WO2024128229A1 - Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, mask, and poultice - Google Patents

Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, mask, and poultice Download PDF

Info

Publication number
WO2024128229A1
WO2024128229A1 PCT/JP2023/044471 JP2023044471W WO2024128229A1 WO 2024128229 A1 WO2024128229 A1 WO 2024128229A1 JP 2023044471 W JP2023044471 W JP 2023044471W WO 2024128229 A1 WO2024128229 A1 WO 2024128229A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
propylene
elastic
fabric laminate
extensible
Prior art date
Application number
PCT/JP2023/044471
Other languages
French (fr)
Japanese (ja)
Inventor
祥平 税田
泰一郎 市川
翔一 ▲高▼久
Original Assignee
エム・エーライフマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・エーライフマテリアルズ株式会社 filed Critical エム・エーライフマテリアルズ株式会社
Publication of WO2024128229A1 publication Critical patent/WO2024128229A1/en

Links

Definitions

  • This disclosure relates to nonwoven fabric laminates, stretchable nonwoven fabric laminates, textile products, absorbent articles, masks, and poultices.
  • nonwoven fabrics have been widely used for various purposes due to their excellent breathability and flexibility. Therefore, nonwoven fabrics are required to have various properties according to the purpose, and there is a demand for improving these properties.
  • nonwoven fabrics used in sanitary materials such as disposable diapers and sanitary napkins, and as base fabrics for wet compresses, are required to have water resistance and excellent moisture permeability. Depending on the location of use, they are also required to have stretchability and bulkiness.
  • Patent Document 1 discloses a nonwoven fabric laminate with excellent elasticity and other properties.
  • the nonwoven fabric laminate disclosed in Patent Document 1 is formed by laminating mixed fiber spunbonded nonwoven fabric layers on both sides of one or more meltblown nonwoven fabric layers.
  • the mixed fiber spunbonded nonwoven fabric layer contains long fibers of a thermoplastic elastomer (A) and long fibers of a thermoplastic resin (B) other than the thermoplastic elastomer (A).
  • Patent document 1 International Publication No. 2007/138733
  • one embodiment of the present disclosure aims to provide a nonwoven fabric laminate that can suppress the occurrence of blocking even when unwound from a nonwoven fabric roll at high speed, as well as a stretchable nonwoven fabric laminate, a textile product, an absorbent article, a mask, and a poultice.
  • a ratio of the ⁇ -olefin copolymer to the total amount of the elastic nonwoven fabric is 90% by mass to 100% by mass
  • the fibers contained in the extensible spunbonded nonwoven fabric are made of a resin composition for extensible spunbonded nonwoven fabrics,
  • the resin composition for extensible spunbonded nonwoven fabrics is A propylene-based polymer (A),
  • the propylene polymer (A) contains a propylene homopolymer
  • the fibers contained in the extensible spunbonded nonwoven fabric are islands-in-the-sea fibers,
  • the islands-in-the-sea fibers are made of a resin composition for extensible spunbonded nonwoven fabrics,
  • the resin composition for extensible spunbonded nonwoven fabrics is A propylene-based polymer (A) containing a propylene homopolymer;
  • a polymer (B) which is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters;
  • ⁇ 8> The nonwoven fabric laminate according to ⁇ 7>, wherein a ratio (b/a) of the average fiber diameter b to the average fiber diameter a is 1.0 or greater and 1.35 or less.
  • ⁇ 9> The nonwoven fabric laminate according to any one of ⁇ 1> to ⁇ 8>, further comprising a film layer.
  • a stretchable nonwoven fabric laminate which is a stretch-processed product of the nonwoven fabric laminate according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> A textile product comprising the nonwoven fabric laminate according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 12> The textile product according to ⁇ 11>, further comprising an engaging means.
  • a nonwoven fabric laminate that can suppress the occurrence of blocking even when unwound from a nonwoven fabric roll at high speed, as well as a stretchable nonwoven fabric laminate, a textile product, an absorbent article, a mask, and a plaster.
  • FIG. 1 is a schematic diagram of a gear stretching device.
  • each component may contain multiple types of corresponding substances.
  • the amount of each component in a composition in the present disclosure if multiple substances corresponding to each component are present in the composition, the total amount of the multiple substances present in the composition is meant unless otherwise specified.
  • the term "process” includes not only an independent process, but also a process that cannot be clearly distinguished from other processes, as long as the purpose of the process is achieved.
  • a numerical range indicated using “to” indicates a range including the numerical values before and after "to” as the minimum and maximum values, respectively.
  • the content of each component in a composition means the total amount of the multiple substances present in the composition when multiple substances corresponding to each component are present in the composition, unless otherwise specified.
  • the nonwoven fabric laminate of the first embodiment of the present disclosure includes an elastic nonwoven fabric and an extensible spunbonded nonwoven fabric disposed on both sides of the elastic nonwoven fabric.
  • Elastic nonwoven fabric refers to a nonwoven fabric having elasticity.
  • Elastic nonwoven fabric refers to a nonwoven fabric having a property that when the stress is released after the nonwoven fabric is stretched, the nonwoven fabric recovers to the shape before the nonwoven fabric is stretched due to elasticity.
  • the fibers contained in the elastic nonwoven fabric according to the present disclosure are made of a resin composition for elastic nonwoven fabric, and the storage modulus E23 of the resin composition for elastic nonwoven fabric is 25.0 MPa or less. If the storage modulus E23 of the resin composition for elastic nonwoven fabric exceeds 25.0 MPa, the stretch properties of the nonwoven fabric laminate tend to be easily reduced.
  • the storage modulus E23 of the resin composition for elastic nonwoven fabric is preferably 22.0 MPa or less, and more preferably 18.0 MPa or less.
  • the method for measuring the storage modulus E23 is the same as that described in the examples.
  • a resin composition for elastic nonwoven fabrics having a storage modulus E23 of 25.0 MPa or less can affect the stretch properties of the nonwoven fabric laminate whether it is contained in the front layer, back layer, or intermediate layer.
  • “Nonwoven fabric” refers to a flat fiber assembly that has a predetermined level of structural strength obtained by physical and/or chemical methods, excluding weaving, knitting, and papermaking.
  • Extensible spunbond nonwoven fabric refers to a spunbond nonwoven fabric having extensibility.
  • Having extensibility refers to the spunbond nonwoven fabric having a first property and a second property.
  • First property refers to the property that the outer shape of the spunbond nonwoven fabric stretches in one direction when an external force is applied to the spunbond nonwoven fabric.
  • Second property refers to the property that the outer shape of the spunbond nonwoven fabric does not easily return to its original shape even when the external force applied to the spunbond nonwoven fabric is released.
  • a nonwoven fabric having extensibility refers to a fabric having a maximum elongation of 50% or more, preferably 70% or more, more preferably 100% or more, and exhibiting almost no elastic recovery.
  • spunbond nonwoven refers to a nonwoven fabric made by one or more bonding methods to a spunlaid web.
  • spunlaid web refers to a web laminated by spinlaid lamination.
  • spinlaid lamination refers to a method of making a web by extruding molten or dissolved polymer through a nozzle and laying the filaments onto a moving screen.
  • Formation coefficient refers to the uniformity of the nonwoven fabric. The method for quantifying the formation coefficient is the same as the measurement method described in the Examples. A lower formation coefficient indicates a more uniform nonwoven fabric.
  • the nonwoven fabric laminate of the first embodiment Since the nonwoven fabric laminate of the first embodiment has the above-mentioned configuration, the occurrence of blocking can be suppressed even when the nonwoven fabric laminate is unwound from the nonwoven fabric roll at high speed (e.g., 200 m/min). This effect is believed to be due to, but not limited to, the following reasons.
  • Elastic nonwoven fabrics generally have adhesive properties. A surface coefficient of 38 or more indicates that in a nonwoven fabric roll around which a nonwoven fabric laminate is wound, even if pressure is applied to the nonwoven fabric laminate due to tightening, the elastic nonwoven fabric contained in the nonwoven fabric laminate is unlikely to be exposed on the surface of the nonwoven fabric laminate. Therefore, in the nonwoven fabric roll, the nonwoven fabric laminates are unlikely to adhere to each other. As a result, it is presumed that the nonwoven fabric laminate of the first embodiment can suppress the occurrence of blocking even when unwound from the nonwoven fabric roll at high speed.
  • the surface coefficient is 38 or more, and from the viewpoint of further suppressing the occurrence of blocking even when the nonwoven fabric is unwound from a roll at high speed (e.g., 200 m/min), it is preferably 38 to 60, more preferably 38 to 50.
  • the method for calculating the surface coefficient is the same as that described in the examples.
  • the method of increasing the surface coefficient to 38 or more is preferably to design the fibers contained in the elastic nonwoven fabric to have a thicker average fiber diameter and the fibers contained in the stretchable nonwoven fabric laminate to have a thinner average fiber diameter, resulting in a lower formation coefficient. Specifically, this can be achieved by adjusting the single-hole output (g/hole), the stretching air speed (m/min), and the melt flow rate (MFR: Melt Flow Rate) of the resin composition.
  • Methods for designing the formation coefficient include adjusting the single-hole output (g/hole) and the suction blower air volume.
  • the ratio of the basis weight of the elastic nonwoven fabric to the basis weight of the nonwoven fabric laminate (hereinafter also referred to as "total basis weight") is not particularly limited, but is preferably 15% to 48%. This allows the elasticity of the nonwoven fabric laminate and blocking resistance during roll production to be compatible.
  • the basis weight ratio (NW/total) is more preferably 20% to 48% from the viewpoint of improving yarn breakage, and from the viewpoint of a softer nonwoven fabric, it is further preferably 20% to 43%, and particularly preferably 25% to 43%.
  • the total basis weight is not particularly limited, but is preferably 360 g/ m2 or less, more preferably 240 g/ m2 or less, even more preferably 150 g/ m2 or less, particularly preferably 15 g/ m2 to 120 g/ m2 , even more preferably 20 g/ m2 to 80 g/ m2 , and even more preferably 25 g/ m2 to 70 g/ m2 .
  • the method for measuring the total basis weight of the nonwoven fabric laminate was the same as in the examples.
  • the nonwoven fabric laminate of the first embodiment includes an extensible spunbond nonwoven fabric.
  • the basis weight of the extensible spunbonded nonwoven fabric is preferably 5 g/m 2 to 120 g/m 2 , more preferably 8 g/m 2 to 50 g/m 2.
  • the preferred range varies depending on the application, and in applications requiring a softer nonwoven fabric, the basis weight of the extensible spunbonded nonwoven fabric is more preferably 13 g/m 2 to 35 g/m 2 , particularly preferably 13 g/m 2 to 24.9 g/m 2 , and even more preferably 16 g/m 2 to 21 g/m 2.
  • the basis weight of the extensible spunbonded nonwoven fabric is more preferably more than 35 g/m 2 and not more than 50 g/m 2 .
  • the method for measuring the basis weight of the extensible spunbonded nonwoven fabric is the same as that described in the Examples.
  • the average fiber diameter (hereinafter also referred to as "average fiber diameter a") of the fibers (hereinafter also referred to as “extensible fibers”) constituting the extensible spunbonded nonwoven fabric is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, even more preferably 30 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • the average fiber diameter a of the extensible fibers is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the average fiber diameter a of the extensible fibers is equal to or smaller than the average fiber diameter (hereinafter also referred to as "average fiber diameter b") of the fibers (hereinafter also referred to as “elastic fibers”) constituting the elastic nonwoven fabric, and it is more preferable that the average fiber diameter b is smaller than the average fiber diameter a.
  • the ratio (b/a) of the average fiber diameter b of the elastic fibers to the average fiber diameter a of the extendible fibers is more preferably 1.0 or more and 1.35 or less, and more preferably more than 1.0 and 1.35 or less.
  • the method for measuring the average fiber diameter a of the extendable fiber is the same as that described in the Examples.
  • the extensible fibers may be long or short fibers.
  • the extensible fibers may be, for example, sheath-core, side-by-side, islands-in-the-sea, or side-by-side.
  • the sheath-core fibers have only to have a core and a sheath, and may be either a concentric sheath-core type or an eccentric sheath-core type.
  • the eccentric sheath-core fibers may have the core exposed on the surface, or may not have the core exposed on the surface.
  • the islands-in-the-sea fibers have a sea phase and a plurality of island phases.
  • the extensible fibers are preferably islands-in-sea type or concentric core-sheath type, and more preferably islands-in-sea type.
  • the number of thread breaks that occur during spinning of the resin composition that is the raw material of the extensible spunbonded nonwoven fabric is reduced.
  • the productivity of the nonwoven fabric laminate is improved.
  • the number of thread breaks is reduced, the number of fibers whose fiber ends are exposed on the nonwoven fabric surface can be reduced, and the feel of the skin, such as a prickly feeling, can also be improved.
  • Resin composition for extensible spunbond nonwoven fabric The extensible fiber is made of a resin composition for extensible spunbond nonwoven fabric (hereinafter also referred to as "resin composition (SB)").
  • the resin composition (SB) preferably contains an olefin-based polymer, and may contain only an olefin-based polymer.
  • the olefin-based polymer may be a polyolefin-based elastomer.
  • the olefin polymer may be used alone or in combination of two or more kinds.
  • Olefin-based polymer is preferably a polymer having crystallinity.
  • crystalline components in the polymerization having crystallinity include polypropylene, poly-1-butene, poly-4-methyl-1-pentene, etc.
  • the olefin-based polymer may be one type alone or two or more types in combination.
  • olefin polymer examples include propylene polymer (A) and polyolefin (excluding propylene polymer (A)).
  • propylene polymer (A) and polyolefin (excluding propylene polymer (A)) may be of only one type, or may be of two or more types having different melting points, molecular weights, crystal structures, etc.
  • Propylene-based polymer (A) contains structural units derived from propylene.
  • the propylene polymer (A) is a propylene homopolymer or a propylene copolymer.
  • the propylene copolymer is preferably a copolymer of propylene and at least one of ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, etc.
  • the propylene polymer (A) preferably contains a propylene homopolymer, and more preferably is a propylene homopolymer.
  • the melting point of the propylene polymer (A) is preferably 140°C or higher, more preferably 150°C or higher, further preferably 155°C or higher, particularly preferably 157°C to 165°C.
  • the method for measuring the melting point of the propylene polymer (A) is the same as that described in the Examples.
  • the melting point of the propylene polymer (A) refers to the higher of the two (hereinafter the same applies to two or more components).
  • the MFR of the propylene polymer (A) is not particularly limited as long as the resin composition (SB) can be melt-spun, and is preferably 1 g/10 min to 1,000 g/10 min, more preferably 5 g/10 min to 500 g/10 min, and even more preferably 10 g/10 min to 100 g/10 min.
  • the MFR of the propylene polymer (A) is measured in accordance with ASTM D-1238 under the conditions of 230° C. and a load of 2.16 kg.
  • the MFR of the propylene polymer (A) refers to the MFR of a resin composition containing two or more types of propylene polymers (A) (hereinafter the same applies to two or more components).
  • the content of the propylene polymer (A) is preferably 55.0% by mass to 95.0% by mass, more preferably 65.0% by mass to 95.0% by mass, even more preferably 75.0% by mass to 95.0% by mass, and particularly preferably 85.0% by mass to 95.0% by mass, based on the total amount of the resin composition (SB).
  • the propylene polymer (A) may be a commercially available product.
  • the propylene polymer (A) may be a biomass-derived propylene polymer.
  • Biomass-derived propylene-based polymer refers to a propylene-based polymer (A) produced from a raw material monomer containing biomass-derived propylene. Since biomass-derived propylene-based polymers are carbon-neutral materials, they can reduce the environmental impact of producing nonwoven fabric laminates.
  • the biomass-derived propylene-containing monomer which is the raw material of the biomass-derived propylene-based polymer, can be obtained by cracking biomass naphtha or synthesizing it from biomass-derived ethylene.
  • the biomass-derived propylene-based polymer can be obtained by polymerizing the biomass-derived propylene-containing monomer thus synthesized by the same method as that used in the case of using petroleum-derived propylene.
  • a propylene-based polymer synthesized using a bio-derived propylene-containing monomer as a raw material is a biomass-derived propylene-based polymer.
