WO2024130474A1 - Decoding common transport block across mini-slot and subsequent slot - Google Patents

Decoding common transport block across mini-slot and subsequent slot Download PDF

Info

Publication number
WO2024130474A1
WO2024130474A1 PCT/CN2022/139913 CN2022139913W WO2024130474A1 WO 2024130474 A1 WO2024130474 A1 WO 2024130474A1 CN 2022139913 W CN2022139913 W CN 2022139913W WO 2024130474 A1 WO2024130474 A1 WO 2024130474A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
signaling
transport block
common transport
mini
Prior art date
Application number
PCT/CN2022/139913
Other languages
French (fr)
Inventor
Guangyi Liu
Gabi Sarkis
Stelios STEFANATOS
Tien Viet NGUYEN
Chih-Hao Liu
Giovanni Chisci
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/139913 priority Critical patent/WO2024130474A1/en
Publication of WO2024130474A1 publication Critical patent/WO2024130474A1/en

Links

Images

Definitions

  • the following relates to wireless communications, including decoding common transport block across a mini-slot and subsequent slot.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
  • UE user equipment
  • UEs may transmit and receive sidelink messages using slot-based transmissions associated with resources that span a duration of a slot. For example, slot-based transmissions may begin after a first symbol in a slot.
  • slot-based transmissions may begin after a first symbol in a slot.
  • being restricted to communicating at a slot boundary may limit efficiencies associated with sidelink communications.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support decoding common transport block (TB) across mini-slots and subsequent slots.
  • a wireless device e.g., a user equipment (UE) , a network entity
  • the wireless device may monitor during an inner-slot symbol for first signaling (e.g., including the TB) that is associated with a first set of resources (e.g., of a mini-slot) .
  • an inner-slot symbol may refer to a symbol that is within a slot and not the first symbol within the slot.
  • an inner-slot symbol may refer to a symbol in the middle of the slot, or at some other inner-slot location.
  • the first set of resources may span a first time duration that spans from the inner-slot symbol and extends to a subsequent end slot boundary.
  • the wireless device may receive and decode second signaling (e.g., including the TB) that is associated with a second set of resources (e.g., of a subsequent slot) .
  • the second set of resources may span a second time duration that spans from the subsequent boundary and extends for a slot duration.
  • the wireless device may decode the TB based on decoding the second signaling. For example, the wireless device may decode the TB by combining information included in the first signaling with information included in the second signaling.
  • a method for wireless communications at a first wireless device may include monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration, and decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to monitor, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, decode, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration, and decode a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • the apparatus may include means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration, and means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • a non-transitory computer-readable medium storing code for wireless communications at a first wireless device is described.
  • the code may include instructions executable by a processor to monitor, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, decode, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration, and decode a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving control signaling indicating that a capability for monitoring during the inner-slot symbol may be enabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof, where the monitoring may be based on the control signaling.
  • control signaling includes sidelink control information (SCI) or a medium access control (MAC) control element (MAC-CE) .
  • SCI sidelink control information
  • MAC medium access control control element
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving control signaling indicating that a capability for monitoring during the inner-slot symbol may be disabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, as part of the first signaling, first SCI indicating a first hybrid automatic repeat request (HARQ) process number and receiving, as part of the second signaling, second SCI indicating a second HARQ process number, where decoding the common TB may be based on the first HARQ process number and the second HARQ process number being the same.
  • HARQ hybrid automatic repeat request
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a capability for monitoring during the inner-slot symbol may be enabled based on the first HARQ process number and the second HARQ process number being the same.
  • the first SCI and the second SCI further indicate a packet identifier for the common TB.
  • decoding the common TB may include operations, features, means, or instructions for decoding a first codeword that may be encoded according to the first time duration and decoding a second codeword that may be encoded according to the second time duration.
  • decoding the common TB may include operations, features, means, or instructions for decoding a first instance of a codeword that may be encoded according to the second time duration and decoding a second instance of the codeword, where the second instance of the codeword may be punctured according to the first time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication of a puncturing pattern for the second instance of the codeword, where the second instance of the codeword may be decoded in accordance with the puncturing pattern.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, based on the monitoring, the first signaling including first SCI and the common TB and decoding the second signaling including the common TB based on the first SCI.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common TB, the first time-domain resource corresponding to the first time duration and receiving second control signaling indicating a second time-domain resource for transmitting second feedback associated with the common TB, the second time-domain resource corresponding to the second time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, via the first time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration based on the monitoring and transmitting, via the second time-domain resource, the second feedback indicating whether the common TB was successfully received during the second time duration based on the decoding.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration and the second feedback indicating whether the common TB was successfully received during the second time duration.
  • the first time-domain resource and the second time-domain resource may be associated with a same slot.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting the first time-domain resource, the second time-domain resource, or both based on a cast type associated with the common TB and transmitting the first feedback indicating whether the common TB was successfully received during the first time duration, the second feedback indicating whether the common TB was successfully received during the second time duration, or both, based on the selecting.
  • the common TB spans the first time duration and the second time duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the common TB via the first set of resources according to a first modulation and coding scheme and receiving the common TB via the second set of resources according to a second modulation and coding scheme different from the first modulation and coding scheme.
  • FIG. 1 illustrates an example of a wireless communications system that supports decoding common transport block (TB) across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • TB common transport block
  • FIG. 2 illustrates an example of a wireless communications system that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • FIG. 3 illustrates an example of a slot format that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • FIGs. 5 and 6 illustrate block diagrams of devices that support decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • FIG. 7 illustrates a block diagram of a communications manager that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • FIG. 8 illustrates a diagram of a system including a UE that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • FIG. 9 illustrates a diagram of a system including a network entity that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • FIGs. 10 through 12 illustrate flowcharts showing methods that support decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • wireless devices such as user equipments (UEs) may perform sidelink communications.
  • UEs user equipments
  • a sidelink UE may be scheduled (e.g., by another UE or a network entity) with sidelink resources for transmitting a sidelink message to one or more other sidelink UEs. Additionally, or alternatively, the UE may select the sidelink resources from a sidelink resource pool to use for transmitting the message.
  • the sidelink resources via which the message is transmitted may span a duration of a slot (e.g., a slot with 14 orthogonal frequency division multiplexing (OFDM) symbols) , which may be referred to as slot transmissions, or may span a relatively shorter duration (e.g., a portion of a slot, such as one or more symbols) , which may be referred to as mini-slot transmissions, sub-slot transmissions, or the like.
  • a mini-slot may include half of the amount of symbols as a slot (e.g., a “regular” slot) .
  • mini-slot transmissions may begin at a beginning of a slot (e.g., at a first symbol in the slot)
  • mini-slot transmissions may begin at the beginning of a slot or in a symbol that is later in the slot (e.g., in the middle of the slot) .
  • mini-slot transmissions may reduce communications latency and avoid delays by providing sidelink UEs with additional opportunities to access a sidelink channel, as the UE may not have to wait until the beginning of the slot to transmit or receive a sidelink message.
  • mini-slot transmissions may reduce channel occupancy time (COT) of the UE.
  • COT channel occupancy time
  • mini-slots may have fewer data symbols, and thus a reduced ratio of data symbols to control symbols, as compared to slots. Mini-slot transmissions may therefore be associated with relatively high overhead. Further, mini-slot transmissions may carry data payloads (e.g., transport block (s) (TBs) ) of a limited size, which may decrease communications reliability.
  • data payloads e.g., transport block (s) (TBs)
  • a transmitting device e.g., a UE, a network entity
  • may transmit a data payload e.g., a TB
  • a slot e.g., a slot with 14 OFDM symbols
  • a receiving device e.g., a UE, a network entity
  • the TB may be common to the mini-slot and the subsequent slot (e.g., the TB may be repeated across the mini-slot and the subsequent slot) , such that the receiving device may decode the TB using information received in the mini-slot combined with information received in the subsequent slot. Enabling the TB to be repeated across a mini-slot and a subsequent slot may provide the transmitting and receiving devices with increased channel access opportunities (e.g., via the mini-slot) while improving communications reliability and reducing overhead (e.g., based on the subsequent slot) .
  • slots and mini-slots are referred to throughout the present disclosure, it should be understood that techniques described herein may also apply to other time durations or combinations of time durations having different terminology.
  • the transmitting device may encode the TB separately for each of the mini-slot and the subsequent slot. For example, the transmitting device may generate a first codeword for the mini-slot based on the duration (e.g., length) of the mini-slot and may generate a second codeword for the subsequent slot based on the duration (e.g., length) of the subsequent slot. Alternatively, the transmitting device may generate only one codeword for the TB that is based on the length of the subsequent slot, and the TB transmitted via the mini-slot may be punctured or otherwise altered according to the length of the mini-slot.
  • the receiving device may determine that the TB is common to the mini-slot and the subsequent slot, and may decode the TB using the mini-slot and the subsequent slot, e.g., based on control signaling. For example, the receiving device may receive control signaling indicating that monitoring during an inner-slot symbol is enabled. Additionally, or alternatively, the receiving device may receive sidelink control information (SCI) within the mini-slot that indicates a first hybrid automatic repeat request (HARQ) process number associated with the mini-slot, and SCI within the subsequent slot that indicates a second HARQ process number associated with the subsequent slot. The receiving device may determine to jointly decode the TB using the mini-slot and the subsequent slot based on the first HARQ process number and the second HARQ process number being the same.
  • SCI sidelink control information
  • HARQ hybrid automatic repeat request
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then discussed with reference to a slot format and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to decoding common transport block across mini-slot and subsequent slot.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities.
  • a network entity 105 may be referred to as a network element, a mobility element, a radio access network (RAN) node, or network equipment, among other nomenclature.
  • network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) .
  • a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
  • a node of the wireless communications system 100 which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein.
  • a node may be a UE 115.
  • a node may be a network entity 105.
  • a first node may be configured to communicate with a second node or a third node.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a UE 115.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a network entity 105.
  • the first, second, and third nodes may be different relative to these examples.
  • reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a node.
  • disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
  • network entities 105 may communicate with the core network 130, or with one another, or both.
  • network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) .
  • network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) .
  • network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof.
  • the backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof.
  • a UE 115 may communicate with the core network 130 via a communication link 155.
  • One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) .
  • a base station 140 e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be
  • a network entity 105 may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
  • a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) .
  • IAB integrated access backhaul
  • O-RAN open RAN
  • vRAN virtualized RAN
  • C-RAN cloud RAN
  • a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof.
  • An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) .
  • One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) .
  • one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
  • VCU virtual CU
  • VDU virtual DU
  • VRU virtual RU
  • the split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170.
  • functions e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof
  • a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack.
  • the CU 160 may host upper protocol layer (e.g., layer 3 (L3) , layer 2 (L2) ) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) .
  • the CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as layer 1 (L1) (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160.
  • L1 e.g., physical (PHY) layer
  • L2 e.g., radio link control (RLC) layer, medium access control (MAC) layer
  • a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack.
  • the DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) .
  • a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) .
  • a CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions.
  • CU-CP CU control plane
  • CU-UP CU user plane
  • a CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) .
  • a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
  • infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) .
  • IAB network one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other.
  • One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor.
  • One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) .
  • the one or more donor network entities 105 may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) .
  • IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor.
  • IAB-MT IAB mobile termination
  • An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) .
  • the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) .
  • one or more components of the disaggregated RAN architecture e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
  • one or more components of the disaggregated RAN architecture may be configured to support decoding common transport block across mini slot and subsequent slot as described herein.
  • some operations described as being performed by a UE 115 or a network entity 105 may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers.
  • the term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105.
  • the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105 may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
  • a network entity 105 e.g., a base station 140, a CU 160, a DU 165, a RU 170
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute RF channel number (EARFCN) ) and may be identified according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode, in which case initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode, in which case a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include downlink transmissions (e.g., forward link transmissions) from a network entity 105 to a UE 115, uplink transmissions (e.g., return link transmissions) from a UE 115 to a network entity 105, or both, among other configurations of transmissions.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the RF spectrum and, in some examples, the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a set of bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the network entities 105, the UEs 115, or both
  • the wireless communications system 100 may include network entities 105 or UEs 115 that support concurrent communications using carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating using portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related.
  • the quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication.
  • a wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, and a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots.
  • each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing.
  • Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., a quantity of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed for communication using a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • One or more control regions may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a network entity 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a network entity 105 (e.g., using a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell also may refer to a coverage area 110 or a portion of a coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network entity 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered network entity 105 (e.g., a lower-powered base station 140) , as compared with a macro cell, and a small cell may operate using the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a network entity 105 may support one or multiple cells and may also support communications via the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a network entity 105 may be movable and therefore provide communication coverage for a moving coverage area 110.
  • different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105.
  • the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a network entity 105 (e.g., a base station 140) without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that uses the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) .
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions.
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data.
  • Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105.
  • one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105.
  • groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group.
  • a network entity 105 may facilitate the scheduling of resources for D2D communications.
  • D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
  • a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
  • roadside infrastructure such as roadside units
  • network nodes e.g., network entities 105, base stations 140, RUs 170
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • IMS IP Multimedia Subsystem
  • the wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) .
  • Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a network entity 105 e.g., a base station 140, an RU 170
  • a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations.
  • a network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may include one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
  • the network entities 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase spectral efficiency by transmitting or receiving multiple signals via different spatial layers.
  • Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry information associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , for which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , for which multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a network entity 105 or a UE 115 may use beam sweeping techniques as part of beamforming operations.
  • a network entity 105 e.g., a base station 140, an RU 170
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the network entity 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions along different beam directions may be used to identify (e.g., by a transmitting device, such as a network entity 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the network entity 105.
  • a transmitting device such as a network entity 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by transmitting device (e.g., a transmitting network entity 105, a transmitting UE 115) along a single beam direction (e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115) .
  • a single beam direction e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted along one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the network entity 105 along different directions and may report to the network entity 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or beamforming to generate a combined beam for transmission (e.g., from a network entity 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured set of beams across a system bandwidth or one or more sub-bands.
  • the network entity 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • these techniques are described with reference to signals transmitted along one or more directions by a network entity 105 (e.g., a base station 140, an RU 170)
  • a UE 115 may employ similar techniques for transmitting signals multiple times along different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal along a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may perform reception operations in accordance with multiple receive configurations (e.g., directional listening) when receiving various signals from a receiving device (e.g., a network entity 105) , such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device e.g., a network entity 105
  • signals such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may perform reception in accordance with multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned along a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • receive configuration directions e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or PDCP layer may be IP-based.
  • An RLC layer may perform packet segmentation and reassembly to communicate via logical channels.
  • a MAC layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer also may implement error detection techniques, error correction techniques, or both to support retransmissions to improve link efficiency.
  • an RRC layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network entity 105 or a core network 130 supporting radio bearers for user plane data.
  • a PHY layer may map transport channels to physical channels.
  • the UEs 115 and the network entities 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly via a communication link (e.g., a communication link 125, a D2D communication link 135) .
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, in which case the device may provide HARQ feedback in a specific slot for data received via a previous symbol in the slot. In some other examples, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the wireless communications system 100 may support one or more modes for sidelink communications.
  • the wireless communications system 100 may support Mode-1 sidelink operations and Mode-2 sidelink operations, among other examples of sidelink operation modes.
  • Mode-1 sidelink operations may refer to sidelink operations in which resource allocations (e.g., for sidelink communications) may be scheduled or configured using a network entity 105 (e.g., a gNB) . That is, for Mode-1 sidelink, resource utilization may be determined at a network entity 105.
  • Mode-2 sidelink operations may refer to sidelink operations in which resource allocations (e.g., for sidelink communications) may be determined using a channel sensing procedure conducted (e.g., autonomously) at UEs 115 (e.g., a transmitting UE 115) . That is, in some examples, channel sensing may be used for sidelink communications, such as Mode-2 sidelink.
  • the transmitting UE 115 may perform channel sensing to determine one or more resources that may be reserved at one or more other (e.g., nearby) transmitting UEs 115 and to select one or more resources for a transmission (e.g., a sidelink transmission) at the transmitting UE 115 based on the channel sensing.
  • Sidelink communications may utilize sidelink channels, such as physical sidelink shared channels (PSSCHs) , physical sidelink control channels (PSCCH) , physical sidelink feedback channels (PSFCHs) , and the like.
  • Sidelink messages transmitted by the UEs 115 via sidelink channels may be transmitted via resources that span a duration of a slot in a time domain, which may be referred to herein as slot-based transmissions or slot transmissions. Additionally, or alternatively, the sidelink messages may be transmitted via resources that span a shorter duration (e.g., a portion of a slot, such as a mini-slot) , which may be referred to herein as mini-slot-based transmissions or mini-slot transmissions.
  • the sidelink resources for a given sidelink transmission may be allocated or selected from a sidelink resource pool, which may represent a pool or set of time and frequency resources allocated for sidelink communications.
  • UEs 115 may transmit and receive sidelink communications via a mini-slot and a subsequent slot.
  • a UE 115 may receive a data payload (e.g., a TB) that is repeated across a mini-slot and a subsequent slot that follows the mini-slot in the time domain.
  • the mini-slot and the subsequent slot may both be associated with a same set of frequency resources (e.g., a same sub-channel) .
  • the mini-slot may begin at a slot boundary (e.g., at a beginning of a slot, such as an initial symbol of a slot) or at an inner-slot location, such as a symbol within a slot (e.g., in the middle of the slot) .
  • the UE 115 may monitor for the mini-slot by monitoring at the inner-slot location (e.g., during an inner-slot symbol) and/or at the slot boundary.
  • the subsequent slot may begin at a slot boundary subsequent to an end symbol of the mini-slot.
  • the UE 115 may receive the TB via the mini-slot and the subsequent slot. For example, the UE 115 may jointly decode the data payload received via the mini-slot and the data payload received via the subsequent slot to obtain the TB.
  • the UE 115 may receive control signaling indicating that the UE 115 is to monitor during the inner-slot symbol to receive the mini-slot and the subsequent slot. That is, the control signaling may indicate that a capability for monitoring during an inner-slot symbol is enabled.
  • the UE 115 may determine that the TB is to be repeated across the mini-slot and the subsequent slot (and, thus, that the mini-slot and the subsequent slot are to be jointly decoded) based on the control signaling. In some other cases, the UE 115 may determine that the TB is repeated across the mini-slot and the subsequent slot based on information associated with the mini-slot and the subsequent slot.
  • the UE 115 may determine that a HARQ process number associated with the mini-slot is the same as a HARQ process number associated with the subsequent slot, based on which the UE 115 may jointly decode the mini-slot and the subsequent slot.
  • the UE 115 may transmit feedback for the TB via one or more PSFCH resources according to the HARQ process number. The feedback may indicate whether the UE 115 successfully received the TB via the mini-slot, the subsequent slot, or both.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 200 may implement or be implemented by aspects of the wireless communications system 100 as described with reference to FIG. 1.
  • the wireless communications system 200 may include a UE 115-a and a UE 115-b, which may be examples of UEs 115 as described with reference to FIG. 1.
  • the UEs 115 may communicate via one or more respective communication links 205 (e.g., communication links 205-a and 205-b) , which may include or be examples of sidelink communication links. Such sidelink communications may be performed in a Mode 1 resource allocation scheme or Mode 2 resource allocation scheme.
  • a network entity 105 (not pictured in FIG. 2) may schedule sidelink communications between the UEs 115 (e.g., for Mode 1 sidelink communications) .
  • the network entity 105 may transmit a control message that allocates sidelink resources for one or more sidelink transmissions.
  • a transmitting UE 115 may perform a channel sensing or channel access procedure (e.g., LBT) to detect transmissions by other devices (e.g., other UEs) , and the transmitting UE 115 may select available sidelink resources for a sidelink transmission from a pool of configured sidelink resources (e.g., for Mode 2 sidelink communications) .
  • a channel sensing or channel access procedure e.g., LBT
  • the transmitting UE 115 may select available sidelink resources for a sidelink transmission from a pool of configured sidelink resources (e.g., for Mode 2 sidelink communications) .
  • the UEs 115 described herein may support sub-slot transmissions, slot transmissions, or both.
  • the UEs 115 may be configured to use multiple types of slots (e.g., multiple types of slot formats) for sidelink transmission.
  • both slot (e.g., full-sized slot) and mini-slot transmissions may be enabled for sidelink communications at the UEs 115.
  • a mini-slot which may also be referred to as a sub-slot, may correspond to a portion of a slot.
  • a mini-slot may be understood as a time interval or time duration that includes a quantity (e.g., one or more) of symbol periods.
  • the time duration of a mini-slot may be less than a slot duration (e.g., less than a time duration of a full-sized slot) .
  • a slot may be partitioned into multiple mini-slots.
  • a mini-slot may begin at an initial symbol of a slot (e.g., a slot boundary) or an inner-slot symbol (e.g., a symbol within a slot) , and may end at a subsequent slot boundary (e.g., a slot boundary that occurs after the beginning of the mini-slot) .
  • a mini-slot may begin at an inner-slot symbol within a slot and may end at a subsequent end slot boundary of the slot.
  • the UEs 115 may use a slot, one or more mini-slots (e.g., one or more portions of a slot) , or a combination thereof to transmit and receive sidelink communications.
  • the UE 115-a may select or be allocated one or more sub-slots (e.g., sub-intervals, mini-slots, fractional portions of a slot, one or more symbol periods) for transmitting sidelink communications.
  • the UE 115-a may use one or both of a mini-slot 215 and a slot 220 (e.g., a full-sized slot) subsequent to the mini-slot 215 (e.g., in the time domain) to transmit a sidelink message 235 to the UE 115-b.
  • the UE 115-a may transmit, and the UE 115-b may receive, the sidelink message 235 via allocated frequency resources (e.g., a sub-channel 210) and time resources (e.g., the mini-slot 20 and the slot 220) of a sidelink channel. More specifically, the UE 115-a may transmit the sidelink message 235 via a first set of resources corresponding to the sub-channel 210 and the mini-slot 215 and a second set of resources corresponding to the sub-channel 210 and the slot 220, where the second set of resources is subsequent, in the time-domain, to the first set of resources.
  • allocated frequency resources e.g., a sub-channel 210
  • time resources e.g., the mini-slot 20 and the slot 220
  • the UE 115-a may transmit the mini-slot 215 according to a first modulation and coding scheme (MCS) and may transmit the slot 220 according to a second MCS different from the first MCS.
  • MCS modulation and coding scheme
  • the first MCS may be relatively higher than the second MCS, as the mini-slot 215 may include fewer symbols than the slot 220.
  • the UE 115-a may transmit control signaling 230 to the UE 115-b to schedule the sidelink message 235.
  • the control signaling 230 may indicate one or more time-frequency resources (e.g., PSFCH resources) for the UE 115-b to use to transmit a feedback message 265 indicating feedback information for the sidelink message 235.
  • the sidelink message 235 may include SCI and a TB corresponding to a data payload (e.g., a PSSCH payload) , where the TB is common to the mini-slot 215 and the slot 220 (e.g., is repeated across the mini-slot 215 and the slot 220) .
  • a common-TB transmission scheme Transmission and reception of a common TB across a mini-slot and a subsequent slot (e.g., a subsequent full-sized slot) may be referred to herein as a common-TB transmission scheme.
  • the common-TB transmission scheme may correspond to a capability (e.g., of a UE) for monitoring during an inner-slot symbol.
  • the mini-slot 215 may begin at an inner-slot symbol with an index of 7 and may span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, such as a slot boundary 225.
  • the mini-slot 215 may include 6 symbols (e.g., OFDM symbols) , such as an automatic gain control (AGC) symbol 240, PSCCH symbols 245, a demodulation reference signal (DMRS) symbol 250, and a set of PSSCH symbols 255 that may convey or carry data (e.g., may convey the TB) .
  • the mini-slot 215 may include second stage control (e.g., SCI-2) on a PSSCH symbol 255.
  • the mini-slot 215 may additionally include a gap symbol 260 as an end symbol of the mini-slot 215, which may support beam switching operations.
  • the slot boundary 225 may separate the end symbol of the mini-slot 215 and an initial symbol (e.g., a symbol with an index of 0) of the slot 220.
  • the slot 220 may begin at the initial symbol, and may span a second time duration that spans from the slot boundary 225 to an end symbol of the slot 220 (e.g., a symbol with an index of 13) .
