WO2024130469A1 - 对焦控制方法、装置和***、存储介质 - Google Patents

对焦控制方法、装置和***、存储介质 Download PDF

Info

Publication number
WO2024130469A1
WO2024130469A1 PCT/CN2022/139879 CN2022139879W WO2024130469A1 WO 2024130469 A1 WO2024130469 A1 WO 2024130469A1 CN 2022139879 W CN2022139879 W CN 2022139879W WO 2024130469 A1 WO2024130469 A1 WO 2024130469A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
image acquisition
detection point
acquisition device
preset
Prior art date
Application number
PCT/CN2022/139879
Other languages
English (en)
French (fr)
Inventor
周丽佳
张青
贺华强
王利
程久阳
周全国
唐浩
王志东
徐丽蓉
兰荣华
孙秀茹
张俊瑞
朱学辉
李兴
田智力
舒江
刘一泽
蒋国
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/139879 priority Critical patent/WO2024130469A1/zh
Publication of WO2024130469A1 publication Critical patent/WO2024130469A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals

Definitions

  • the present disclosure relates to the field of control, and in particular to a focus control method, device and system, and a storage medium.
  • convexities or concavities may appear on the surface of the display panel, thereby affecting the display quality of the display panel.
  • the automatic optical inspection equipment is usually used to inspect the surface quality of display panels.
  • the automatic optical inspection equipment includes an integrated coaxially arranged distance measuring sensor and an image acquisition device.
  • the distance measuring sensor is used to detect the distance between the image acquisition device and the display panel, and then the position of the image acquisition device is adjusted using the distance so that the image acquisition device can capture a clear image of the display panel surface. Next, the captured image is analyzed to obtain the detection result of the display panel surface.
  • a focus control method comprising: controlling a loading platform carrying a display panel to move at a preset speed along a preset direction; controlling a distance measuring sensor to measure a first distance between the distance measuring sensor and a detection point, wherein the detection point is a point on the surface of the display panel located at a preset distance measuring position; when the detection point reaches a preset image acquisition position in a field of view of an image acquisition device, adjusting the distance between the image acquisition device and the detection point according to the first distance so that the distance between the image acquisition device and the detection point is a focus distance of the image acquisition device; and controlling the image acquisition device to acquire an image of the surface of the display panel.
  • adjusting the distance between the image acquisition device and the detection point according to the first distance includes: when the detection point is located at the preset ranging position, controlling the image acquisition device to acquire images at a preset frequency; when the detection point reaches the preset image acquisition position, controlling the image acquisition device to stop image acquisition and counting the total number of acquired images; if the total number of acquired images is different from a preset threshold, adjusting the distance between the image acquisition device and the detection point according to the first distance.
  • adjusting the distance between the image capture device and the detection point according to the first distance includes: if the total number of captured images is greater than the preset threshold, reducing the distance between the image capture device and the detection point according to the first distance.
  • adjusting the distance between the image capture device and the detection point according to the first distance includes: if the total number of captured images is less than the preset threshold, increasing the distance between the image capture device and the detection point according to the first distance.
  • adjusting the distance between the image acquisition device and the detection point according to the first distance also includes: if the total number of acquired images is the same as a preset threshold, adjusting the distance between the image acquisition device and the detection point to the focusing distance.
  • adjusting the distance between the image acquisition device and the detection point according to the first distance includes: controlling the loading platform to stop moving when the detection point reaches the preset image acquisition position; adjusting the distance between the image acquisition device and the detection point multiple times according to the first distance so as to control the image acquisition device to capture images of the surface of the display panel at multiple different positions; selecting the image with the highest clarity from the multiple images captured; and adjusting the distance between the image acquisition device and the detection point so that the image acquisition device is located at a position to capture the image with the highest clarity.
  • adjusting the distance between the image acquisition device and the detection point according to the first distance also includes: when the detection point is located at the preset ranging position, controlling the image acquisition device to perform image acquisition at a preset frequency; when the detection point reaches the preset image acquisition position, controlling the image acquisition device to stop image acquisition and counting the total number of acquired images; if the total number of acquired images is greater than the preset threshold, the adjusted distance between the image acquisition device and the detection point is less than the first distance.
  • the adjusted distance between the image acquisition device and the detection point is greater than the first distance.
  • selecting the image with the highest definition from a plurality of images includes: calculating the sharpness of each image in the plurality of images; and using the image with the highest sharpness as the image with the highest definition.
  • the ranging sensor is controlled to measure a second distance between the ranging sensor and a predicted detection point; a ranging deviation of the ranging sensor is determined according to the second distance and a preset distance; a working current value is determined according to the measurement deviation; and a working current of the ranging sensor is adjusted according to the working current value.
  • the operating current value is positively correlated with the measurement deviation.
  • a focus control device comprising: a memory configured to store instructions; a processor coupled to the memory, the processor being configured to execute a method as described in any of the above embodiments based on the instructions stored in the memory.
  • a focus control system comprising: a focus control device as described in any of the above embodiments; a loading platform, configured to move along a preset direction at a predetermined speed, wherein the loading platform is used to carry a display panel; a ranging sensor, configured to measure the distance between the ranging sensor and a detection point; and an image acquisition device, configured to acquire an image of a surface of the display panel, wherein in the preset direction, there is a preset distance between the ranging sensor and the image acquisition device.
  • a non-volatile computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, the method described in any of the above embodiments is implemented.
  • FIG1 is a schematic flow chart of a focus control method according to an embodiment of the present disclosure
  • FIG2 is a schematic flow chart of a focus control method according to another embodiment of the present disclosure.
  • 3 to 5 are schematic diagrams of the structures of focus control systems according to some embodiments of the present disclosure.
  • FIG6 is a schematic flow chart of a focus control method according to another embodiment of the present disclosure.
  • FIG7 is a schematic flow chart of a focus control method according to another embodiment of the present disclosure.
  • FIG8 is a schematic diagram of a flow chart of a distance measuring sensor calibration method according to an embodiment of the present disclosure
  • FIG9 is a schematic structural diagram of a focus control device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of the structure of a focus control system according to an embodiment of the present disclosure.
  • the inventors have discovered through research that in the prior art, since the image acquisition device and the ranging sensor are coaxially integrated, it is impossible to replace the image acquisition device with different depth of field parameters according to different business scenarios, thereby increasing the cost of display panel surface quality inspection.