  • the content of the bio-derived propylene-based polymer in the raw material monomer is more than 0 mass% and may be 100 mass% or less with respect to the total amount of the raw material monomer.
  • the monomers that are the raw materials for the biomass-derived propylene-based polymer may further include, in addition to bio-derived propylene, propylene derived from fossil fuels such as petroleum, and/or 1-butene, 1-hexene, and the like other than ethylene and propylene.
  • Biomass-derived propylene polymers can also be obtained by polymerizing propylene obtained by synthesis of methanol-to-olefins (MTO) or methanol-to-propylene (MTP) using gas generated by pyrolysis of empty fruit bunches (EFB) such as coconut shells. Furthermore, biomass-derived propylene polymers can also be obtained by polymerizing propylene obtained by dehydrating isopropanol produced by fermentation of biomass raw materials mainly consisting of non-edible plants such as sorgo.
  • MTO methanol-to-olefins
  • EFB empty fruit bunches
  • biomass-derived carbon content will be 100%. Therefore, the biomass degree of a biomass-derived propylene-based polymer will be 100%. Since fossil fuel-derived raw materials contain almost no C14, the biomass-derived carbon content in a propylene-based polymer produced only from fossil fuel-derived raw materials will be 0%, and the biomass degree of a fossil fuel-derived propylene-based polymer will be 0%.
  • Biomass degree indicates the percentage of carbon derived from biomass, and is calculated by measuring radioactive carbon (C14). Carbon dioxide in the atmosphere contains a certain percentage of C14 (approximately 105.5 pMC). For this reason, it is known that the C14 content in plants that grow by absorbing carbon dioxide from the atmosphere (such as corn) is also about 105.5 pMC. It is also known that fossil fuels contain very little C14. Therefore, by measuring the percentage of C14 contained in the total carbon atoms in the propylene polymer, the content of carbon derived from biomass in the raw material can be calculated.
  • C14 radioactive carbon
  • the biomass content of the propylene-based polymer used as the raw material for the nonwoven fabric laminate of the first embodiment is preferably 5% or more.
  • the content of the biomass-derived propylene-based polymer used in the nonwoven fabric laminate of the first embodiment may be 5% by mass to 99% by mass, 10% by mass to 75% by mass, or 20% by mass to 50% by mass, relative to 100% by mass of the total of the fossil fuel-derived polypropylene resin and the biomass-derived polypropylene resin.
  • the propylene-based polymer (A) used as a raw material for the nonwoven fabric laminate of the first embodiment may contain a propylene-based polymer obtained by recycling, that is, a so-called recycled polymer.
  • the term "recycled polymer” includes polymers obtained by recycling waste polymer products, and can be produced, for example, by the method described in DE 10 2019 127 827 (A1).
  • the recycled polymer may contain a marker that identifies it as having been obtained by recycling.
  • the polyolefin (excluding the propylene polymer (A)) is a homopolymer or copolymer of an ⁇ -olefin.
  • the ⁇ -olefin is an ⁇ -olefin having 2 or more carbon atoms (excluding 3 carbon atoms), and preferably includes a homopolymer of an ⁇ -olefin having 2 to 8 carbon atoms (excluding 3 carbon atoms), and more preferably is a homopolymer of an ⁇ -olefin having 2 to 8 carbon atoms (excluding 3 carbon atoms).
  • the ⁇ -olefin examples include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and 4-methyl-1-pentene. Of these, the ⁇ -olefin is preferably ethylene.
  • examples of polyolefins include polyethylene (ethylene homopolymer), 1-butene polymer, poly-4-methyl-1-pentene, and the like.
  • examples of polyethylene include high-pressure low-density polyethylene, linear low-density polyethylene (LLDPE), and high-density polyethylene (HDPE).
  • Examples of the 1-butene polymer examples include 1-butene homopolymer, 1-butene-ethylene copolymer, and 1-butene-propylene copolymer.
  • the density of the polyethylene is preferably 0.94 g/cm 3 to 0.98 g/cm 3 , and more preferably 0.94 g/cm 3 to 0.97 g/cm 3 .
  • the melting point of the polyolefin (excluding the propylene polymer (A)) is preferably 150°C or higher, more preferably 155°C or higher, and even more preferably 155°C to 165°C.
  • the MFR of the polyolefin is not particularly limited as long as the melt of the resin composition (SB) can be spun, and is preferably 1 g/10 min to 1000 g/10 min, more preferably 2 g/10 min to 500 g/10 min, and even more preferably 3 g/10 min to 100 g/10 min.
  • the polyolefin (excluding the propylene-based polymer (A)) is polyethylene
  • the MFR is measured in accordance with ASTM D-1238 under the measurement conditions of 190° C. and a load of 2.16 kg.
  • the content of polyolefin is preferably 1.0 mass% to 10.0 mass%, more preferably 3.0 mass% to 8.0 mass%, and even more preferably 5.0 mass% to 7.0 mass%, based on the total amount of resin composition (SB). If the content of polyolefin (excluding propylene-based polymer (A)) is within the above range, the extensibility of the extensible spunbond nonwoven fabric is improved.
  • the resin composition (SB) may contain a polymer other than the olefin-based polymer (hereinafter also referred to as "other polymers"), or may not contain other polymers.
  • other polymers include thermoplastic elastomers and thermoplastic resins other than the olefin-based polymers.
  • thermoplastic elastomers include styrene-based elastomers, polyester-based elastomers, polyamide-based elastomers, thermoplastic polyurethane-based elastomers, vinyl chloride-based elastomers, and fluorine-based elastomers.
  • thermoplastic resins other than olefin polymers include polyester, polyamide (nylon-6, nylon-66, polymetaxylene adipamide, etc.), polyvinyl chloride, polyimide, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-vinyl alcohol copolymer, ethylene-(meth)acrylic acid copolymer, ethylene-acrylic acid ester-carbon monoxide copolymer, polyacrylonitrile, polycarbonate, and polystyrene.
  • the polyester may be, for example, an aliphatic polyester or a polyester copolymer.
  • the polyester copolymer may be a copolymer of an aliphatic dicarboxylic acid alone or a mixture of an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and at least one diol.
  • the content of polyolefin (excluding propylene-based polymer (A)) in the extensible spunbond nonwoven fabric is preferably more than 90% by mass and not more than 100% by mass, more preferably 95% by mass to 100% by mass, based on the total of polyolefin (excluding propylene-based polymer (A)) and other polymers (thermoplastic resins other than thermoplastic elastomers and olefin-based polymers).
  • the content of the propylene-based polymer (A) is preferably 80% by mass to 99% by mass, more preferably 84% by mass to 96% by mass, based on the total amount of the resin composition (SB).
  • the resin composition (SB) may contain, as optional components, various known additives such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the object of the present disclosure.
  • various known additives such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the object of the present disclosure.
  • the fibers contained in the extensible spunbonded nonwoven fabric are made of a resin composition for extensible spunbonded nonwoven fabrics,
  • the resin composition for extensible spunbonded nonwoven fabrics is A propylene-based polymer (A),
  • the polymer (B) is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters. This reduces the number of yarn breaks that occur during spinning of the resin composition that is the raw material of the extensible spunbonded nonwoven fabric, thereby improving the productivity of the nonwoven fabric laminate.
  • the propylene polymer (A) contains a propylene homopolymer, From the viewpoints of improving the tensile strength of the spunbonded nonwoven fabric and of the extensibility and flexibility of the spunbonded nonwoven fabric, the polymer (B) preferably contains polyethylene having a density of 0.94 g/cm 3 to 0.97 g/cm 3 .
  • the content of polymer (B) is preferably 1.0% by mass to 10.0% by mass, more preferably 3.0% by mass to 8.0% by mass, and even more preferably 5.0% by mass to 7.0% by mass, based on the total amount of resin composition (SB). If the content of polymer (B) is within the above range, the extensibility of the spunbond nonwoven fabric is improved.
  • the islands-in-sea type fiber preferably has an islands-in-sea structure in which the sea phase is a propylene-based polymer (A) (preferably a homopolymer of propylene) and the island phase is a polymer (B) (preferably a high-density polyethylene). This inhibits the orientation and crystallization of the main component of the sea phase, improving the extensibility of the extensible spunbonded nonwoven fabric.
  • A propylene-based polymer
  • B preferably a high-density polyethylene
  • the concentric sheath-core fiber preferably has a core made of a low MFR olefin polymer and a sheath made of a high MFR olefin polymer, and the difference in MFR between the low MFR olefin polymer and the high MFR olefin polymer is 1 g/10 min or more.
  • the MFR of the low MFR olefin polymer may be 1 g/10 min to 1000 g/10 min.
  • the MFR of the high MFR olefin polymer may be 1 g/10 min to 1000 g/10 min.
  • the difference in MFR is preferably 15 g/10 min or more, more preferably 30 g/10 min or more, and particularly preferably 40 g/10 min or more.
  • the difference in MFR is preferably 100 g/10 min or less, more preferably 70 g/10 min or less.
  • the extensible spunbond nonwoven fabrics preferably include extensible spunbond nonwoven fabrics that satisfy the following requirements (a1) and (a3).
  • Requirement (1.1.3.1) Requirement (a1) (a1) A spunbond nonwoven fabric using core-sheath fibers, side-by-side fibers or crimped fibers made of two or more kinds of olefin polymers having a difference in induction time of crystallization in flow-induced phase separation of 100 seconds or more.
  • the two or more olefin-based polymers may be, for example, a propylene-based polymer (A) having a high melting point and a propylene-based polymer (A) having a low melting point.
  • the propylene-based polymer (A) may be, for example, a propylene-based polymer copolymerized with a propylene homopolymer and a random copolymer of propylene and an ⁇ -olefin having a low melting point in the range of 130°C to 150°C.
  • (1.1.3.3) Requirement (a3) (a3) A spunbonded nonwoven fabric using concentric core-sheath fibers, wherein the core is made of a low MFR propylene-based polymer (A) having an MFR in the range of 1 g/10 min to 200 g/10 min, and the sheath is made of a high MFR propylene-based polymer (A) having an MFR in the range of 16 g/10 min to 215 g/10 min, and the difference between the MFR of the core and the MFR of the sheath is 15 g/10 min or more.
  • a low MFR propylene-based polymer A having an MFR in the range of 1 g/10 min to 200 g/10 min
  • the sheath is made of a high MFR propylene-based polymer (A) having an MFR in the range of 16 g/10 min to 215 g/10 min
  • the difference between the MFR of the core and the MFR of the sheath is 15 g/10 min or more.
  • X1 A spunbond nonwoven fabric using core-sheath fibers, parallel fibers, or crimped fibers, in which the core is a propylene-based polymer (A) (preferably a propylene homopolymer) having a low MFR and high melting point with an MFR in the range of 10 g/10 min to 200 g/10 min and a melting point in the range of 157°C to 165°C, and the sheath is a propylene- ⁇ -olefin random copolymer having a high MFR and low melting point with an MFR in the range of 10 g/10 min to 200 g/10 min and a melting point in the range of 130°C to 150°C, and the difference between the MFR of the core and the MFR of the sheath is 1 g/10 min or more.
  • A propylene-based polymer
  • A preferably a propylene homopolymer
  • the sheath is a propylene- ⁇ -olefin random copolymer having
  • a spunbond nonwoven fabric comprising concentric core-sheath fibers, the core of which is a low MFR propylene polymer (A) (preferably a propylene homopolymer) having an MFR in the range of 1 g/10 min to 200 g/10 min, the sheath of which is a high MFR propylene polymer (A) (preferably a propylene homopolymer) having an MFR in the range of 31 g/10 min to 230 g/10 min, and the difference between the MFR of the core and the MFR of the sheath being 30 g/10 min or more.
  • A low MFR propylene polymer
  • A preferably a propylene homopolymer
  • A preferably a propylene homopolymer having an MFR in the range of 31 g/10 min to 230 g/10 min
  • the difference between the MFR of the core and the MFR of the sheath being 30 g/10 min or more.
  • the core may be a propylene polymer (A) having a low MFR in the range of 10 g/10 min to 50 g/10 min
  • the sheath may be a propylene polymer (A) having a high MFR in the range of 50 g/10 min to 100 g/10 min.
  • the difference between the MFR of the core and the MFR of the sheath may be 30 g/10 min to 100 g/10 min, or 40 g/10 min to 80 g/10 min.
  • the nonwoven fabric laminate of the first embodiment includes an elastic nonwoven fabric.
  • the type of elastic nonwoven fabric is not particularly limited, and examples include spunbond nonwoven fabric, meltblown nonwoven fabric, flash spun nonwoven fabric, staple fiber, etc.
  • the type of elastic nonwoven fabric is preferably spunbond nonwoven fabric, from the viewpoint of using long fibers in the elastic nonwoven fabric.
  • the weight per unit area of the elastic nonwoven fabric is preferably 2 g/m 2 to 120 g/m 2 , more preferably 2 g/m 2 to 40 g/m 2 or less, even more preferably 12 g/m 2 to 37 g/m 2 , particularly preferably 12 g/m 2 to 32 g/m 2 , even more preferably 16 g/m 2 to 26 g/m 2 , and even more preferably 16 g/m 2 to 20 g/m 2 .
  • the method for measuring the basis weight of the elastic nonwoven fabric is the same as that described in the examples.
  • the average fiber diameter b of the elastic fiber is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, even more preferably 35 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the average fiber diameter b of the elastic fiber is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 20 ⁇ m or more, and particularly preferably 24 ⁇ m or more.
  • the average fiber diameter b of the elastic fiber is more than 20 ⁇ m and 35 ⁇ m or less, and the average fiber diameter a of the extensible fiber is smaller than the average fiber diameter b of the elastic fiber.
  • the average fiber diameter b of the elastic fiber is more than 20 ⁇ m and 35 ⁇ m or less, and the fiber-based ratio (b/a) is 1.0 or more and 1.35 or less. It is more preferred that the fiber-based ratio (b/a) is more than 1.0 and 1.35 or less.
  • the method for measuring the average fiber diameter b of the elastic fibers is the same as that described in the Examples.
  • the cross-sectional shape of the elastic fiber is not particularly limited, and examples include circular, elliptical, irregular shapes, etc.
  • the elastic fibers may be, for example, sheath-core, side-by-side, sea-island, or parallel.
  • Sheath-core fibers need only have a core and a sheath, and may be either a concentric sheath-core type or an eccentric sheath-core type.
  • Eccentric sheath-core fibers may have a core exposed on the surface, or may not have a core exposed on the surface.
  • the elastic fiber is made of a resin composition for elastic nonwoven fabrics (hereinafter, also referred to as "resin composition (NW)").
  • the resin composition (NW) preferably contains an ⁇ -olefin copolymer, and may contain only an ⁇ -olefin copolymer.
  • the propylene-based polymer may be used alone or in combination of two or more kinds in the resin composition (NW).
  • the resin composition (NW) preferably contains an ⁇ -olefin copolymer. This makes it possible to obtain a nonwoven fabric laminate having better elastic properties and better stress retention than an elastic nonwoven fabric that does not contain an ⁇ -olefin copolymer (e.g., an elastic nonwoven fabric made of a propylene homopolymer).
  • the resin composition (NW) contains an ⁇ -olefin copolymer and does not contain a propylene homopolymer.
  • the elastic nonwoven fabric is an elastic nonwoven fabric containing an ⁇ -olefin copolymer (excluding elastic nonwoven fabric containing propylene homopolymer). This makes the nonwoven fabric laminate have better elastic properties and better stress maintenance than when an elastic nonwoven fabric not containing an ⁇ -olefin copolymer (for example, an elastic nonwoven fabric made of propylene homopolymer) is used.
  • ⁇ -olefin copolymer refers to a copolymer in which two or more copolymerization components having ⁇ -olefin skeletons are copolymerized.
  • the copolymerization component having an ⁇ -olefin skeleton examples include ⁇ -olefins, such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene.
  • the ⁇ -olefin copolymer preferably contains an ethylene and propylene copolymer having ethylene and propylene as copolymerization components, from the viewpoint of making the nonwoven fabric laminate have lower stress and better elasticity.
  • the content of structural units derived from ethylene in the ethylene and propylene copolymer is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 25% by mass, even more preferably 10% by mass to 20% by mass, and particularly preferably 12% by mass to 18% by mass.