  • the slot 220 may include 14 symbols (e.g., OFDM symbols) , such as an AGC symbol 240, PSCCH symbols 245, DMRS symbols 250, and a set of PSSCH symbols 255 that convey the TB.
  • the slot 220 may include second stage control (e.g., SCI-2) on a PSSCH symbol 255.
  • the end symbol of the slot 220 may be a gap symbol 260.
  • the UE 115-b may begin monitoring the sidelink channel at the inner-slot symbol for the mini-slot 215.
  • the UE 115-b may be aware that the mini-slot 215 and the slot 220 are associated with the same TB (e.g., the common TB) and may monitor the sidelink channel during the inner-slot symbol accordingly, in order to receive the TB via the mini-slot 215 and the slot 220.
  • the UE 115-b may receive (e.g., from the UE 115-a) an indication that a common-TB transmission scheme is enabled, that a capability for monitoring during an inner-slot symbol is enabled, or a combination thereof.
  • the UE 115-b may monitor at the inner-slot symbol based on receiving the indication. In some examples, the UE 115-b may continue to monitor the sidelink channel for the slot 220, e.g., after receiving the mini-slot 215, based on the TB being a common TB.
  • the AGC symbols 240 may correspond to a beginning of a slot or a mini-slot.
  • a transmitting UE e.g., the UE 115-a
  • may perform a full-slot sidelink transmission e.g., spanning a slot duration starting from a first symbol allocated for sidelink and ending in a last symbol allocated for sidelink.
  • a UE receiving the full-slot sidelink transmission may adjust (e.g., readjust) an AGC at the UE 115-b using an AGC symbol 240 (e.g., in each AGC symbol 240) .
  • the transmitting UE e.g., the UE 115-a
  • may perform one or more mini-slot sidelink transmissions e.g., via one or more mini-slots, such as the mini-slot 215) .
  • the UE receiving the mini-slot sidelink transmission may adjust AGC at the UE 115-b for the mini-slot using the AGC symbol 240 at a beginning of the mini-slot 215.
  • the AGC symbol 240 at the beginning of the mini-slot 215 may occur at a slot boundary or at an inner-slot location (e.g., an inner-slot symbol) .
  • the UE 115-b may use an AGC symbol 240 with an index of 7 to adjust the AGC at the UE 115-b for the mini-slot 215.
  • one or more other symbols may be used at the UE 115-b to adjust the AGC. For example, adjusting the AGC during a first portion (e.g., half) of a slot may impact a phase continuity associated with a second portion of the slot.
  • the UE may use a DMRS symbol 250 to estimate (e.g., re-estimate) a channel.
  • the sidelink message 235 may include SCI (e.g., SCI-1) associated with the mini-slot 215 in a control region of the mini-slot 215 corresponding to the PSCCH symbol (s) 245.
  • SCI e.g., SCI-1
  • the SCI associated with the mini-slot 215 may indicate information to be used by the UE 115-b in decoding the TB.
  • the SCI may indicate a source identifier of the UE 115-a, a packet identifier of the TB, an MCS associated with the mini-slot 215, or the like, among other examples.
  • the SCI may further indicate HARQ information, such as a HARQ process number for the mini-slot 215, for the UE 115-b to transmit HARQ feedback associated with the mini-slot 215.
  • the sidelink message 235 may include SCI (e.g., SCI-1) associated with the slot 220 in a control region of the slot 220 corresponding to the PSCCH symbol (s) 245.
  • SCI e.g., SCI-1
  • the SCI associated with the slot 220 may indicate information to be used by the UE 115-b in decoding the TB, such as a source identifier of the UE 115-a, a packet identifier of the TB, an MCS associated with the slot 220, or the like, among other examples.
  • the SCI may further indicate HARQ information, such as a HARQ process number for the slot 220, for the UE 115-b to transmit HARQ feedback associated with the slot 220.
  • the TB of the sidelink message 235 may be communicated within a data region of the mini-slot 215 and a data region of the slot 220. That is, the PSSCH symbols 255 of the mini-slot 215 and the PSSCH symbols 255 of the slot 220 may carry a same TB, e.g., based on the slot 220 being subsequent to the mini-slot 215 in the time domain. For example, a first instance of the TB may be transmitted within the mini-slot 215 and a second instance of the TB may be transmitted within the slot 220, where the first instance of the TB and the second instance of the TB correspond to a same data payload encoded at the UE 115-a.
  • the TB may be repeated across the mini-slot 215 and the slot 220.
  • the mini-slot 215 may include an initial transmission of the TB, while the slot 220 may include a repetition of the TB.
  • the UE 115-b may combine the first instance of the TB received in the mini-slot 215 with the second instance of the TB received in the slot 220 in order to decode and obtain the data payload associated with the TB.
  • the UE 115-b may process the TB received via the mini-slot 215 and the slot 220 based on an encoding scheme used by the UE 115-a to encode the TB.
  • the UE 115-a may encode the TB by generating a single codeword, and may transmit a first instance of the codeword (e.g., corresponding to the first instance of the TB) in the mini-slot 215 and a second instance of the codeword (e.g., corresponding to the second instance of the TB) in the slot 220.
  • the UE 115-a may generate the codeword in accordance with a length (e.g., a quantity of symbols) of the slot 220 (e.g., according to the second time duration) , such that a length of the codeword matches the length of the slot 220.
  • a length e.g., a quantity of symbols
  • the UE 115-a may puncture (e.g., according to a puncturing pattern) the first instance of the codeword transmitted via the mini-slot 215.
  • the UE 115-a may puncture the first instance of the codeword according to the length of the mini-slot 215.
  • the UE 115-b may decode the first instance of the codeword and the second instance of the codeword based on the second time duration and the puncturing. In some cases, the UE 115-b may receive an indication (e.g., via the control signaling 230) of the puncturing pattern and may decode the first instance of the codeword based on the puncturing pattern. In some examples, the UE 115-b may jointly decode the first instance of the codeword with the second instance of the codeword to recover the TB.
  • the UE 115-a may encode the TB according to two different encoding schemes to generate respective codewords for each of the mini-slot 215 and the slot 220.
  • the UE 115-a may generate a first codeword based on the length (e.g., quantity of symbols) of the mini-slot 215 corresponding to the first time duration, such that the length of the first codeword matches or otherwise corresponds to the length of the mini-slot 215.
  • the UE 115-a may generate a second codeword according to the length of the slot 220 corresponding to the second time duration.
  • the second codeword may have a length that matches or otherwise corresponds to the length of the slot 220, e.g., the second codeword may have a length different than the length of the first codeword.
  • the UE 115-b may decode the first codeword according to the length of the mini-slot 215 and may decode the second codeword according to the length of the slot 220.
  • the TB received via the slot 220 e.g., the second codeword
  • the UE 115-b may therefore obtain the TB by decoding only the second codeword (though decoding the first codeword may still provide improved reliability and precision) .
  • the UE 115-b may still be able to recover the TB despite lacking the first codeword.
  • the UE 115-b may refrain from monitoring for the mini-slot 215 and may only monitor for the slot 220. For example, the UE 115-b may not support mini-slot transmissions.
  • the UE 115-a may dynamically determine whether to enable transmission of the TB via the mini-slot 215 and the slot 220 subsequent to the mini-slot 215, for example, based on a TB size (TBS) of the data payload, an application type of the TB, an application identifier associated with the TB, a priority of the TB, or a combination thereof, among other examples. That is, the UE 115-a may determine, for a given TB, whether to transmit the TB as a self-decodable TB via a mini-slot, as a self-decodable TB via a full-sized slot, or as a common TB repeated across a mini-slot and a subsequent full-sized slot.
  • TBS TB size
  • the UE 115-a may dynamically determine whether to enable or disable the common-TB transmission scheme (e.g., may dynamically determine whether to enable or disable the capability for monitoring at the inner-slot symbol) .
  • mini-slots may be periodically available for sidelink transmissions by the UE 115-a. For each mini-slot utilized by the UE 115-a, the UE 115-a may determine whether to follow the mini-slot with a subsequent full-sized slot.
  • the UE 115-b may receive the sidelink message 235 via only one of the mini-slot 215 and the slot 220.
  • the UE 115-a may transmit the TB via a mini-slot and may refrain from following the mini-slot with a subsequent full-sized slot.
  • the UE 115-a may be configured with a threshold TBS value, where a TBS satisfying the threshold value corresponds to transmission of the TB via the mini-slot. If the TBS fails to satisfy the threshold, the UE 115-a may transmit the TB via a full-sized slot, or as a common TB via the mini-slot and the full-sized slot. Additionally, or alternatively, some applications or application types may have relatively high reliability requirements.
  • the UE 115-a may, in some cases, enable the common-TB transmission scheme to transmit TBs associated with such applications or application types. For example, the UE 115-a may enable the common-TB transmission scheme based on an application type associated with the TB, an application identifier associated with the TB, or a combination thereof.
  • the UE 115-a may be configured to utilize the common-TB transmission scheme. For instance, the UE 115-a may receive an indication from a network entity indicating that the UE 115-a is to enable or disable the common-TB transmission scheme (e.g., the capability for monitoring at the inner-slot symbol) . Additionally, or alternatively, the UE 115-a may transmit the sidelink message 235 according to a cast type. In the example of FIG. 2, the UE 115-a may transmit the sidelink message 235 via unicast, e.g., to one UE (e.g., the UE 115-b) .
  • the UE 115-a may transmit the sidelink message 235 via groupcast (e.g., groupcast type I, groupcast type II) to multiple UEs including the UE 115-b. Accordingly, the UE 115-a may dynamically determine whether to transmit the sidelink message 235 via the mini-slot 215, the slot 220, or both, based on the cast type.
  • groupcast e.g., groupcast type I, groupcast type II
  • the UE 115-a may indicate, to the UE 115-b, whether the common-TB transmission scheme (e.g., the capability for monitoring at the inner-slot symbol) is enabled or disabled. For example, the UE 115-a may transmit an indication via control signaling (e.g., the control signaling 230) , such as SCI (e.g., SCI-1, SCI-2) , a MAC-CE, within a MAC-CE header, or the like.
  • control signaling e.g., the control signaling 230
  • SCI e.g., SCI-1, SCI-2
  • a MAC-CE within a MAC-CE header, or the like.
  • the UE 115-b may process and decode the sidelink message 235 based on the indication.
  • the UE 115-b may monitor during the inner-slot symbol for the mini-slot 215 and may jointly decode the mini-slot 215 and the slot 220 to obtain the TB.
  • the UE 115-b may autonomously determine that the common-TB scheme is enabled without receiving an indication from the UE 115-a. For example, the UE 115-b may determine that the HARQ process number, the source identifier, the packet identifier, or a combination thereof indicated in the SCI of the mini-slot 215 is the same as the HARQ process number, source identifier, packet identifier, or combination thereof indicated in the SCI of the slot 220. Accordingly, the UE 115-b may determine that the TB received via the mini-slot 215 and the slot 220 is a common TB, and may utilize information received within the mini-slot 215 and the slot 220 to decode the TB.
  • the UE 115-b may be configured with one or more time-domain resources (e.g., PSFCH resources) for transmitting feedback (e.g., HARQ feedback information) for the sidelink message 235.
  • the UE 115-a may indicate the PSFCH resources in the control signaling 230, the SCI associated with the mini-slot 215, the SCI associated with the slot 220, or a combination thereof.
  • the UE 115-b may transmit a feedback message 265 via the configured PSFCH resources to indicate whether the TB transmitted in the sidelink message 235 was successfully received at the UE 115-b.
  • the UE 115-b may indicate a negative acknowledgement (NACK) if the UE 115-b failed to receive or decode the TB and may indicate a positive acknowledgement (ACK) if the UE 115-b successfully received and decoded the TB.
  • NACK negative acknowledgement
  • ACK positive acknowledgement
  • the UE 115-b may utilize a respective PSFCH resource to indicate feedback for each of the mini-slot 215 and the slot 220, while in other cases, the UE 115-b may indicate feedback for both of the mini-slot 215 and the slot 220 in a same PSFCH resource.
  • the UE 115-b may be configured with a first PSFCH resource corresponding to the mini-slot 215 and a second PSFCH resource corresponding to the slot 220.
  • the UE 115-b may use the first PSFCH resource to transmit first feedback (e.g., ACK or NACK) indicating whether the TB was received via the mini-slot 215 and may use the second PSFCH resource to transmit second feedback (e.g., ACK or NACK) indicating whether the TB was received via the slot 220.
  • the UE 115-b may transmit, via the first PSFCH resource or the second PSFCH resource, feedback indicating that the TB was received via either the mini-slot 215 or the slot 220.
  • the UE 115-b may be configured to select the first PSFCH resource, the second PSFCH resource, or both for the feedback message 265.
  • Communicating a sidelink message 235 via the mini-slot 215 and the slot 220 subsequent to the mini-slot 215 may enable the UEs 115 to access a sidelink channel more frequently (e.g., may increase channel access opportunities within a time duration) , which may reduce delay and latency for the sidelink message 235.
  • the mini-slot 215 may be associated with a reduced channel occupancy time (COT) , for example, as compared to a full-slot sidelink transmission. Reducing COT may decrease congestion on the sidelink channel and may improve resource utilization efficiency at the UEs 115 and at any other devices accessing the sidelink channel.
  • COT channel occupancy time
  • communicating a TB via both the mini-slot 215 and the slot 220 may improve reliability, as a quantity of symbols available for carrying the TB may be increased.
  • the TB may be repeated across the mini-slot 215 and the slot 220 based on the slot 220 being subsequent to the mini-slot 215, thereby increasing the likelihood that the TB is successfully received and decoded at the UE 115-b.
  • FIG. 3 illustrates an example of a slot format 300 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the slot format 300 may be implemented by aspects of the wireless communications systems 100 and 200.
  • the slot format 300 may be implemented by one or more UEs 115 for sidelink communications via a mini-slot 305 and a slot 310 as described with reference to FIGs. 1 and 2.
  • the mini-slot 305 and the slot 310 may be associated with a same set of frequency resources (e.g., a sub-channel) of a sidelink channel.
  • the mini-slot 305 illustrates an example mini-slot that spans 7 OFDM symbols and begins at an inner-slot symbol within a slot (e.g., an inner-slot location 320 occurring after a slot boundary 315-a and before a slot boundary 315-b in the time domain) .
  • the mini-slot 305 may represent or be understood as a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary (e.g., the slot boundary 315-b) of the slot.
  • the mini-slot 305 includes a first set of symbols (e.g., a first set of resources) that spans the first time duration.
  • the slot 310 spans 14 OFDM symbols beginning at an initial symbol of the slot 310 subsequent to the mini-slot 305 and ending at a slot boundary 315-c (e.g., subsequent to the slot boundary 315-b) .
  • the slot 310 may represent or be understood as a second time duration that spans from the slot boundary 315-b for a slot duration, e.g., to the slot boundary 315-c. That is, the slot 310 includes a second set of symbols (e.g., a second set of resources) that spans the second time duration.
  • the second time duration may be greater than the first time duration (e.g., the second set of symbols may be greater in quantity than the first set of symbols) .
  • Each of the mini-slot 305 and the slot 310 may include an AGC symbol 350, PSCCH symbols 325, PSSCH symbols 330, and one or more DMRS symbols 355.
  • the PSCCH symbols 325 may carry SCI (e.g., SCI-1) associated with the corresponding slot (e.g., the mini-slot 305 or the slot 310) .
  • the mini-slot 305, the slot 310, or both may each include second stage control (e.g., SCI-2) on a PSSCH symbol 335.
  • a last symbol of each slot may be an example of a gap symbol 340 in which no signals are transmitted, which may support beam-switching procedures (e.g., a UE may perform beam switching during a gap symbol 340) .
  • Mini-slots may be used to increase channel access opportunities within a given time duration. Additionally, or alternatively, use of mini-slots may reduce the channel occupancy time for small transmissions, such as transmission control protocol (TCP) ACK. In some cases, mixing regular slots (e.g., with 14 OFDM symbols as shown by slot 310) and mini-slots (e.g., with 7 slots as shown by mini-slot 305) may increase overhead or cause issues with AGC. For example, due to the relatively shorter time duration associated with mini-slots, a receiving UE may not have enough time to adjust an AGC setting between reception of multiple mini-slots.
  • TCP transmission control protocol
  • the AGC symbols 350, the DMRS symbols 355, the PSCCH symbols 325, and the gap symbols 340 each contribute to resource overhead (e.g., control overhead, DMRS overhead, AGC overhead, gap symbol overhead) .
  • resource overhead e.g., control overhead, DMRS overhead, AGC overhead, gap symbol overhead
  • a ratio of data symbols (e.g., PSSCH symbols 330) to symbols that contribute to resource overhead may be higher with mini-slots as compared to full-sized slots (such as the slot 310) with 14 OFDM symbols. That is, mini-slots, such as the mini-slot 305, may have fewer PSSCH symbols 330, such that more mini-slots may be used to convey a same amount of data compared to full-sized slots.
  • a mini-slot carrying a data payload may be followed by a full-sized slot carrying the same data payload (e.g., the same TB) .
  • a transmitting UE may transmit a data payload (e.g., a TB) via a sidelink channel by repeating the TB across PSSCH symbols 330 of a mini-slot 305 and a slot 310 subsequent to the mini-slot 305.
  • a receiving UE may receive and decode the TB based on receiving the mini-slot 305 and the slot 310.
  • the receiving UE may monitor the sidelink channel during the first set of resources beginning at the inner-slot symbol to receive first signaling via the mini-slot 305.
  • the receiving UE may continue to monitor the sidelink channel during the second set of resources to receive second signaling via the slot 310.
  • the TB may be transmitted with increased reliability and reduced overhead while enabling channel access at an inner-slot symbol, thereby decreasing latency.
  • the ratio of the data symbols to symbols that contribute to resource overhead may be reduced, as the combination of the mini-slot 305 and the slot 310 provides an increased number of data symbols. Additionally, the increased number of data symbols may provide more room for redundancy information associated with the TB, which may improve reliability.
  • overhead may be further reduced by including control resources (e.g., an AGC symbol 350, a DMRS symbol 355, and PSCCH symbols 330) in only the mini-slot 305 (e.g., refraining from transmitting SCI/DMRS within the slot 310) , or by removing gap symbols 340 from between the mini-slot 305 and the slot 310.
  • control resources e.g., an AGC symbol 350, a DMRS symbol 355, and PSCCH symbols 330
  • the fixed overhead associated with the AGC symbols, DMRS symbols, PSSCH symbols, and gap symbols may be reduced and amortized over total span of the mini-slot 305 and the slot 310.
  • the transmitting UE may remove all or a portion of a control region (e.g., corresponding to the PSCCH symbols 325) of the slot 310.
  • the SCI of the mini-slot 305 may include control information associated with the slot 310 as well as with the mini-slot 305. That is, the receiving UE may monitor PSCCH symbols 325 of the mini-slot 305 for SCI to be used by the receiving UE to receive and decode both the mini-slot 305 and the slot 310.
  • the transmitting UE may replace the gap symbol 340 between the mini-slot 305 and the slot 310 with a reference signal, a PSSCH symbol 330, or the like.
  • the transmitting UE may replace the gap symbol 340 with a PSSCH symbol 330 such that the TB spans the duration of the mini-slot 305 and the slot 310.
  • replacing the gap symbol 340 with a signal may prevent other devices from attempting to transmit during the gap symbol 340, thereby avoiding losing channel access during the gap symbol 340.
  • the transmitting UE may transmit control signaling including an indication informing the receiving UE that the TB is common to (e.g., is repeated across) the mini-slot 305 and the slot 310.
  • the transmitting UE may transmit the indication within SCI (e.g., SCI-1, SCI-2) , a MAC-CE, or a MAC-CE header.
  • the control signaling may indicate that a capability for monitoring during an inner-slot symbol (e.g., at the inner-slot location 320) is enabled (e.g., that a common-TB transmission scheme is enabled) .
  • the receiving UE may monitor for the mini-slot 305 and the slot 310 based on the indication. Additionally, the transmitting UE may indicate that the capability for monitoring during the inner-slot symbol is disabled, and the receiving UE may no longer monitor at inner-slot symbols (e.g., may only begin monitoring the sidelink channel at a slot boundary 315) .
  • the receiving UE may determine that the capability for monitoring at an inner-slot symbol is enabled (e.g., that a common-TB transmission scheme is enabled) based on SCI of the mini-slot 305 and the slot 310.
  • the SCI (e.g., SCI-2) of the mini-slot 305 may indicate a first HARQ process number for HARQ feedback for the mini-slot 305, a source identifier of the transmitting UE, and a packet identify of the TB.
  • the SCI (e.g., SCI-2) of the slot 310 may indicate a second HARQ process number for HARQ feedback for the slot 310, a source identifier of the transmitting UE, and a packet identify of the TB.
  • the receiving UE may receive and decode the SCI of the mini-slot 305 and the SCI of the slot 310 before transmitting corresponding HARQ feedback via one or more PSFCH symbols 345. If the first HARQ process number and the second HARQ process number are the same, and the same source identifier and packet identifier are indicated in both SCIs, the receiving UE may determine that the TB received via PSSCH symbols 330 of the mini-slot 305 and the slot 310 is to be jointly decoded.
  • PSFCH symbols 345 may be configured with periods of 1, 2, or 4 slots, or may be fully disabled.
  • the receiving UE may be configured with one or more PSFCH symbols 345 via which the receiving UE may transmit feedback information (e.g., HARQ feedback information) associated with receiving the TB in the corresponding mini-slot 305 or slot 310.
  • the receiving UE may be configured with a first PSFCH symbol 345 corresponding to the mini-slot 305 and a second PSFCH symbol 345 corresponding to the slot 310.
  • the PSFCH symbols 345 may be scheduled to occur at a minimum time duration after PSSCH symbols 330 of the mini-slot 305, the slot 310, or both, which may allow the receiving UE sufficient time to receive and process (e.g., decode) the PSSCH symbols 330 and to generate the feedback information. In some cases, the PSFCH symbols 345 may occur after one or more gap symbols 340.
  • the receiving UE may utilize each configured PSFCH symbol 345 to indicate feedback for the corresponding mini-slot 305 or slot 310. For instance, the receiving UE may transmit, via the first PSFCH symbol 345, first feedback (e.g., ACK or NACK) indicating whether the TB was successfully received and decoded within the mini-slot 305. The receiving UE may additionally transmit, via the second PSFCH symbol 345, second feedback (e.g., ACK or NACK) indicating whether the TB was successfully received and decoded within the slot 310.
  • first feedback e.g., ACK or NACK
  • second feedback e.g., ACK or NACK
  • the receiving UE may indicate feedback for both of the mini-slot 305 and the slot 310 in a same configured PSFCH symbol 345 (e.g., in the first PSFCH symbol 345 corresponding to the mini-slot 305 or the second PSFCH symbol 345 corresponding to the slot 310) .
  • the receiving UE may transmit feedback indicating whether the TB was successfully received within the mini-slot 305, feedback indicating whether the TB was successfully received within the slot 310, or both, in either the first PSFCH symbol 345 or the second PSFCH symbol 345.
  • the transmitting UE may assume that the TB was successfully recovered by the receiving UE.
  • the receiving UE may be configured to select one or more configured PSFCH symbols 345 for transmitting feedback for the TB. For example, the receiving UE may determine whether to transmit feedback for the mini-slot 305, the slot 310, or both, and may select the first PSFCH symbol 345, the second PSFCH symbol 345, or both, based on a cast type of the TB. If the TB was transmitted via groupcast, additional receiving UEs may be transmitting feedback for the TB on the sidelink channel, and selecting multiple PSFCH symbols 345 may increase congestion and increase the likelihood of collisions between feedback messages. Thus, in such scenarios, the receiving UE may select only one PSFCH symbol 345 for transmitting feedback for both the mini-slot 305 and the slot 310.
  • transmitting feedback via multiple PSFCH symbols 345 may improve reliability of the feedback. If the transmitting UE fails to receive feedback via the first PSFCH symbol 345, for example, the transmitting UE has another opportunity to receive feedback via the second PSFCH symbol 345. The receiving UE may therefore select the first and second PSFCH symbols 345 when the TB is transmitted via unicast.
  • the receiving UE may select PSFCH symbols 345 for transmitting the feedback based on whether the configured PSFCH symbols 345 are scheduled within a same slot or within consecutive slots.
  • the first PSFCH symbol 345 corresponding to the mini-slot 305 and the second PSFCH symbol 345 corresponding to the slot 310 may be scheduled within the same slot.
  • the receiving UE may determine to transmit feedback for one or both of the mini-slot 305 and the slot 310 via either the first PSFCH symbol 345 or the second PSFCH symbol 345. That is, when the PSFCH symbols 345 are associated with the same slot, the receiving UE may select only one PSFCH symbol 345 for transmitting feedback.
  • each of the first PSFCH symbol 345 and the second PSFCH symbol 345 may be scheduled within respective, consecutive slots.
  • the receiving UE may determine to transmit feedback for one or both of the mini-slot 305 and the slot 310 via both PSFCH symbols 345, which may improve reliability of the feedback. Utilizing both PSFCH symbols 345 in the respective slots may provide additional opportunities for the receiving UE to access the sidelink channel to transmit the feedback. For example, the receiving UE may fail to access the channel during the first PSFCH symbol 345, but may successfully access the channel during the second PSFCH symbol 345. Alternatively, if the receiving UE successfully transmits the feedback via the first PSFCH symbol 345, the receiving UE may skip transmitting feedback during the second PSFCH symbol 345.
  • FIG. 4 illustrates an example of a process flow 400 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the process flow 400 may implement aspects of the wireless communications system 200 and the wireless communications system 100.
  • the process flow 400 may include a UE 115-c and a UE 115-d, which may be examples of sidelink UEs 115 communicating via mini-slots and subsequent slots as described with reference to FIGs. 1 and 2.
  • the UE 115-c and the UE 115-d may be configured to communicate according to a slot format as described with reference to FIG. 3.
  • Alternative examples of the following may be implemented, where some processes are performed in a different order than described or are not performed. In some cases, processes may include additional features not mentioned below, or further processes may be added.
  • the UE 115-c may transmit, and the UE 115-d may receive, control signaling, such as SCI (e.g., SCI-1, SCI-2) , MAC-CE, or the like.
  • control signaling such as SCI (e.g., SCI-1, SCI-2) , MAC-CE, or the like.
  • the control signaling may indicate that a capability for monitoring during an inner-slot symbol is enabled.
  • the UE 115-c may enable the capability based on a size of a TB to be transmitted by the UE 115-c, an application (e.g., an application type, an application identifier) associated with the TB, a cast type according to which the TB is to be transmitted (e.g., by the UE 115-c) , a priority of the TB, or a combination thereof, and may indicate that the capability is enabled via the control signaling transmitted at 405.
  • the UE 115-c may enable the capability if the size of the TB fails to satisfy a threshold.
  • the UE 115-c may receive an indication from a network entity instructing the UE 115-c to enable the capability.
  • control signaling may additionally or alternatively indicate one or more time-domain resources for feedback to be transmitted by the UE 115-d.
  • control signaling may include first control signaling and second control signaling indicating a first time-domain resource and a second time-domain resource, respectively, for transmitting feedback associated with the TB.
  • the TB may include or be an example of a common TB associated with first signaling and second signaling.
  • the TB may be repeated across the first signaling and the second signaling.
  • the UE 115-d may enable monitoring at or during inner-slot symbols (e.g., inner-slot locations) in order to monitor for the common TB.
  • the UE 115-d may monitor during an inner-slot symbol for the first signaling.
  • the first signaling may be associated with a first set of resources that span a first time duration.
  • the first time duration may include a set of symbols that span from the inner-slot symbol to a subsequent end slot boundary.
  • the first set of resources may include or be an example of a mini-slot, a sub-slot, or the like.
  • the UE 115-d may monitor during the inner-slot symbol based on receiving the control signaling at 405 indicating that monitoring during inner-slot symbols is enabled. In other cases, the UE 115-d may determine to monitor at the inner-slot symbol without receiving control signaling.
  • the UE 115-c may transmit, and the UE 115-d may receive, via the first set of resources (e.g., via a mini-slot) , the first signaling based on monitoring at the inner-slot symbol at 410.
  • the UE 115-c may transmit the first signaling via groupcast I, groupcast II, or unicast.
  • the first signaling may include first SCI and the common TB (e.g., a first codeword associated with the common TB) .
  • the UE 115-d may decode the first SCI and may receive the common TB via the first set of resources in accordance with the first SCI.
  • the UE 115-d may receive the common TB via the first set of resources according to a first MCS.
  • the first SCI (which may include or be an example of SCI-2) may indicate a first HARQ process number for transmitting feedback associated with the first signaling. Additionally, the first SCI may indicate a source identifier associated with the UE 115-c, a packet identifier associated with the common TB, or a combination thereof.
  • the UE 115-c may transmit, and the UE 115-d may receive, the second signaling via a second set of resources that span a second time duration.
  • the second time duration may span from the subsequent end slot boundary for a slot duration. That is, the second time duration may be greater than the first time duration.
  • the UE 115-d may decode, based on monitoring for the first signaling at 410, the second signaling received at 420.
  • the second signaling may include second SCI and the common TB (e.g., a second codeword associated with the TB) .
  • the UE 115-d may decode the second SCI and may receive the common TB via the second set of resources in accordance with the second SCI.
  • the UE 115-d may receive the common TB via the second resources according to a second MCS different from the first MCS, where the second MCS is relatively low (e.g., lower than the first MCS) .
  • the second SCI may indicate a second HARQ process number for transmitting feedback associated with the second signaling.
  • the first HARQ process number and the second HARQ process number may be the same.
  • the second SCI may indicate a source identifier associated with the UE 115-c, a packet identifier associated with the common TB, or a combination thereof.
  • the UE 115-d may decode the second SCI in order to obtain or otherwise identify the second HARQ process number, the source identifier, the packet identifier, or a combination thereof. Based on the decoding, the UE 115-d may determine that the first HARQ process number indicated by the first SCI and the second HARQ process number are the same. In some cases, the UE 115-d may additionally determine that the source identifier and the packet identifier indicated by the first SCI are the same as the source identifier and the packet identifier indicated by the second SCI.
  • the second signaling may exclude SCI and may only carry the common TB.
  • the UE 115-d may utilize the first SCI to decode the second signaling. That is, the UE 115-d may decode the common TB received via the second set of resources in accordance with the first SCI. Additionally, or alternatively, the UE 115-d may receive the second signaling without a gap symbol between the first signaling and the second signaling, such that the common TB spans the first time duration and the second time duration.
  • the UE 115-d may decode the common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling and, in some cases, the first signaling.
  • the UE 115-d may, for example, decode the first codeword received as part of the first signaling and may decode the second codeword received as part of the second signaling.
  • the UE 115-d may combine information (e.g., decoded data) output from decoding the first codeword with information output from decoding the second codeword to obtain the common TB.
  • the first codeword may be encoded (e.g., by the UE 115-c) according to the first time duration and the second codeword may be encoded (e.g., by the UE 115-c) according to the second time duration.
  • the first codeword and the second codeword may both be encoded according to the second time duration, but the first codeword may be punctured according to the first time duration (e.g., in order to fit within the first set of resources) .
  • the first codeword may be punctured according to a puncturing pattern, and the UE 115-d may decode the first codeword according to the puncturing pattern.
  • the UE 115-d may receive an indication of the puncturing pattern for the first time duration, for instance, as part of the control signaling received at 405.
  • the UE 115-d may decode the common TB based on the first HARQ process number and the second HARQ process number being the same. For example, the UE 115-d may determine that the capability for monitoring during the inner-slot symbol is enabled based on the first HARQ process number and the second HARQ process number being the same, such that the UE 115-d decodes the common TB using the first codeword and the second codeword.