  • the present disclosure provides a focus control solution. Since the ranging sensor and the image acquisition device are separately arranged, the image acquisition device with different depth of field parameters can be replaced according to different business scenarios, effectively reducing the cost of display panel surface quality inspection.
  • Fig. 1 is a flow chart of a focus control method according to an embodiment of the present disclosure.
  • the following focus control method is executed by a focus control device.
  • step 101 a loading platform carrying a display panel is controlled to move along a preset direction at a preset speed.
  • a distance measuring sensor is controlled to measure a first distance between the distance measuring sensor and a detection point, wherein the detection point is a point on the surface of the display panel located at a preset distance measuring position.
  • the detection point may be a point selected in advance on the surface of the display panel, or may be a point randomly selected on the surface of the display panel.
  • the distance measuring sensor is located at a fixed position above the display panel, and the preset distance measuring position is located directly below the distance measuring sensor.
  • the distance measuring sensor is a laser distance measuring sensor or a wireless distance measuring sensor.
  • step 103 when the detection point reaches a preset image acquisition position in the field of view of the image acquisition device, the distance between the image acquisition device and the detection point is adjusted according to the first distance so that the distance between the image acquisition device and the detection point is the focusing distance of the image acquisition device.
  • the method steps for adjusting the distance between the image acquisition device and the detection point according to the first distance are shown in Figure 2.
  • step 201 when the detection point is located at a preset distance measurement position, the image acquisition device is controlled to acquire images at a preset frequency.
  • step 202 when the detection point reaches the preset image acquisition position, the image acquisition device is controlled to stop image acquisition, and the total number S of acquired images is counted.
  • the image acquisition device is located above the display panel, and the preset image acquisition position is located directly below the image acquisition device.
  • the preset image acquisition position is located at the center of the field of view of the image acquisition device.
  • step 203 if the total number S of collected images is different from the preset threshold P, the distance between the image collection device and the detection point is adjusted according to the first distance.
  • the image acquisition device has a preset image acquisition frequency, and there is a preset distance between the ranging sensor and the image acquisition device, if the detection point located on the horizontal surface of the display panel moves from the preset ranging position to the preset image acquisition position, then the total number of images acquired by the image acquisition device (i.e., the preset threshold value P) is a fixed value.
  • the total number of images S captured by the image acquisition device is greater than the preset value P, it indicates that the area captured by the field of view of the image acquisition device becomes larger, that is, there is a concave situation on the surface of the display panel. If the total number of images S captured by the image acquisition device is less than the preset value P, it indicates that the area captured by the field of view of the image acquisition device becomes smaller, that is, there is a convex situation on the surface of the display panel.
  • the distance between the image capture device and the detection point is reduced according to the first distance so that the distance between the image capture device and the detection point is the focusing distance of the image capture device.
  • the distance between the image capture device and the detection point is increased according to the first distance so that the distance between the image capture device and the detection point is the focusing distance of the image capture device.
  • a distance sensor 32 and an image acquisition device 33 are provided above the display panel 31.
  • a predetermined distance is provided between the distance sensor 32 and the image acquisition device 33.
  • the position of the distance sensor 32 is fixed. For example, when the surface of the display panel 31 is horizontal, the distance between the distance sensor 32 and the horizontal surface of the display panel 31 is h1. In some embodiments, the distance h1 between the distance sensor 32 and the horizontal surface of the display panel 31 may be equal to the focusing distance h.
  • the image acquisition device 33 When the detection point 34 is located at the preset distance measurement position, the image acquisition device 33 is controlled to perform image acquisition at a preset frequency, and the distance between the distance measurement sensor 32 and the detection point 34 is h1. As the display panel 31 moves to the right, the detection point 34 reaches the preset image acquisition position, and the image acquisition device 33 is controlled to stop image acquisition.
  • the total number of collected images S counted is equal to the preset threshold value P, which indicates that the surface level of the area where the detection point 34 is located is horizontal.
  • the distance between the image acquisition device 33 and the detection point 34 is set to the focus distance h, so that the image acquisition device 33 can acquire a clear surface image of the display panel 31.
  • the detection point 34 is located in the concave area.
  • the image acquisition device 33 is controlled to perform image acquisition at a preset frequency, and the distance between the distance measurement sensor 32 and the detection point 34 is h2, and h2>h1.
  • the detection point 34 reaches the preset image acquisition position, and the image acquisition device 33 is controlled to stop image acquisition.
  • the total number of collected images S counted is greater than the preset threshold value P, which indicates that the surface of the area where the detection point 34 is located is concave, and the distance between the image acquisition device 33 and the detection point 34 is greater than the focus distance h.
  • the distance between the image acquisition device 33 and the detection point 34 can be reduced with reference to the difference of h2-h1, so that the distance between the image acquisition device 33 and the detection point 34 is set to the focus distance h, so that the image acquisition device 33 can acquire a clear surface image of the display panel 31.
  • the detection point 34 is located in the raised area.
  • the image acquisition device 33 is controlled to perform image acquisition at a preset frequency, and the distance between the distance measurement sensor 32 and the detection point 34 is h3, and h3 ⁇ h1.
  • the detection point 34 reaches the preset image acquisition position, and the image acquisition device 33 is controlled to stop image acquisition.
  • the total number of collected images S counted is less than the preset threshold value P, which indicates that the surface of the area where the detection point 34 is located is raised, and the distance between the image acquisition device 33 and the detection point 34 is less than the focus distance h.
  • the distance between the image acquisition device 33 and the detection point 34 can be increased with reference to the difference of h1-h3, so that the distance between the image acquisition device 33 and the detection point 34 is set to the focus distance h, so that the image acquisition device 33 can acquire a clear surface image of the display panel 31.
  • the method steps for adjusting the distance between the image acquisition device and the detection point according to the first distance are shown in FIG. 6 .
  • step 601 when the detection point reaches the preset image acquisition position, the object loading platform is controlled to stop moving.
  • step 602 the distance between the image acquisition device and the detection point is adjusted multiple times according to the first distance, so as to control the image acquisition device to acquire images of the surface of the display panel at multiple different positions.
  • the distance between the image acquisition device 33 and the detection point 34 can be reduced multiple times, so as to control the image acquisition device to capture images of the surface of the display panel at multiple different positions.