  • the ⁇ -olefin copolymer may be any of an alternating copolymer, a graft copolymer, a block copolymer, and a random copolymer.
  • the density (ASTM D 1505) of the ⁇ -olefin copolymer is preferably 0.850 g/cm 3 to 0.950 g/cm 3 , more preferably 0.855 g/cm 3 to 0.900 g/cm 3 , and even more preferably 0.860 g/cm 3 to 0.895 g/cm 3 .
  • the density of the ⁇ -olefin copolymer is a value obtained by measurement according to the density gradient method of JIS K7112 (1999).
  • the tensile modulus of the ⁇ -olefin copolymer is preferably 30 MPa or less, more preferably 20 MPa or less, and further preferably 15 MPa or less.
  • the tensile modulus of the ⁇ -olefin copolymer is not particularly limited, and may be 5 MPa or more.
  • the tensile modulus is a value obtained by measurement according to a method in accordance with JIS K7161 (2011).
  • the molecular weight distribution (Mw/Mn) of the ⁇ -olefin copolymer is preferably 1.5 to 5.0. In terms of obtaining fibers having good spinnability and particularly excellent fiber strength, Mw/Mn is preferably 1.5 to 4.5.
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) of the ⁇ -olefin copolymer are values determined by gel permeation chromatography (GPC) under the following conditions.
  • the mass average molecular weight (Mw) is the mass average molecular weight converted into polystyrene, and the molecular weight distribution (Mw/Mn) is a value calculated from the number average molecular weight (Mn) and mass average molecular weight (Mw) measured in the same manner.
  • Mw/Mn molecular weight distribution
  • Mw/Mn molecular weight distribution
  • the MFR of the ⁇ -olefin copolymer is not particularly limited, and is preferably 1 g/10 min to 100 g/10 min, more preferably 10 g/10 min to 80 g/10 min, further preferably 15 g/10 min to 70 g/10 min, and particularly preferably 15 g/10 min to 50 g/10 min.
  • the MFR of the ⁇ -olefin copolymer is measured in accordance with ASTM D-1238 under the conditions of 230° C. and a load of 2.16 kg.
  • the ⁇ -olefin copolymer may be a synthetic product or a commercially available product.
  • the ⁇ -olefin copolymer can be prepared by polymerizing or copolymerizing a monomer in the presence of a conventionally known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst by a conventionally known polymerization method such as a gas phase method, a bulk method, a slurry method or a solution method.
  • a conventionally known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst
  • a conventionally known polymerization method such as a gas phase method, a bulk method, a slurry method or a solution method.
  • Commercially available ⁇ -olefin copolymers include, for example, Tafmer (manufactured by Mitsui Chemicals, Inc.), Vistamaxx series (manufactured by ExxonMobil Chemical Corporation), and Versify.
  • composition of the ⁇ -olefin copolymer can be determined using conventional methods (e.g., IR analysis, NMR analysis, microanalysis, etc.).
  • the proportion of the ⁇ -olefin copolymer in the total amount of the elastic nonwoven fabric is preferably 90% by mass to 100% by mass, and more preferably 98% by mass to 100% by mass.
  • the ratio of the ethylene and propylene copolymer to the total amount of the elastic nonwoven fabric is preferably 80% by mass to 100% by mass, more preferably 90% by mass to 100% by mass, from the viewpoint of the stretch properties of the nonwoven fabric laminate.
  • the melting point of the ⁇ -olefin is preferably 130° C. or lower, more preferably 115° C. or lower, even more preferably 100° C. or lower, particularly preferably 40° C. to 85° C., and even more preferably 40° C. to 60° C.
  • the melting point was measured in the same manner as described in the Examples.
  • the elastic nonwoven fabric preferably contains an ⁇ -olefin copolymer (hereinafter also referred to as "specific ⁇ -olefin copolymer") having a ratio (E40/E23) of the storage modulus E40 at 40°C to the storage modulus E23 at 23°C of 37% or more.
  • specific ⁇ -olefin copolymer having a ratio (E40/E23) of the storage modulus E40 at 40°C to the storage modulus E23 at 23°C of 37% or more.
  • the ratio (E40/E23) is not particularly limited, and may be 100% or less, 95% or less, or 90% or less.
  • An example of a method for setting the ratio (E40/E23) of the specific ⁇ -olefin copolymer within the above-mentioned specific range is to use a copolymer of ethylene and propylene as the ⁇ -olefin copolymer.
  • the storage modulus E23 of the specific ⁇ -olefin copolymer is preferably 30 MPa or less, more preferably 22 MPa or less, further preferably 20 MPa or less, and particularly preferably 18 MPa or less.
  • the storage modulus E23 of the specific ⁇ -olefin copolymer is preferably 5 MPa or more, more preferably 10 MPa or more.
  • the storage modulus E40 of the specific ⁇ -olefin copolymer is preferably 10 MPa or less, more preferably 9 MPa or less.
  • the storage modulus E40 of the specific ⁇ -olefin copolymer is preferably 3 MPa or more, more preferably 5 MPa or more.
  • the elastic nonwoven fabric contains a specific ⁇ -olefin copolymer,
  • the ratio of the specific ⁇ -olefin copolymer to the total amount of the elastic nonwoven fabric is 90% by mass to 100% by mass
  • the specific ⁇ -olefin copolymer is preferably a copolymer of ethylene and propylene, and the melting point of the specific ⁇ -olefin copolymer is preferably 130° C. or lower.
  • the resin composition (NW) may contain various known additives as optional components, such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the present disclosure.
  • additives such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the present disclosure.
  • the nonwoven laminate of the first embodiment may or may not include other layers depending on the application.
  • the other layers are laminated to at least one of the extensible spunbond nonwoven fabrics.
  • Other layers include nonwoven fabrics other than elastic nonwoven fabrics and extensible spunbond nonwoven fabrics, knitted fabrics, woven fabrics, films, etc.
  • the method of further laminating (bonding) other layers to the nonwoven fabric laminate is not particularly limited, and examples include heat embossing, heat fusion methods (e.g., ultrasonic fusion, etc.), mechanical entanglement methods (e.g., needle punch, water jet, etc.), methods using adhesives (e.g., hot melt adhesives, urethane adhesives, etc.), extrusion lamination, etc.
  • the nonwoven fabric laminate of the first embodiment may further have a film layer.
  • the film layer may be an elastic film or a nonelastic film, and may or may not have breathability or moisture permeability.
  • the film layer may be disposed on one side of the nonwoven fabric laminate (i.e., the extensible spunbond nonwoven fabric) or on both sides of the nonwoven fabric laminate (i.e., the extensible spunbond nonwoven fabric).
  • the laminate may have a laminate configuration of elastic nonwoven fabric/film, elastic nonwoven fabric/film/elastic nonwoven fabric, or film/elastic nonwoven fabric/film.
  • nonwoven fabrics other than elastic nonwoven fabrics and extensible spunbond nonwoven fabrics include spunbond nonwoven fabrics, meltblown nonwoven fabrics, wet nonwoven fabrics, dry nonwoven fabrics, dry pulp nonwoven fabrics, flash spun nonwoven fabrics, spread nonwoven fabrics, etc. These nonwoven fabrics may be stretchable or non-stretchable nonwoven fabrics.
  • non-elastic nonwoven fabric refers to a fabric that does not generate a return stress after being stretched in the machine direction (MD) or cross direction (CD).
  • a breathable (moisture-permeable) film is preferred.
  • breathable films include various known breathable films, such as films made of thermoplastic elastomers such as polyurethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers that have moisture permeability, and porous films made by stretching a film made of a thermoplastic resin containing inorganic or organic fine particles to make it porous.
  • thermoplastic resins used for porous films polyolefins such as high-pressure low-density polyethylene, linear low-density polyethylene (so-called LLDPE), high-density polyethylene, polypropylene, polypropylene random copolymers, and combinations thereof are preferred.
  • LLDPE linear low-density polyethylene
  • polypropylene polypropylene random copolymers
  • a film of a thermoplastic resin such as polyethylene, polypropylene, or a combination thereof may be used.
  • the resin composition for extensible spunbonded nonwoven fabrics uses a propylene-based polymer (A) and a polymer (B) that is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters
  • the thermoplastic resin of the non-elastic film is preferably polypropylene, an ⁇ -olefin copolymer (including a propylene-based random copolymer), or a combination thereof.
  • the thermoplastic resin of the elastic film is preferably an ⁇ -olefin copolymer.
  • Nonwoven fabric laminate of second embodiment The nonwoven fabric laminate of the second embodiment of the present disclosure comprises an elastic nonwoven fabric and an extensible spunbonded nonwoven fabric arranged on both sides of the elastic nonwoven fabric.
  • the fibers contained in the extensible spunbonded nonwoven fabric (hereinafter also referred to as "extensible fibers") are islands-in-the-sea fibers.
  • the islands-in-the-sea fibers are made of a resin composition for extensible spunbonded nonwoven fabrics.
  • the resin composition for extensible spunbonded nonwoven fabrics contains a propylene-based polymer (A) containing a propylene homopolymer, and a polymer (B) which is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters.
  • the average fiber diameter a of the fibers contained in the extensible spunbonded nonwoven fabric is smaller than the average fiber diameter b of the fibers contained in the elastic nonwoven fabric (hereinafter also referred to as "elastic fibers").
  • the nonwoven fabric laminate of the second embodiment has the above-mentioned configuration, the occurrence of blocking can be suppressed even when the nonwoven fabric laminate is unwound from the nonwoven fabric roll at high speed (for example, 200 m/min). This effect is believed to be due to, but not limited to, the following reasons.
  • By laminating the extensible spunbonded nonwoven fabric having a specific fiber diameter balance with the elastic nonwoven fabric it is possible to suppress the exposure of the elastic fibers to the surface of the nonwoven fabric laminate, and to reduce the tackiness of the surface of the nonwoven fabric laminate. Furthermore, if the texture of the extensible spunbonded nonwoven fabric is more uniform, better effects can be obtained.
  • the nonwoven fabric laminate of the second embodiment has the same configuration as the nonwoven fabric laminate of the first embodiment, except that the surface coefficient represented by the above formula (1) of 38 or more is not an essential feature of the invention, the extensible fibers include specific sea-island type fibers, and the average fiber diameter a of the extensible fibers is smaller than the average fiber diameter b of the elastic fibers.
  • the description of the nonwoven fabric laminate of the first embodiment may be used to describe the nonwoven fabric laminate of the second embodiment.
  • the average fiber diameter a of the extensible fibers is smaller than the average fiber diameter b of the elastic fibers.
  • the fiber ratio (b/a) of the average fiber diameter b of the elastic fibers to the average fiber diameter a of the extensible fibers is preferably 1.0 or more and 1.35 or less, and more preferably greater than 1.0 and 1.35 or less.
  • the surface coefficient of the nonwoven fabric laminate is preferably 38 or more, more preferably 38 to 60, and even more preferably 38 to 50, from the viewpoint of further suppressing the occurrence of blocking even when the nonwoven fabric laminate is unwound from a nonwoven fabric roll at high speed (e.g., 200 m/min).
  • the method for increasing the surface coefficient to 38 or more is the same as that exemplified in the first embodiment.
  • the basis weight ratio (NW/total) of the nonwoven fabric laminate is not particularly limited, but is preferably 18% to 48%, which allows the nonwoven fabric laminate to have both elastic properties and blocking resistance during roll production.
  • the weight ratio (NW/total) is more preferably 20% to 48%, further preferably 20% to 43%, and particularly preferably 25% to 43%.
  • the total basis weight of the nonwoven fabric laminate is the same as that exemplified in the first embodiment.
  • the nonwoven fabric laminate of the second embodiment includes an extensible spunbond nonwoven fabric.
  • the basis weight of the extensible spunbond nonwoven fabric is the same as that exemplified in the first embodiment.
  • the extensible spunbond nonwoven fabric comprises extensible fibers.
  • the average fiber diameter a of the extensible fiber is the same as that exemplified in the first embodiment.
  • the cross-sectional shape of the extensible fiber is not particularly limited, and examples include circular, elliptical, irregular cross-sections, etc.
  • the extensible fiber of the second embodiment is an island-in-the-sea type fiber. Because the extensible fiber is an island-in-the-sea type fiber, the number of thread breaks that occur during spinning of the resin composition that is the raw material of the extensible spunbond nonwoven fabric is reduced. As a result, the productivity of the nonwoven fabric laminate is improved. Fewer thread breaks can reduce the number of fibers whose fiber ends are exposed on the nonwoven fabric surface, and can also improve the feel of the skin, such as a prickly feeling.
  • Resin composition for extensible spunbond nonwoven fabric The islands-in-the-sea type fiber is made of a resin composition for extensible spunbond nonwoven fabric (hereinafter also referred to as “resin composition (SB)").
  • the resin composition (SB) contains a propylene polymer (A) containing a propylene homopolymer (hereinafter also referred to as “specific propylene polymer (A)”) and a polymer (B).
  • the specific propylene-based polymer (A) contains a propylene homopolymer, and may or may not contain a propylene copolymer.
  • the propylene copolymer is the same as that exemplified in the first embodiment.
  • the specific propylene-based polymer (A) preferably contains a propylene homopolymer, and more preferably is a propylene homopolymer.
  • the melting point of the specific propylene-based polymer (A) is the same as the melting point of the propylene-based polymer (A) in the first embodiment.
  • the MFR of the specific propylene-based polymer (A) is the same as the MFR of the propylene-based polymer (A) exemplified in the first embodiment.
  • the content of the propylene homopolymer is preferably 0% by mass to 100% by mass, more preferably 20% by mass to 100% by mass, even more preferably 40% by mass to 100% by mass, particularly preferably 60% by mass to 90% by mass, and most preferably 70% by mass to 90% by mass, based on the total amount of the specific propylene polymer (A).
  • the content of the specific propylene polymer (A) is preferably 55.0% by mass to 95.0% by mass, more preferably 65.0% by mass to 95.0% by mass, even more preferably 75.0% by mass to 95.0% by mass, and particularly preferably 85.0% by mass to 95.0% by mass, based on the total amount of the resin composition (SB).
  • the specific propylene polymer (A) may be a commercially available product.
  • the specific propylene-based polymer (A) may be a biomass-derived propylene-based polymer.
  • biomass-derived propylene-based polymer include those exemplified in the first embodiment.
  • Polymer (B) is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters.
  • the content of polymer (B) is preferably 5.0% by mass to 45.0% by mass, more preferably 5.0% by mass to 35.0% by mass, even more preferably 5.0% by mass to 25.0% by mass, and particularly preferably 5.0% by mass to 15.0% by mass, relative to the total amount of resin composition (SB).
  • Polyolefin (excluding specific propylene polymer (A))
  • the content of the polyolefin (excluding the propylene polymer (A)) and the content of the polyolefin (excluding the specific propylene polymer (A)) are the same as those exemplified in the first embodiment.
  • the content of polyolefin (excluding the specific propylene-based polymer (A)) relative to the total amount of polymer (B) is preferably 90% by mass to 100% by mass, more preferably 95% by mass to 100% by mass, even more preferably 99% by mass to 100% by mass, and particularly preferably 100% by mass.
  • polyester is the same as that exemplified in the first embodiment.
  • the content of the polyester is preferably 0% by mass or more and less than 10% by mass, more preferably 0% by mass to 5% by mass, and even more preferably 0% by mass, based on the total amount of the polymer (B).
  • the resin composition (SB) may contain, as optional components, various known additives such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the object of the present disclosure.
  • various known additives such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the object of the present disclosure.
  • the polymer (B) contains polyethylene having a density of 0.94 g/cm 3 to 0.97 g/cm 3 .
  • the islands-in-sea type fiber preferably has an islands-in-sea structure in which the sea phase is a specific propylene-based polymer (A) (preferably a homopolymer of propylene) and the island phase is a polymer (B) (preferably a high-density polyethylene). This inhibits the orientation and crystallization of the main component of the sea phase, improving the extensibility of the extensible spunbonded nonwoven fabric.
  • A propylene-based polymer
  • B preferably a high-density polyethylene
  • the nonwoven fabric laminate of the second embodiment includes an elastic nonwoven fabric.