  • the UE 115-d may optionally select one or more time-domain resources for transmitting feedback associated with the common TB.
  • the UE 115-d may select from among the first time-domain resource and the second time-domain resource indicated via the control signaling at 405.
  • the first time-domain resource may correspond to the first time duration and the second time-domain resource may correspond to the second time duration.
  • the UE 115-d may select the first time-domain resource, the second time-domain resource, or both, based on a cast type (e.g., groupcast I, groupcast II, unicast) associated with the common TB.
  • the UE 115-d may be configured to transmit feedback for the common TB according to a feedback scheme, and the UE 115-d may select the time-domain resource (s) in accordance with the feedback scheme.
  • the UE 115-d may transmit, and the UE 115-c may receive, feedback (e.g., ACK or NACK) for the common TB via a sidelink feedback channel (e.g., PSFCH) .
  • the UE 115-d may transmit first feedback (e.g., ACK or NACK) indicating whether the common TB was successfully received at the UE 115-d during the first time duration (e.g., based on the monitoring at 410) , second feedback (e.g., ACK or NACK) indicating whether the common TB was successfully received at the UE 115-d during the second time duration (e.g., based on the decoding) , or both.
  • first feedback e.g., ACK or NACK
  • second feedback e.g., ACK or NACK
  • the UE 115-d may transmit the feedback for the common TB on one or more time-domain resources, such as the first time-domain resource, the second time-domain resource, or both, e.g., as indicated via control signaling at 405 or selected at 435. That is, the UE 115-d may transmit the first feedback and the second feedback via respective time-domain resources, or may transmit the first feedback and the second feedback together via a same time-domain resource. For instance, if the first time-domain resource and the second time-domain resource are associated with a same slot, the UE 115-d may transmit the first feedback and the second feedback via either the first time-domain resource or the second time-domain resource.
  • time-domain resources such as the first time-domain resource, the second time-domain resource, or both, e.g., as indicated via control signaling at 405 or selected at 435. That is, the UE 115-d may transmit the first feedback and the second feedback via respective time-domain resources, or may transmit the first feedback and the second feedback together via
  • the UE 115-d may be configured to transmit feedback for the common TB according to a feedback scheme.
  • a first feedback scheme the UE 115-d may be configured to transmit the first feedback via the first time-domain resource and transmit the second feedback via the second time-domain resource.
  • the UE 115-d may be configured to transmit feedback for the common TB via a single time-domain resource.
  • the UE 115-d may be configured to transmit one or both of the first feedback and the second feedback via the first time-domain resource (e.g., associated with the first time duration) .
  • the UE 115-d may be configured to transmit one or both of the first feedback and the second feedback via the second time-domain resource (e.g., associated with the second time duration) .
  • the UE 115-d may be configured to dynamically select the first feedback scheme, the second feedback scheme, or the third feedback scheme based on one or more parameters. For example, the UE 115-d may select a feedback scheme based on a cast type (e.g., groupcast I, groupcast II, unicast) associated with the common TB, a PSFCH occasion associated with the first time-domain resource, a PSFCH occasion associated with the second time-domain resource, or a combination thereof. The UE 115-d may transmit the feedback at 440 via one or more time-domain resources in accordance with the selected feedback scheme.
  • a cast type e.g., groupcast I, groupcast II, unicast
  • FIG. 5 illustrates a block diagram 500 of a device 505 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 or a network entity 105 as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communications manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to decoding common TB across mini-slot and subsequent slot) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to decoding common TB across mini-slot and subsequent slot) .
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of decoding common TB across mini-slot and subsequent slot as described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a
  • the communications manager 520 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 520 may support wireless communications at a first wireless device in accordance with examples as disclosed herein.
  • the communications manager 520 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary.
  • the communications manager 520 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration.
  • the communications manager 520 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • the device 505 may support techniques for efficient and reliable mini-slot communications. For example, communicating a TB via a mini-slot transmission and a subsequent slot transmission may improve efficiency in resource utilization and increase communications reliability at the device 505. Further, by increasing reliability, the device 505 may avoid retransmissions of the TB, which may be associated with increased power consumption and processing.
  • FIG. 6 illustrates a block diagram 600 of a device 605 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, a UE 115, or a network entity 105 as described herein.
  • the device 605 may include a receiver 610, a transmitter 615, and a communications manager 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to decoding common TB across mini-slot and subsequent slot) . Information may be passed on to other components of the device 605.
  • the receiver 610 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 615 may provide a means for transmitting signals generated by other components of the device 605.
  • the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to decoding common TB across mini-slot and subsequent slot) .
  • the transmitter 615 may be co-located with a receiver 610 in a transceiver module.
  • the transmitter 615 may utilize a single antenna or a set of multiple antennas.
  • the device 605, or various components thereof may be an example of means for performing various aspects of decoding common TB across mini-slot and subsequent slot as described herein.
  • the communications manager 620 may include an inner-slot monitoring component 625, a slot decoding component 630, a TB decoding component 635, or any combination thereof.
  • the communications manager 620 may be an example of aspects of a communications manager 520 as described herein.
  • the communications manager 620, or various components thereof may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both.
  • the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 620 may support wireless communications at a first wireless device in accordance with examples as disclosed herein.
  • the inner-slot monitoring component 625 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary.
  • the slot decoding component 630 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration.
  • the TB decoding component 635 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • FIG. 7 illustrates a block diagram 700 of a communications manager 720 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein.
  • the communications manager 720, or various components thereof, may be an example of means for performing various aspects of decoding common TB across mini-slot and subsequent slot as described herein.
  • the communications manager 720 may include an inner-slot monitoring component 725, a slot decoding component 730, a TB decoding component 735, a control signaling receiver 740, a feedback component 745, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) which may include communications within a protocol layer of a protocol stack, communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack, within a device, component, or virtualized component associated with a network entity 105, between devices, components, or virtualized components associated with a network entity 105) , or any combination thereof.
  • the communications manager 720 may support wireless communications at a first wireless device in accordance with examples as disclosed herein.
  • the inner-slot monitoring component 725 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary.
  • the slot decoding component 730 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration.
  • the TB decoding component 735 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • control signaling receiver 740 may be configured as or otherwise support a means for receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is enabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof, where the monitoring is based on the control signaling.
  • control signaling receiver 740 may be configured as or otherwise support a means for receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is disabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof.
  • control signaling includes SCI or a MAC-CE.
  • control signaling receiver 740 may be configured as or otherwise support a means for receiving, as part of the first signaling, first SCI indicating a first HARQ process number.
  • the TB decoding component 735 may be configured as or otherwise support a means for receiving, as part of the second signaling, second SCI indicating a second HARQ process number, where decoding the common TB is based on the first HARQ process number and the second HARQ process number being the same.
  • the inner-slot monitoring component 725 may be configured as or otherwise support a means for determining that a capability for monitoring during the inner-slot symbol is enabled based on the first HARQ process number and the second HARQ process number being the same.
  • the first SCI and the second SCI further indicate a packet identifier for the common TB.
  • the TB decoding component 735 may be configured as or otherwise support a means for decoding a first codeword that is encoded according to the first time duration. In some examples, to support decoding the common TB, the TB decoding component 735 may be configured as or otherwise support a means for decoding a second codeword that is encoded according to the second time duration.
  • the TB decoding component 735 may be configured as or otherwise support a means for decoding a first instance of a codeword that is encoded according to the second time duration. In some examples, to support decoding the common TB, the TB decoding component 735 may be configured as or otherwise support a means for decoding a second instance of the codeword, where the second instance of the codeword is punctured according to the first time duration. In some examples, the TB decoding component 735 may be configured as or otherwise support a means for receiving an indication of a puncturing pattern for the second instance of the codeword, where the second instance of the codeword is decoded in accordance with the puncturing pattern.
  • the inner-slot monitoring component 725 may be configured as or otherwise support a means for receiving, based on the monitoring, the first signaling including first SCI and the common TB.
  • the slot decoding component 730 may be configured as or otherwise support a means for decoding the second signaling including the common TB based on the first SCI.
  • the feedback component 745 may be configured as or otherwise support a means for receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common TB, the first time-domain resource corresponding to the first time duration. In some examples, the feedback component 745 may be configured as or otherwise support a means for receiving second control signaling indicating a second time-domain resource for transmitting second feedback associated with the common TB, the second time-domain resource corresponding to the second time duration.
  • the feedback component 745 may be configured as or otherwise support a means for transmitting, via the first time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration based on the monitoring. In some examples, the feedback component 745 may be configured as or otherwise support a means for transmitting, via the second time-domain resource, the second feedback indicating whether the common TB was successfully received during the second time duration based on the decoding.
  • the feedback component 745 may be configured as or otherwise support a means for transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration and the second feedback indicating whether the common TB was successfully received during the second time duration.
  • the first time-domain resource and the second time-domain resource are associated with a same slot.
  • the feedback component 745 may be configured as or otherwise support a means for selecting the first time-domain resource, the second time-domain resource, or both based on a cast type associated with the common TB. In some examples, the feedback component 745 may be configured as or otherwise support a means for transmitting the first feedback indicating whether the common TB was successfully received during the first time duration, the second feedback indicating whether the common TB was successfully received during the second time duration, or both, based on the selecting.
  • the common TB spans the first time duration and the second time duration.
  • the inner-slot monitoring component 725 may be configured as or otherwise support a means for receiving the common TB via the first set of resources according to a first modulation and coding scheme.
  • the slot decoding component 730 may be configured as or otherwise support a means for receiving the common TB via the second set of resources according to a second modulation and coding scheme different from the first modulation and coding scheme.
  • FIG. 8 illustrates a diagram of a system 800 including a device 805 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein.
  • the device 805 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
  • a bus 845 e.g., a bus 845
  • the I/O controller 810 may manage input and output signals for the device 805.
  • the I/O controller 810 may also manage peripherals not integrated into the device 805.
  • the I/O controller 810 may represent a physical connection or port to an external peripheral.
  • the I/O controller 810 may utilize an operating system such as or another known operating system.
  • the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 810 may be implemented as part of a processor, such as the processor 840.
  • a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
  • the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein.
  • the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 815 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825.
  • the transceiver 815 may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
  • the memory 830 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting decoding common TB across mini-slot and subsequent slot) .
  • the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled with or to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
  • the communications manager 820 may support wireless communications at a first wireless device in accordance with examples as disclosed herein.
  • the communications manager 820 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary.
  • the communications manager 820 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration.
  • the communications manager 820 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • the device 805 may support techniques for efficient and reliable mini-slot communications. For example, communicating a TB via a mini-slot transmission and a subsequent slot transmission may improve efficiency in resource utilization and increase communications reliability at the device 805. Further, enabling mini-slot transmissions may reduce latency and delays and may improve coordination between the device 805 and one or more other devices.
  • the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof.
  • the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof.
  • the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of decoding common TB across mini-slot and subsequent slot as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
  • FIG. 9 illustrates a diagram of a system 900 including a device 905 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the device 905 may be an example of or include the components of a device 505, a device 605, or a network entity 105 as described herein.
  • the device 905 may communicate with one or more network entities 105, one or more UEs 115, or any combination thereof, which may include communications over one or more wired interfaces, over one or more wireless interfaces, or any combination thereof.
  • the device 905 may include components that support outputting and obtaining communications, such as a communications manager 920, a transceiver 910, an antenna 915, a memory 925, code 930, and a processor 935. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 940) .
  • a communications manager 920 e.g., operatively, communicatively, functionally, electronically, electrically
  • buses e.g., a bus 940
  • the transceiver 910 may support bi-directional communications via wired links, wireless links, or both as described herein.
  • the transceiver 910 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 910 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the device 905 may include one or more antennas 915, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) .
  • the transceiver 910 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 915, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 915, from a wired receiver) , and to demodulate signals.
  • the transceiver 910 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 915 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 915 that are configured to support various transmitting or outputting operations, or a combination thereof.
  • the transceiver 910 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals for transmission or other outputting, or any combination thereof.
  • the transceiver 910, or the transceiver 910 and the one or more antennas 915, or the transceiver 910 and the one or more antennas 915 and one or more processors or memory components may be included in a chip or chip assembly that is installed in the device 905.
  • the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
  • one or more communications links e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168 .
  • the memory 925 may include RAM and ROM.
  • the memory 925 may store computer-readable, computer-executable code 930 including instructions that, when executed by the processor 935, cause the device 905 to perform various functions described herein.
  • the code 930 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 930 may not be directly executable by the processor 935 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 925 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 935 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) .
  • the processor 935 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 935.
  • the processor 935 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 925) to cause the device 905 to perform various functions (e.g., functions or tasks supporting decoding common TB across mini-slot and subsequent slot) .
  • the device 905 or a component of the device 905 may include a processor 935 and memory 925 coupled with the processor 935, the processor 935 and memory 925 configured to perform various functions described herein.
  • the processor 935 may be an example of a cloud-computing platform (e.g., one or more physical nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 930) to perform the functions of the device 905.
  • the processor 935 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 905 (such as within the memory 925) .
  • the processor 935 may be a component of a processing system.
  • a processing system may generally refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 905) .
  • a processing system of the device 905 may refer to a system including the various other components or subcomponents of the device 905, such as the processor 935, or the transceiver 910, or the communications manager 920, or other components or combinations of components of the device 905.
  • the processing system of the device 905 may interface with other components of the device 905, and may process information received from other components (such as inputs or signals) or output information to other components.
  • a chip or modem of the device 905 may include a processing system and one or more interfaces to output information, or to obtain information, or both.
  • the one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 905 may transmit information output from the chip or modem.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 905 may obtain information or signal inputs, and the information may be passed to the processing system.
  • a first interface also may obtain information or signal inputs
  • a second interface also may output information or signal outputs.
  • a bus 940 may support communications of (e.g., within) a protocol layer of a protocol stack.
  • a bus 940 may support communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 905, or between different components of the device 905 that may be co-located or located in different locations (e.g., where the device 905 may refer to a system in which one or more of the communications manager 920, the transceiver 910, the memory 925, the code 930, and the processor 935 may be located in one of the different components or divided between different components) .
  • the communications manager 920 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) .
  • the communications manager 920 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the communications manager 920 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105.
  • the communications manager 920 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
  • the communications manager 920 may support wireless communications at a first wireless device in accordance with examples as disclosed herein.
  • the communications manager 920 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary.
  • the communications manager 920 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration.
  • the communications manager 920 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • the device 905 may support techniques for efficient and reliable mini-slot communications. For example, communicating a TB via a mini-slot transmission and a subsequent slot transmission may improve efficiency in resource utilization and increase communications reliability at the device 805. Further, enabling mini-slot transmissions may reduce latency and delays and may improve coordination between the device 805 and one or more other devices.
  • the communications manager 920 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 910, the one or more antennas 915 (e.g., where applicable) , or any combination thereof.
  • the communications manager 920 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 920 may be supported by or performed by the transceiver 910, the processor 935, the memory 925, the code 930, or any combination thereof.
  • the code 930 may include instructions executable by the processor 935 to cause the device 905 to perform various aspects of decoding common TB across mini-slot and subsequent slot as described herein, or the processor 935 and the memory 925 may be otherwise configured to perform or support such operations.
  • FIG. 10 illustrates a flowchart showing a method 1000 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1000 may be implemented by a UE or a network entity or its components as described herein.
  • the operations of the method 1000 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 9.
  • a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary.
  • the operations of 1005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1005 may be performed by an inner-slot monitoring component 725 as described with reference to FIG. 7.
  • the method may include decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration.
  • the operations of 1010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1010 may be performed by a slot decoding component 730 as described with reference to FIG. 7.
  • the method may include decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • the operations of 1015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1015 may be performed by a TB decoding component 735 as described with reference to FIG. 7.
  • FIG. 11 illustrates a flowchart showing a method 1100 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1100 may be implemented by a UE or a network entity or its components as described herein.
  • the operations of the method 1100 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 9.
  • a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is enabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof.
  • the operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a control signaling receiver 740 as described with reference to FIG. 7.
  • the method may include monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, where the monitoring is based on the control signaling.
  • the operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by an inner-slot monitoring component 725 as described with reference to FIG. 7.
  • the method may include decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration.
  • the operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by a slot decoding component 730 as described with reference to FIG. 7.
  • the method may include decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
  • the operations of 1120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1120 may be performed by a TB decoding component 735 as described with reference to FIG. 7.
  • the method may include receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common TB, the first time-domain resource corresponding to the first time duration.
  • the operations of 1125 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1125 may be performed by a feedback component 745 as described with reference to FIG. 7.
  • the method may include receiving second control signaling indicating a second time-domain resource for transmitting second feedback associated with the common TB, the second time-domain resource corresponding to the second time duration.
  • the operations of 1130 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1130 may be performed by a feedback component 745 as described with reference to FIG. 7.
  • the method may include transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration and the second feedback indicating whether the common TB was successfully received during the second time duration.
  • the operations of 1135 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1135 may be performed by a feedback component 745 as described with reference to FIG. 7.
  • FIG. 12 illustrates a flowchart showing a method 1200 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1200 may be implemented by a UE or a network entity or its components as described herein.
  • the operations of the method 1200 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 9.
  • a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary.
  • the operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by an inner-slot monitoring component 725 as described with reference to FIG. 7.
  • the method may include receiving, as part of the first signaling, first SCI indicating a first HARQ process number.
  • the operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a control signaling receiver 740 as described with reference to FIG. 7.
  • the method may include decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration.
  • the operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a slot decoding component 730 as described with reference to FIG. 7.
  • the method may include receiving, as part of the second signaling, second SCI indicating a second HARQ process number.
  • the operations of 1220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1220 may be performed by a TB decoding component 735 as described with reference to FIG. 7.
  • the method may include determining that a capability for monitoring during the inner-slot symbol is enabled based on the first HARQ process number and the second HARQ process number being the same.
  • the operations of 1225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1225 may be performed by an inner-slot monitoring component 725 as described with reference to FIG. 7.
  • the method may include decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling, where decoding the common TB is based on the first HARQ process number and the second HARQ process number being the same.
  • the operations of 1230 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1230 may be performed by a TB decoding component 735 as described with reference to FIG. 7.
  • a method for wireless communications at a first wireless device comprising: monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary; decoding, based at least in part on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration; and decoding a common TB that is repeated across the first signaling and the second signaling based at least in part on decoding the second signaling.
  • Aspect 2 The method of aspect 1, further comprising: receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is enabled based at least in part on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof, wherein the monitoring is based at least in part on the control signaling.
  • Aspect 3 The method of aspect 2, wherein the control signaling comprises SCI or a MAC-CE.
  • Aspect 4 The method of aspect 1, further comprising: receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is disabled based at least in part on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof.
  • Aspect 5 The method of any of aspects 1 through 4, further comprising: receiving, as part of the first signaling, first SCI indicating a first HARQ process number; and receiving, as part of the second signaling, second SCI indicating a second HARQ process number, wherein decoding the common TB is based at least in part on the first HARQ process number and the second HARQ process number being the same.
  • Aspect 6 The method of aspect 5, further comprising: determining that a capability for monitoring during the inner-slot symbol is enabled based at least in part on the first HARQ process number and the second HARQ process number being the same.
  • Aspect 7 The method of any of aspects 5 through 6, wherein the first SCI and the second SCI further indicate a packet identifier for the common TB.
  • Aspect 8 The method of any of aspects 1 through 7, wherein decoding the common TB further comprises: decoding a first codeword that is encoded according to the first time duration; and decoding a second codeword that is encoded according to the second time duration.
  • decoding the common TB further comprises: decoding a first instance of a codeword that is encoded according to the second time duration; and decoding a second instance of the codeword, wherein the second instance of the codeword is punctured according to the first time duration.
  • Aspect 10 The method of aspect 9, further comprising: receiving an indication of a puncturing pattern for the second instance of the codeword, wherein the second instance of the codeword is decoded in accordance with the puncturing pattern.
  • Aspect 11 The method of any of aspects 1 through 10, further comprising: receiving, based at least in part on the monitoring, the first signaling comprising first SCI and the common TB; and decoding the second signaling comprising the common TB based at least in part on the first SCI.
  • Aspect 12 The method of any of aspects 1 through 11, further comprising: receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common TB, the first time-domain resource corresponding to the first time duration; and receiving second control signaling indicating a second time-domain resource for transmitting second feedback associated with the common TB, the second time-domain resource corresponding to the second time duration.
  • Aspect 13 The method of aspect 12, further comprising: transmitting, via the first time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration based at least in part on the monitoring; and transmitting, via the second time-domain resource, the second feedback indicating whether the common TB was successfully received during the second time duration based at least in part on the decoding.
  • Aspect 14 The method of aspect 12 further comprising: transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration and the second feedback indicating whether the common TB was successfully received during the second time duration.
  • Aspect 15 The method of aspect 14, wherein the first time-domain resource and the second time-domain resource are associated with a same slot.
  • Aspect 16 The method of aspect 12, further comprising: selecting the first time-domain resource, the second time-domain resource, or both based at least in part on a cast type associated with the common TB; and transmitting the first feedback indicating whether the common TB was successfully received during the first time duration, the second feedback indicating whether the common TB was successfully received during the second time duration, or both, based at least in part on the selecting.
  • Aspect 17 The method of any of aspects 1 through 16, wherein the common TB spans the first time duration and the second time duration.
  • Aspect 18 The method of any of aspects 1 through 17, further comprising: receiving the common TB via the first set of resources according to a first modulation and coding scheme; and receiving the common TB via the second set of resources according to a second modulation and coding scheme different from the first modulation and coding scheme.
  • Aspect 19 An apparatus for wireless communications at a first wireless device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 18.
  • Aspect 20 An apparatus for wireless communications at a first wireless device, comprising at least one means for performing a method of any of aspects 1 through 18.
  • Aspect 21 A non-transitory computer-readable medium storing code for wireless communications at a first wireless device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 18.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented using hardware, software executed by a processor, firmware, or any combination thereof. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
  • determining encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A wireless device (e.g., a user equipment (UE), a network entity) may monitor during an inner-slot symbol for first signaling that is associated with a first set of resources (e.g., of a mini-slot). The first set of resources may span a first time duration that spans from the inner-slot symbol and extends to a subsequent end slot boundary. Based on the monitoring, the wireless device may receive and decode second signaling that is associated with a second set of resources (e.g., of a subsequent slot). The second set of resources may span a second time duration that spans from the subsequent end slot boundary and extends for a slot duration. The wireless device may decode a common transport block (TB) that is repeated across the first signaling and the second signaling based on decoding the second signaling.