  • the distance between the image acquisition device 33 and the detection point 34 can be increased multiple times, so as to control the image acquisition device to capture images of the surface of the display panel at multiple different positions.
  • step 603 an image with the highest definition is selected from the multiple images collected.
  • the sharpness of each of the multiple images is calculated, and the image with the highest sharpness is taken as the image with the highest definition.
  • edge detection is performed by using a Sobel operator to calculate the sharpness of each image.
  • step 604 the distance between the image acquisition device and the detection point is adjusted so that the image acquisition device is located at a position to acquire an image with the highest definition.
  • the image acquisition device can acquire a clear image of the display panel surface.
  • the object carrying platform is controlled to continue moving along a preset direction at a preset speed.
  • Fig. 7 is a flowchart of a focus control method according to another embodiment of the present disclosure.
  • the following focus control method is executed by a focus control device.
  • step 701 when the detection point is located at a preset distance measurement position, the image acquisition device is controlled to perform image acquisition at a preset frequency, and the distance measurement sensor is controlled to measure a first distance between the distance measurement sensor and the detection point.
  • the detection point is a point on the surface of the display panel located at the preset distance measurement position.
  • step 702 when the detection point reaches the preset image acquisition position, the object-carrying platform is controlled to stop moving, and the image acquisition device is controlled to stop image acquisition, and the total number S of acquired images is counted.
  • step 703 if the total number of captured images S is different from the preset threshold value P, the distance between the image capture device and the detection point is adjusted multiple times to control the image capture device to capture images of the surface of the display panel at multiple different positions.
  • the distance between the image capture device and the detection point is reduced multiple times so as to control the image capture device to capture images of the surface of the display panel at multiple different positions.
  • the first distance measured in the above step 701 is greater than the focus distance. In this case, the adjusted distance between the image capture device and the detection point is less than the first distance.
  • the distance between the image capture device and the detection point is increased multiple times so as to control the image capture device to capture images of the surface of the display panel at multiple different positions.
  • the first distance measured in the above step 701 is less than the focus distance. In this case, the adjusted distance between the image capture device and the detection point is greater than the first distance.
  • step 704 an image with the highest definition is selected from the multiple images collected.
  • the sharpness of each of the multiple images is calculated, and the image with the highest sharpness is taken as the image with the highest definition.
  • edge detection is performed by using a Sobel operator to calculate the sharpness of each image.
  • step 705 the distance between the image acquisition device and the detection point is adjusted so that the image acquisition device is located at a position to acquire an image with the highest definition.
  • the image acquisition device can acquire a clear image of the display panel surface.
  • the object carrying platform is controlled to continue moving along a preset direction at a preset speed.
  • step 104 the image acquisition device is controlled to acquire images of the surface of the display panel.
  • the first distance between the distance measuring sensor and the detection point is first measured by using the distance measuring sensor, and then when the detection point reaches the preset image acquisition position in the field of view of the image acquisition device, the distance between the image acquisition device and the detection point is adjusted according to the first distance, so that the distance between the image acquisition device and the detection point is the focus distance of the image acquisition device, thereby the image acquisition device can acquire a clear display panel surface image. Since the distance measuring sensor and the image acquisition device are separately arranged, the image acquisition device with different depth of field parameters can be replaced according to different business scenarios, which effectively reduces the cost of display panel surface quality detection.
  • Fig. 8 is a flow chart of a distance measuring sensor calibration method according to an embodiment of the present disclosure.
  • the following distance measuring sensor calibration method is executed by a focus control device.
  • step 801 the distance measuring sensor is controlled to measure a second distance between the distance measuring sensor and the predicted detection point.
  • the predicted detection point may be a point in the horizontal surface area of the display panel or a point on the object loading platform.
  • step 802 a distance measurement deviation of the distance measurement sensor is determined according to the second distance and the preset distance.
  • step 803 the operating current value is determined according to the measurement deviation.
  • the operating current value is positively correlated with the measurement deviation.
  • the working current value I ax+b, where a and b are parameters, for example, 10 respectively.
  • step 804 the operating current of the distance measuring sensor is adjusted according to the operating current value.
  • the measurement accuracy of the distance measuring sensor can be effectively improved by adjusting the working current of the distance measuring sensor.
  • FIG9 is a schematic diagram of the structure of a focus control device according to an embodiment of the present disclosure.
  • the focus control device includes a memory 91 and a processor 92 .
  • the memory 91 is used to store instructions.
  • the processor 92 is coupled to the memory 91.
  • the processor 92 is configured to execute and implement the method involved in any of the embodiments in FIG. 1 , FIG. 2 , and FIG. 6 to FIG. 8 based on the instructions stored in the memory.
  • the focus control device further includes a communication interface 93 for exchanging information with other devices.
  • the focus control device further includes a bus 94, through which the processor 92, the communication interface 93, and the memory 91 communicate with each other.
  • the memory 91 may include high-speed RAM (Random Access Memory) and may also include NVM (Non-Volatile Memory). For example, at least one disk storage.
  • the memory 91 may also be a storage array.
  • the memory 91 may also be divided into blocks, and the blocks may be combined into virtual volumes according to certain rules.
  • the processor 92 can be a central processing unit, or can be an ASIC (Application Specific Integrated Circuit), or can be configured to implement one or more integrated circuits of the embodiments of the present disclosure.
  • ASIC Application Specific Integrated Circuit
  • the present disclosure also provides a non-transitory computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, the method involved in any one of the embodiments of FIG. 1 , FIG. 2 , and FIG. 6 to FIG. 8 is implemented.
  • Fig. 10 is a schematic diagram of the structure of a focus control system according to an embodiment of the present disclosure.
  • the focus control system includes a focus control device 1001, a loading platform 1002, a distance sensor 1003 and an image acquisition device 1004.
  • the focus control device 1001 is the focus control device involved in any embodiment in Fig. 9.
  • the carrying platform 1002 is configured to move along a preset direction at a predetermined speed, wherein the carrying platform 1002 is used to carry a display panel.
  • the distance measuring sensor 1003 is configured to measure the distance between the distance measuring sensor 1003 and a detection point.
  • the image acquisition device 1004 is configured to acquire images of the surface of the display panel, wherein in a preset direction, there is a preset distance between the distance measuring sensor 1003 and the image acquisition device 1004 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