  • the elastic nonwoven fabric is the same as that exemplified in the first embodiment.
  • the elastic nonwoven fabric preferably contains an ⁇ -olefin copolymer (hereinafter also referred to as a "specific ⁇ -olefin copolymer”) in which the ratio of the storage modulus E40 at 40°C to the storage modulus E23 at 23°C (E40/E23) is 37% or more.
  • a specific ⁇ -olefin copolymer in which the ratio of the storage modulus E40 at 40°C to the storage modulus E23 at 23°C (E40/E23) is 37% or more.
  • the elastic nonwoven fabric contains a specific ⁇ -olefin copolymer,
  • the ratio of the specific ⁇ -olefin copolymer to the total amount of the elastic nonwoven fabric is 90% by mass to 100% by mass
  • the specific ⁇ -olefin copolymer is preferably a copolymer of ethylene and propylene, and the melting point of the specific ⁇ -olefin copolymer is preferably 130° C. or lower.
  • the nonwoven fabric laminate of the second embodiment may or may not have other layers depending on the application.
  • the other layers are laminated on at least one of the extensible spunbonded nonwoven fabrics. Examples of the other layers include those similar to those exemplified in the first embodiment.
  • the nonwoven fabric laminate of the second embodiment may further have a film layer.
  • the film layer is the same as that exemplified in the first embodiment.
  • the film layer may be disposed on one side of the nonwoven fabric laminate (i.e., the extensible spunbond nonwoven fabric) or on both sides of the nonwoven fabric laminate (i.e., the extensible spunbond nonwoven fabric).
  • the nonwoven fabric laminate of the second embodiment further having a film layer, it is possible to provide a nonwoven fabric laminate suitable for various applications depending on the properties of the film.
  • the film layer may be heat-welded to the extensible spunbond nonwoven fabric or may be bonded to the extensible spunbond nonwoven fabric using an adhesive.
  • the stretchable nonwoven fabric laminate of the present disclosure is a stretch-processed product of the nonwoven fabric laminate of the first or second embodiment of the present disclosure.
  • the stretchable nonwoven fabric laminate has stretchability.
  • the stretchable nonwoven fabric laminate can be obtained by stretching the nonwoven fabric laminate of the present disclosure.
  • the stretching method may be a partial stretching method or a full stretching method. It may be a uniaxial stretching method or a biaxial stretching method.
  • An example of a method for stretching in the machine direction (MD) is a method in which the partially fused mixed fibers are passed through two or more nip rolls. In this case, the partially fused nonwoven fabric laminate can be stretched by increasing the rotation speed of the nip rolls in the machine machine direction.
  • Gear stretching can also be performed using a gear stretching device as shown in Figure 1.
  • the stretching ratio is preferably 50% or more, more preferably 100% or more, and even more preferably 200% or more.
  • the stretching ratio is preferably 1000% or less, and more preferably 500% or less.
  • both the elastic fiber and the extensible fiber are drawn.
  • the extensible fiber undergoes plastic deformation and is elongated (i.e., lengthened) in accordance with the draw ratio.
  • the elastic fibers elastically recover, while the extensible fibers fold without elastic recovery, resulting in a bulky feel in the nonwoven fabric laminate.
  • the extensible fibers tend to become thinner. This is believed to improve the flexibility and touch, as well as provide stretch-resistance properties.
  • the textile products of the present disclosure include the nonwoven fabric laminate of the first or second embodiment of the present disclosure or the elastic nonwoven fabric laminate of the present disclosure.
  • the textile products are not particularly limited, and examples thereof include disposable diapers, absorbent articles such as sanitary products, hygiene articles such as masks, medical articles such as bandages, clothing materials, packaging materials, etc.
  • the textile products of the present disclosure preferably include the nonwoven fabric laminate or elastic nonwoven fabric laminate of the present disclosure as an elastic member.
  • the textile product of the present disclosure preferably further includes an engaging means.
  • the textile product of the present disclosure functions as a removable stretchable sheet.
  • the nonwoven fabric laminate of the present disclosure has excellent fit (rebound stress). Therefore, by stretching the textile product of the present disclosure and wrapping it around the human body or an article, and engaging it with the engaging means, the stretchable nonwoven fabric laminate can be adhered to the article or weakly pressed against it. In particular, even if the article to which the textile product of the present disclosure is adhered has an uneven shape, the textile product of the present disclosure can follow the uneven shape of the article.
  • the textile product of the present disclosure is useful as a base material for bandages, gowns, clothing materials, bandages and poultices, and packaging materials.
  • the nonwoven fabric laminate does not have other layers, the nonwoven fabric laminate has excellent breathability, so the textile product is also comfortable to wear.
  • the engaging means may be a hook-and-loop fastener with an engaging protrusion, a mechanical fastening, a removable and re-adhesive adhesive tape, a claw, a clip, or the like.
  • the engaging means may be a known engaging means.
  • the engaging means may be provided for the purpose of preventing slippage by increasing the surface friction characteristics, or may be used as a non-slip treatment on a part of the nonwoven fabric laminate depending on the application.
  • the engaging means may be provided on a part of the surface of the nonwoven fabric laminate for the purpose of temporarily fixing the tip of a bandage or a dressing.
  • a crimped nonwoven fabric may be used as the mechanical fastening.
  • a crimped nonwoven fabric using a propylene-based thermoplastic resin can be used to form a nonwoven fabric laminate made only of polyolefin raw materials, and a stretchable textile product with excellent recyclability can be provided.
  • the absorbent articles of the present disclosure include the nonwoven fabric laminate of the present disclosure or the stretchable nonwoven fabric laminate of the present disclosure.
  • the absorbent article may further include an absorbent body that absorbs liquid.
  • the nonwoven fabric laminate of the present disclosure or the stretchable nonwoven fabric laminate of the present disclosure may be disposed in a position that contacts the wearer's skin when the absorbent article is worn.
  • the mask of the present disclosure comprises the nonwoven laminate or stretchable nonwoven laminate of the present disclosure.
  • the mask comprises a covering portion that covers at least a portion of the wearer's face and ear loops extending from both sides of the covering portion, and the ear loops may comprise a nonwoven fabric laminate of the present disclosure or a stretchable nonwoven fabric laminate of the present disclosure.
  • the patch of the present disclosure includes the nonwoven fabric laminate or the stretchable nonwoven fabric laminate of the present disclosure.
  • the term "patch" generally refers to a sheet (e.g., nonwoven fabric, woven fabric, etc.) having a paste layer formed on one side thereof.
  • the patch may include a covering portion that covers at least a part of the wearer's body.
  • the base material of the covering portion may include the nonwoven fabric laminate of the first or second embodiment of the present disclosure or the stretchable nonwoven fabric laminate of the present disclosure.
  • the paste layer may be any known paste layer.
  • the patch of the present disclosure is specifically used for covering products (e.g., compresses, etc.), patches, adhesive sheets for skin application, medical dressings, sterile sheets, or medical patches.
  • the surfaces of the medical dressings, sterile sheets, and medical patches are each provided with a drug, medicine, therapeutic drug, patch, ointment, transdermal drug, transdermal agent, or patch.
  • the melting point of the " ⁇ -olefin copolymer" described later is defined as the peak top of the peak observed on the lowest temperature side of the melting endothermic curve obtained by holding the sample at -100°C for 5 minutes under a nitrogen atmosphere and then heating at 10°C/min using a differential scanning calorimeter (DSC).
  • the melting point can be determined as the peak top of the peak observed on the lowest temperature side of the melting endothermic curve obtained by holding 5 mg of a sample at -100°C for 5 minutes under a nitrogen atmosphere and then heating at 10°C/min using a differential scanning calorimeter (Perkin-Elmer, DSC-7).
  • Outer layer (stretchable spunbond nonwoven fabric) [2.1.1] Raw materials for islands-in-the-sea fibers: "h-pp" (propylene homopolymer, MFR (measured in accordance with ASTM D1238 at 230°C and 2.16 kg load): 60 g/10 min, density: 0.91 g/cm 3 , melting point: 160°C) "HDPE" (high density polyethylene, MFR (measured in accordance with ASTM D1238 at a temperature of 190°C and a load of 2.16 kg): 5 g/10 min, density: 0.95 g/cm 3 , melting point: 134°C)
  • Raw materials for core-sheath fiber "h-pp (MFR60)" propylene homopolymer, MFR (measured in accordance with ASTM D1238 at 230°C and 2.16 kg load) 60g/10min, density: 0.91g/cm 3 , melting point: 160°C h-pp (MFR 8.5): propylene homopolymer, MFR (measured in accordance with ASTM D1238 at a temperature of 230° C. and a load of 2.16 kg): 8.5 g/10 min, density: 0.91 g/cm 3 , melting point: 160° C.
  • Fiber raw material " ⁇ -olefin copolymer” (manufactured by ExxonMobil, product name “Vistamaxx TM 7050FL", composition: propylene/ethylene copolymer, MFR (230°C, load 2.16 kg): 48 g/10 min, ethylene content: 13 mass%, tensile modulus: 9.82 MPa, storage modulus E23: 17.4 MPa, storage modulus E40: 8.77 MPa, ratio (E40/E23): 50.4%, melting point: 44.4°C)
  • the spunbond nonwoven fabric constituting the intermediate layer (second layer) in Examples 1 to 8 and Comparative Examples 1 to 4 was made of fibers of a resin composition for elastic nonwoven fabrics having a storage modulus of 22.0 MPa or less, as described in the method of "[3] Nonwoven fabric laminate" below.
  • the spunbond nonwoven fabric constituting the intermediate layer in Examples 1 to 8 and Comparative Examples 1 to 4 was an elastic nonwoven fabric.
  • Example 1 A mixture of 94 parts by mass of "h-pp" and 6 parts by mass of "HDPE” was melted using a 75 mm ⁇ extruder, and melt spun by the spunbond method using a spunbond nonwoven fabric molding machine having a spinneret with 1093 holes (length in the direction perpendicular to the machine flow direction on the collecting surface: 320 mm) under conditions of resin temperature and die temperature both at 205° C., resin output rate of 38.7 kg/hour, cooling air temperature of 20° C., and stretching air speed of 2762 m/min, and an extensible spunbond nonwoven fabric consisting of islands-in-the-sea fibers was deposited on the collecting surface as a first layer.
  • the " ⁇ -olefin copolymer" was melted using a single-screw extruder with a screw diameter of 75 mm ⁇ , and then melt-spun by the spunbond method using a spunbond nonwoven fabric molding machine (length perpendicular to the machine flow direction on the collection surface: 320 mm) having a spinneret (die, number of holes: 1093) under conditions of resin temperature and die temperature both 225°C, cooling air temperature 20°C, and stretching air speed 4667 m/min, to deposit an elastic nonwoven fabric (elastic spunbond nonwoven fabric) as a second layer.
  • a spunbond nonwoven fabric molding machine length perpendicular to the machine flow direction on the collection surface: 320 mm
  • spinneret die, number of holes: 1093
  • the same islands-in-the-sea type fibers as in the first layer were deposited in the same manner to form a three-layer deposit.
  • This pile was subjected to a heat and pressure treatment with an embossing roll (embossed area ratio 18%, embossing temperature 60° C.) to produce a nonwoven fabric laminate.
  • the mass fraction of the elastic nonwoven fabric layer relative to the entire pile was 33.3%.
  • the total basis weight, basis weight ratio (middle layer/whole) and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the outer layers (i.e., the first and third layers) of the extensible spunbonded nonwoven fabric layers, and the basis weight and average fiber diameter of the middle layer (i.e., the second layer) of the elastic nonwoven fabric layer are shown in Table 1.
  • Examples 2 to 7 and Comparative Examples 2 to 4 A nonwoven fabric laminate was obtained in the same manner as in Example 1, except that the total basis weight, basis weight ratio (middle layer/total), and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the extensible spunbond nonwoven fabric layer, the air speed of the extensible spunbond and elastic nonwoven fabric, and the basis weight and average fiber diameter of the elastic nonwoven fabric layer were changed as shown in Tables 1 and 2.
  • Example 8 "h-pp (MFR 8.5)" was melted using a 50 mm ⁇ extruder, and "h-pp (MFR 60)” was melted separately using a 75 mm ⁇ extruder. Then, using a spunbond nonwoven fabric molding machine (length in the direction perpendicular to the machine flow direction on the collection surface: 800 mm) having a spinneret (die, number of holes: 2887) capable of molding concentric core-sheath fibers in which "h-pp (MFR 8.5)" was the core and "h-pp (MFR 60)” was the sheath, composite melt spinning was performed by the spunbond method under conditions of resin temperature and die temperature both at 250° C., cooling air temperature of 20° C., and drawing air speed of 3750 m/min, and an extensible spunbond nonwoven fabric consisting of concentric core-sheath type fibers with a core/sheath mass ratio of 10/90 was deposited on the collection surface as a first layer.
  • an elastic nonwoven fabric (elastic spunbond nonwoven fabric) was deposited on the deposition surface as a second layer in the same manner as in Example 1, except that the basis weight and average fiber diameter of the elastic nonwoven fabric layer were changed as shown in Table 2.
  • the same core-sheath type fibers as in the first layer were deposited in the same manner to form a three-layer deposit.
  • This pile was subjected to a heat and pressure treatment with an embossing roll (embossed area ratio 18%, embossing temperature 60° C.) to produce a nonwoven fabric laminate (mass fraction of the elastic nonwoven fabric layer relative to the entire mass was 33.3%).
  • Table 2 shows the total basis weight, basis weight ratio (middle layer/whole), and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the outer layers (i.e., the first and third layers) of the extensible spunbonded nonwoven fabric layers, and the basis weight and average fiber diameter of the middle layer (i.e., the second layer) of the elastic nonwoven fabric layer.
  • Comparative Example 1 A nonwoven fabric laminate was obtained in the same manner as in Example 7, except that the total basis weight, basis weight ratio (middle layer/whole), and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the extensible spunbonded nonwoven fabric layer, and the basis weight and average fiber diameter of the elastic nonwoven fabric layer were each changed as shown in Table 2.
  • Reference Examples 1 to 3 A nonwoven fabric laminate was obtained in the same manner as in Example 1, except that the total basis weight, basis weight ratio (middle layer/whole), and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the extensible spunbonded nonwoven fabric layer, and the basis weight and average fiber diameter of the elastic nonwoven fabric layer were each changed as shown in Table 3, and a film layer was further adhered onto the outer layer (extensible spunbonded nonwoven fabric) as shown in Table 3.
  • the film layer was formed by extrusion laminating the resin having the composition shown in Table 3 to a thickness of 30 ⁇ m at 290° C. on the surface of the nonwoven fabric laminate, and bonding the film layer onto the extensible spunbonded nonwoven fabric.
  • Blocking evaluation The jumbo roll with a winding length of 4000 m produced by the above manufacturing method was unwound from the bottom. The speed was gradually increased to 200 m/min, and then blocking evaluation was performed for 5 minutes. If there was no excessive adhesion between the layers of the jumbo roll and no breakage of the nonwoven fabric during the blocking evaluation, the blocking evaluation was rated as "A”. On the other hand, if there was excessive adhesion between the layers of the jumbo roll and the nonwoven fabric broke, the blocking evaluation was rated as "B”. The blocking was evaluated visually according to the above criteria. An acceptable blocking rating is "A".
  • A The SB layer and the film layer did not peel off in all five tests, and peeling occurred between the SB layer and the other layers.
  • outer layer refers to extensible spunbond nonwoven fabric.
  • middle layer refers to elastic nonwoven fabric.
  • C3/C2 in the carbon chain column indicates that the ⁇ -olefin copolymer is a propylene/ethylene copolymer.
  • Base weight ratio refers to the ratio of the basis weight of the elastic nonwoven fabric to the total basis weight of the nonwoven fabric laminate.
  • h-PP refers to homopolypropylene formed by polymerizing propylene alone.
  • Comparative Examples 1 to 4 the surface coefficient of the nonwoven fabric laminate was less than 38. Therefore, the blocking evaluation for Comparative Examples 1 to 4 was "B.” From this result, it was found that the nonwoven fabric laminates of Comparative Examples 1 to 4 cannot suppress the occurrence of blocking when unwound from the nonwoven fabric roll at high speed.