Description

DECODING COMMON TRANSPORT BLOCK ACROSS MINI-SLOT AND SUBSEQUENT SLOT
FIELD OF TECHNOLOGY
The following relates to wireless communications, including decoding common transport block across a mini-slot and subsequent slot.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
In some wireless communications systems, UEs may transmit and receive sidelink messages using slot-based transmissions associated with resources that span a duration of a slot. For example, slot-based transmissions may begin after a first symbol in a slot. However, being restricted to communicating at a slot boundary may limit efficiencies associated with sidelink communications.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support decoding common transport block (TB) across mini-slots and subsequent slots. For example, the described techniques provide for a wireless device  (e.g., a user equipment (UE) , a network entity) to receive a TB that is repeated across a mini-slot and a subsequent slot following the mini-slot in the time domain. The wireless device may monitor during an inner-slot symbol for first signaling (e.g., including the TB) that is associated with a first set of resources (e.g., of a mini-slot) . As described herein, an inner-slot symbol may refer to a symbol that is within a slot and not the first symbol within the slot. For example, an inner-slot symbol may refer to a symbol in the middle of the slot, or at some other inner-slot location.
The first set of resources may span a first time duration that spans from the inner-slot symbol and extends to a subsequent end slot boundary. Based on the monitoring, the wireless device may receive and decode second signaling (e.g., including the TB) that is associated with a second set of resources (e.g., of a subsequent slot) . The second set of resources may span a second time duration that spans from the subsequent boundary and extends for a slot duration. The wireless device may decode the TB based on decoding the second signaling. For example, the wireless device may decode the TB by combining information included in the first signaling with information included in the second signaling.
A method for wireless communications at a first wireless device is described. The method may include monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration, and decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
An apparatus for wireless communications at a first wireless device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to monitor, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, decode, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot  boundary for a slot duration, and decode a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
Another apparatus for wireless communications at a first wireless device is described. The apparatus may include means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration, and means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
A non-transitory computer-readable medium storing code for wireless communications at a first wireless device is described. The code may include instructions executable by a processor to monitor, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, decode, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration, and decode a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving control signaling indicating that a capability for monitoring during the inner-slot symbol may be enabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof, where the monitoring may be based on the control signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control signaling includes sidelink control information (SCI) or a medium access control (MAC) control element (MAC-CE) .
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving control signaling indicating that a capability for monitoring during the inner-slot symbol may be disabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, as part of the first signaling, first SCI indicating a first hybrid automatic repeat request (HARQ) process number and receiving, as part of the second signaling, second SCI indicating a second HARQ process number, where decoding the common TB may be based on the first HARQ process number and the second HARQ process number being the same.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a capability for monitoring during the inner-slot symbol may be enabled based on the first HARQ process number and the second HARQ process number being the same.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first SCI and the second SCI further indicate a packet identifier for the common TB.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, decoding the common TB may include operations, features, means, or instructions for decoding a first codeword that may be encoded according to the first time duration and decoding a second codeword that may be encoded according to the second time duration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, decoding the common TB may include operations, features, means, or instructions for decoding a first instance of a codeword that may be encoded according to the second time duration and decoding a second instance of the  codeword, where the second instance of the codeword may be punctured according to the first time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication of a puncturing pattern for the second instance of the codeword, where the second instance of the codeword may be decoded in accordance with the puncturing pattern.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, based on the monitoring, the first signaling including first SCI and the common TB and decoding the second signaling including the common TB based on the first SCI.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common TB, the first time-domain resource corresponding to the first time duration and receiving second control signaling indicating a second time-domain resource for transmitting second feedback associated with the common TB, the second time-domain resource corresponding to the second time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, via the first time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration based on the monitoring and transmitting, via the second time-domain resource, the second feedback indicating whether the common TB was successfully received during the second time duration based on the decoding.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common TB was  successfully received during the first time duration and the second feedback indicating whether the common TB was successfully received during the second time duration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first time-domain resource and the second time-domain resource may be associated with a same slot.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting the first time-domain resource, the second time-domain resource, or both based on a cast type associated with the common TB and transmitting the first feedback indicating whether the common TB was successfully received during the first time duration, the second feedback indicating whether the common TB was successfully received during the second time duration, or both, based on the selecting.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common TB spans the first time duration and the second time duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the common TB via the first set of resources according to a first modulation and coding scheme and receiving the common TB via the second set of resources according to a second modulation and coding scheme different from the first modulation and coding scheme.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports decoding common transport block (TB) across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
FIG. 3 illustrates an example of a slot format that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
FIGs. 5 and 6 illustrate block diagrams of devices that support decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
FIG. 7 illustrates a block diagram of a communications manager that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
FIG. 8 illustrates a diagram of a system including a UE that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
FIG. 9 illustrates a diagram of a system including a network entity that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
FIGs. 10 through 12 illustrate flowcharts showing methods that support decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, wireless devices, such as user equipments (UEs) , may perform sidelink communications. In some aspects, a sidelink UE may be scheduled (e.g., by another UE or a network entity) with sidelink resources for transmitting a sidelink message to one or more other sidelink UEs. Additionally, or alternatively, the UE may select the sidelink resources from a sidelink resource pool to use for transmitting the message. The sidelink resources via which the message is transmitted may span a duration of a slot (e.g., a slot with 14 orthogonal frequency  division multiplexing (OFDM) symbols) , which may be referred to as slot transmissions, or may span a relatively shorter duration (e.g., a portion of a slot, such as one or more symbols) , which may be referred to as mini-slot transmissions, sub-slot transmissions, or the like. For example, a mini-slot may include half of the amount of symbols as a slot (e.g., a “regular” slot) . Slot transmissions may begin at a beginning of a slot (e.g., at a first symbol in the slot) , while mini-slot transmissions may begin at the beginning of a slot or in a symbol that is later in the slot (e.g., in the middle of the slot) . Thus, mini-slot transmissions may reduce communications latency and avoid delays by providing sidelink UEs with additional opportunities to access a sidelink channel, as the UE may not have to wait until the beginning of the slot to transmit or receive a sidelink message. Additionally, mini-slot transmissions may reduce channel occupancy time (COT) of the UE.
Due to the shorter time duration of a mini-slot, however, mini-slots may have fewer data symbols, and thus a reduced ratio of data symbols to control symbols, as compared to slots. Mini-slot transmissions may therefore be associated with relatively high overhead. Further, mini-slot transmissions may carry data payloads (e.g., transport block (s) (TBs) ) of a limited size, which may decrease communications reliability.
Techniques described herein provide for sidelink transmissions via a mini-slot and a subsequent slot. For example, a transmitting device (e.g., a UE, a network entity) may transmit a data payload (e.g., a TB) via a mini-slot and a slot (e.g., a slot with 14 OFDM symbols) , where the slot immediately follows the mini-slot in the time domain. A receiving device (e.g., a UE, a network entity) may monitor for the mini-slot at or during a slot boundary or during an inner-slot symbol (e.g., a symbol within a slot that is not the first symbol or not at the slot boundary) . The TB may be common to the mini-slot and the subsequent slot (e.g., the TB may be repeated across the mini-slot and the subsequent slot) , such that the receiving device may decode the TB using information received in the mini-slot combined with information received in the subsequent slot. Enabling the TB to be repeated across a mini-slot and a subsequent slot may provide the transmitting and receiving devices with increased channel access opportunities (e.g., via the mini-slot) while improving communications reliability and reducing overhead (e.g., based on the subsequent slot) . Although slots and mini-slots are  referred to throughout the present disclosure, it should be understood that techniques described herein may also apply to other time durations or combinations of time durations having different terminology.
In some cases, the transmitting device may encode the TB separately for each of the mini-slot and the subsequent slot. For example, the transmitting device may generate a first codeword for the mini-slot based on the duration (e.g., length) of the mini-slot and may generate a second codeword for the subsequent slot based on the duration (e.g., length) of the subsequent slot. Alternatively, the transmitting device may generate only one codeword for the TB that is based on the length of the subsequent slot, and the TB transmitted via the mini-slot may be punctured or otherwise altered according to the length of the mini-slot. The receiving device may determine that the TB is common to the mini-slot and the subsequent slot, and may decode the TB using the mini-slot and the subsequent slot, e.g., based on control signaling. For example, the receiving device may receive control signaling indicating that monitoring during an inner-slot symbol is enabled. Additionally, or alternatively, the receiving device may receive sidelink control information (SCI) within the mini-slot that indicates a first hybrid automatic repeat request (HARQ) process number associated with the mini-slot, and SCI within the subsequent slot that indicates a second HARQ process number associated with the subsequent slot. The receiving device may determine to jointly decode the TB using the mini-slot and the subsequent slot based on the first HARQ process number and the second HARQ process number being the same.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then discussed with reference to a slot format and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to decoding common transport block across mini-slot and subsequent slot.
FIG. 1 illustrates an example of a wireless communications system 100 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A  Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
The network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities. In various examples, a network entity 105 may be referred to as a network element, a mobility element, a radio access network (RAN) node, or network equipment, among other nomenclature. In some examples, network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) . For example, a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
As described herein, a node of the wireless communications system 100, which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein. For example, a node may be a UE 115. As another example, a node may be a network entity 105. As another example, a first node may be configured to communicate with a second node or a third node. In one aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a UE 115. In another aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may  be a network entity 105. In yet other aspects of this example, the first, second, and third nodes may be different relative to these examples. Similarly, reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a node. For example, disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
In some examples, network entities 105 may communicate with the core network 130, or with one another, or both. For example, network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) . In some examples, network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) . In some examples, network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof. The backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof. A UE 115 may communicate with the core network 130 via a communication link 155.
One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) . In some examples, a network entity 105 (e.g., a base station 140) may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is  physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
In some examples, a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) . For example, a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof. An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) . One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) . In some examples, one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
The split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170. For example, a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack. In some examples, the CU 160 may host upper protocol layer (e.g., layer 3 (L3) , layer 2 (L2) ) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) . The CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as layer 1 (L1) (e.g., physical (PHY) layer) or  L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160. Additionally, or alternatively, a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack. The DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) . In some cases, a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) . A CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions. A CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) . In some examples, a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
In wireless communications systems (e.g., wireless communications system 100) , infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) . In some cases, in an IAB network, one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other. One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor. One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) . The one or more donor network entities 105 (e.g., IAB donors) may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) . IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor. An IAB-MT may include an  independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) . In some examples, the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) . In such cases, one or more components of the disaggregated RAN architecture (e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
In the case of the techniques described herein applied in the context of a disaggregated RAN architecture, one or more components of the disaggregated RAN architecture may be configured to support decoding common transport block across mini slot and subsequent slot as described herein. For example, some operations described as being performed by a UE 115 or a network entity 105 (e.g., a base station 140) may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers. The term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers. Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105. For example, the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105, may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
In some examples, such as in a carrier aggregation configuration, a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute RF channel number (EARFCN) ) and may be identified according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode, in which case initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode, in which case a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include downlink transmissions (e.g., forward link transmissions) from a network entity 105 to a UE 115, uplink transmissions (e.g., return link transmissions) from a UE 115 to a network entity 105, or both, among other configurations of transmissions. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the RF spectrum and, in some examples, the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a set of bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the network entities 105, the UEs 115, or both) may have hardware configurations that support communications using a particular carrier bandwidth or may be configurable to support communications using one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include network entities 105 or UEs 115 that support concurrent communications using carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating using portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related. The quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication. A wireless communications resource may refer to a combination of an RF spectrum resource, a  time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, and a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the network entities 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, for which Δf max may represent a supported subcarrier spacing, and N f may represent a supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots. Alternatively, each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing. Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., a quantity of symbol periods in a TTI) may be variable. Additionally, or  alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed for communication using a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a set of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
network entity 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a network entity 105 (e.g., using a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell also may refer to a coverage area 110 or a portion of a coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network entity 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered network entity 105 (e.g., a lower-powered base station 140) , as compared with a macro cell, and a small cell may operate using the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A network entity 105 may support one or multiple cells and may also support communications via the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a network entity 105 (e.g., a base station 140, an RU 170) may be movable and therefore provide communication coverage for a moving coverage area 110. In some examples, different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105. In some other examples, the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a network entity 105 (e.g., a base station 140) without human intervention. In some examples, M2M communication or MTC may include  communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that uses the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) . The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions. Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data. Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) . In some examples, one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105. In some examples, one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105. In some examples, groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group. In some examples, a network entity  105 may facilitate the scheduling of resources for D2D communications. In some other examples, D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
In some systems, a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
The wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high  frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. While operating using unlicensed RF spectrum bands, devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) . Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
A network entity 105 (e.g., a base station 140, an RU 170) or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations. A network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may include one or more antenna arrays that may support various  MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
The network entities 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry information associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , for which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , for which multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
network entity 105 or a UE 115 may use beam sweeping techniques as part of beamforming operations. For example, a network entity 105 (e.g., a base station 140, an RU 170) may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a network entity 105 multiple times along different directions. For example, the network entity 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions along different beam directions may be used to identify (e.g., by a transmitting device, such as a network entity 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the network entity 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by transmitting device (e.g., a transmitting network entity 105, a transmitting UE 115) along a single beam direction (e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted along one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the network entity 105 along different directions and may report to the network entity 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a network entity 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or beamforming to generate a combined beam for transmission (e.g., from a network entity 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured set of beams across a system bandwidth or one or more sub-bands. The network entity 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based  feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted along one or more directions by a network entity 105 (e.g., a base station 140, an RU 170) , a UE 115 may employ similar techniques for transmitting signals multiple times along different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal along a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may perform reception operations in accordance with multiple receive configurations (e.g., directional listening) when receiving various signals from a receiving device (e.g., a network entity 105) , such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may perform reception in accordance with multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned along a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or PDCP layer may be IP-based. An RLC layer may perform packet segmentation and reassembly to communicate via logical channels. A MAC layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer also may implement error detection techniques, error correction  techniques, or both to support retransmissions to improve link efficiency. In the control plane, an RRC layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network entity 105 or a core network 130 supporting radio bearers for user plane data. A PHY layer may map transport channels to physical channels.
The UEs 115 and the network entities 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly via a communication link (e.g., a communication link 125, a D2D communication link 135) . HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, in which case the device may provide HARQ feedback in a specific slot for data received via a previous symbol in the slot. In some other examples, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
In some examples, the wireless communications system 100 may support one or more modes for sidelink communications. For example, the wireless communications system 100 may support Mode-1 sidelink operations and Mode-2 sidelink operations, among other examples of sidelink operation modes. As described herein, Mode-1 sidelink operations may refer to sidelink operations in which resource allocations (e.g., for sidelink communications) may be scheduled or configured using a network entity 105 (e.g., a gNB) . That is, for Mode-1 sidelink, resource utilization may be determined at a network entity 105. Additionally, or alternatively, Mode-2 sidelink operations may refer to sidelink operations in which resource allocations (e.g., for sidelink communications) may be determined using a channel sensing procedure conducted (e.g., autonomously) at UEs 115 (e.g., a transmitting UE 115) . That is, in some examples, channel sensing may be used for sidelink communications, such as Mode-2 sidelink. In some examples of Mode-2 sidelink operations, the transmitting UE 115 may perform channel sensing to determine one or more resources that may be reserved at one or more other (e.g., nearby) transmitting UEs 115 and to select one or  more resources for a transmission (e.g., a sidelink transmission) at the transmitting UE 115 based on the channel sensing.
Sidelink communications may utilize sidelink channels, such as physical sidelink shared channels (PSSCHs) , physical sidelink control channels (PSCCH) , physical sidelink feedback channels (PSFCHs) , and the like. Sidelink messages transmitted by the UEs 115 via sidelink channels may be transmitted via resources that span a duration of a slot in a time domain, which may be referred to herein as slot-based transmissions or slot transmissions. Additionally, or alternatively, the sidelink messages may be transmitted via resources that span a shorter duration (e.g., a portion of a slot, such as a mini-slot) , which may be referred to herein as mini-slot-based transmissions or mini-slot transmissions. The sidelink resources for a given sidelink transmission may be allocated or selected from a sidelink resource pool, which may represent a pool or set of time and frequency resources allocated for sidelink communications.
As described herein, UEs 115 may transmit and receive sidelink communications via a mini-slot and a subsequent slot. A UE 115 may receive a data payload (e.g., a TB) that is repeated across a mini-slot and a subsequent slot that follows the mini-slot in the time domain. In some examples, the mini-slot and the subsequent slot may both be associated with a same set of frequency resources (e.g., a same sub-channel) . The mini-slot may begin at a slot boundary (e.g., at a beginning of a slot, such as an initial symbol of a slot) or at an inner-slot location, such as a symbol within a slot (e.g., in the middle of the slot) . The UE 115 may monitor for the mini-slot by monitoring at the inner-slot location (e.g., during an inner-slot symbol) and/or at the slot boundary. The subsequent slot may begin at a slot boundary subsequent to an end symbol of the mini-slot. The UE 115 may receive the TB via the mini-slot and the subsequent slot. For example, the UE 115 may jointly decode the data payload received via the mini-slot and the data payload received via the subsequent slot to obtain the TB.
In some cases, the UE 115 may receive control signaling indicating that the UE 115 is to monitor during the inner-slot symbol to receive the mini-slot and the subsequent slot. That is, the control signaling may indicate that a capability for monitoring during an inner-slot symbol is enabled. The UE 115 may determine that the TB is to be repeated across the mini-slot and the subsequent slot (and, thus, that the mini-slot and the subsequent slot are to be jointly decoded) based on the control  signaling. In some other cases, the UE 115 may determine that the TB is repeated across the mini-slot and the subsequent slot based on information associated with the mini-slot and the subsequent slot. For example, the UE 115 may determine that a HARQ process number associated with the mini-slot is the same as a HARQ process number associated with the subsequent slot, based on which the UE 115 may jointly decode the mini-slot and the subsequent slot. In some examples, the UE 115 may transmit feedback for the TB via one or more PSFCH resources according to the HARQ process number. The feedback may indicate whether the UE 115 successfully received the TB via the mini-slot, the subsequent slot, or both.
FIG. 2 illustrates an example of a wireless communications system 200 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The wireless communications system 200 may implement or be implemented by aspects of the wireless communications system 100 as described with reference to FIG. 1. For example, the wireless communications system 200 may include a UE 115-a and a UE 115-b, which may be examples of UEs 115 as described with reference to FIG. 1.