本公开提供一种对焦控制方法、装置和***、存储介质,属于控制领域。对焦控制方法包括:控制承载显示面板的载物平台以预设速度沿预设方向移动;控制测距传感器测量测距传感器与检测点之间的第一距离,其中检测点为显示面板的表面上位于预设测距位置上的点;在检测点到达图像采集装置的视野中的预设图像采集位置的情况下,根据第一距离调整图像采集装置与检测点之间的距离,以便图像采集装置与检测点之间的距离为图像采集装置的对焦距离;控制图像采集装置对显示面板的表面进行图像采集。

Description

对焦控制方法、装置和***、存储介质 技术领域
本公开涉及控制领域,特别涉及一种对焦控制方法、装置和***、存储介质。
背景技术
在显示面板制造过程中,显示面板的表面可能会出现凸起或凹陷的情况,从而影响显示面板的显示质量。
目前,通常采用自动光学检测设备对显示面板的表面质量进行检测。自动光学检测设备包括一体化同轴设置的测距传感器和图像采集装置。利用测距传感器检测图像采集装置与显示面板之间的距离,进而利用该距离调整图像采集装置的位置,以便图像采集装置能够采集到清晰的显示面板表面图像。接下来通过对所采集的图像进行分析,以得到显示面板表面的检测结果。
发明内容
根据本公开实施例的第一方面,提供一种对焦控制方法,包括:控制承载显示面板的载物平台以预设速度沿预设方向移动;控制测距传感器测量所述测距传感器与检测点之间的第一距离,其中所述检测点为所述显示面板的表面上位于预设测距位置上的点;在所述检测点到达图像采集装置的视野中的预设图像采集位置的情况下,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离,以便所述图像采集装置与所述检测点之间的距离为所述图像采集装置的对焦距离;控制所述图像采集装置对所述显示面板的表面进行图像采集。
在一些实施例中,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离包括:在所述检测点位于所述预设测距位置的情况下,控制所述图像采集装置以预设频率进行图像采集;在所述检测点到达所述预设图像采集位置的情况下,控制所述图像采集装置停止图像采集,并统计采集图像总数;若所述采集图像总数与预设阈值不同,则根据所述第一距离对所述图像采集装置与所述检测点之间的距离进行调整。
在一些实施例中,若所述采集图像总数与预设阈值不同,则根据所述第一距离对所述图像采集装置与所述检测点之间的距离进行调整包括:若所述采集图像总数大于所述预设阈值,则根据所述第一距离减小所述图像采集装置与所述检测点之间的距离。
在一些实施例中,若所述采集图像总数与预设阈值不同,则根据所述第一距离对所述图像采集装置与所述检测点之间的距离进行调整包括:若所述采集图像总数小于所述预设阈值,则根据所述第一距离增大所述图像采集装置与所述检测点之间的距离。
在一些实施例中,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离还包括:若所述采集图像总数与预设阈值相同,则将所述图像采集装置与所述检测点之间的距离调整为所述对焦距离。
在一些实施例中,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离包括:在所述检测点到达所述预设图像采集位置的情况下,控制所述载物平台停止运动;根据所述第一距离多次调整所述图像采集装置与所述检测点之间的距离,以便控制所述图像采集装置在多个不同位置对所述显示面板的表面进行图像采集;在所采集的多个图像中选择出清晰度最高的图像;调整所述图像采集装置与所述检测点之间的距离,以便所述图像采集装置位于采集所述清晰度最高的图像的位置。
在一些实施例中,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离还包括:在所述检测点位于所述预设测距位置的情况下,控制所述图像采集装置以预设频率进行图像采集;在所述检测点到达所述预设图像采集位置的情况下,控制所述图像采集装置停止图像采集,并统计采集图像总数;若所述采集图像总数大于所述预设阈值,调整后的所述图像采集装置与所述检测点之间的距离小于所述第一距离。
在一些实施例中,若所述采集图像总数小于所述预设阈值,调整后的所述图像采集装置与所述检测点之间的距离大于所述第一距离。
在一些实施例中,在多个图像中选择出清晰度最高的图像包括:计算所述多个图像中的每个图像的锐度;将锐度最高的图像作为所述清晰度最高的图像。
在一些实施例中,控制所述测距传感器测量所述测距传感器与预测检测点之间的第二距离;根据所述第二距离和预设距离确定所述测距传感器的测距偏差;根据所述测量偏差确定工作电流值;根据所述工作电流值调整所述测距传感器的工作电流。
在一些实施例中,所述工作电流值与所述测量偏差成正相关关系。
根据本公开实施例的第二方面,提供一种对焦控制装置,包括:存储器,被配置为存储指令;处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如上述任一实施例所述的方法。
根据本公开实施例的第三方面,提供一种对焦控制***,包括:如上述任一实施例所述的对焦控制装置;载物平台,被配置为以预定速度沿预设方向移动,其中所述 载物平台用于承载显示面板;测距传感器,被配置为测量测距传感器与检测点之间的距离;图像采集装置,被配置为对所述显示面板的表面进行图像采集,其中在所述预设方向上,所述测距传感器和所述图像采集装置之间具有预设距离。
根据本公开实施例的第四方面,提供一种非瞬态计算机可读存储介质,其中,非瞬态计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上述任一实施例所述的方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为本公开一个实施例的对焦控制方法的流程示意图;
图2为本公开另一个实施例的对焦控制方法的流程示意图;
图3至图5为本公开一些实施例的对焦控制***的结构示意图;
图6为本公开又一个实施例的对焦控制方法的流程示意图;
图7为本公开又一个实施例的对焦控制方法的流程示意图;
图8为本公开一个实施例的测距传感器校准方法的流程示意图;
图9为本公开一个实施例的对焦控制装置的结构示意图;
