母线以及挂载在直流母线上的光伏装置、储能装置以及负载的电参数;
    所述控制模块用于根据光伏装置的电参数特性曲线,控制所述光伏设备运行功率跟踪模式或者最大功率输出模式;当所述光伏设备运行最大功率输出模式时,根据光伏装置、储能装置以及负载之间的供需关系,对所述储能装置的充放电状态以及负载的电参数进行调节或限制,以使得光伏装置、储能装置以及负载在光伏装置的最大功率输出点达到平衡。
  10. 如权利要求9所述的光伏设备,其中,所述光伏设备包括光伏空调。
  11. 一种非瞬时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1-8中任一项所述的方法的步骤。
PCT/CN2023/107923 2022-12-22 2023-07-18 光伏设备以及提升光伏设备的光伏利用率的方法 WO2024131045A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211659366.0A CN116048181A (zh) 2022-12-22 2022-12-22 光伏设备以及提升光伏设备的光伏利用率的方法
CN202211659366.0 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024131045A1 true WO2024131045A1 (zh) 2024-06-27

Family

ID=86130453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107923 WO2024131045A1 (zh) 2022-12-22 2023-07-18 光伏设备以及提升光伏设备的光伏利用率的方法

Country Status (2)

Country Link
CN (1) CN116048181A (zh)
WO (1) WO2024131045A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116048181A (zh) * 2022-12-22 2023-05-02 珠海格力电器股份有限公司 光伏设备以及提升光伏设备的光伏利用率的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155445A2 (en) * 2008-06-18 2009-12-23 Premium Power Corporation Integrated renewable energy generation and storage systems and associated methods
KR20140039511A (ko) * 2012-09-24 2014-04-02 한국전력공사 무인 독립형 마이크로그리드 시스템 및 그의 제어방법
CN105552952A (zh) * 2015-12-10 2016-05-04 国网上海市电力公司 一种光储联合发电***及其能量管理方法
CN113377150A (zh) * 2021-06-30 2021-09-10 江苏领充创享新能源科技有限公司 用于光储***的mppt自适应切换控制方法和***
AU2021106837A4 (en) * 2021-06-15 2021-11-18 Red Earth Energy Storage Ltd Solar energy storage system for blockchain processing
CN113852061A (zh) * 2021-08-13 2021-12-28 国网江苏省电力有限公司盐城供电分公司 一种包含光伏发电的直流微电网工作控制方法
CN116048181A (zh) * 2022-12-22 2023-05-02 珠海格力电器股份有限公司 光伏设备以及提升光伏设备的光伏利用率的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155445A2 (en) * 2008-06-18 2009-12-23 Premium Power Corporation Integrated renewable energy generation and storage systems and associated methods
KR20140039511A (ko) * 2012-09-24 2014-04-02 한국전력공사 무인 독립형 마이크로그리드 시스템 및 그의 제어방법
CN105552952A (zh) * 2015-12-10 2016-05-04 国网上海市电力公司 一种光储联合发电***及其能量管理方法
AU2021106837A4 (en) * 2021-06-15 2021-11-18 Red Earth Energy Storage Ltd Solar energy storage system for blockchain processing
CN113377150A (zh) * 2021-06-30 2021-09-10 江苏领充创享新能源科技有限公司 用于光储***的mppt自适应切换控制方法和***
CN113852061A (zh) * 2021-08-13 2021-12-28 国网江苏省电力有限公司盐城供电分公司 一种包含光伏发电的直流微电网工作控制方法
CN116048181A (zh) * 2022-12-22 2023-05-02 珠海格力电器股份有限公司 光伏设备以及提升光伏设备的光伏利用率的方法

Also Published As

Publication number Publication date
CN116048181A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN103023127B (zh) 太阳能空调及该空调的供电方法
CN104713176B (zh) 光伏空调***及其控制方法
KR102456811B1 (ko) 에너지 저장 장치의 히터 구동 방법
TWI774142B (zh) 交流負荷供電系統和方法
CN103208837B (zh) 太阳能空调及该空调的供电方法
KR20120027782A (ko) 최대 전력점 추종 장치 및 방법, 이를 이용한 계통 연계형 전력 저장 시스템의 운전 방법
KR20170095578A (ko) 에너지 저장 시스템 및 시스템 운용 방법
WO2011042781A1 (ja) 電力供給システム
KR101337576B1 (ko) Soc 관리를 위한 방법 및 시스템
WO2024131045A1 (zh) 光伏设备以及提升光伏设备的光伏利用率的方法
TW201312898A (zh) 具適應性電能控制之太陽光伏發電系統及其操作方法
KR102421893B1 (ko) 에너지 저장 시스템
JP2017051083A (ja) 発電システム、発電方法およびプログラム
KR20150106694A (ko) 에너지 저장 시스템과 그의 구동방법
CN114006403B (zh) 一种光储联合发电***及其多模式自适应调节运行控制算法
KR20190062812A (ko) 에너지 저장 시스템
KR20150005040A (ko) 전기저장장치 운전모드 제어 장치 및 방법
KR102234527B1 (ko) 발전 연계형 ESS의 주파수 추종 제어를 이용하는 SoC 관리 장치 및 방법
KR102463396B1 (ko) 에너지 저장 시스템
CN109842149A (zh) 兼具离网、并网两种模式的风力发电***及其工作方法
KR20220000865A (ko) 하이브리드 충방전 시스템
JP3688744B2 (ja) 太陽光発電装置
KR20210024882A (ko) 발전 연계형 ESS의 주파수 추종 제어 및 오프셋 추가를 이용하는 SoC 관리 장치 및 방법
CN116565964B (zh) 一种户用光储***全工况下直流母线控制***
CN118074551B (zh) 基于虚拟直流母线调节的混合逆变器及其控制方法