  • the nonwoven fabric laminates of Examples 1 to 8 each had an elastic nonwoven fabric and an extensible spunbond nonwoven fabric disposed on both sides of the elastic nonwoven fabric.
  • the surface modulus was 38 or more. Therefore, the blocking evaluation for Examples 1 to 8 was "A.” This result shows that the nonwoven fabric laminates of Examples 1 to 8 can suppress the occurrence of blocking even when unwound from the nonwoven fabric roll at high speed.
  • the nonwoven fabric laminates of Examples 1 to 7 included an elastic nonwoven fabric and an extensible spunbonded nonwoven fabric arranged on both sides of the elastic nonwoven fabric.
  • the extensible fibers were islands-in-the-sea fibers.
  • the islands-in-the-sea fibers were made of a resin composition for extensible spunbonded nonwoven fabrics.
  • the resin composition for extensible spunbonded nonwoven fabrics contained a specific propylene-based polymer (A) and a polymer (B) which was a polyolefin (excluding the propylene-based polymer (A)).
  • the average fiber diameter a of the extensible fibers was smaller than the average fiber diameter b of the elastic fibers. Therefore, the blocking evaluation for Examples 1 to 7 was "A.” This result shows that the nonwoven fabric laminates of Examples 1 to 7 can suppress the occurrence of blocking even when unwound from the nonwoven fabric roll at high speed.
  • the first nonwoven fabric laminate includes Examples 1 to 6 among the examples.
  • the first nonwoven fabric laminate comprises an elastic nonwoven fabric and an extensible spunbonded nonwoven fabric arranged on both sides of the elastic nonwoven fabric, and has a surface coefficient represented by the above formula (1) of 38 or more.
  • the fibers contained in the extensible spunbonded nonwoven fabric are made of a resin composition for extensible spunbonded nonwoven fabrics, and the resin composition for extensible spunbonded nonwoven fabrics comprises a propylene-based polymer (A) and a polymer (B) which is at least one type selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters.
  • the second nonwoven fabric laminate includes Examples 1 to 4 among the examples.
  • the second nonwoven fabric laminate has, in addition to the invention-specifying features of the first nonwoven fabric laminate, the invention-specifying feature that "the basis weight of the extensible spunbonded nonwoven fabric is 13 g/m 2 to 24.9 g/m.”

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

This nonwoven fabric laminate comprises: an elastic nonwoven fabric; and an extensible spun-bonded nonwoven fabric disposed on both surfaces of the elastic nonwoven fabric. A surface coefficient represented by formula (1) is 38 or greater. (1): Surface coefficient = [(average fiber diameter of fiber included in the elastic nonwoven fabric/average fiber diameter of fiber included in the extensible spun-bonded nonwoven fabric)/texture coefficient] × 104

Description

不織布積層体、伸縮性不織布積層体、繊維製品、吸収性物品、マスク及びハップ材Nonwoven fabric laminate, stretchable nonwoven fabric laminate, textile products, absorbent articles, masks and patches
 本開示は、不織布積層体、伸縮性不織布積層体、繊維製品、吸収性物品、マスク及びハップ材に関する。 This disclosure relates to nonwoven fabric laminates, stretchable nonwoven fabric laminates, textile products, absorbent articles, masks, and poultices.
 近年、不織布は通気性及び柔軟性に優れることから各種用途に幅広く用いられている。そのため、不織布には、その用途に応じた各種の特性が求められるとともに、その特性の向上が要求されている。
 例えば、紙おむつ、生理用ナプキン等の衛生材料、湿布材の基布等に用いられる不織布は、耐水性があり、且つ透湿性に優れることが要求される。使用される箇所によっては伸縮性及び嵩高性を有することも要求される。
In recent years, nonwoven fabrics have been widely used for various purposes due to their excellent breathability and flexibility. Therefore, nonwoven fabrics are required to have various properties according to the purpose, and there is a demand for improving these properties.
For example, nonwoven fabrics used in sanitary materials such as disposable diapers and sanitary napkins, and as base fabrics for wet compresses, are required to have water resistance and excellent moisture permeability. Depending on the location of use, they are also required to have stretchability and bulkiness.
 特許文献1は、伸縮性等に優れる不織布積層体を開示している。特許文献1に開示の不織布積層体は、1層以上のメルトブローン不織布層の両面に混繊スパンボンド不織布層が積層されてなる。混繊スパンボンド不織布層は、熱可塑性エラストマー(A)の長繊維と、熱可塑性エラストマー(A)以外の熱可塑性樹脂(B)の長繊維と、を含む。 Patent Document 1 discloses a nonwoven fabric laminate with excellent elasticity and other properties. The nonwoven fabric laminate disclosed in Patent Document 1 is formed by laminating mixed fiber spunbonded nonwoven fabric layers on both sides of one or more meltblown nonwoven fabric layers. The mixed fiber spunbonded nonwoven fabric layer contains long fibers of a thermoplastic elastomer (A) and long fibers of a thermoplastic resin (B) other than the thermoplastic elastomer (A).
  特許文献1:国際公開第2007/138733号 Patent document 1: International Publication No. 2007/138733
 しかしながら、特許文献1の不織布積層体では、不織布積層体が巻かれた不織布ロールから不織布積層体を高速で(例えば、200m/分)巻き出すと、ブロッキングが発生するおそれがある。「ブロッキング」とは、不織布ロールに巻かれた不織布積層体同士が付着することに起因して、不織布ロールから不織布積層体を巻き出せなくなる現象(例えば、不織布積層体の破断の発生等)を示す。 However, in the nonwoven fabric laminate of Patent Document 1, there is a risk of blocking occurring when the nonwoven fabric laminate is unwound at high speed (e.g., 200 m/min) from the nonwoven fabric roll on which it is wound. "Blocking" refers to the phenomenon in which the nonwoven fabric laminate cannot be unwound from the nonwoven fabric roll due to the nonwoven fabric laminate sticking to itself when wound around the nonwoven fabric roll (e.g., breakage of the nonwoven fabric laminate, etc.).
 本開示の一形態は、上記課題に鑑み、不織布ロールから高速で巻き出されても、ブロッキングの発生を抑制することができる不織布積層体、並びに、伸縮性不織布積層体、繊維製品、吸収性物品、マスク及びハップ材を提供することを目的とする。 In view of the above problems, one embodiment of the present disclosure aims to provide a nonwoven fabric laminate that can suppress the occurrence of blocking even when unwound from a nonwoven fabric roll at high speed, as well as a stretchable nonwoven fabric laminate, a textile product, an absorbent article, a mask, and a poultice.
 前記課題を解決するための具体的手段には、下記の態様が含まれる。
 <1> 弾性不織布と、
 前記弾性不織布の両面側に配置された伸長性スパンボンド不織布と
を備え、
 下記式(1)で表される表面係数が、38以上である、不織布積層体。
 式(1):表面係数=[(前記弾性不織布に含まれる繊維の平均繊維径/前記伸長性スパンボンド不織布に含まれる繊維の平均繊維径)/地合係数]×10
 <2> 前記弾性不織布に含まれる前記繊維は、弾性不織布用樹脂組成物からなり、
 前記弾性不織布用樹脂組成物は、40℃における貯蔵弾性率E40と23℃における貯蔵弾性率E23との比(E40/E23)が37%以上であるα-オレフィン共重合体を含む、前記<1>に記載の不織布積層体。
 <3> 前記弾性不織布の総量に対する前記α-オレフィン共重合体の割合は、90質量%~100質量%であり、
 前記α-オレフィン共重合体は、エチレン及びプロピレンの共重合体であり、かつ前記α-オレフィン共重合体の融点は、130℃以下である、前記<2>に記載の不織布積層体。
 <4> 前記伸長性スパンボンド不織布に含まれる前記繊維は、伸長性スパンボンド不織布用樹脂組成物からなり、
 前記伸長性スパンボンド不織布用樹脂組成物は、
 プロピレン系重合体(A)と、
 ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と
を含む、前記<1>~<3>のいずれか1つに記載の不織布積層体。
 <5> 前記プロピレン系重合体(A)は、プロピレン単独重合体を含み、
 前記ポリマー(B)は、密度が0.94g/cm~0.97g/cmであるポリエチレンを含む、前記<4>に記載の不織布積層体。
 <6> 不織布積層体の目付に対する前記弾性不織布の目付の割合が、15%~48%である、前記<1>~<5>のいずれか1つに記載の不織布積層体。
 <7> 弾性不織布と、
 前記弾性不織布の両面側に配置された伸長性スパンボンド不織布と
を備え、
 前記伸長性スパンボンド不織布に含まれる繊維が海島型繊維であり、
 前記海島型繊維が、伸長性スパンボンド不織布用樹脂組成物からなり、
 前記伸長性スパンボンド不織布用樹脂組成物が、
 プロピレン単独重合体を含むプロピレン系重合体(A)と、
 ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と、
を含み、
 前記伸長性スパンボンド不織布に含まれる前記繊維の平均繊維径aが、前記弾性不織布に含まれる繊維の平均繊維径bよりも細い、不織布積層体。
 <8> 前記平均繊維径aに対する前記平均繊維径bの比率(b/a)が、1.0以上1.35以下である、前記<7>に記載の不織布積層体。
 <9> さらに、フィルム層を備える、前記<1>~<8>のいずれか1つに記載の不織布積層体。
 <10> 前記<1>~<9>のいずれか1つに記載の不織布積層体の延伸加工物である、伸縮性不織布積層体。
 <11> 前記<1>~<9>のいずれか1つに記載の不織布積層体を含む、繊維製品。
 <12> さらに係合可能な係合手段を含む、前記<11>に記載の繊維製品。
 <13> 前記<1>~<9>のいずれか1つに記載の不織布積層体を含む、吸収性物品。
 <14> 前記<1>~<9>のいずれか1つに記載の不織布積層体を含む、マスク。
 <15> 前記<1>~<9>のいずれか1つに記載の不織布積層体を含む、ハップ材。
Specific means for solving the above problems include the following aspects.
<1> An elastic nonwoven fabric,
and an extensible spunbond nonwoven fabric disposed on both sides of the elastic nonwoven fabric;
A nonwoven fabric laminate having a surface coefficient represented by the following formula (1) of 38 or more.
Equation (1): Surface coefficient = [(average fiber diameter of fibers contained in the elastic nonwoven fabric/average fiber diameter of fibers contained in the extensible spunbonded nonwoven fabric)/formation coefficient] x 104
<2> The fibers contained in the elastic nonwoven fabric are made of a resin composition for elastic nonwoven fabrics,
The resin composition for elastic nonwoven fabrics contains an α-olefin copolymer having a ratio (E40/E23) of a storage modulus E40 at 40° C. to a storage modulus E23 at 23° C. of 37% or more.
<3> A ratio of the α-olefin copolymer to the total amount of the elastic nonwoven fabric is 90% by mass to 100% by mass,
The nonwoven fabric laminate according to <2> above, wherein the α-olefin copolymer is a copolymer of ethylene and propylene, and the melting point of the α-olefin copolymer is 130° C. or lower.
<4> The fibers contained in the extensible spunbonded nonwoven fabric are made of a resin composition for extensible spunbonded nonwoven fabrics,
The resin composition for extensible spunbonded nonwoven fabrics is
A propylene-based polymer (A),
The nonwoven fabric laminate according to any one of <1> to <3> above, further comprising: a polymer (B) which is at least one selected from the group consisting of polyolefins (excluding propylene-based polymers (A)) and polyesters.
<5> The propylene polymer (A) contains a propylene homopolymer,
The nonwoven fabric laminate according to <4> above, wherein the polymer (B) contains polyethylene having a density of 0.94 g/cm 3 to 0.97 g/cm 3 .
<6> The nonwoven fabric laminate according to any one of <1> to <5>, wherein a ratio of the basis weight of the elastic nonwoven fabric to the basis weight of the nonwoven fabric laminate is 15% to 48%.
<7> An elastic nonwoven fabric,
and an extensible spunbond nonwoven fabric disposed on both sides of the elastic nonwoven fabric;
The fibers contained in the extensible spunbonded nonwoven fabric are islands-in-the-sea fibers,
The islands-in-the-sea fibers are made of a resin composition for extensible spunbonded nonwoven fabrics,
The resin composition for extensible spunbonded nonwoven fabrics is
A propylene-based polymer (A) containing a propylene homopolymer;
A polymer (B) which is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters;
Including,
A nonwoven fabric laminate, wherein the average fiber diameter a of the fibers contained in the extensible spunbonded nonwoven fabric is smaller than the average fiber diameter b of the fibers contained in the elastic nonwoven fabric.
<8> The nonwoven fabric laminate according to <7>, wherein a ratio (b/a) of the average fiber diameter b to the average fiber diameter a is 1.0 or greater and 1.35 or less.
<9> The nonwoven fabric laminate according to any one of <1> to <8>, further comprising a film layer.
<10> A stretchable nonwoven fabric laminate, which is a stretch-processed product of the nonwoven fabric laminate according to any one of <1> to <9>.
<11> A textile product comprising the nonwoven fabric laminate according to any one of <1> to <9>.
<12> The textile product according to <11>, further comprising an engaging means.
<13> An absorbent article comprising the nonwoven fabric laminate according to any one of <1> to <9>.
<14> A mask comprising the nonwoven fabric laminate according to any one of <1> to <9>.
<15> A plaster comprising the nonwoven fabric laminate according to any one of <1> to <9>.
 本開示の一形態によれば、不織布ロールから高速で巻き出されても、ブロッキングの発生を抑制することができる不織布積層体、並びに、伸縮性不織布積層体、繊維製品、吸収性物品、マスク及びハップ材が提供される。 According to one embodiment of the present disclosure, there is provided a nonwoven fabric laminate that can suppress the occurrence of blocking even when unwound from a nonwoven fabric roll at high speed, as well as a stretchable nonwoven fabric laminate, a textile product, an absorbent article, a mask, and a plaster.
図1は、ギア延伸装置の概略図である。FIG. 1 is a schematic diagram of a gear stretching device.
 以下に、本開示の実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、本用語に含まれる。本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本開示において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
Hereinafter, embodiments of the present disclosure will be described. These descriptions and examples are merely illustrative of the embodiments, and are not intended to limit the scope of the embodiments.
In the numerical ranges described in stages in this disclosure, the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages. In the numerical ranges described in this disclosure, the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
In the present disclosure, each component may contain multiple types of corresponding substances. When referring to the amount of each component in a composition in the present disclosure, if multiple substances corresponding to each component are present in the composition, the total amount of the multiple substances present in the composition is meant unless otherwise specified.
In the present disclosure, the term "process" includes not only an independent process, but also a process that cannot be clearly distinguished from other processes, as long as the purpose of the process is achieved. In the present disclosure, a numerical range indicated using "to" indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively. In the present disclosure, the content of each component in a composition means the total amount of the multiple substances present in the composition when multiple substances corresponding to each component are present in the composition, unless otherwise specified.
(1)第1実施形態の不織布積層体
 本開示の第1実施形態の不織布積層体は、弾性不織布と、前記弾性不織布の両面側に配置された伸長性スパンボンド不織布とを備える。下記式(1)で表される表面係数が、38以上である。
 式(1):表面係数=[(前記弾性不織布に含まれる繊維の平均繊維径/前記伸長性スパンボンド不織布に含まれる繊維の平均繊維径)/地合係数]×10
The nonwoven fabric laminate of the first embodiment of the present disclosure includes an elastic nonwoven fabric and an extensible spunbonded nonwoven fabric disposed on both sides of the elastic nonwoven fabric. The surface coefficient represented by the following formula (1) is 38 or more.