图10为本公开一个实施例的对焦控制***的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分和数值应被解释为仅 仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
发明人通过研究发现,在现有技术中,由于图像采集装置和测距传感器一体化同轴设置,因此无法根据业务场景的不同更换具有不同景深参数的图像采集装置,从而增加了显示面板表面质量检测的成本。
据此,本公开提供一种对焦控制方案,由于测距传感器和图像采集装置分离设置,因此可根据不同的业务场景更换具有不同景深参数的图像采集装置,有效降低了显示面板表面质量检测的成本。
图1为本公开一个实施例的对焦控制方法的流程示意图。在一些实施例中,下列的对焦控制方法由对焦控制装置执行。
在步骤101,控制承载显示面板的载物平台以预设速度沿预设方向移动。
在步骤102,控制测距传感器测量测距传感器与检测点之间的第一距离,其中检测点为显示面板的表面上位于预设测距位置上的点。
需要说明的是,检测点可以为预先在显示面板的表面上选定的点,也可以是在显示面板的表面上随机选择的点。
在一些实施例中,测距传感器位于显示面板的上方的固定位置,预设测距位置位于测距传感器的正下方。
例如,测距传感器为激光测距传感器或无线测距传感器。
在步骤103,在检测点到达图像采集装置的视野中的预设图像采集位置的情况下,根据第一距离调整图像采集装置与检测点之间的距离,以便图像采集装置与检测点之间的距离为图像采集装置的对焦距离。
在一些实施例中,上述根据第一距离调整图像采集装置与检测点之间的距离的方 法步骤如图2所示。
在步骤201,在检测点位于预设测距位置的情况下,控制图像采集装置以预设频率进行图像采集。
在步骤202,在检测点到达预设图像采集位置的情况下,控制图像采集装置停止图像采集,并统计采集图像总数S。
在一些实施例中,图像采集装置位于显示面板的上方,预设图像采集位置位于图像采集装置的正下方。例如,预设图像采集位置位于图像采集装置的视野中心处。
在步骤203,若采集图像总数S与预设阈值P不同,则根据第一距离对图像采集装置与检测点之间的距离进行调整。
需要说明的是,在载物平台以预设速度沿预设方向移动、图像采集装置具有预设图像采集频率、测距传感器和图像采集装置之间具有预设距离的情况下,若位于显示面板的水平表面上的检测点从预设测距位置移动到预设图像采集位置,则图像采集装置所采集的图像总数(即预设阈值P)是固定值。
若图像采集装置所采集的图像总数S大于预设预置P,则表明图像采集装置的视野捕捉到的区域变大,即显示面板的表面存在凹陷情况。若图像采集装置所采集的图像总数S小于预设预置P,则表明图像采集装置的视野捕捉到的区域变小,即显示面板的表面存在凸起情况。
在一些实施例中,若采集图像总数S大于预设预置P,则根据第一距离减小图像采集装置与检测点之间的距离,以便图像采集装置与检测点之间的距离为图像采集装置的对焦距离。
在一些实施例中,若采集图像总数S小于预设预置P,则根据第一距离增大图像采集装置与检测点之间的距离,以便图像采集装置与检测点之间的距离为图像采集装置的对焦距离。
在一些实施例中,如图3所示,在显示面板31的上方设置有测距传感器32和图像采集装置33。测距传感器32和图像采集装置33之间设有预定距离。测距传感器32的位置固定。例如,在显示面板31的表面水平的情况下,测距传感器32与显示面板31的水平表面之间的距离为h1。在一些实施例中,测距传感器32与显示面板31的水平表面之间的距离h1可等于对焦距离h。
在检测点34位于预设测距位置的情况下,控制图像采集装置33以预设频率进行图像采集,此时测距传感器32与该检测点34之间的距离为h1。随着显示面板31向 右移动,检测点34到达预设图像采集位置,此时控制图像采集装置33停止图像采集,统计出的采集图像总数S等于预设阈值P,这表明检测点34所在区域的表面水平。在这种情况下,将图像采集装置33与检测点34之间的距离,即图像采集装置33与显示面板31的水平表面之间的距离,设置为对焦距离h,由此图像采集装置33能够采集到清晰的显示面板31的表面图像。
在一些实施例中,如图4所示,在显示面板31的表面上具有凹陷区域,检测点34位于该凹陷区域中。在检测点34位于预设测距位置的情况下,控制图像采集装置33以预设频率进行图像采集,此时测距传感器32与该检测点34之间的距离为h2,且h2>h1。随着显示面板31向右移动,检测点34到达预设图像采集位置,此时控制图像采集装置33停止图像采集,统计出的采集图像总数S大于预设阈值P,这表明检测点34所在区域的表面凹陷,此时图像采集装置33与该检测点34之间的距离大于对焦距离h。在这种情况下,可参考h2-h1的差值减小图像采集装置33与检测点34之间的距离,以便将图像采集装置33与检测点34之间的距离设置为对焦距离h,由此图像采集装置33能够采集到清晰的显示面板31的表面图像。
在一些实施例中,如图5所示,在显示面板31的表面上具有凸起区域,检测点34位于该凸起区域中。在检测点34位于预设测距位置的情况下,控制图像采集装置33以预设频率进行图像采集,此时测距传感器32与该检测点34之间的距离为h3,且h3<h1。随着显示面板31向右移动,检测点34到达预设图像采集位置,此时控制图像采集装置33停止图像采集,统计出的采集图像总数S小于预设阈值P,这表明检测点34所在区域的表面凸起,此时图像采集装置33与该检测点34之间的距离小于对焦距离h。在这种情况下,可参考h1-h3的差值增大图像采集装置33与检测点34之间的距离,以便将图像采集装置33与检测点34之间的距离设置为对焦距离h,由此图像采集装置33能够采集到清晰的显示面板31的表面图像。
在一些实施例中,上述根据第一距离调整图像采集装置与检测点之间的距离的方法步骤如图6所示。
在步骤601,在检测点到达预设图像采集位置的情况下,控制载物平台停止运动。
在步骤602,根据第一距离多次调整图像采集装置与检测点之间的距离,以便控制图像采集装置在多个不同位置对显示面板的表面进行图像采集。
例如,如图4所示,若第一距离h2大于预设距离h1,则表明检测点34所在区域的表面凹陷,此时图像采集装置33与该检测点34之间的距离大于对焦距离h。在这 种情况下,可多次减小图像采集装置与检测点之间的距离,以便控制图像采集装置在多个不同位置对显示面板的表面进行图像采集。