The UEs 115 may communicate via one or more respective communication links 205 (e.g., communication links 205-a and 205-b) , which may include or be examples of sidelink communication links. Such sidelink communications may be performed in a Mode 1 resource allocation scheme or Mode 2 resource allocation scheme. For example, a network entity 105 (not pictured in FIG. 2) may schedule sidelink communications between the UEs 115 (e.g., for Mode 1 sidelink communications) . The network entity 105 may transmit a control message that allocates sidelink resources for one or more sidelink transmissions. Additionally, or alternatively, a transmitting UE 115 may perform a channel sensing or channel access procedure (e.g., LBT) to detect transmissions by other devices (e.g., other UEs) , and the transmitting UE 115 may select available sidelink resources for a sidelink transmission from a pool of configured sidelink resources (e.g., for Mode 2 sidelink communications) .
The UEs 115 described herein may support sub-slot transmissions, slot transmissions, or both. In some examples, the UEs 115 may be configured to use multiple types of slots (e.g., multiple types of slot formats) for sidelink transmission. For example, both slot (e.g., full-sized slot) and mini-slot transmissions may be enabled  for sidelink communications at the UEs 115. As described herein, a mini-slot, which may also be referred to as a sub-slot, may correspond to a portion of a slot. A mini-slot may be understood as a time interval or time duration that includes a quantity (e.g., one or more) of symbol periods. The time duration of a mini-slot may be less than a slot duration (e.g., less than a time duration of a full-sized slot) . For example, a slot may be partitioned into multiple mini-slots. A mini-slot may begin at an initial symbol of a slot (e.g., a slot boundary) or an inner-slot symbol (e.g., a symbol within a slot) , and may end at a subsequent slot boundary (e.g., a slot boundary that occurs after the beginning of the mini-slot) . For example, a mini-slot may begin at an inner-slot symbol within a slot and may end at a subsequent end slot boundary of the slot. The UEs 115 may use a slot, one or more mini-slots (e.g., one or more portions of a slot) , or a combination thereof to transmit and receive sidelink communications.
In the example of FIG. 2, the UE 115-a may select or be allocated one or more sub-slots (e.g., sub-intervals, mini-slots, fractional portions of a slot, one or more symbol periods) for transmitting sidelink communications. For example, the UE 115-a may use one or both of a mini-slot 215 and a slot 220 (e.g., a full-sized slot) subsequent to the mini-slot 215 (e.g., in the time domain) to transmit a sidelink message 235 to the UE 115-b. The UE 115-a may transmit, and the UE 115-b may receive, the sidelink message 235 via allocated frequency resources (e.g., a sub-channel 210) and time resources (e.g., the mini-slot 20 and the slot 220) of a sidelink channel. More specifically, the UE 115-a may transmit the sidelink message 235 via a first set of resources corresponding to the sub-channel 210 and the mini-slot 215 and a second set of resources corresponding to the sub-channel 210 and the slot 220, where the second set of resources is subsequent, in the time-domain, to the first set of resources. In some cases, the UE 115-a may transmit the mini-slot 215 according to a first modulation and coding scheme (MCS) and may transmit the slot 220 according to a second MCS different from the first MCS. For example, the first MCS may be relatively higher than the second MCS, as the mini-slot 215 may include fewer symbols than the slot 220.
In some cases, the UE 115-a may transmit control signaling 230 to the UE 115-b to schedule the sidelink message 235. Additionally, or alternatively, the control signaling 230 may indicate one or more time-frequency resources (e.g., PSFCH resources) for the UE 115-b to use to transmit a feedback message 265 indicating  feedback information for the sidelink message 235. The sidelink message 235 may include SCI and a TB corresponding to a data payload (e.g., a PSSCH payload) , where the TB is common to the mini-slot 215 and the slot 220 (e.g., is repeated across the mini-slot 215 and the slot 220) . Transmission and reception of a common TB across a mini-slot and a subsequent slot (e.g., a subsequent full-sized slot) may be referred to herein as a common-TB transmission scheme. Further, as a mini-slot may begin at an inner-slot symbol, the common-TB transmission scheme may correspond to a capability (e.g., of a UE) for monitoring during an inner-slot symbol.
As illustrated, the mini-slot 215 may begin at an inner-slot symbol with an index of 7 and may span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, such as a slot boundary 225. The mini-slot 215 may include 6 symbols (e.g., OFDM symbols) , such as an automatic gain control (AGC) symbol 240, PSCCH symbols 245, a demodulation reference signal (DMRS) symbol 250, and a set of PSSCH symbols 255 that may convey or carry data (e.g., may convey the TB) . In some cases, the mini-slot 215 may include second stage control (e.g., SCI-2) on a PSSCH symbol 255. The mini-slot 215 may additionally include a gap symbol 260 as an end symbol of the mini-slot 215, which may support beam switching operations.
The slot boundary 225 may separate the end symbol of the mini-slot 215 and an initial symbol (e.g., a symbol with an index of 0) of the slot 220. The slot 220 may begin at the initial symbol, and may span a second time duration that spans from the slot boundary 225 to an end symbol of the slot 220 (e.g., a symbol with an index of 13) . The slot 220 may include 14 symbols (e.g., OFDM symbols) , such as an AGC symbol 240, PSCCH symbols 245, DMRS symbols 250, and a set of PSSCH symbols 255 that convey the TB. In some cases, the slot 220 may include second stage control (e.g., SCI-2) on a PSSCH symbol 255. The end symbol of the slot 220 may be a gap symbol 260.
According to the techniques described herein, to receive the common TB, the UE 115-b may begin monitoring the sidelink channel at the inner-slot symbol for the mini-slot 215. In some cases, the UE 115-b may be aware that the mini-slot 215 and the slot 220 are associated with the same TB (e.g., the common TB) and may monitor the sidelink channel during the inner-slot symbol accordingly, in order to receive the TB via the mini-slot 215 and the slot 220. For example, the UE 115-b may receive (e.g., from the UE 115-a) an indication that a common-TB transmission scheme is enabled, that a  capability for monitoring during an inner-slot symbol is enabled, or a combination thereof. The UE 115-b may monitor at the inner-slot symbol based on receiving the indication. In some examples, the UE 115-b may continue to monitor the sidelink channel for the slot 220, e.g., after receiving the mini-slot 215, based on the TB being a common TB.
In some examples, the AGC symbols 240 (e.g., each AGC symbol 240) may correspond to a beginning of a slot or a mini-slot. For example, within a sidelink slot (e.g., the slot 220) , a transmitting UE (e.g., the UE 115-a) may perform a full-slot sidelink transmission (e.g., spanning a slot duration starting from a first symbol allocated for sidelink and ending in a last symbol allocated for sidelink) . In such examples, a UE receiving the full-slot sidelink transmission (e.g., the UE 115-b) may adjust (e.g., readjust) an AGC at the UE 115-b using an AGC symbol 240 (e.g., in each AGC symbol 240) . Additionally, or alternatively, the transmitting UE (e.g., the UE 115-a) may perform one or more mini-slot sidelink transmissions (e.g., via one or more mini-slots, such as the mini-slot 215) . In such examples, the UE receiving the mini-slot sidelink transmission (e.g., the UE 115-b) may adjust AGC at the UE 115-b for the mini-slot using the AGC symbol 240 at a beginning of the mini-slot 215. Here, the AGC symbol 240 at the beginning of the mini-slot 215 may occur at a slot boundary or at an inner-slot location (e.g., an inner-slot symbol) . For example, the UE 115-b may use an AGC symbol 240 with an index of 7 to adjust the AGC at the UE 115-b for the mini-slot 215.
In some examples, one or more other symbols (e.g., one or more symbols different from the first OFDM symbol of a slot or mini-slot) may be used at the UE 115-b to adjust the AGC. For example, adjusting the AGC during a first portion (e.g., half) of a slot may impact a phase continuity associated with a second portion of the slot. In such examples, the UE may use a DMRS symbol 250 to estimate (e.g., re-estimate) a channel.
The sidelink message 235 may include SCI (e.g., SCI-1) associated with the mini-slot 215 in a control region of the mini-slot 215 corresponding to the PSCCH symbol (s) 245. The SCI associated with the mini-slot 215 may indicate information to be used by the UE 115-b in decoding the TB. For example, the SCI may indicate a source identifier of the UE 115-a, a packet identifier of the TB, an MCS associated with  the mini-slot 215, or the like, among other examples. In some cases, the SCI may further indicate HARQ information, such as a HARQ process number for the mini-slot 215, for the UE 115-b to transmit HARQ feedback associated with the mini-slot 215.
Additionally, the sidelink message 235 may include SCI (e.g., SCI-1) associated with the slot 220 in a control region of the slot 220 corresponding to the PSCCH symbol (s) 245. The SCI associated with the slot 220 may indicate information to be used by the UE 115-b in decoding the TB, such as a source identifier of the UE 115-a, a packet identifier of the TB, an MCS associated with the slot 220, or the like, among other examples. In some cases, the SCI may further indicate HARQ information, such as a HARQ process number for the slot 220, for the UE 115-b to transmit HARQ feedback associated with the slot 220.
The TB of the sidelink message 235 may be communicated within a data region of the mini-slot 215 and a data region of the slot 220. That is, the PSSCH symbols 255 of the mini-slot 215 and the PSSCH symbols 255 of the slot 220 may carry a same TB, e.g., based on the slot 220 being subsequent to the mini-slot 215 in the time domain. For example, a first instance of the TB may be transmitted within the mini-slot 215 and a second instance of the TB may be transmitted within the slot 220, where the first instance of the TB and the second instance of the TB correspond to a same data payload encoded at the UE 115-a. In some examples, the TB may be repeated across the mini-slot 215 and the slot 220. In some cases, the mini-slot 215 may include an initial transmission of the TB, while the slot 220 may include a repetition of the TB. The UE 115-b may combine the first instance of the TB received in the mini-slot 215 with the second instance of the TB received in the slot 220 in order to decode and obtain the data payload associated with the TB.
The UE 115-b may process the TB received via the mini-slot 215 and the slot 220 based on an encoding scheme used by the UE 115-a to encode the TB. In some examples, the UE 115-a may encode the TB by generating a single codeword, and may transmit a first instance of the codeword (e.g., corresponding to the first instance of the TB) in the mini-slot 215 and a second instance of the codeword (e.g., corresponding to the second instance of the TB) in the slot 220. Here, the UE 115-a may generate the codeword in accordance with a length (e.g., a quantity of symbols) of the slot 220 (e.g., according to the second time duration) , such that a length of the codeword matches the  length of the slot 220. To account for the mini-slot 215 having a length that is less than that of the slot 220, the UE 115-a may puncture (e.g., according to a puncturing pattern) the first instance of the codeword transmitted via the mini-slot 215. For example, the UE 115-a may puncture the first instance of the codeword according to the length of the mini-slot 215.
The UE 115-b may decode the first instance of the codeword and the second instance of the codeword based on the second time duration and the puncturing. In some cases, the UE 115-b may receive an indication (e.g., via the control signaling 230) of the puncturing pattern and may decode the first instance of the codeword based on the puncturing pattern. In some examples, the UE 115-b may jointly decode the first instance of the codeword with the second instance of the codeword to recover the TB.
Alternatively, the UE 115-a may encode the TB according to two different encoding schemes to generate respective codewords for each of the mini-slot 215 and the slot 220. The UE 115-a may generate a first codeword based on the length (e.g., quantity of symbols) of the mini-slot 215 corresponding to the first time duration, such that the length of the first codeword matches or otherwise corresponds to the length of the mini-slot 215. The UE 115-a may generate a second codeword according to the length of the slot 220 corresponding to the second time duration. The second codeword may have a length that matches or otherwise corresponds to the length of the slot 220, e.g., the second codeword may have a length different than the length of the first codeword.
The UE 115-b may decode the first codeword according to the length of the mini-slot 215 and may decode the second codeword according to the length of the slot 220. In such examples, the TB received via the slot 220 (e.g., the second codeword) may be self-decodable. The UE 115-b may therefore obtain the TB by decoding only the second codeword (though decoding the first codeword may still provide improved reliability and precision) . For instance, if the UE 115-b receives the slot 220 but fails to successfully receive the mini-slot 215, or is unable to support monitoring at the inner-slot symbol for the mini-slot 215, the UE 115-b may still be able to recover the TB despite lacking the first codeword. In some cases, the UE 115-b may refrain from monitoring for the mini-slot 215 and may only monitor for the slot 220. For example, the UE 115-b may not support mini-slot transmissions.
In some cases, the UE 115-a may dynamically determine whether to enable transmission of the TB via the mini-slot 215 and the slot 220 subsequent to the mini-slot 215, for example, based on a TB size (TBS) of the data payload, an application type of the TB, an application identifier associated with the TB, a priority of the TB, or a combination thereof, among other examples. That is, the UE 115-a may determine, for a given TB, whether to transmit the TB as a self-decodable TB via a mini-slot, as a self-decodable TB via a full-sized slot, or as a common TB repeated across a mini-slot and a subsequent full-sized slot. For instance, the UE 115-a may dynamically determine whether to enable or disable the common-TB transmission scheme (e.g., may dynamically determine whether to enable or disable the capability for monitoring at the inner-slot symbol) . As an example, mini-slots may be periodically available for sidelink transmissions by the UE 115-a. For each mini-slot utilized by the UE 115-a, the UE 115-a may determine whether to follow the mini-slot with a subsequent full-sized slot. Thus, while the example of FIG. 2 illustrates the UE 115-b receiving the sidelink message 235 via the mini-slot 215 and the slot 220, in some cases, the UE 115-b may receive the sidelink message 235 via only one of the mini-slot 215 and the slot 220.
As another example, if a TB is associated with a relatively small TB size (TBS) , the UE 115-a may transmit the TB via a mini-slot and may refrain from following the mini-slot with a subsequent full-sized slot. In some cases, the UE 115-a may be configured with a threshold TBS value, where a TBS satisfying the threshold value corresponds to transmission of the TB via the mini-slot. If the TBS fails to satisfy the threshold, the UE 115-a may transmit the TB via a full-sized slot, or as a common TB via the mini-slot and the full-sized slot. Additionally, or alternatively, some applications or application types may have relatively high reliability requirements. As transmitting a common TB via a mini-slot and a subsequent slot may improve reliability, the UE 115-a may, in some cases, enable the common-TB transmission scheme to transmit TBs associated with such applications or application types. For example, the UE 115-a may enable the common-TB transmission scheme based on an application type associated with the TB, an application identifier associated with the TB, or a combination thereof.
In some examples, the UE 115-a may be configured to utilize the common-TB transmission scheme. For instance, the UE 115-a may receive an indication from a  network entity indicating that the UE 115-a is to enable or disable the common-TB transmission scheme (e.g., the capability for monitoring at the inner-slot symbol) . Additionally, or alternatively, the UE 115-a may transmit the sidelink message 235 according to a cast type. In the example of FIG. 2, the UE 115-a may transmit the sidelink message 235 via unicast, e.g., to one UE (e.g., the UE 115-b) . In other cases, the UE 115-a may transmit the sidelink message 235 via groupcast (e.g., groupcast type I, groupcast type II) to multiple UEs including the UE 115-b. Accordingly, the UE 115-a may dynamically determine whether to transmit the sidelink message 235 via the mini-slot 215, the slot 220, or both, based on the cast type.
The UE 115-a may indicate, to the UE 115-b, whether the common-TB transmission scheme (e.g., the capability for monitoring at the inner-slot symbol) is enabled or disabled. For example, the UE 115-a may transmit an indication via control signaling (e.g., the control signaling 230) , such as SCI (e.g., SCI-1, SCI-2) , a MAC-CE, within a MAC-CE header, or the like. The UE 115-b may process and decode the sidelink message 235 based on the indication. For example, if the UE 115-a indicates that the common-TB transmission scheme is enabled for the sidelink message 235, the UE 115-b may monitor during the inner-slot symbol for the mini-slot 215 and may jointly decode the mini-slot 215 and the slot 220 to obtain the TB.
Alternatively, the UE 115-b may autonomously determine that the common-TB scheme is enabled without receiving an indication from the UE 115-a. For example, the UE 115-b may determine that the HARQ process number, the source identifier, the packet identifier, or a combination thereof indicated in the SCI of the mini-slot 215 is the same as the HARQ process number, source identifier, packet identifier, or combination thereof indicated in the SCI of the slot 220. Accordingly, the UE 115-b may determine that the TB received via the mini-slot 215 and the slot 220 is a common TB, and may utilize information received within the mini-slot 215 and the slot 220 to decode the TB.
In some examples, the UE 115-b may be configured with one or more time-domain resources (e.g., PSFCH resources) for transmitting feedback (e.g., HARQ feedback information) for the sidelink message 235. For example, the UE 115-a may indicate the PSFCH resources in the control signaling 230, the SCI associated with the mini-slot 215, the SCI associated with the slot 220, or a combination thereof. The UE  115-b may transmit a feedback message 265 via the configured PSFCH resources to indicate whether the TB transmitted in the sidelink message 235 was successfully received at the UE 115-b. The UE 115-b may indicate a negative acknowledgement (NACK) if the UE 115-b failed to receive or decode the TB and may indicate a positive acknowledgement (ACK) if the UE 115-b successfully received and decoded the TB.
In some cases, the UE 115-b may utilize a respective PSFCH resource to indicate feedback for each of the mini-slot 215 and the slot 220, while in other cases, the UE 115-b may indicate feedback for both of the mini-slot 215 and the slot 220 in a same PSFCH resource. For example, the UE 115-b may be configured with a first PSFCH resource corresponding to the mini-slot 215 and a second PSFCH resource corresponding to the slot 220. In a first example, the UE 115-b may use the first PSFCH resource to transmit first feedback (e.g., ACK or NACK) indicating whether the TB was received via the mini-slot 215 and may use the second PSFCH resource to transmit second feedback (e.g., ACK or NACK) indicating whether the TB was received via the slot 220. In a second example, the UE 115-b may transmit, via the first PSFCH resource or the second PSFCH resource, feedback indicating that the TB was received via either the mini-slot 215 or the slot 220. In some cases, the UE 115-b may be configured to select the first PSFCH resource, the second PSFCH resource, or both for the feedback message 265.
Communicating a sidelink message 235 via the mini-slot 215 and the slot 220 subsequent to the mini-slot 215 may enable the UEs 115 to access a sidelink channel more frequently (e.g., may increase channel access opportunities within a time duration) , which may reduce delay and latency for the sidelink message 235. Additionally, the mini-slot 215 may be associated with a reduced channel occupancy time (COT) , for example, as compared to a full-slot sidelink transmission. Reducing COT may decrease congestion on the sidelink channel and may improve resource utilization efficiency at the UEs 115 and at any other devices accessing the sidelink channel. Further, communicating a TB via both the mini-slot 215 and the slot 220 may improve reliability, as a quantity of symbols available for carrying the TB may be increased. The TB may be repeated across the mini-slot 215 and the slot 220 based on the slot 220 being subsequent to the mini-slot 215, thereby increasing the likelihood that the TB is successfully received and decoded at the UE 115-b.
FIG. 3 illustrates an example of a slot format 300 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The slot format 300 may be implemented by aspects of the  wireless communications systems  100 and 200. For example, the slot format 300 may be implemented by one or more UEs 115 for sidelink communications via a mini-slot 305 and a slot 310 as described with reference to FIGs. 1 and 2. The mini-slot 305 and the slot 310 may be associated with a same set of frequency resources (e.g., a sub-channel) of a sidelink channel.
The mini-slot 305 illustrates an example mini-slot that spans 7 OFDM symbols and begins at an inner-slot symbol within a slot (e.g., an inner-slot location 320 occurring after a slot boundary 315-a and before a slot boundary 315-b in the time domain) . The mini-slot 305 may represent or be understood as a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary (e.g., the slot boundary 315-b) of the slot. Put another way, the mini-slot 305 includes a first set of symbols (e.g., a first set of resources) that spans the first time duration.
The slot 310 spans 14 OFDM symbols beginning at an initial symbol of the slot 310 subsequent to the mini-slot 305 and ending at a slot boundary 315-c (e.g., subsequent to the slot boundary 315-b) . The slot 310 may represent or be understood as a second time duration that spans from the slot boundary 315-b for a slot duration, e.g., to the slot boundary 315-c. That is, the slot 310 includes a second set of symbols (e.g., a second set of resources) that spans the second time duration. The second time duration may be greater than the first time duration (e.g., the second set of symbols may be greater in quantity than the first set of symbols) .
Each of the mini-slot 305 and the slot 310 may include an AGC symbol 350, PSCCH symbols 325, PSSCH symbols 330, and one or more DMRS symbols 355. The PSCCH symbols 325 may carry SCI (e.g., SCI-1) associated with the corresponding slot (e.g., the mini-slot 305 or the slot 310) . In some examples, the mini-slot 305, the slot 310, or both may each include second stage control (e.g., SCI-2) on a PSSCH symbol 335. In some cases, a last symbol of each slot may be an example of a gap symbol 340 in which no signals are transmitted, which may support beam-switching procedures (e.g., a UE may perform beam switching during a gap symbol 340) .
Mini-slots may be used to increase channel access opportunities within a given time duration. Additionally, or alternatively, use of mini-slots may reduce the channel occupancy time for small transmissions, such as transmission control protocol (TCP) ACK. In some cases, mixing regular slots (e.g., with 14 OFDM symbols as shown by slot 310) and mini-slots (e.g., with 7 slots as shown by mini-slot 305) may increase overhead or cause issues with AGC. For example, due to the relatively shorter time duration associated with mini-slots, a receiving UE may not have enough time to adjust an AGC setting between reception of multiple mini-slots. Additionally, the AGC symbols 350, the DMRS symbols 355, the PSCCH symbols 325, and the gap symbols 340 each contribute to resource overhead (e.g., control overhead, DMRS overhead, AGC overhead, gap symbol overhead) . A ratio of data symbols (e.g., PSSCH symbols 330) to symbols that contribute to resource overhead may be higher with mini-slots as compared to full-sized slots (such as the slot 310) with 14 OFDM symbols. That is, mini-slots, such as the mini-slot 305, may have fewer PSSCH symbols 330, such that more mini-slots may be used to convey a same amount of data compared to full-sized slots. Further, the reduced amount of PSSCH symbols 330 in a mini-slot may degrade reliability, as there may not be sufficient space for redundancy information. To reduce resource overhead, improve reliability, and avoid AGC issues associated with mini-slots, a mini-slot carrying a data payload (e.g., a TB) may be followed by a full-sized slot carrying the same data payload (e.g., the same TB) .
For example, as described with reference to FIG. 2, a transmitting UE may transmit a data payload (e.g., a TB) via a sidelink channel by repeating the TB across PSSCH symbols 330 of a mini-slot 305 and a slot 310 subsequent to the mini-slot 305. A receiving UE may receive and decode the TB based on receiving the mini-slot 305 and the slot 310. For example, the receiving UE may monitor the sidelink channel during the first set of resources beginning at the inner-slot symbol to receive first signaling via the mini-slot 305. The receiving UE may continue to monitor the sidelink channel during the second set of resources to receive second signaling via the slot 310.
By following a mini-slot 305 with a subsequent full-sized slot (e.g., the slot 310) , the TB may be transmitted with increased reliability and reduced overhead while enabling channel access at an inner-slot symbol, thereby decreasing latency. The ratio of the data symbols to symbols that contribute to resource overhead may be reduced, as the  combination of the mini-slot 305 and the slot 310 provides an increased number of data symbols. Additionally, the increased number of data symbols may provide more room for redundancy information associated with the TB, which may improve reliability.
In some examples, overhead may be further reduced by including control resources (e.g., an AGC symbol 350, a DMRS symbol 355, and PSCCH symbols 330) in only the mini-slot 305 (e.g., refraining from transmitting SCI/DMRS within the slot 310) , or by removing gap symbols 340 from between the mini-slot 305 and the slot 310. The fixed overhead associated with the AGC symbols, DMRS symbols, PSSCH symbols, and gap symbols may be reduced and amortized over total span of the mini-slot 305 and the slot 310.
For example, the transmitting UE may remove all or a portion of a control region (e.g., corresponding to the PSCCH symbols 325) of the slot 310. In such examples, the SCI of the mini-slot 305 may include control information associated with the slot 310 as well as with the mini-slot 305. That is, the receiving UE may monitor PSCCH symbols 325 of the mini-slot 305 for SCI to be used by the receiving UE to receive and decode both the mini-slot 305 and the slot 310. Additionally, or alternatively, the transmitting UE may replace the gap symbol 340 between the mini-slot 305 and the slot 310 with a reference signal, a PSSCH symbol 330, or the like. For instance, the transmitting UE may replace the gap symbol 340 with a PSSCH symbol 330 such that the TB spans the duration of the mini-slot 305 and the slot 310. In some cases, replacing the gap symbol 340 with a signal may prevent other devices from attempting to transmit during the gap symbol 340, thereby avoiding losing channel access during the gap symbol 340.
In some examples, if the control resources of the slot 310 are reduced or removed, the transmitting UE may transmit control signaling including an indication informing the receiving UE that the TB is common to (e.g., is repeated across) the mini-slot 305 and the slot 310. For example, the transmitting UE may transmit the indication within SCI (e.g., SCI-1, SCI-2) , a MAC-CE, or a MAC-CE header. In some cases, the control signaling may indicate that a capability for monitoring during an inner-slot symbol (e.g., at the inner-slot location 320) is enabled (e.g., that a common-TB transmission scheme is enabled) . The receiving UE may monitor for the mini-slot 305 and the slot 310 based on the indication. Additionally, the transmitting UE may indicate  that the capability for monitoring during the inner-slot symbol is disabled, and the receiving UE may no longer monitor at inner-slot symbols (e.g., may only begin monitoring the sidelink channel at a slot boundary 315) .
In other examples, the receiving UE may determine that the capability for monitoring at an inner-slot symbol is enabled (e.g., that a common-TB transmission scheme is enabled) based on SCI of the mini-slot 305 and the slot 310. The SCI (e.g., SCI-2) of the mini-slot 305 may indicate a first HARQ process number for HARQ feedback for the mini-slot 305, a source identifier of the transmitting UE, and a packet identify of the TB. The SCI (e.g., SCI-2) of the slot 310 may indicate a second HARQ process number for HARQ feedback for the slot 310, a source identifier of the transmitting UE, and a packet identify of the TB. The receiving UE may receive and decode the SCI of the mini-slot 305 and the SCI of the slot 310 before transmitting corresponding HARQ feedback via one or more PSFCH symbols 345. If the first HARQ process number and the second HARQ process number are the same, and the same source identifier and packet identifier are indicated in both SCIs, the receiving UE may determine that the TB received via PSSCH symbols 330 of the mini-slot 305 and the slot 310 is to be jointly decoded.
In sidelink communications, PSFCH symbols 345 may be configured with periods of 1, 2, or 4 slots, or may be fully disabled. The receiving UE may be configured with one or more PSFCH symbols 345 via which the receiving UE may transmit feedback information (e.g., HARQ feedback information) associated with receiving the TB in the corresponding mini-slot 305 or slot 310. For example, the receiving UE may be configured with a first PSFCH symbol 345 corresponding to the mini-slot 305 and a second PSFCH symbol 345 corresponding to the slot 310. The PSFCH symbols 345 may be scheduled to occur at a minimum time duration after PSSCH symbols 330 of the mini-slot 305, the slot 310, or both, which may allow the receiving UE sufficient time to receive and process (e.g., decode) the PSSCH symbols 330 and to generate the feedback information. In some cases, the PSFCH symbols 345 may occur after one or more gap symbols 340.