Equation (1): Surface coefficient = [(average fiber diameter of fibers contained in the elastic nonwoven fabric/average fiber diameter of fibers contained in the extensible spunbonded nonwoven fabric)/formation coefficient] x 104
 「弾性不織布」とは、弾性を有する不織布を示す。「弾性を有する不織布」とは、不織布が、延伸した後に応力が解放されると、弾性により不織布が延伸される前の形状に回復する性質を有する不織布を示す。本開示に関わる弾性不織布に含まれる前記繊維は、弾性不織布用樹脂組成物からなり、前記弾性不織布用樹脂組成物の貯蔵弾性率E23は、25.0MPa以下である。前記弾性不織布用樹脂組成物の貯蔵弾性率E23が25.0MPaを超えると、不織布積層体の伸縮特性が低下しやすくなる傾向がある。不織布積層体の伸縮特性の向上の観点から、弾性不織布用樹脂組成物の貯蔵弾性率E23は、22.0MPa以下であることが好ましく、18.0MPa以下であることが更に好ましい。貯蔵弾性率E23の測定方法は、実施例に記載の方法と同様である。
 なお、貯蔵弾性率E23が25.0MPa以下である弾性不織布用樹脂組成物は、表面層、裏面層、及び中間層のいずれの層に含まれていても、不織布積層体の伸縮特性に影響を及ぼし得るものである。「不織布」とは、製織,編成及び製紙を除く,物理的方法及び/又は化学的方法によって所定のレベルの構造的強さが得られている平面状の繊維集合体を示す。
 「伸長性スパンボンド不織布」とは、伸長性を有するスパンボンド不織布を示す。「伸長性を有する」とは、スパンボンド不織布が、第1性質及び第2性質を有することを示す。「第1性質」とは、スパンボンド不織布に外力が加えられると、スパンボンド不織布の外形が一方向に伸びる性質を示す。「第2性質」とは、スパンボンド不織布に加えられた外力が解除されても、スパンボンド不織布の外形は後戻りしにくい性質を示す。具体的に、伸長性を有する不織布とは、その最大点伸度が50%以上、好ましくは70%以上、より好ましくは100%以上であり、かつほとんど弾性回復しない性質を示す。
 「スパンボンド不織布」とは、スパンレイドウェブに一つ又は二つ以上の結合方法で作られた不織布を示す。「スパンレイドウェブ」とは、スピンレイ積層のよって積層されたウェブを示す。「スピンレイ積層」とは、溶融又は溶解されたポリマーをノズルから押し出し,フィラメントを動くスクリーン上に積層して,ウェブを作る方式を示す。
 「地合係数」とは、不織布の均一性を示す。地合係数の定量化方法は、実施例に記載の測定方法と同様である。地合係数がより低いことは、不織布の均一性がより高いことを示す。
"Elastic nonwoven fabric" refers to a nonwoven fabric having elasticity. "Elastic nonwoven fabric" refers to a nonwoven fabric having a property that when the stress is released after the nonwoven fabric is stretched, the nonwoven fabric recovers to the shape before the nonwoven fabric is stretched due to elasticity. The fibers contained in the elastic nonwoven fabric according to the present disclosure are made of a resin composition for elastic nonwoven fabric, and the storage modulus E23 of the resin composition for elastic nonwoven fabric is 25.0 MPa or less. If the storage modulus E23 of the resin composition for elastic nonwoven fabric exceeds 25.0 MPa, the stretch properties of the nonwoven fabric laminate tend to be easily reduced. From the viewpoint of improving the stretch properties of the nonwoven fabric laminate, the storage modulus E23 of the resin composition for elastic nonwoven fabric is preferably 22.0 MPa or less, and more preferably 18.0 MPa or less. The method for measuring the storage modulus E23 is the same as that described in the examples.
In addition, a resin composition for elastic nonwoven fabrics having a storage modulus E23 of 25.0 MPa or less can affect the stretch properties of the nonwoven fabric laminate whether it is contained in the front layer, back layer, or intermediate layer. "Nonwoven fabric" refers to a flat fiber assembly that has a predetermined level of structural strength obtained by physical and/or chemical methods, excluding weaving, knitting, and papermaking.
"Extensible spunbond nonwoven fabric" refers to a spunbond nonwoven fabric having extensibility. "Having extensibility" refers to the spunbond nonwoven fabric having a first property and a second property. "First property" refers to the property that the outer shape of the spunbond nonwoven fabric stretches in one direction when an external force is applied to the spunbond nonwoven fabric. "Second property" refers to the property that the outer shape of the spunbond nonwoven fabric does not easily return to its original shape even when the external force applied to the spunbond nonwoven fabric is released. Specifically, a nonwoven fabric having extensibility refers to a fabric having a maximum elongation of 50% or more, preferably 70% or more, more preferably 100% or more, and exhibiting almost no elastic recovery.
"Spunbond nonwoven" refers to a nonwoven fabric made by one or more bonding methods to a spunlaid web. "Spunlaid web" refers to a web laminated by spinlaid lamination. "Spinlaid lamination" refers to a method of making a web by extruding molten or dissolved polymer through a nozzle and laying the filaments onto a moving screen.
"Formation coefficient" refers to the uniformity of the nonwoven fabric. The method for quantifying the formation coefficient is the same as the measurement method described in the Examples. A lower formation coefficient indicates a more uniform nonwoven fabric.
 第1実施形態の不織布積層体は、上記の構成を有するので、不織布ロールから高速で(例えば、200m/分)巻き出されても、ブロッキングの発生を抑制することができる。
 この効果は、以下の理由によると推測されるが、これに限定されない。
 弾性不織布は、一般に粘着性を有する。表面係数が38以上であることは、不織布積層体が巻かれた不織布ロールにおいて、不織布積層体に巻き締まりによる圧力が掛かっても、不織布積層体に含まれる弾性不織布が不織布積層体の表面に露出しにくいことを示す。そのため、不織布ロールにおいて、不織布積層体同士は、付着しにくい。その結果、第1実施形態の不織布積層体は、不織布ロールから高速で巻き出されても、ブロッキングの発生を抑制することができると推測される。
Since the nonwoven fabric laminate of the first embodiment has the above-mentioned configuration, the occurrence of blocking can be suppressed even when the nonwoven fabric laminate is unwound from the nonwoven fabric roll at high speed (e.g., 200 m/min).
This effect is believed to be due to, but not limited to, the following reasons.
Elastic nonwoven fabrics generally have adhesive properties. A surface coefficient of 38 or more indicates that in a nonwoven fabric roll around which a nonwoven fabric laminate is wound, even if pressure is applied to the nonwoven fabric laminate due to tightening, the elastic nonwoven fabric contained in the nonwoven fabric laminate is unlikely to be exposed on the surface of the nonwoven fabric laminate. Therefore, in the nonwoven fabric roll, the nonwoven fabric laminates are unlikely to adhere to each other. As a result, it is presumed that the nonwoven fabric laminate of the first embodiment can suppress the occurrence of blocking even when unwound from the nonwoven fabric roll at high speed.
 表面係数は、38以上であり、不織布ロールから高速で(例えば、200m/分)巻き出されても、ブロッキングの発生をより抑制する観点から、好ましくは38~60、より好ましくは38~50である。
 表面係数の算出方法は、実施例に記載の方法と同様である。
The surface coefficient is 38 or more, and from the viewpoint of further suppressing the occurrence of blocking even when the nonwoven fabric is unwound from a roll at high speed (e.g., 200 m/min), it is preferably 38 to 60, more preferably 38 to 50.
The method for calculating the surface coefficient is the same as that described in the examples.
 表面係数を38以上にする方法は、弾性不織布に含まれる繊維の平均繊維径をより太く、伸縮性不織布積層体に含まれる繊維の平均繊維径をより細く、地合係数がより低くなるように設計することが好ましい。具体的には、単孔吐出量(g/hole)や、延伸エア速度(m/min)、樹脂組成物のメルトフローレート(MFR:Melt Flow Rate)の調整が挙げられる。地合い係数を設計する手段としては、単孔吐出量(g/hole)やサクションブロワ風量の調整が挙げられる。 The method of increasing the surface coefficient to 38 or more is preferably to design the fibers contained in the elastic nonwoven fabric to have a thicker average fiber diameter and the fibers contained in the stretchable nonwoven fabric laminate to have a thinner average fiber diameter, resulting in a lower formation coefficient. Specifically, this can be achieved by adjusting the single-hole output (g/hole), the stretching air speed (m/min), and the melt flow rate (MFR: Melt Flow Rate) of the resin composition. Methods for designing the formation coefficient include adjusting the single-hole output (g/hole) and the suction blower air volume.
 不織布積層体の目付(以下、「総合目付」ともいう。)に対する前記弾性不織布の目付の割合(以下、「目付割合(NW/全体)」ともいう。)は、特に限定されず、15%~48%であることが好ましい。これにより、不織布積層体の弾性特性とロール製造時の耐ブロッキング性とを両立できる。
 目付割合(NW/全体)は、糸切れ改善の観点から、より好ましくは20%~48%、より柔軟な不織布の観点から、さらに好ましくは20%~43%、特に好ましくは25%~43%である。
The ratio of the basis weight of the elastic nonwoven fabric to the basis weight of the nonwoven fabric laminate (hereinafter also referred to as "total basis weight") is not particularly limited, but is preferably 15% to 48%. This allows the elasticity of the nonwoven fabric laminate and blocking resistance during roll production to be compatible.
The basis weight ratio (NW/total) is more preferably 20% to 48% from the viewpoint of improving yarn breakage, and from the viewpoint of a softer nonwoven fabric, it is further preferably 20% to 43%, and particularly preferably 25% to 43%.
 総合目付は、特に限定されず、好ましくは360g/m以下、より好ましくは240g/m以下、さらに好ましくは150g/m以下、特に好ましくは15g/m~120g/m、一層好ましくは20g/m~80g/m、より一層好ましくは25g/m~70g/mである。
 不織布積層体の総合目付の測定方法は、実施例と同様である。
The total basis weight is not particularly limited, but is preferably 360 g/ m2 or less, more preferably 240 g/ m2 or less, even more preferably 150 g/ m2 or less, particularly preferably 15 g/ m2 to 120 g/ m2 , even more preferably 20 g/ m2 to 80 g/ m2 , and even more preferably 25 g/ m2 to 70 g/ m2 .
The method for measuring the total basis weight of the nonwoven fabric laminate was the same as in the examples.
(1.1)伸長性スパンボンド不織布
 第1実施形態の不織布積層体は、伸長性スパンボンド不織布を備える。
(1.1) Extensible Spunbond Nonwoven Fabric The nonwoven fabric laminate of the first embodiment includes an extensible spunbond nonwoven fabric.
 伸長性スパンボンド不織布の目付は、好ましくは5g/m~120g/m、より好ましくは8g/m~50g/mである。用途に応じて好ましい範囲が異なり、より柔軟な不織布が求められる用途における伸長性スパンボンド不織布の目付は、さらに好ましくは13g/m~35g/m、特に好ましくは13g/m~24.9g/m、一層好ましくは16g/m~21g/mである。他方、比較的強度が求められる用途における伸長性スパンボンド不織布の目付は、さらに好ましくは35g/m超50g/m以下である。
 伸長性スパンボンド不織布の目付の測定方法は、実施例に記載の方法と同様である。
The basis weight of the extensible spunbonded nonwoven fabric is preferably 5 g/m 2 to 120 g/m 2 , more preferably 8 g/m 2 to 50 g/m 2. The preferred range varies depending on the application, and in applications requiring a softer nonwoven fabric, the basis weight of the extensible spunbonded nonwoven fabric is more preferably 13 g/m 2 to 35 g/m 2 , particularly preferably 13 g/m 2 to 24.9 g/m 2 , and even more preferably 16 g/m 2 to 21 g/m 2. On the other hand, in applications requiring relatively high strength, the basis weight of the extensible spunbonded nonwoven fabric is more preferably more than 35 g/m 2 and not more than 50 g/m 2 .
The method for measuring the basis weight of the extensible spunbonded nonwoven fabric is the same as that described in the Examples.
(1.1.1)繊維
 伸長性スパンボンド不織布を構成する繊維(以下、「伸長性繊維」ともいう。)の平均繊維径(以下、「平均繊維径a」ともいう)は、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは25μm以下である。伸長性繊維の平均繊維径aは、好ましくは1μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上である。ブロッキングをより抑制する観点からは、伸長性繊維の平均繊維径aが弾性不織布を構成する繊維(以下、「弾性繊維」ともいう)の平均繊維径(以下、「平均繊維径b」ともいう)と同等もしくは、平均繊維径aより細いことが好ましく、平均繊維径bが平均繊維径aより細いことがより好ましい。ブロッキング抑制の観点及び、糸切れ回数低減の観点から、伸長性繊維の平均繊維径aに対する弾性繊維の平均繊維径bの比率(b/a)(以下、「繊維系比率(b/a)」ともいう)が1.0以上1.35以下であることがより好ましく、1.0超1.35以下がより好ましい。
 伸長性繊維の平均繊維径aの測定方法は、実施例に記載の方法と同様である。
(1.1.1) Fibers The average fiber diameter (hereinafter also referred to as "average fiber diameter a") of the fibers (hereinafter also referred to as "extensible fibers") constituting the extensible spunbonded nonwoven fabric is preferably 50 μm or less, more preferably 40 μm or less, even more preferably 30 μm or less, and particularly preferably 25 μm or less. The average fiber diameter a of the extensible fibers is preferably 1 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more. From the viewpoint of further suppressing blocking, it is preferable that the average fiber diameter a of the extensible fibers is equal to or smaller than the average fiber diameter (hereinafter also referred to as "average fiber diameter b") of the fibers (hereinafter also referred to as "elastic fibers") constituting the elastic nonwoven fabric, and it is more preferable that the average fiber diameter b is smaller than the average fiber diameter a. From the viewpoint of suppressing blocking and reducing the number of yarn breakages, the ratio (b/a) of the average fiber diameter b of the elastic fibers to the average fiber diameter a of the extendible fibers (hereinafter also referred to as the "fiber ratio (b/a)") is more preferably 1.0 or more and 1.35 or less, and more preferably more than 1.0 and 1.35 or less.
The method for measuring the average fiber diameter a of the extendable fiber is the same as that described in the Examples.
 伸長性繊維は、長繊維であってもよいし、短繊維であってもよい。伸長性繊維の断面形状は、特に制限されず、例えば、円形、楕円形、異形断面等が挙げられる。 The extensible fibers may be long or short fibers. There are no particular limitations on the cross-sectional shape of the extensible fibers, and examples of such shapes include circular, elliptical, and irregular cross-sectional shapes.
 伸長性繊維は、例えば、芯鞘型、サイドバイサイド型、海島型、又は並列型であってもよい。芯鞘型繊維は、芯部及び鞘部を備えていればよく、同芯の芯鞘型及び偏芯の芯鞘型のいずれであってもよい。偏芯の芯鞘型繊維は、芯部が表面に露出していてもよく、芯部が表面に露出していなくてもよい。海島型繊維は、海相と、複数の島相とを有する。
 中でも、伸長性繊維は、海島型又は同芯の芯鞘型であることが好ましく、海島型であることがより好ましい。伸長性繊維が海島型であると、伸長性スパンボンド不織布の原料である樹脂組成物の紡糸時に発生する糸切れ回数が少なくなる。その結果、不織布積層体の生産性は、向上する。糸切れ回数が少ないと、繊維末端が不織布表面に露出する繊維本数も減らすことができ、チクチク感といった肌触りをも改善できる。
The extensible fibers may be, for example, sheath-core, side-by-side, islands-in-the-sea, or side-by-side. The sheath-core fibers have only to have a core and a sheath, and may be either a concentric sheath-core type or an eccentric sheath-core type. The eccentric sheath-core fibers may have the core exposed on the surface, or may not have the core exposed on the surface. The islands-in-the-sea fibers have a sea phase and a plurality of island phases.
Among these, the extensible fibers are preferably islands-in-sea type or concentric core-sheath type, and more preferably islands-in-sea type. When the extensible fibers are islands-in-sea type, the number of thread breaks that occur during spinning of the resin composition that is the raw material of the extensible spunbonded nonwoven fabric is reduced. As a result, the productivity of the nonwoven fabric laminate is improved. When the number of thread breaks is reduced, the number of fibers whose fiber ends are exposed on the nonwoven fabric surface can be reduced, and the feel of the skin, such as a prickly feeling, can also be improved.