又例如,如图5所示,若第一距离h3小于预设距离h1,则表明检测点34所在区域的表面凸起,此时图像采集装置33与该检测点34之间的距离小于对焦距离h。在这种情况下,可多次增大图像采集装置与检测点之间的距离,以便控制图像采集装置在多个不同位置对显示面板的表面进行图像采集。
在步骤603,在所采集的多个图像中选择出清晰度最高的图像。
在一些实施例中,计算多个图像中的每个图像的锐度,并将锐度最高的图像作为清晰度最高的图像。
例如,通过使用索贝尔(Sobel)算子进行边缘检测,以计算每个图像的锐度。
在步骤604,调整图像采集装置与检测点之间的距离,以便图像采集装置位于采集清晰度最高的图像的位置。
由此,可确保图像采集装置能够采集到清晰的显示面板表面图像。
在一些实施例中,在图像采集装置位于采集清晰度最高的图像的位置后,控制载物平台继续以预设速度沿预设方向移动。
图7为本公开又一个实施例的对焦控制方法的流程示意图。在一些实施例中,下列的对焦控制方法由对焦控制装置执行。
在步骤701,在检测点位于预设测距位置的情况下,控制图像采集装置以预设频率进行图像采集,并控制测距传感器测量测距传感器与检测点之间的第一距离。检测点为显示面板的表面上位于预设测距位置上的点。
在步骤702,在检测点到达预设图像采集位置的情况下,控制载物平台停止运动,并控制图像采集装置停止图像采集,并统计采集图像总数S。
在步骤703,若采集图像总数S与预设阈值P不同,则多次调整图像采集装置与检测点之间的距离,以便控制图像采集装置在多个不同位置对显示面板的表面进行图像采集。
在一些实施例中,若采集图像总数S大于预设阈值P,则多次减小图像采集装置与检测点之间的距离,以便控制图像采集装置在多个不同位置对显示面板的表面进行图像采集。如图4所示,若测距传感器与显示面板的表面之间的固定距离为对焦距离,则在上述步骤701中测量出的第一距离大于对焦距离,在这种情况下,调整后的图像采集装置与检测点之间的距离小于第一距离。
在一些实施例中,若采集图像总数S小于预设阈值P,则多次增大图像采集装置与检测点之间的距离,以便控制图像采集装置在多个不同位置对显示面板的表面进行图像采集。如图5所示,若测距传感器与显示面板的表面之间的固定距离为对焦距离,则在上述步骤701中测量出的第一距离小于对焦距离,在这种情况下,调整后的图像采集装置与检测点之间的距离大于第一距离。
在步骤704,在所采集的多个图像中选择出清晰度最高的图像。
在一些实施例中,计算多个图像中的每个图像的锐度,并将锐度最高的图像作为清晰度最高的图像。
例如,通过使用Sobel算子进行边缘检测,以计算每个图像的锐度。
在步骤705,调整图像采集装置与检测点之间的距离,以便图像采集装置位于采集清晰度最高的图像的位置。
由此,可确保图像采集装置能够采集到清晰的显示面板表面图像。
在一些实施例中,在图像采集装置位于采集清晰度最高的图像的位置后,控制载物平台继续以预设速度沿预设方向移动。
返回图1。在步骤104,控制图像采集装置对显示面板的表面进行图像采集。
在本公开上述实施例提供的对焦控制方法中,首先利用测距传感器测量测距传感器与检测点之间的第一距离,接下来在检测点到达图像采集装置的视野中的预设图像采集位置的情况下,根据第一距离调整图像采集装置与检测点之间的距离,以便图像采集装置与检测点之间的距离为图像采集装置的对焦距离,由此图像采集装置能够采集到清晰的显示面板表面图像。由于测距传感器和图像采集装置分离设置,因此可根据不同的业务场景更换具有不同景深参数的图像采集装置,有效降低了显示面板表面质量检测的成本。
图8为本公开一个实施例的测距传感器校准方法的流程示意图。在一些实施例中,下列的测距传感器校准方法由对焦控制装置执行。
在步骤801,控制测距传感器测量测距传感器与预测检测点之间的第二距离。
例如,预测检测点可以是显示面板的水平表面区域中的一个点,也可以是载物平台上的一个点。
在步骤802,根据第二距离和预设距离确定测距传感器的测距偏差。
在步骤803,根据测量偏差确定工作电流值。
在一些实施例中,工作电流值与测量偏差成正相关关系。
例如,工作电流值I=ax+b,其中a和b为参数。例如,分别为10。
在步骤804,根据工作电流值调整测距传感器的工作电流。
由于测距传感器的测量偏移量与测距传感器的工作电流相关联,因此通过调整调整测距传感器的工作电流,从而能够有效提升测距传感器的测量精度。
图9为本公开一个实施例的对焦控制装置的结构示意图。如图9所示,对焦控制装置包括存储器91和处理器92。
存储器91用于存储指令。处理器92耦合到存储器91。处理器92被配置为基于存储器存储的指令执行实现如图1、图2、图6至图8中任一实施例涉及的方法。
如图9所示,对焦控制装置还包括通信接口93,用于与其它设备进行信息交互。同时,该对焦控制装置还包括总线94,处理器92、通信接口93、以及存储器91通过总线94完成相互间的通信。
存储器91可以包含高速RAM(Random Access Memory,随机存取存储器),也可还包括NVM(Non-Volatile Memory,非易失性存储器)。例如至少一个磁盘存储器。存储器91也可以是存储器阵列。存储器91还可能被分块,并且块可按一定的规则组合成虚拟卷。
此外,处理器92可以是一个中央处理器,或者可以是ASIC(Application Specific Integrated Circuit,专用集成电路),或者是被配置成实施本公开实施例的一个或多个集成电路。
本公开还提供一种非瞬态计算机可读存储介质。计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如图1、图2、图6至图8中任一实施例涉及的方法。
图10为本公开一个实施例的对焦控制***的结构示意图。如图10所示,对焦控制***包括对焦控制装置1001、载物平台1002、测距传感器1003和图像采集装置1004。对焦控制装置1001为图9中任一实施例涉及的对焦控制装置。
载物平台1002被配置为以预定速度沿预设方向移动,其中载物平台1002用于承载显示面板。
测距传感器1003被配置为测量测距传感器1003与检测点之间的距离。
图像采集装置1004被配置为对显示面板的表面进行图像采集,其中在预设方向上,测距传感器1003和图像采集装置1004之间具有预设距离。
至此,已经详细描述了本公开的实施例。为了避免遮蔽本公开的构思,没有描述 本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (14)