In some cases, the receiving UE may utilize each configured PSFCH symbol 345 to indicate feedback for the corresponding mini-slot 305 or slot 310. For instance, the receiving UE may transmit, via the first PSFCH symbol 345, first feedback (e.g.,  ACK or NACK) indicating whether the TB was successfully received and decoded within the mini-slot 305. The receiving UE may additionally transmit, via the second PSFCH symbol 345, second feedback (e.g., ACK or NACK) indicating whether the TB was successfully received and decoded within the slot 310. In other cases, the receiving UE may indicate feedback for both of the mini-slot 305 and the slot 310 in a same configured PSFCH symbol 345 (e.g., in the first PSFCH symbol 345 corresponding to the mini-slot 305 or the second PSFCH symbol 345 corresponding to the slot 310) . For example, the receiving UE may transmit feedback indicating whether the TB was successfully received within the mini-slot 305, feedback indicating whether the TB was successfully received within the slot 310, or both, in either the first PSFCH symbol 345 or the second PSFCH symbol 345. In some examples, if the transmitting UE receives feedback for only one of the mini-slot 305 or the slot 310, the transmitting UE may assume that the TB was successfully recovered by the receiving UE.
In some examples, the receiving UE may be configured to select one or more configured PSFCH symbols 345 for transmitting feedback for the TB. For example, the receiving UE may determine whether to transmit feedback for the mini-slot 305, the slot 310, or both, and may select the first PSFCH symbol 345, the second PSFCH symbol 345, or both, based on a cast type of the TB. If the TB was transmitted via groupcast, additional receiving UEs may be transmitting feedback for the TB on the sidelink channel, and selecting multiple PSFCH symbols 345 may increase congestion and increase the likelihood of collisions between feedback messages. Thus, in such scenarios, the receiving UE may select only one PSFCH symbol 345 for transmitting feedback for both the mini-slot 305 and the slot 310. In unicast communications, however, transmitting feedback via multiple PSFCH symbols 345 may improve reliability of the feedback. If the transmitting UE fails to receive feedback via the first PSFCH symbol 345, for example, the transmitting UE has another opportunity to receive feedback via the second PSFCH symbol 345. The receiving UE may therefore select the first and second PSFCH symbols 345 when the TB is transmitted via unicast.
Additionally, or alternatively, the receiving UE may select PSFCH symbols 345 for transmitting the feedback based on whether the configured PSFCH symbols 345 are scheduled within a same slot or within consecutive slots. In a first example, the first PSFCH symbol 345 corresponding to the mini-slot 305 and the second PSFCH symbol  345 corresponding to the slot 310 may be scheduled within the same slot. Here, the receiving UE may determine to transmit feedback for one or both of the mini-slot 305 and the slot 310 via either the first PSFCH symbol 345 or the second PSFCH symbol 345. That is, when the PSFCH symbols 345 are associated with the same slot, the receiving UE may select only one PSFCH symbol 345 for transmitting feedback.
In a second example, each of the first PSFCH symbol 345 and the second PSFCH symbol 345 may be scheduled within respective, consecutive slots. In this example, the receiving UE may determine to transmit feedback for one or both of the mini-slot 305 and the slot 310 via both PSFCH symbols 345, which may improve reliability of the feedback. Utilizing both PSFCH symbols 345 in the respective slots may provide additional opportunities for the receiving UE to access the sidelink channel to transmit the feedback. For example, the receiving UE may fail to access the channel during the first PSFCH symbol 345, but may successfully access the channel during the second PSFCH symbol 345. Alternatively, if the receiving UE successfully transmits the feedback via the first PSFCH symbol 345, the receiving UE may skip transmitting feedback during the second PSFCH symbol 345.
FIG. 4 illustrates an example of a process flow 400 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The process flow 400 may implement aspects of the wireless communications system 200 and the wireless communications system 100. For example, the process flow 400 may include a UE 115-c and a UE 115-d, which may be examples of sidelink UEs 115 communicating via mini-slots and subsequent slots as described with reference to FIGs. 1 and 2. In some cases, the UE 115-c and the UE 115-d may be configured to communicate according to a slot format as described with reference to FIG. 3. Alternative examples of the following may be implemented, where some processes are performed in a different order than described or are not performed. In some cases, processes may include additional features not mentioned below, or further processes may be added.
At 405, the UE 115-c may transmit, and the UE 115-d may receive, control signaling, such as SCI (e.g., SCI-1, SCI-2) , MAC-CE, or the like. In some examples, the control signaling may indicate that a capability for monitoring during an inner-slot symbol is enabled. For example, the UE 115-c may enable the capability based on a size  of a TB to be transmitted by the UE 115-c, an application (e.g., an application type, an application identifier) associated with the TB, a cast type according to which the TB is to be transmitted (e.g., by the UE 115-c) , a priority of the TB, or a combination thereof, and may indicate that the capability is enabled via the control signaling transmitted at 405. For example, the UE 115-c may enable the capability if the size of the TB fails to satisfy a threshold. Additionally, or alternatively, the UE 115-c may receive an indication from a network entity instructing the UE 115-c to enable the capability.
In some cases, the control signaling may additionally or alternatively indicate one or more time-domain resources for feedback to be transmitted by the UE 115-d. For example, the control signaling may include first control signaling and second control signaling indicating a first time-domain resource and a second time-domain resource, respectively, for transmitting feedback associated with the TB.
The TB may include or be an example of a common TB associated with first signaling and second signaling. For example, the TB may be repeated across the first signaling and the second signaling. Based on the control signaling, the UE 115-d may enable monitoring at or during inner-slot symbols (e.g., inner-slot locations) in order to monitor for the common TB.
At 410, the UE 115-d may monitor during an inner-slot symbol for the first signaling. The first signaling may be associated with a first set of resources that span a first time duration. The first time duration may include a set of symbols that span from the inner-slot symbol to a subsequent end slot boundary. In some examples, the first set of resources may include or be an example of a mini-slot, a sub-slot, or the like. In some cases, the UE 115-d may monitor during the inner-slot symbol based on receiving the control signaling at 405 indicating that monitoring during inner-slot symbols is enabled. In other cases, the UE 115-d may determine to monitor at the inner-slot symbol without receiving control signaling.
At 415, the UE 115-c may transmit, and the UE 115-d may receive, via the first set of resources (e.g., via a mini-slot) , the first signaling based on monitoring at the inner-slot symbol at 410. In some cases, the UE 115-c may transmit the first signaling via groupcast I, groupcast II, or unicast. The first signaling may include first SCI and the common TB (e.g., a first codeword associated with the common TB) . For example,  the UE 115-d may decode the first SCI and may receive the common TB via the first set of resources in accordance with the first SCI. In some cases, the UE 115-d may receive the common TB via the first set of resources according to a first MCS.
In some examples, the first SCI (which may include or be an example of SCI-2) may indicate a first HARQ process number for transmitting feedback associated with the first signaling. Additionally, the first SCI may indicate a source identifier associated with the UE 115-c, a packet identifier associated with the common TB, or a combination thereof.
At 420, the UE 115-c may transmit, and the UE 115-d may receive, the second signaling via a second set of resources that span a second time duration. The second time duration may span from the subsequent end slot boundary for a slot duration. That is, the second time duration may be greater than the first time duration.
At 425, the UE 115-d may decode, based on monitoring for the first signaling at 410, the second signaling received at 420. The second signaling may include second SCI and the common TB (e.g., a second codeword associated with the TB) . For example, the UE 115-d may decode the second SCI and may receive the common TB via the second set of resources in accordance with the second SCI. In some cases, the UE 115-d may receive the common TB via the second resources according to a second MCS different from the first MCS, where the second MCS is relatively low (e.g., lower than the first MCS) . The second SCI may indicate a second HARQ process number for transmitting feedback associated with the second signaling. The first HARQ process number and the second HARQ process number may be the same. Additionally, the second SCI may indicate a source identifier associated with the UE 115-c, a packet identifier associated with the common TB, or a combination thereof.
For example, the UE 115-d may decode the second SCI in order to obtain or otherwise identify the second HARQ process number, the source identifier, the packet identifier, or a combination thereof. Based on the decoding, the UE 115-d may determine that the first HARQ process number indicated by the first SCI and the second HARQ process number are the same. In some cases, the UE 115-d may additionally determine that the source identifier and the packet identifier indicated by the first SCI  are the same as the source identifier and the packet identifier indicated by the second SCI.
In other examples, the second signaling may exclude SCI and may only carry the common TB. In such examples, the UE 115-d may utilize the first SCI to decode the second signaling. That is, the UE 115-d may decode the common TB received via the second set of resources in accordance with the first SCI. Additionally, or alternatively, the UE 115-d may receive the second signaling without a gap symbol between the first signaling and the second signaling, such that the common TB spans the first time duration and the second time duration.
At 430, the UE 115-d may decode the common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling and, in some cases, the first signaling. The UE 115-d may, for example, decode the first codeword received as part of the first signaling and may decode the second codeword received as part of the second signaling. The UE 115-d may combine information (e.g., decoded data) output from decoding the first codeword with information output from decoding the second codeword to obtain the common TB. In some examples, the first codeword may be encoded (e.g., by the UE 115-c) according to the first time duration and the second codeword may be encoded (e.g., by the UE 115-c) according to the second time duration. In other examples, the first codeword and the second codeword may both be encoded according to the second time duration, but the first codeword may be punctured according to the first time duration (e.g., in order to fit within the first set of resources) . In such examples, the first codeword may be punctured according to a puncturing pattern, and the UE 115-d may decode the first codeword according to the puncturing pattern. In some cases, the UE 115-d may receive an indication of the puncturing pattern for the first time duration, for instance, as part of the control signaling received at 405.
In some cases, the UE 115-d may decode the common TB based on the first HARQ process number and the second HARQ process number being the same. For example, the UE 115-d may determine that the capability for monitoring during the inner-slot symbol is enabled based on the first HARQ process number and the second HARQ process number being the same, such that the UE 115-d decodes the common TB using the first codeword and the second codeword.
At 435, the UE 115-d may optionally select one or more time-domain resources for transmitting feedback associated with the common TB. For example, the UE 115-d may select from among the first time-domain resource and the second time-domain resource indicated via the control signaling at 405. The first time-domain resource may correspond to the first time duration and the second time-domain resource may correspond to the second time duration. In some examples, the UE 115-d may select the first time-domain resource, the second time-domain resource, or both, based on a cast type (e.g., groupcast I, groupcast II, unicast) associated with the common TB. In some cases, the UE 115-d may be configured to transmit feedback for the common TB according to a feedback scheme, and the UE 115-d may select the time-domain resource (s) in accordance with the feedback scheme.
At 440, the UE 115-d may transmit, and the UE 115-c may receive, feedback (e.g., ACK or NACK) for the common TB via a sidelink feedback channel (e.g., PSFCH) . For example, the UE 115-d may transmit first feedback (e.g., ACK or NACK) indicating whether the common TB was successfully received at the UE 115-d during the first time duration (e.g., based on the monitoring at 410) , second feedback (e.g., ACK or NACK) indicating whether the common TB was successfully received at the UE 115-d during the second time duration (e.g., based on the decoding) , or both. The UE 115-d may transmit the feedback for the common TB on one or more time-domain resources, such as the first time-domain resource, the second time-domain resource, or both, e.g., as indicated via control signaling at 405 or selected at 435. That is, the UE 115-d may transmit the first feedback and the second feedback via respective time-domain resources, or may transmit the first feedback and the second feedback together via a same time-domain resource. For instance, if the first time-domain resource and the second time-domain resource are associated with a same slot, the UE 115-d may transmit the first feedback and the second feedback via either the first time-domain resource or the second time-domain resource.
In some examples, the UE 115-d may be configured to transmit feedback for the common TB according to a feedback scheme. For example, in a first feedback scheme, the UE 115-d may be configured to transmit the first feedback via the first time-domain resource and transmit the second feedback via the second time-domain resource. Alternatively, the UE 115-d may be configured to transmit feedback for the  common TB via a single time-domain resource. For instance, in a second feedback scheme, the UE 115-d may be configured to transmit one or both of the first feedback and the second feedback via the first time-domain resource (e.g., associated with the first time duration) . In a third feedback scheme, the UE 115-d may be configured to transmit one or both of the first feedback and the second feedback via the second time-domain resource (e.g., associated with the second time duration) .
In yet another example, in a fourth feedback scheme, the UE 115-d may be configured to dynamically select the first feedback scheme, the second feedback scheme, or the third feedback scheme based on one or more parameters. For example, the UE 115-d may select a feedback scheme based on a cast type (e.g., groupcast I, groupcast II, unicast) associated with the common TB, a PSFCH occasion associated with the first time-domain resource, a PSFCH occasion associated with the second time-domain resource, or a combination thereof. The UE 115-d may transmit the feedback at 440 via one or more time-domain resources in accordance with the selected feedback scheme.
FIG. 5 illustrates a block diagram 500 of a device 505 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 or a network entity 105 as described herein. The device 505 may include a receiver 510, a transmitter 515, and a communications manager 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to decoding common TB across mini-slot and subsequent slot) . Information may be passed on to other components of the device 505. The receiver 510 may utilize a single antenna or a set of multiple antennas.
The transmitter 515 may provide a means for transmitting signals generated by other components of the device 505. For example, the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof  associated with various information channels (e.g., control channels, data channels, information channels related to decoding common TB across mini-slot and subsequent slot) . In some examples, the transmitter 515 may be co-located with a receiver 510 in a transceiver module. The transmitter 515 may utilize a single antenna or a set of multiple antennas.
The communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of decoding common TB across mini-slot and subsequent slot as described herein. For example, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally, or alternatively, in some examples, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 520 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both. For example, the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 520 may support wireless communications at a first wireless device in accordance with examples as disclosed herein. For example, the communications manager 520 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary. The communications manager 520 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration. The communications manager 520 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
By including or configuring the communications manager 520 in accordance with examples as described herein, the device 505 (e.g., a processor controlling or otherwise coupled with the receiver 510, the transmitter 515, the communications manager 520, or a combination thereof) may support techniques for efficient and reliable mini-slot communications. For example, communicating a TB via a mini-slot transmission and a subsequent slot transmission may improve efficiency in resource utilization and increase communications reliability at the device 505. Further, by increasing reliability, the device 505 may avoid retransmissions of the TB, which may be associated with increased power consumption and processing.
FIG. 6 illustrates a block diagram 600 of a device 605 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, a UE 115, or a network entity 105 as described herein. The device 605  may include a receiver 610, a transmitter 615, and a communications manager 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to decoding common TB across mini-slot and subsequent slot) . Information may be passed on to other components of the device 605. The receiver 610 may utilize a single antenna or a set of multiple antennas.
The transmitter 615 may provide a means for transmitting signals generated by other components of the device 605. For example, the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to decoding common TB across mini-slot and subsequent slot) . In some examples, the transmitter 615 may be co-located with a receiver 610 in a transceiver module. The transmitter 615 may utilize a single antenna or a set of multiple antennas.
The device 605, or various components thereof, may be an example of means for performing various aspects of decoding common TB across mini-slot and subsequent slot as described herein. For example, the communications manager 620 may include an inner-slot monitoring component 625, a slot decoding component 630, a TB decoding component 635, or any combination thereof. The communications manager 620 may be an example of aspects of a communications manager 520 as described herein. In some examples, the communications manager 620, or various components thereof, may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both. For example, the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 620 may support wireless communications at a first wireless device in accordance with examples as disclosed herein. The inner-slot monitoring component 625 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary. The slot decoding component 630 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration. The TB decoding component 635 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
FIG. 7 illustrates a block diagram 700 of a communications manager 720 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein. The communications manager 720, or various components thereof, may be an example of means for performing various aspects of decoding common TB across mini-slot and subsequent slot as described herein. For example, the communications manager 720 may include an inner-slot monitoring component 725, a slot decoding component 730, a TB decoding component 735, a control signaling receiver 740, a feedback component 745, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) which may include communications within a protocol layer of a protocol stack, communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack, within a device, component, or virtualized component associated with a network entity 105, between devices, components, or virtualized components associated with a network entity 105) , or any combination thereof.
The communications manager 720 may support wireless communications at a first wireless device in accordance with examples as disclosed herein. The inner-slot monitoring component 725 may be configured as or otherwise support a means for  monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary. The slot decoding component 730 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration. The TB decoding component 735 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
In some examples, the control signaling receiver 740 may be configured as or otherwise support a means for receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is enabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof, where the monitoring is based on the control signaling. In some examples, the control signaling receiver 740 may be configured as or otherwise support a means for receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is disabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof. In some examples, the control signaling includes SCI or a MAC-CE.
In some examples, the control signaling receiver 740 may be configured as or otherwise support a means for receiving, as part of the first signaling, first SCI indicating a first HARQ process number. In some examples, the TB decoding component 735 may be configured as or otherwise support a means for receiving, as part of the second signaling, second SCI indicating a second HARQ process number, where decoding the common TB is based on the first HARQ process number and the second HARQ process number being the same.
In some examples, the inner-slot monitoring component 725 may be configured as or otherwise support a means for determining that a capability for  monitoring during the inner-slot symbol is enabled based on the first HARQ process number and the second HARQ process number being the same.
In some examples, the first SCI and the second SCI further indicate a packet identifier for the common TB.
In some examples, to support decoding the common TB, the TB decoding component 735 may be configured as or otherwise support a means for decoding a first codeword that is encoded according to the first time duration. In some examples, to support decoding the common TB, the TB decoding component 735 may be configured as or otherwise support a means for decoding a second codeword that is encoded according to the second time duration.
In some examples, to support decoding the common TB, the TB decoding component 735 may be configured as or otherwise support a means for decoding a first instance of a codeword that is encoded according to the second time duration. In some examples, to support decoding the common TB, the TB decoding component 735 may be configured as or otherwise support a means for decoding a second instance of the codeword, where the second instance of the codeword is punctured according to the first time duration. In some examples, the TB decoding component 735 may be configured as or otherwise support a means for receiving an indication of a puncturing pattern for the second instance of the codeword, where the second instance of the codeword is decoded in accordance with the puncturing pattern.
In some examples, the inner-slot monitoring component 725 may be configured as or otherwise support a means for receiving, based on the monitoring, the first signaling including first SCI and the common TB. In some examples, the slot decoding component 730 may be configured as or otherwise support a means for decoding the second signaling including the common TB based on the first SCI.
In some examples, the feedback component 745 may be configured as or otherwise support a means for receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common TB, the first time-domain resource corresponding to the first time duration. In some examples, the feedback component 745 may be configured as or otherwise support a means for receiving second control signaling indicating a second time-domain resource for  transmitting second feedback associated with the common TB, the second time-domain resource corresponding to the second time duration.
In some examples, the feedback component 745 may be configured as or otherwise support a means for transmitting, via the first time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration based on the monitoring. In some examples, the feedback component 745 may be configured as or otherwise support a means for transmitting, via the second time-domain resource, the second feedback indicating whether the common TB was successfully received during the second time duration based on the decoding.
In some examples, the feedback component 745 may be configured as or otherwise support a means for transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration and the second feedback indicating whether the common TB was successfully received during the second time duration. In some examples, the first time-domain resource and the second time-domain resource are associated with a same slot.
In some examples, the feedback component 745 may be configured as or otherwise support a means for selecting the first time-domain resource, the second time-domain resource, or both based on a cast type associated with the common TB. In some examples, the feedback component 745 may be configured as or otherwise support a means for transmitting the first feedback indicating whether the common TB was successfully received during the first time duration, the second feedback indicating whether the common TB was successfully received during the second time duration, or both, based on the selecting.
In some examples, the common TB spans the first time duration and the second time duration.
In some examples, the inner-slot monitoring component 725 may be configured as or otherwise support a means for receiving the common TB via the first set of resources according to a first modulation and coding scheme. In some examples, the slot decoding component 730 may be configured as or otherwise support a means  for receiving the common TB via the second set of resources according to a second modulation and coding scheme different from the first modulation and coding scheme.
FIG. 8 illustrates a diagram of a system 800 including a device 805 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein. The device 805 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
The I/O controller 810 may manage input and output signals for the device 805. The I/O controller 810 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 810 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 810 may utilize an operating system such as
Figure PCTCN2022139913-appb-000001
Figure PCTCN2022139913-appb-000002
or another known operating system. Additionally, or alternatively, the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 810 may be implemented as part of a processor, such as the processor 840. In some cases, a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
In some cases, the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein. For example, the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 815 may also include a modem to modulate the  packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825. The transceiver 815, or the transceiver 815 and one or more antennas 825, may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
The memory 830 may include random access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting decoding common TB across mini-slot and subsequent slot) . For example, the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled with or to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
The communications manager 820 may support wireless communications at a first wireless device in accordance with examples as disclosed herein. For example, the communications manager 820 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a  subsequent end slot boundary. The communications manager 820 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration. The communications manager 820 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
By including or configuring the communications manager 820 in accordance with examples as described herein, the device 805 may support techniques for efficient and reliable mini-slot communications. For example, communicating a TB via a mini-slot transmission and a subsequent slot transmission may improve efficiency in resource utilization and increase communications reliability at the device 805. Further, enabling mini-slot transmissions may reduce latency and delays and may improve coordination between the device 805 and one or more other devices.
In some examples, the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof. Although the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof. For example, the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of decoding common TB across mini-slot and subsequent slot as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
FIG. 9 illustrates a diagram of a system 900 including a device 905 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The device 905 may be an example of or include the components of a device 505, a device 605, or a network entity 105 as described herein. The device 905 may communicate with one or more network entities 105, one or more UEs 115, or any combination thereof, which may include communications over one or more wired interfaces, over one or more wireless  interfaces, or any combination thereof. The device 905 may include components that support outputting and obtaining communications, such as a communications manager 920, a transceiver 910, an antenna 915, a memory 925, code 930, and a processor 935. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 940) .