(1.1.2)伸長性スパンボンド不織布用樹脂組成物
 伸長性繊維は、伸長性スパンボンド不織布用樹脂組成物(以下、「樹脂組成物(SB)」ともいう。)からなる。
 樹脂組成物(SB)は、オレフィン系重合体を含むことが好ましく、オレフィン系重合体のみを含んでもよい。オレフィン系重合体は、ポリオレフィン系エラストマーであってもよい。
 オレフィン系重合体は、1種単独であってもよく、2種以上の併用であってもよい。
(1.1.2) Resin composition for extensible spunbond nonwoven fabric The extensible fiber is made of a resin composition for extensible spunbond nonwoven fabric (hereinafter also referred to as "resin composition (SB)").
The resin composition (SB) preferably contains an olefin-based polymer, and may contain only an olefin-based polymer. The olefin-based polymer may be a polyolefin-based elastomer.
The olefin polymer may be used alone or in combination of two or more kinds.
(1.1.2.1)オレフィン系重合体
 オレフィン系重合体は、結晶性を有する重合体であることが好ましい。結晶性を有する重合における結晶性成分としては、例えば、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン等が挙げられる。オレフィン系重合体は、1種単独であってもよく、2種以上の併用であってもよい。
(1.1.2.1) Olefin-based polymer The olefin-based polymer is preferably a polymer having crystallinity. Examples of crystalline components in the polymerization having crystallinity include polypropylene, poly-1-butene, poly-4-methyl-1-pentene, etc. The olefin-based polymer may be one type alone or two or more types in combination.
 オレフィン系重合体としては、プロピレン系重合体(A)、ポリオレフィン(プロピレン系重合体(A)を除く。)が挙げられる。プロピレン系重合体(A)及びポリオレフィン(プロピレン系重合体(A)を除く。)の各々は、1種のみであってもよく、融点、分子量、結晶構造などが互いに異なる2種以上であってもよい。 Examples of the olefin polymer include propylene polymer (A) and polyolefin (excluding propylene polymer (A)). Each of the propylene polymer (A) and polyolefin (excluding propylene polymer (A)) may be of only one type, or may be of two or more types having different melting points, molecular weights, crystal structures, etc.
(1.1.2.1.1)プロピレン系重合体(A)
 プロピレン系重合体(A)は、プロピレンに由来する構成単位を含む。
 プロピレン系重合体(A)は、プロピレン単独重合体、又はプロピレン共重合体である。プロピレン共重合体は、プロピレンと少なくとも1種のエチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等との共重合体であることが好ましい。
 なかでも、プロピレン系重合体(A)は、プロピレン単独重合体を含むことが好ましく、プロピレン単独重合体であることがより好ましい。
(1.1.2.1.1) Propylene-based polymer (A)
The propylene polymer (A) contains structural units derived from propylene.
The propylene polymer (A) is a propylene homopolymer or a propylene copolymer. The propylene copolymer is preferably a copolymer of propylene and at least one of ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, etc.
In particular, the propylene polymer (A) preferably contains a propylene homopolymer, and more preferably is a propylene homopolymer.
 プロピレン系重合体(A)の融点は、好ましくは140℃以上、より好ましくは150℃以上、更に好ましくは155℃以上、特に好ましくは157℃~165℃である。
 プロピレン系重合体(A)の融点の測定方法は、実施例に記載の方法と同様である。プロピレン系重合体(A)が2種以上含まれる場合、プロピレン系重合体(A)の融点とは、2種のうち温度の高い方をいう(以下、2種以上の成分について同じ)。
The melting point of the propylene polymer (A) is preferably 140°C or higher, more preferably 150°C or higher, further preferably 155°C or higher, particularly preferably 157°C to 165°C.
The method for measuring the melting point of the propylene polymer (A) is the same as that described in the Examples. When two or more kinds of propylene polymers (A) are contained, the melting point of the propylene polymer (A) refers to the higher of the two (hereinafter the same applies to two or more components).
 プロピレン系重合体(A)のMFRは、樹脂組成物(SB)を溶融紡糸できれば特に限定されず、好ましくは1g/10分~1000g/10分、より好ましくは5g/10分~500g/10分、更に好ましくは10g/10分~100g/10分である。
 プロピレン系重合体(A)のMFRの測定方法は、ASTM D-1238に準拠し、測定条件は、230℃、荷重2.16kgである。プロピレン系重合体(A)が2種以上含まれる場合、プロピレン系重合体(A)のMFRとは、2種以上のプロピレン系重合体(A)を含む樹脂組成物のMFRをいう(以下、2種以上の成分について同じ)。
The MFR of the propylene polymer (A) is not particularly limited as long as the resin composition (SB) can be melt-spun, and is preferably 1 g/10 min to 1,000 g/10 min, more preferably 5 g/10 min to 500 g/10 min, and even more preferably 10 g/10 min to 100 g/10 min.
The MFR of the propylene polymer (A) is measured in accordance with ASTM D-1238 under the conditions of 230° C. and a load of 2.16 kg. When two or more types of propylene polymers (A) are contained, the MFR of the propylene polymer (A) refers to the MFR of a resin composition containing two or more types of propylene polymers (A) (hereinafter the same applies to two or more components).
 プロピレン系重合体(A)の含有量は、樹脂組成物(SB)の全量に対して、好ましくは55.0質量%~95.0質量%、より好ましくは65.0質量%~95.0質量%、更に好ましくは75.0質量%~95.0質量%、特に好ましくは85.0質量%~95.0質量%である。 The content of the propylene polymer (A) is preferably 55.0% by mass to 95.0% by mass, more preferably 65.0% by mass to 95.0% by mass, even more preferably 75.0% by mass to 95.0% by mass, and particularly preferably 85.0% by mass to 95.0% by mass, based on the total amount of the resin composition (SB).
 プロピレン系重合体(A)は、市販品であってもよい。 The propylene polymer (A) may be a commercially available product.
(1.1.2.1.2)バイオマス由来プロピレン系重合体
 プロピレン系重合体(A)は、バイオマス由来プロピレン系重合体であってもよい。
(1.1.2.1.2) Biomass-derived propylene polymer The propylene polymer (A) may be a biomass-derived propylene polymer.
 「バイオマス由来プロピレン系重合体」とは、バイオマス由来プロピレンを含む原料モノマーから製造されるプロピレン系重合体(A)を示す。バイオマス由来プロピレン系重合体は、カーボンニュートラルな材料であるため、不織布積層体の製造における環境負荷を低減することができる。 "Biomass-derived propylene-based polymer" refers to a propylene-based polymer (A) produced from a raw material monomer containing biomass-derived propylene. Since biomass-derived propylene-based polymers are carbon-neutral materials, they can reduce the environmental impact of producing nonwoven fabric laminates.
 バイオマス由来プロピレン系重合体の原料となるバイオマス由来プロピレンを含むモノマーは、バイオマスナフサのクラッキングやバイオマス由来エチレンから合成することで得られる。バイオマス由来プロピレン系重合体は、このようにして合成したバイオマス由来プロピレン含有モノマーを、従来公知の石油由来プロピレンを用いる場合と同様の方法により重合することによって得られる。
 バイオ由来プロピレン含有モノマーを原料として合成したプロピレン系重合体は、バイオマス由来プロピレン系重合体となる。原料モノマー中のバイオ由来プロピレン系重合体の含量は、原料モノマーの総量に対して、0質量%超であり、100質量%であってもよいし、それ以下でもよい。
 バイオマス由来プロピレン系重合体の原料であるモノマーは、バイオ由来プロピレンの他、石油等の化石燃料由来のプロピレン、および/または、エチレンやプロピレン以外の1-ブテン、1-ヘキセン等をさらに含んでもよい。
The biomass-derived propylene-containing monomer, which is the raw material of the biomass-derived propylene-based polymer, can be obtained by cracking biomass naphtha or synthesizing it from biomass-derived ethylene. The biomass-derived propylene-based polymer can be obtained by polymerizing the biomass-derived propylene-containing monomer thus synthesized by the same method as that used in the case of using petroleum-derived propylene.
A propylene-based polymer synthesized using a bio-derived propylene-containing monomer as a raw material is a biomass-derived propylene-based polymer. The content of the bio-derived propylene-based polymer in the raw material monomer is more than 0 mass% and may be 100 mass% or less with respect to the total amount of the raw material monomer.
The monomers that are the raw materials for the biomass-derived propylene-based polymer may further include, in addition to bio-derived propylene, propylene derived from fossil fuels such as petroleum, and/or 1-butene, 1-hexene, and the like other than ethylene and propylene.
 バイオマス由来プロピレン系重合体は、ヤシ殻等の空果房(EFB:Empty Fruit Bunches)を熱分解することで発生するガスを用いた、メタノールからのオレフィン(MTO:Methanol-to-Olefins)あるいはメタノールからのプロピレン(MTP:Methanol-to-Propylene)の合成によって得られるプロピレンを重合することによっても得られる。
 さらに、バイオマス由来プロピレン系重合体は、ソルゴー等の非可食植物を主体とするバイオマス原料から、発酵によって製造したイソプロパノールを脱水して得られるプロピレンを重合することによっても得られる。
Biomass-derived propylene polymers can also be obtained by polymerizing propylene obtained by synthesis of methanol-to-olefins (MTO) or methanol-to-propylene (MTP) using gas generated by pyrolysis of empty fruit bunches (EFB) such as coconut shells.
Furthermore, biomass-derived propylene polymers can also be obtained by polymerizing propylene obtained by dehydrating isopropanol produced by fermentation of biomass raw materials mainly consisting of non-edible plants such as sorgo.
 原料とするプロピレン等のモノマー中の放射性炭素(C14)の含有量をPC14とした場合、原料中のバイオマス由来の炭素の含有率Pbio(%)は、次の式により算出することができる。
 式(2):Pbio(%)=PC14/105.5×100
When the content of radioactive carbon (C14) in the raw material monomer such as propylene is defined as PC14, the content of biomass-derived carbon in the raw material, Pbio (%), can be calculated by the following formula.
Formula (2): Pbio (%) = PC14/105.5 x 100
 すなわち、プロピレン系重合体の原料が全てバイオマス由来であれば、理論上は、バイオマス由来の炭素の含有率は100%となる。そのため、バイオマス由来プロピレン系重合体のバイオマス度は100%となる。化石燃料由来の原料にはC14が殆ど含まれていないので、化石燃料由来原料のみで製造されたプロピレン系重合体中の、バイオマス由来の炭素の含有率は0%となり、化石燃料由来プロピレン系重合体のバイオマス度は0%となる。 In other words, if all the raw materials for a propylene-based polymer are biomass-derived, then in theory the biomass-derived carbon content will be 100%. Therefore, the biomass degree of a biomass-derived propylene-based polymer will be 100%. Since fossil fuel-derived raw materials contain almost no C14, the biomass-derived carbon content in a propylene-based polymer produced only from fossil fuel-derived raw materials will be 0%, and the biomass degree of a fossil fuel-derived propylene-based polymer will be 0%.
 「バイオマス度」は、バイオマス由来の炭素の含有率を示し、放射性炭素(C14)を測定することにより算出される。大気中の二酸化炭素には、C14が一定割合(約105.5pMC)で含まれている。そのため、大気中の二酸化炭素を取り入れて成長する植物(例えばトウモロコシ)中のC14含有量も約105.5pMC程度であることが知られている。化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、プロピレン系重合体中の全炭素原子中に含まれるC14の割合を測定することにより、原料中のバイオマス由来の炭素の含有率を算出することができる。 "Biomass degree" indicates the percentage of carbon derived from biomass, and is calculated by measuring radioactive carbon (C14). Carbon dioxide in the atmosphere contains a certain percentage of C14 (approximately 105.5 pMC). For this reason, it is known that the C14 content in plants that grow by absorbing carbon dioxide from the atmosphere (such as corn) is also about 105.5 pMC. It is also known that fossil fuels contain very little C14. Therefore, by measuring the percentage of C14 contained in the total carbon atoms in the propylene polymer, the content of carbon derived from biomass in the raw material can be calculated.
 第1実施形態の不織布積層体の原料として用いられるプロピレン系重合体のバイオマス度は、5%以上であることが好ましい。 The biomass content of the propylene-based polymer used as the raw material for the nonwoven fabric laminate of the first embodiment is preferably 5% or more.
 第1実施形態の不織布積層体に用いられるバイオマス由来プロピレン系重合体の含有量は、化石燃料由来ポリプロピン樹脂とバイオマス由来ポリプロピン樹脂の合計100質量%に対して、5質量%~99質量%であってよく、10質量%~75質量%であってよく、20質量%~50質量%であってよい。 The content of the biomass-derived propylene-based polymer used in the nonwoven fabric laminate of the first embodiment may be 5% by mass to 99% by mass, 10% by mass to 75% by mass, or 20% by mass to 50% by mass, relative to 100% by mass of the total of the fossil fuel-derived polypropylene resin and the biomass-derived polypropylene resin.
 第1実施形態の不織布積層体の原料として用いられるプロピレン系重合体(A)は、リサイクルによって得られたプロピレン系重合体、いわゆるリサイクルポリマーを含んでいてもよい。
 「リサイクルポリマー」とは、廃ポリマー製品のリサイクルにより得られたポリマーを含むものであり、例えば、DE102019127827(A1)に記載の方法で製造することができる。リサイクルポリマーは、リサイクルにより得られたことが識別できるようなマーカーを含んでいてもよい。
The propylene-based polymer (A) used as a raw material for the nonwoven fabric laminate of the first embodiment may contain a propylene-based polymer obtained by recycling, that is, a so-called recycled polymer.
The term "recycled polymer" includes polymers obtained by recycling waste polymer products, and can be produced, for example, by the method described in DE 10 2019 127 827 (A1). The recycled polymer may contain a marker that identifies it as having been obtained by recycling.
(1.1.2.1.3)ポリオレフィン(プロピレン系重合体(A)を除く。)
 ポリオレフィン(プロピレン系重合体(A)を除く。)は、α-オレフィンの単独又は共重合体である。α-オレフィンは、炭素数2以上(但し炭素数3を除く)のα-オレフィンであり、炭素数2~8(但し炭素数3を除く)のα-オレフィンの単独重合体を含むことが好ましく、炭素数2~8(但し炭素数3を除く)のα-オレフィンの単独重合体であることがより好ましい。α-オレフィンの具体例としては、例えば、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等が挙げられる。なかでも、α-オレフィンは、エチレンであることが好ましい。
 具体的に、ポリオレフィン(プロピレン系重合体(A)を除く。)は、ポリエチレン(エチレン単独重合体)、1-ブテン系重合体、ポリ4-メチル-1-ペンテン等が挙げられる。
 ポリエチレンとしては、高圧法低密度ポリエチレン、線状低密度ポリエチレン(LLDPE:Linear Low Density Polyethylene)、高密度ポリエチレン(HDPE:High Density Polyethylene)等が挙げられる。
 1-ブテン系重合体としては、1-ブテン単独重合体、1-ブテン・エチレン共重合体、1-ブテン・プロピレン共重合体等が挙げられる。
(1.1.2.1.3) Polyolefins (excluding propylene polymers (A))
The polyolefin (excluding the propylene polymer (A)) is a homopolymer or copolymer of an α-olefin. The α-olefin is an α-olefin having 2 or more carbon atoms (excluding 3 carbon atoms), and preferably includes a homopolymer of an α-olefin having 2 to 8 carbon atoms (excluding 3 carbon atoms), and more preferably is a homopolymer of an α-olefin having 2 to 8 carbon atoms (excluding 3 carbon atoms). Specific examples of the α-olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and 4-methyl-1-pentene. Of these, the α-olefin is preferably ethylene.
Specifically, examples of polyolefins (excluding the propylene polymer (A)) include polyethylene (ethylene homopolymer), 1-butene polymer, poly-4-methyl-1-pentene, and the like.
Examples of polyethylene include high-pressure low-density polyethylene, linear low-density polyethylene (LLDPE), and high-density polyethylene (HDPE).
Examples of the 1-butene polymer include 1-butene homopolymer, 1-butene-ethylene copolymer, and 1-butene-propylene copolymer.
 ポリエチレンの密度は、伸長性スパンボンド不織布の引張強度を向上させる観点、伸長性スパンボンド不織布の伸長性及び柔軟性の観点から、好ましくは0.94g/cm~0.98g/cm、より好ましくは0.94g/cm~0.97g/cmである。 From the viewpoints of improving the tensile strength of the extensible spunbonded nonwoven fabric and of the extensibility and flexibility of the extensible spunbonded nonwoven fabric, the density of the polyethylene is preferably 0.94 g/cm 3 to 0.98 g/cm 3 , and more preferably 0.94 g/cm 3 to 0.97 g/cm 3 .