  1. 一种对焦控制方法,包括:
    控制承载显示面板的载物平台以预设速度沿预设方向移动;
    控制测距传感器测量所述测距传感器与检测点之间的第一距离,其中所述检测点为所述显示面板的表面上位于预设测距位置上的点;
    在所述检测点到达图像采集装置的视野中的预设图像采集位置的情况下,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离,以便所述图像采集装置与所述检测点之间的距离为所述图像采集装置的对焦距离;
    控制所述图像采集装置对所述显示面板的表面进行图像采集。
  2. 根据权利要求1所述的方法,其中,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离包括:
    在所述检测点位于所述预设测距位置的情况下,控制所述图像采集装置以预设频率进行图像采集;
    在所述检测点到达所述预设图像采集位置的情况下,控制所述图像采集装置停止图像采集,并统计采集图像总数;
    若所述采集图像总数与预设阈值不同,则根据所述第一距离对所述图像采集装置与所述检测点之间的距离进行调整。
  3. 根据权利要求2所述的方法,其中,若所述采集图像总数与预设阈值不同,则根据所述第一距离对所述图像采集装置与所述检测点之间的距离进行调整包括:
    若所述采集图像总数大于所述预设阈值,则根据所述第一距离减小所述图像采集装置与所述检测点之间的距离。
  4. 根据权利要求2所述的方法,其中,若所述采集图像总数与预设阈值不同,则根据所述第一距离对所述图像采集装置与所述检测点之间的距离进行调整包括:
    若所述采集图像总数小于所述预设阈值,则根据所述第一距离增大所述图像采集装置与所述检测点之间的距离。
  5. 根据权利要求2所述的方法,其中,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离还包括:
    若所述采集图像总数与预设阈值相同,则将所述图像采集装置与所述检测点之间的距离调整为所述对焦距离。
  6. 根据权利要求1所述的方法,其中,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离包括:
    在所述检测点到达所述预设图像采集位置的情况下,控制所述载物平台停止运动;
    根据所述第一距离多次调整所述图像采集装置与所述检测点之间的距离,以便控制所述图像采集装置在多个不同位置对所述显示面板的表面进行图像采集;
    在所采集的多个图像中选择出清晰度最高的图像;
    调整所述图像采集装置与所述检测点之间的距离,以便所述图像采集装置位于采集所述清晰度最高的图像的位置。
  7. 根据权利要求6所述的方法,其中,根据所述第一距离调整所述图像采集装置与所述检测点之间的距离还包括:
    在所述检测点位于所述预设测距位置的情况下,控制所述图像采集装置以预设频率进行图像采集;
    在所述检测点到达所述预设图像采集位置的情况下,控制所述图像采集装置停止图像采集,并统计采集图像总数;
    若所述采集图像总数大于所述预设阈值,调整后的所述图像采集装置与所述检测点之间的距离小于所述第一距离。
  8. 根据权利要求7所述的方法,其中,
    若所述采集图像总数小于所述预设阈值,调整后的所述图像采集装置与所述检测点之间的距离大于所述第一距离。
  9. 根据权利要求6所述的方法,其中,在多个图像中选择出清晰度最高的图像包括:
    计算所述多个图像中的每个图像的锐度;
    将锐度最高的图像作为所述清晰度最高的图像。
  10. 根据权利要求1-9中任一项所述的方法,还包括:
    控制所述测距传感器测量所述测距传感器与预测检测点之间的第二距离;
    根据所述第二距离和预设距离确定所述测距传感器的测距偏差;
    根据所述测量偏差确定工作电流值;
    根据所述工作电流值调整所述测距传感器的工作电流。
  11. 根据权利要求10所述的方法,其中,
    所述工作电流值与所述测量偏差成正相关关系。
  12. 一种对焦控制装置,包括:
    存储器,被配置为存储指令;
    处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如权利要求1-11中任一项所述的方法。
  13. 一种对焦控制***,包括:
    如权利要求12所述的对焦控制装置;
    载物平台,被配置为以预定速度沿预设方向移动,其中所述载物平台用于承载显示面板;
    测距传感器,被配置为测量测距传感器与检测点之间的距离;
    图像采集装置,被配置为对所述显示面板的表面进行图像采集,其中在所述预设方向上,所述测距传感器和所述图像采集装置之间具有预设距离。
  14. 一种非瞬态计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如权利要求1-11中任一项所述的方法。
PCT/CN2022/139879 2022-12-19 2022-12-19 对焦控制方法、装置和***、存储介质 WO2024130469A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139879 WO2024130469A1 (zh) 2022-12-19 2022-12-19 对焦控制方法、装置和***、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139879 WO2024130469A1 (zh) 2022-12-19 2022-12-19 对焦控制方法、装置和***、存储介质