The transceiver 910 may support bi-directional communications via wired links, wireless links, or both as described herein. In some examples, the transceiver 910 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 910 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver. In some examples, the device 905 may include one or more antennas 915, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) . The transceiver 910 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 915, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 915, from a wired receiver) , and to demodulate signals. In some implementations, the transceiver 910 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 915 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 915 that are configured to support various transmitting or outputting operations, or a combination thereof. In some implementations, the transceiver 910 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals for transmission or other outputting, or any combination thereof. In some implementations, the transceiver 910, or the transceiver 910 and the one or more antennas 915, or the transceiver 910 and the one or more antennas 915 and one or more processors or memory components (for example, the processor 935, or the memory 925, or both) , may be included in a chip or chip assembly that is installed in the device 905. In some examples, the transceiver may be operable to support communications via one or more  communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
The memory 925 may include RAM and ROM. The memory 925 may store computer-readable, computer-executable code 930 including instructions that, when executed by the processor 935, cause the device 905 to perform various functions described herein. The code 930 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 930 may not be directly executable by the processor 935 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 925 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 935 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) . In some cases, the processor 935 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 935. The processor 935 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 925) to cause the device 905 to perform various functions (e.g., functions or tasks supporting decoding common TB across mini-slot and subsequent slot) . For example, the device 905 or a component of the device 905 may include a processor 935 and memory 925 coupled with the processor 935, the processor 935 and memory 925 configured to perform various functions described herein. The processor 935 may be an example of a cloud-computing platform (e.g., one or more physical nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 930) to perform the functions of the device 905. The processor 935 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 905 (such as within the memory 925) . In some implementations, the processor 935 may be a component of a processing system. A processing system may generally refer to a system or series of machines or components that receives inputs and processes the  inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 905) . For example, a processing system of the device 905 may refer to a system including the various other components or subcomponents of the device 905, such as the processor 935, or the transceiver 910, or the communications manager 920, or other components or combinations of components of the device 905. The processing system of the device 905 may interface with other components of the device 905, and may process information received from other components (such as inputs or signals) or output information to other components. For example, a chip or modem of the device 905 may include a processing system and one or more interfaces to output information, or to obtain information, or both. The one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations. In some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 905 may transmit information output from the chip or modem. Additionally, or alternatively, in some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 905 may obtain information or signal inputs, and the information may be passed to the processing system. A person having ordinary skill in the art will readily recognize that a first interface also may obtain information or signal inputs, and a second interface also may output information or signal outputs.
In some examples, a bus 940 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 940 may support communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 905, or between different components of the device 905 that may be co-located or located in different locations (e.g., where the device 905 may refer to a system in which one or more of the communications manager 920, the transceiver 910, the memory 925, the code 930, and the processor 935 may be located in one of the different components or divided between different components) .
In some examples, the communications manager 920 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) . For example, the communications manager 920 may manage the transfer of data communications for client devices, such as one or more UEs 115. In some examples, the communications manager 920 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105. In some examples, the communications manager 920 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
The communications manager 920 may support wireless communications at a first wireless device in accordance with examples as disclosed herein. For example, the communications manager 920 may be configured as or otherwise support a means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary. The communications manager 920 may be configured as or otherwise support a means for decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration. The communications manager 920 may be configured as or otherwise support a means for decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling.
By including or configuring the communications manager 920 in accordance with examples as described herein, the device 905 may support techniques for efficient and reliable mini-slot communications. For example, communicating a TB via a mini-slot transmission and a subsequent slot transmission may improve efficiency in resource utilization and increase communications reliability at the device 805. Further, enabling mini-slot transmissions may reduce latency and delays and may improve coordination between the device 805 and one or more other devices.
In some examples, the communications manager 920 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 910, the one or  more antennas 915 (e.g., where applicable) , or any combination thereof. Although the communications manager 920 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 920 may be supported by or performed by the transceiver 910, the processor 935, the memory 925, the code 930, or any combination thereof. For example, the code 930 may include instructions executable by the processor 935 to cause the device 905 to perform various aspects of decoding common TB across mini-slot and subsequent slot as described herein, or the processor 935 and the memory 925 may be otherwise configured to perform or support such operations.
FIG. 10 illustrates a flowchart showing a method 1000 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The operations of the method 1000 may be implemented by a UE or a network entity or its components as described herein. For example, the operations of the method 1000 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 9. In some examples, a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
At 1005, the method may include monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary. The operations of 1005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1005 may be performed by an inner-slot monitoring component 725 as described with reference to FIG. 7.
At 1010, the method may include decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration. The operations of 1010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1010 may be performed by a slot decoding component 730 as described with reference to FIG. 7.
At 1015, the method may include decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling. The operations of 1015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1015 may be performed by a TB decoding component 735 as described with reference to FIG. 7.
FIG. 11 illustrates a flowchart showing a method 1100 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The operations of the method 1100 may be implemented by a UE or a network entity or its components as described herein. For example, the operations of the method 1100 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 9. In some examples, a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
At 1105, the method may include receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is enabled based on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof. The operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a control signaling receiver 740 as described with reference to FIG. 7.
At 1110, the method may include monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary, where the monitoring is based on the control signaling. The operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by an inner-slot monitoring component 725 as described with reference to FIG. 7.
At 1115, the method may include decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration. The operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by a slot decoding component 730 as described with reference to FIG. 7.
At 1120, the method may include decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling. The operations of 1120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1120 may be performed by a TB decoding component 735 as described with reference to FIG. 7.
At 1125, the method may include receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common TB, the first time-domain resource corresponding to the first time duration. The operations of 1125 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1125 may be performed by a feedback component 745 as described with reference to FIG. 7.
At 1130, the method may include receiving second control signaling indicating a second time-domain resource for transmitting second feedback associated with the common TB, the second time-domain resource corresponding to the second time duration. The operations of 1130 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1130 may be performed by a feedback component 745 as described with reference to FIG. 7.
At 1135, the method may include transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration and the second feedback indicating whether the common TB was successfully received during the second time duration. The operations of 1135 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1135 may be performed by a feedback component 745 as described with reference to FIG. 7.
FIG. 12 illustrates a flowchart showing a method 1200 that supports decoding common TB across mini-slot and subsequent slot in accordance with one or more aspects of the present disclosure. The operations of the method 1200 may be implemented by a UE or a network entity or its components as described herein. For example, the operations of the method 1200 may be performed by a UE 115 or a network entity as described with reference to FIGs. 1 through 9. In some examples, a UE or a network entity may execute a set of instructions to control the functional elements of the UE or the network entity to perform the described functions. Additionally, or alternatively, the UE or the network entity may perform aspects of the described functions using special-purpose hardware.
At 1205, the method may include monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary. The operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by an inner-slot monitoring component 725 as described with reference to FIG. 7.
At 1210, the method may include receiving, as part of the first signaling, first SCI indicating a first HARQ process number. The operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a control signaling receiver 740 as described with reference to FIG. 7.
At 1215, the method may include decoding, based on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration. The operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a slot decoding component 730 as described with reference to FIG. 7.
At 1220, the method may include receiving, as part of the second signaling, second SCI indicating a second HARQ process number. The operations of 1220 may be performed in accordance with examples as disclosed herein. In some examples, aspects  of the operations of 1220 may be performed by a TB decoding component 735 as described with reference to FIG. 7.
At 1225, the method may include determining that a capability for monitoring during the inner-slot symbol is enabled based on the first HARQ process number and the second HARQ process number being the same. The operations of 1225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1225 may be performed by an inner-slot monitoring component 725 as described with reference to FIG. 7.
At 1230, the method may include decoding a common TB that is repeated across the first signaling and the second signaling based on decoding the second signaling, where decoding the common TB is based on the first HARQ process number and the second HARQ process number being the same. The operations of 1230 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1230 may be performed by a TB decoding component 735 as described with reference to FIG. 7.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communications at a first wireless device, comprising: monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary; decoding, based at least in part on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration; and decoding a common TB that is repeated across the first signaling and the second signaling based at least in part on decoding the second signaling.
Aspect 2: The method of aspect 1, further comprising: receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is enabled based at least in part on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a  combination thereof, wherein the monitoring is based at least in part on the control signaling.
Aspect 3: The method of aspect 2, wherein the control signaling comprises SCI or a MAC-CE.
Aspect 4: The method of aspect 1, further comprising: receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is disabled based at least in part on a size of the common TB, an application type associated with the common TB, an application identifier associated with the common TB, a cast type associated with the common TB, a priority of the common TB, or a combination thereof.
Aspect 5: The method of any of aspects 1 through 4, further comprising: receiving, as part of the first signaling, first SCI indicating a first HARQ process number; and receiving, as part of the second signaling, second SCI indicating a second HARQ process number, wherein decoding the common TB is based at least in part on the first HARQ process number and the second HARQ process number being the same.
Aspect 6: The method of aspect 5, further comprising: determining that a capability for monitoring during the inner-slot symbol is enabled based at least in part on the first HARQ process number and the second HARQ process number being the same.
Aspect 7: The method of any of aspects 5 through 6, wherein the first SCI and the second SCI further indicate a packet identifier for the common TB.
Aspect 8: The method of any of aspects 1 through 7, wherein decoding the common TB further comprises: decoding a first codeword that is encoded according to the first time duration; and decoding a second codeword that is encoded according to the second time duration.
Aspect 9: The method of any of aspects 1 through 7, wherein decoding the common TB further comprises: decoding a first instance of a codeword that is encoded according to the second time duration; and decoding a second instance of the codeword, wherein the second instance of the codeword is punctured according to the first time duration.
Aspect 10: The method of aspect 9, further comprising: receiving an indication of a puncturing pattern for the second instance of the codeword, wherein the second instance of the codeword is decoded in accordance with the puncturing pattern.
Aspect 11: The method of any of aspects 1 through 10, further comprising: receiving, based at least in part on the monitoring, the first signaling comprising first SCI and the common TB; and decoding the second signaling comprising the common TB based at least in part on the first SCI.
Aspect 12: The method of any of aspects 1 through 11, further comprising: receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common TB, the first time-domain resource corresponding to the first time duration; and receiving second control signaling indicating a second time-domain resource for transmitting second feedback associated with the common TB, the second time-domain resource corresponding to the second time duration.
Aspect 13: The method of aspect 12, further comprising: transmitting, via the first time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration based at least in part on the monitoring; and transmitting, via the second time-domain resource, the second feedback indicating whether the common TB was successfully received during the second time duration based at least in part on the decoding.
Aspect 14: The method of aspect 12 further comprising: transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common TB was successfully received during the first time duration and the second feedback indicating whether the common TB was successfully received during the second time duration.
Aspect 15: The method of aspect 14, wherein the first time-domain resource and the second time-domain resource are associated with a same slot.
Aspect 16: The method of aspect 12, further comprising: selecting the first time-domain resource, the second time-domain resource, or both based at least in part on a cast type associated with the common TB; and transmitting the first feedback  indicating whether the common TB was successfully received during the first time duration, the second feedback indicating whether the common TB was successfully received during the second time duration, or both, based at least in part on the selecting.
Aspect 17: The method of any of aspects 1 through 16, wherein the common TB spans the first time duration and the second time duration.
Aspect 18: The method of any of aspects 1 through 17, further comprising: receiving the common TB via the first set of resources according to a first modulation and coding scheme; and receiving the common TB via the second set of resources according to a second modulation and coding scheme different from the first modulation and coding scheme.
Aspect 19: An apparatus for wireless communications at a first wireless device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 18.
Aspect 20: An apparatus for wireless communications at a first wireless device, comprising at least one means for performing a method of any of aspects 1 through 18.
Aspect 21: A non-transitory computer-readable medium storing code for wireless communications at a first wireless device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 18.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers  (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed using a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented using hardware, software executed by a processor, firmware, or any combination thereof. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another. A non-transitory storage medium may  be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
The term “determine” or “determining” encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like.  Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions.
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. A method for wireless communications at a wireless device, comprising:
    monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary;
    decoding, based at least in part on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration; and
    decoding a common transport block that is repeated across the first signaling and the second signaling based at least in part on decoding the second signaling.
  2. The method of claim 1, further comprising:
    receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is enabled based at least in part on a size of the common transport block, an application type associated with the common transport block, an application identifier associated with the common transport block, a cast type associated with the common transport block, a priority of the common transport block, or a combination thereof, wherein the monitoring is based at least in part on the control signaling.
  3. The method of claim 2, wherein the control signaling comprises sidelink control information or a medium access control (MAC) control element (MAC-CE) .
  4. The method of claim 1, further comprising:
    receiving control signaling indicating that a capability for monitoring during the inner-slot symbol is disabled based at least in part on a size of the common transport block, an application type associated with the common transport block, an application identifier associated with the common transport block, a cast type associated with the common transport block, a priority of the common transport block, or a combination thereof.
  5. The method of claim 1, further comprising:
    receiving, as part of the first signaling, first sidelink control information indicating a first hybrid automatic repeat request process number; and
    receiving, as part of the second signaling, second sidelink control information indicating a second hybrid automatic repeat request process number, wherein decoding the common transport block is based at least in part on the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number being the same.
  6. The method of claim 5, further comprising:
    determining that a capability for monitoring during the inner-slot symbol is enabled based at least in part on the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number being the same.
  7. The method of claim 5, wherein the first sidelink control information and the second sidelink control information further indicate a packet identifier for the common transport block.
  8. The method of claim 1, wherein decoding the common transport block further comprises:
    decoding a first codeword that is encoded according to the first time duration; and
    decoding a second codeword that is encoded according to the second time duration.
  9. The method of claim 1, wherein decoding the common transport block further comprises:
    decoding a first instance of a codeword that is encoded according to the second time duration; and
    decoding a second instance of the codeword, wherein the second instance of the codeword is punctured according to the first time duration.
  10. The method of claim 9, further comprising:
    receiving an indication of a puncturing pattern for the second instance of the codeword, wherein the second instance of the codeword is decoded in accordance with the puncturing pattern.
  11. The method of claim 1, further comprising:
    receiving, based at least in part on the monitoring, the first signaling comprising first sidelink control information and the common transport block; and
    decoding the second signaling comprising the common transport block based at least in part on the first sidelink control information.
  12. The method of claim 1, further comprising:
    receiving first control signaling indicating a first time-domain resource for transmitting first feedback associated with the common transport block, the first time-domain resource corresponding to the first time duration; and
    receiving second control signaling indicating a second time-domain resource for transmitting second feedback associated with the common transport block, the second time-domain resource corresponding to the second time duration.
  13. The method of claim 12, further comprising:
    transmitting, via the first time-domain resource, the first feedback indicating whether the common transport block was successfully received during the first time duration based at least in part on the monitoring; and
    transmitting, via the second time-domain resource, the second feedback indicating whether the common transport block was successfully received during the second time duration based at least in part on the decoding.
  14. The method of claim 12, further comprising:
    transmitting, via the first time-domain resource or the second time-domain resource, the first feedback indicating whether the common transport block was successfully received during the first time duration and the second feedback indicating whether the common transport block was successfully received during the second time duration.
  15. The method of claim 14, wherein the first time-domain resource and the second time-domain resource are associated with a same slot.
  16. The method of claim 12, further comprising:
    selecting the first time-domain resource, the second time-domain resource, or both based at least in part on a cast type associated with the common transport block; and
    transmitting the first feedback indicating whether the common transport block was successfully received during the first time duration, the second feedback indicating whether the common transport block was successfully received during the second time duration, or both, based at least in part on the selecting.
  17. The method of claim 1, wherein the common transport block spans the first time duration and the second time duration.
  18. The method of claim 1, further comprising:
    receiving the common transport block via the first set of resources according to a first modulation and coding scheme; and
    receiving the common transport block via the second set of resources according to a second modulation and coding scheme different from the first modulation and coding scheme.
  19. An apparatus for wireless communications at a wireless device, comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    monitor, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary;
    decode, based at least in part on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration; and
    decode a common transport block that is repeated across the first signaling and the second signaling based at least in part on decoding the second signaling.
  20. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive control signaling indicating that a capability for monitoring during the inner-slot symbol is enabled based at least in part on a size of the common transport block, an application type associated with the common transport block, an application identifier associated with the common transport block, a cast type associated with the common transport block, a priority of the common transport block, or a combination thereof, wherein the monitoring is based at least in part on the control signaling.
  21. The apparatus of claim 20, wherein the control signaling comprises sidelink control information or a medium access control (MAC) control element (MAC-CE) .
  22. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive control signaling indicating that a capability for monitoring during the inner-slot symbol is disabled based at least in part on a size of the common transport block, an application type associated with the common transport block, an application identifier associated with the common transport block, a cast type associated with the common transport block, a priority of the common transport block, or a combination thereof.
  23. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, as part of the first signaling, first sidelink control information indicating a first hybrid automatic repeat request process number; and
    receive, as part of the second signaling, second sidelink control information indicating a second hybrid automatic repeat request process number, wherein decoding the common transport block is based at least in part on the first hybrid  automatic repeat request process number and the second hybrid automatic repeat request process number being the same.
  24. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a capability for monitoring during the inner-slot symbol is enabled based at least in part on the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number being the same.
  25. The apparatus of claim 23, wherein the first sidelink control information and the second sidelink control information further indicate a packet identifier for the common transport block.
  26. The apparatus of claim 19, wherein the instructions to decode the common transport block are further executable by the processor to cause the apparatus to:
    decode a first codeword that is encoded according to the first time duration; and
    decode a second codeword that is encoded according to the second time duration.
  27. The apparatus of claim 19, wherein the instructions to decode the common transport block are further executable by the processor to cause the apparatus to:
    decode a first instance of a codeword that is encoded according to the second time duration; and
    decode a second instance of the codeword, wherein the second instance of the codeword is punctured according to the first time duration.
  28. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive an indication of a puncturing pattern for the second instance of the codeword, wherein the second instance of the codeword is decoded in accordance with the puncturing pattern.
  29. An apparatus for wireless communications at a wireless device, comprising:
    means for monitoring, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary;
    means for decoding, based at least in part on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration; and
    means for decoding a common transport block that is repeated across the first signaling and the second signaling based at least in part on decoding the second signaling.
  30. A non-transitory computer-readable medium storing code for wireless communications at a wireless device, the code comprising instructions executable by a processor to:
    monitor, during an inner-slot symbol, for first signaling associated with a first set of resources that span a first time duration that spans from the inner-slot symbol to a subsequent end slot boundary;
    decode, based at least in part on monitoring for the first signaling, second signaling associated with a second set of resources that span a second time duration that spans from the subsequent end slot boundary for a slot duration; and
    decode a common transport block that is repeated across the first signaling and the second signaling based at least in part on decoding the second signaling.
PCT/CN2022/139913 2022-12-19 2022-12-19 Decoding common transport block across mini-slot and subsequent slot WO2024130474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139913 WO2024130474A1 (en) 2022-12-19 2022-12-19 Decoding common transport block across mini-slot and subsequent slot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139913 WO2024130474A1 (en) 2022-12-19 2022-12-19 Decoding common transport block across mini-slot and subsequent slot

Publications (1)

Publication Number Publication Date
WO2024130474A1 true WO2024130474A1 (en) 2024-06-27

Family

ID=91587221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139913 WO2024130474A1 (en) 2022-12-19 2022-12-19 Decoding common transport block across mini-slot and subsequent slot

Country Status (1)

Country Link
WO (1) WO2024130474A1 (en)

Similar Documents

Publication Publication Date Title
WO2021216595A1 (en) Dynamic bandwidth part switching for full duplex operation in unpaired spectrum
US11723036B2 (en) Dynamic search spaces
US20230171777A1 (en) Multiplexing for physical uplink channels with different directional beams
US20220352949A1 (en) Configurations for omitting channel state information
US20230299905A1 (en) Phase-tracking reference signal alignment for physical shared channel
US20230164819A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
US20230269010A1 (en) Techniques for self-awareness based interference measurement of sensing signals
US20230292317A1 (en) Signaling of a set of resources to support inter user equipment coordination
WO2023003710A2 (en) Techniques for demodulation reference signal bundling for configured uplink channels
US20220046668A1 (en) Dynamic bundling for feedback
WO2022000484A1 (en) Wake-up signal design for multiple multicast sessions
WO2021258385A1 (en) Dynamic uplink control multiplexing between physical uplink channels
WO2024130474A1 (en) Decoding common transport block across mini-slot and subsequent slot
US11882080B2 (en) Physical uplink channel repetition for full-duplex communications
WO2023130421A1 (en) Uplink switching for concurrent transmissions
US20230345454A1 (en) Techniques for sending a collision indication via a physical sidelink feedback channel
US20240031063A1 (en) Transport block size determination for sidelink slot aggregation
WO2023240519A1 (en) Beam management procedure for a user equipment group
US20240057138A1 (en) Spatial diversity in sidelink communications
US20240098759A1 (en) Common time resources for multicasting
US20240129070A1 (en) Configurable mini-slot retransmissions in sidelink communications
US20240114518A1 (en) System information transmission with coverage recovery
US20220330311A1 (en) Grant-based feedback bit determination for feedback occasions
US20240064752A1 (en) Time domain resource allocation scheduling multiple transmissions across subbands
US20210352674A1 (en) Group common control for coverage enhancement for uplink control channel