Publications (1)

Publication Number Publication Date
WO2024130469A1 true WO2024130469A1 (zh) 2024-06-27

Family

ID=91587533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139879 WO2024130469A1 (zh) 2022-12-19 2022-12-19 对焦控制方法、装置和***、存储介质

Country Status (1)

Country Link
WO (1) WO2024130469A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223472A (zh) * 2010-04-13 2011-10-19 致伸科技股份有限公司 图像采集方法与应用该方法的图像采集装置
CN112752021A (zh) * 2020-11-27 2021-05-04 乐金显示光电科技(中国)有限公司 一种摄像头***自动对焦方法和自动对焦摄像头***
CN114384091A (zh) * 2021-12-16 2022-04-22 苏州镁伽科技有限公司 自动对焦装置、面板检测设备及其方法
CN114390195A (zh) * 2021-12-15 2022-04-22 北京达佳互联信息技术有限公司 一种自动对焦的方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223472A (zh) * 2010-04-13 2011-10-19 致伸科技股份有限公司 图像采集方法与应用该方法的图像采集装置
CN112752021A (zh) * 2020-11-27 2021-05-04 乐金显示光电科技(中国)有限公司 一种摄像头***自动对焦方法和自动对焦摄像头***
CN114390195A (zh) * 2021-12-15 2022-04-22 北京达佳互联信息技术有限公司 一种自动对焦的方法、装置、设备及存储介质
CN114384091A (zh) * 2021-12-16 2022-04-22 苏州镁伽科技有限公司 自动对焦装置、面板检测设备及其方法

Similar Documents

Publication Publication Date Title
US9726584B2 (en) Sample imaging apparatus
JP5766958B2 (ja) 顕微鏡システム、情報処理装置、及び情報処理プログラム
TW200834473A (en) Method for assessing image focus quality
US10120163B2 (en) Auto-focus method for a coordinate-measuring apparatus
US10379335B2 (en) Illumination setting method, light sheet microscope apparatus, and recording medium
KR102170163B1 (ko) 타겟 다이와 기준 다이의 비교로부터 생성된 차분 이미지를 보정하기 위한 시스템, 방법 및 컴퓨터 프로그램 제품
KR20180117708A (ko) 제조된 컴포넌트 결함을 국부 적응 문턱값을 사용하여 식별하기 위한 시스템, 방법 및 컴퓨터 프로그램 제품
CN114913171A (zh) 一种图像失焦检测方法、装置、电子设备及存储介质
WO2020071306A1 (ja) 粒子測定装置、較正方法、および測定装置
WO2024130469A1 (zh) 对焦控制方法、装置和***、存储介质
JPWO2015198926A1 (ja) パターン測定条件設定装置、及びパターン測定装置
IL269547A (en) System, method and product Computer software for systematic and stochastic characterization of sample defects identified softeners produced
JP2008139143A (ja) 標本画像作成方法及び装置
JP4773198B2 (ja) 標本撮像装置及びこれを備える標本分析装置
CN105445282B (zh) 计数池外部灰尘识别方法、装置及全自动尿液沉渣分析***
WO2015146744A1 (ja) 工具検査方法及び工具検査装置
CN116452662A (zh) 光纤中心的像素坐标提取方法、装置、电子设备
TW201809592A (zh) 自動化三維量測
US10482314B2 (en) Automatic calculation for ploidy classification
TWI781058B (zh) 用於調諧經調變晶圓之敏感度及判定用於經調變晶圓之處理視窗之系統,方法以及非暫時性電腦可讀媒體
CN114827457B (zh) 一种晶圆检测中的动态对焦方法、装置、设备和介质
CN111256816A (zh) 散射光信号强度获取方法和装置
CN112985269B (zh) 狭缝宽度均匀性测量***、方法及图像处理装置
JP4542821B2 (ja) 画像処理方法、画像処理装置、および画像処理プログラム
CN113160158B (zh) 一种不稳定像元确定方法、装置、设备和介质