 ポリオレフィン(プロピレン系重合体(A)を除く。)の融点は、好ましくは150℃以上、より好ましくは155℃以上、更に好ましくは155℃~165℃である。 The melting point of the polyolefin (excluding the propylene polymer (A)) is preferably 150°C or higher, more preferably 155°C or higher, and even more preferably 155°C to 165°C.
 ポリオレフィン(プロピレン系重合体(A)を除く。)のMFRは、樹脂組成物(SB)の溶融物を紡糸できれば特に限定されず、好ましくは1g/10分~1000g/10分、より好ましくは2g/10分~500g/10分、更に好ましくは3g/10分~100g/10分である。
 ポリオレフィン(プロピレン系重合体(A)を除く。)がポリエチレンの場合、MFRの測定方法は、ASTM D-1238に準拠し、測定条件は、190℃、荷重2.16kgである。
The MFR of the polyolefin (excluding the propylene-based polymer (A)) is not particularly limited as long as the melt of the resin composition (SB) can be spun, and is preferably 1 g/10 min to 1000 g/10 min, more preferably 2 g/10 min to 500 g/10 min, and even more preferably 3 g/10 min to 100 g/10 min.
When the polyolefin (excluding the propylene-based polymer (A)) is polyethylene, the MFR is measured in accordance with ASTM D-1238 under the measurement conditions of 190° C. and a load of 2.16 kg.
 ポリオレフィン(プロピレン系重合体(A)を除く。)の含有量は、樹脂組成物(SB)の全量に対して、好ましくは1.0質量%~10.0質量%、より好ましくは3.0質量%~8.0質量%、さらに好ましくは5.0質量%~7.0質量%である。ポリオレフィン(プロピレン系重合体(A)を除く。)の含有量が上記範囲であれば、伸長性スパンボンド不織布の伸長性は向上する。 The content of polyolefin (excluding propylene-based polymer (A)) is preferably 1.0 mass% to 10.0 mass%, more preferably 3.0 mass% to 8.0 mass%, and even more preferably 5.0 mass% to 7.0 mass%, based on the total amount of resin composition (SB). If the content of polyolefin (excluding propylene-based polymer (A)) is within the above range, the extensibility of the extensible spunbond nonwoven fabric is improved.
(1.1.2.2)その他の重合体
 樹脂組成物(SB)は、オレフィン系重合体以外の重合体(以下、「その他の重合体」とも称する)を含んでいてもよく、その他の重合体を含んでいなくてもよい。その他の重合体としては、例えば、熱可塑性エラストマー及びオレフィン系重合体以外の熱可塑性樹脂が挙げられる。
(1.1.2.2) Other Polymers The resin composition (SB) may contain a polymer other than the olefin-based polymer (hereinafter also referred to as "other polymers"), or may not contain other polymers. Examples of other polymers include thermoplastic elastomers and thermoplastic resins other than the olefin-based polymers.
 熱可塑性エラストマーとしては、具体的には、スチレン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、熱可塑性ポリウレタン系エラストマー、塩化ビニル系エラストマー、フッ素系エラストマー等が挙げられる。 Specific examples of thermoplastic elastomers include styrene-based elastomers, polyester-based elastomers, polyamide-based elastomers, thermoplastic polyurethane-based elastomers, vinyl chloride-based elastomers, and fluorine-based elastomers.
 オレフィン系重合体以外の熱可塑性樹脂としては、具体的には、ポリエステル、ポリアミド(ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等)、ポリ塩化ビニル、ポリイミド、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-ビニルアルコール共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-アクリル酸エステル-一酸化炭素共重合体、ポリアクリロニトリル、ポリカーボネート、ポリスチレン等が挙げられる。
 ポリエステルとしては、例えば、脂肪族ポリエステル、又はポリエステル共重合体である。ポリエステル共重合体としては、例えば、脂肪族ジカルボン酸単独又は脂肪族ジカルボン酸と芳香族ジカルボン酸との混合物と、少なくとも1種のジオールとを重合したものが挙げられる。
Specific examples of thermoplastic resins other than olefin polymers include polyester, polyamide (nylon-6, nylon-66, polymetaxylene adipamide, etc.), polyvinyl chloride, polyimide, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-vinyl alcohol copolymer, ethylene-(meth)acrylic acid copolymer, ethylene-acrylic acid ester-carbon monoxide copolymer, polyacrylonitrile, polycarbonate, and polystyrene.
The polyester may be, for example, an aliphatic polyester or a polyester copolymer. For example, the polyester copolymer may be a copolymer of an aliphatic dicarboxylic acid alone or a mixture of an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and at least one diol.
 伸長性スパンボンド不織布におけるポリオレフィン(プロピレン系重合体(A)を除く。)の含有量は、ポリオレフィン(プロピレン系重合体(A)を除く。)及びその他の重合体(熱可塑性エラストマー及びオレフィン系重合体以外の熱可塑性樹脂)の合計に対して、好ましくは90質量%超100質量%以下、より好ましくは95質量%~100質量%である。 The content of polyolefin (excluding propylene-based polymer (A)) in the extensible spunbond nonwoven fabric is preferably more than 90% by mass and not more than 100% by mass, more preferably 95% by mass to 100% by mass, based on the total of polyolefin (excluding propylene-based polymer (A)) and other polymers (thermoplastic resins other than thermoplastic elastomers and olefin-based polymers).
 樹脂組成物(SB)がプロピレン系重合体(A)とエチレン系重合体とを含む場合、プロピレン系重合体(A)の含有量は、樹脂組成物(SB)の全量に対して、好ましくは80質量%~99質量%、より好ましくは84質量%~96質量%である。エチレン系重合体の含有量は、樹脂組成物(SB)の全量に対して、好ましくは20質量%~1質量%、より好ましくは16質量%~4質量%である(但し、プロピレン系重合体(A)+エチレン系重合体=100質量%とする)。 When the resin composition (SB) contains a propylene-based polymer (A) and an ethylene-based polymer, the content of the propylene-based polymer (A) is preferably 80% by mass to 99% by mass, more preferably 84% by mass to 96% by mass, based on the total amount of the resin composition (SB). The content of the ethylene-based polymer is preferably 20% by mass to 1% by mass, more preferably 16% by mass to 4% by mass, based on the total amount of the resin composition (SB) (where propylene-based polymer (A) + ethylene-based polymer = 100% by mass).
(1.1.2.3)任意成分
 樹脂組成物(SB)は、本開示の目的を損なわない範囲で、任意成分として、酸化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、スリップ剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、親水剤等の種々公知の添加剤を含んでもよい。
(1.1.2.3) Optional Components The resin composition (SB) may contain, as optional components, various known additives such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the object of the present disclosure.
(1.1.2.4)好ましい組成
 前記伸長性スパンボンド不織布に含まれる前記繊維は、伸長性スパンボンド不織布用樹脂組成物からなり、
 前記伸長性スパンボンド不織布用樹脂組成物は、
 プロピレン系重合体(A)と、
 ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と
を含むことが好ましい。
 これにより、伸長性スパンボンド不織布の原料である樹脂組成物の紡糸時に発生する糸切れ回数が少なくなる。その結果、不織布積層体の生産性は、向上する。
(1.1.2.4) Preferred composition The fibers contained in the extensible spunbonded nonwoven fabric are made of a resin composition for extensible spunbonded nonwoven fabrics,
The resin composition for extensible spunbonded nonwoven fabrics is
A propylene-based polymer (A),
It is preferable that the polymer (B) is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters.
This reduces the number of yarn breaks that occur during spinning of the resin composition that is the raw material of the extensible spunbonded nonwoven fabric, thereby improving the productivity of the nonwoven fabric laminate.
 前記プロピレン系重合体(A)は、プロピレン単独重合体を含み、
 前記ポリマー(B)は、スパンボンド不織布の引張強度を向上させる観点と、スパンボンド不織布の伸長性及び柔軟性の観点とから、密度が0.94g/cm~0.97g/cmであるポリエチレンを含むことが好ましい。
The propylene polymer (A) contains a propylene homopolymer,
From the viewpoints of improving the tensile strength of the spunbonded nonwoven fabric and of the extensibility and flexibility of the spunbonded nonwoven fabric, the polymer (B) preferably contains polyethylene having a density of 0.94 g/cm 3 to 0.97 g/cm 3 .
 ポリマー(B)の含有量は、樹脂組成物(SB)の全量に対して、好ましくは1.0質量%~10.0質量%、より好ましくは3.0質量%~8.0質量%、更に好ましくは5.0質量%~7.0質量%である。ポリマー(B)の含有量が上記範囲であれば、スパンボンド不織布の伸長性は向上する。 The content of polymer (B) is preferably 1.0% by mass to 10.0% by mass, more preferably 3.0% by mass to 8.0% by mass, and even more preferably 5.0% by mass to 7.0% by mass, based on the total amount of resin composition (SB). If the content of polymer (B) is within the above range, the extensibility of the spunbond nonwoven fabric is improved.
(1.1.2.4.1)海島型繊維
 伸長性繊維が海島型繊維を含む場合、海島型繊維は、海相をプロピレン系重合体(A)(好ましくはプロピレンの単独重合体)とし、島相をポリマー(B)(好ましくは高密度ポリエチレン)とする海島構造を有することが好ましい。これにより、主成分の海相の配向結晶化が阻害され、伸長性スパンボンド不織布の伸長性が向上する。
(1.1.2.4.1) Island-in-sea type fiber When the extensible fiber contains islands-in-sea type fiber, the islands-in-sea type fiber preferably has an islands-in-sea structure in which the sea phase is a propylene-based polymer (A) (preferably a homopolymer of propylene) and the island phase is a polymer (B) (preferably a high-density polyethylene). This inhibits the orientation and crystallization of the main component of the sea phase, improving the extensibility of the extensible spunbonded nonwoven fabric.
(1.1.2.4.2)同芯の芯鞘型繊維
 伸長性繊維が同芯の芯鞘型繊維を含む場合、同芯の芯鞘型繊維は、芯部を低MFRのオレフィン系重合体とし、鞘部を高MFRのオレフィン系重合体とし、且つ、低MFRのオレフィン系重合体と高MFRのオレフィン系重合体のMFRとの差が1g/10分以上であることが好ましい。低MFRのオレフィン系重合体のMFRは、1g/10分~1000g/10分であってよい。高MFRのオレフィン系重合体のMFRは、1g/10分~1000g/10分であってよい。
 MFRの差は、好ましくは15g/10分以上、さらに好ましくは30g/10分以上、特に好ましくは40g/10分以上である。MFRの差は、好ましくは100g/10分以下、より好ましくは70g/10分以下である。
(1.1.2.4.2) Concentric sheath-core fiber When the extensible fiber includes a concentric sheath-core fiber, the concentric sheath-core fiber preferably has a core made of a low MFR olefin polymer and a sheath made of a high MFR olefin polymer, and the difference in MFR between the low MFR olefin polymer and the high MFR olefin polymer is 1 g/10 min or more. The MFR of the low MFR olefin polymer may be 1 g/10 min to 1000 g/10 min. The MFR of the high MFR olefin polymer may be 1 g/10 min to 1000 g/10 min.
The difference in MFR is preferably 15 g/10 min or more, more preferably 30 g/10 min or more, and particularly preferably 40 g/10 min or more. The difference in MFR is preferably 100 g/10 min or less, more preferably 70 g/10 min or less.
(1.1.3)伸長性スパンボンド不織布の具体例
 伸長性スパンボンド不織布としては、下記の要件(a1)要件(a3)を満たす伸長性スパンボンド不織布を含むことが好ましい。
(1.1.3) Specific Examples of Extensible Spunbond Nonwoven Fabrics The extensible spunbond nonwoven fabrics preferably include extensible spunbond nonwoven fabrics that satisfy the following requirements (a1) and (a3).
(1.1.3.1)要件(a1)
(a1)流動誘起相分離における結晶化の誘導時間の差が100秒以上である二種以上のオレフィン系重合体からなる、芯鞘型繊維、並列型繊維(サイドバイサイド型繊維)又は捲縮繊維を用いたスパンボンド不織布。
(1.1.3.1) Requirement (a1)
(a1) A spunbond nonwoven fabric using core-sheath fibers, side-by-side fibers or crimped fibers made of two or more kinds of olefin polymers having a difference in induction time of crystallization in flow-induced phase separation of 100 seconds or more.
 前記二種以上のオレフィン系重合体としては、例えば、高融点のプロピレン系重合体(A)と、低融点のプロピレン系重合体(A)とであってもよい。 The two or more olefin-based polymers may be, for example, a propylene-based polymer (A) having a high melting point and a propylene-based polymer (A) having a low melting point.
(1.1.3.2)要件(a2)
(a2)プロピレン系重合体(A)とエチレン系重合体とを含むオレフィン系重合体組成物からなる、海島型繊維、芯鞘型繊維、並列型繊維又は捲縮繊維を用いたスパンボンド不織布。特に、前記オレフィン系重合体組成物としては、下記に示すものが好ましい。
(a2-1)プロピレン単独重合体80質量%~99質量%と、高密度ポリエチレン20質量%~1質量%と、からなるオレフィン系重合体組成物。
(a2-2)MFRが同一又は異なり、且つ、融点が157℃~165℃の範囲にある高融点のプロピレン系重合体(A)を含むオレフィン系重合体組成物。
(1.1.3.2) Requirement (a2)
(a2) A spunbonded nonwoven fabric using islands-in-the-sea type fibers, core-sheath type fibers, side-by-side type fibers or crimped fibers, which are made of an olefin-based polymer composition containing a propylene-based polymer (A) and an ethylene-based polymer. In particular, the following olefin-based polymer compositions are preferred.
(a2-1) An olefin polymer composition comprising 80% by mass to 99% by mass of a propylene homopolymer and 20% by mass to 1% by mass of a high-density polyethylene.
(a2-2) An olefin polymer composition containing a high-melting propylene polymer (A) having the same or different MFR and a melting point in the range of 157°C to 165°C.
 プロピレン系重合体(A)としては、例えば、プロピレン単独重合体と、融点が130℃~150℃の範囲にある低融点のプロピレン及びα-オレフィンのランダム共重合体と、を共重合したプロピレン系重合体であってもよい。 The propylene-based polymer (A) may be, for example, a propylene-based polymer copolymerized with a propylene homopolymer and a random copolymer of propylene and an α-olefin having a low melting point in the range of 130°C to 150°C.
(1.1.3.3)要件(a3)
(a3)芯部をMFRが1g/10分~200g/10分の範囲にある低MFRのプロピレン系重合体(A)とし、鞘部をMFRが16g/10分~215g/10分の範囲にある高MFRのプロピレン系重合体(A)とし、且つ、前記芯部のMFRと前記鞘部のMFRとの差が15g/10分以上である、同芯の芯鞘型繊維を用いたスパンボンド不織布。
(1.1.3.3) Requirement (a3)
(a3) A spunbonded nonwoven fabric using concentric core-sheath fibers, wherein the core is made of a low MFR propylene-based polymer (A) having an MFR in the range of 1 g/10 min to 200 g/10 min, and the sheath is made of a high MFR propylene-based polymer (A) having an MFR in the range of 16 g/10 min to 215 g/10 min, and the difference between the MFR of the core and the MFR of the sheath is 15 g/10 min or more.
(1.1.3.4)好ましい具体例
 要件(a1)~要件(a3)の要件を満たす伸長性スパンボンド不織布としては、例えば、下記(X1)及び(X2)の伸長性スパンボンド不織布が挙げられる。
(1.1.3.4) Preferred Specific Examples Examples of extensible spunbond nonwoven fabrics satisfying the requirements (a1) to (a3) include the following extensible spunbond nonwoven fabrics (X1) and (X2).
 (X1)芯部をMFRが10g/10分~200g/10分の範囲にあり、融点が157℃~165℃の範囲にある低MFRで高融点のプロピレン系重合体(A)(好ましくはプロピレン単独重合体)とし、鞘部をMFRが10g/10分~200g/10分の範囲にあり、融点が130℃~150℃の範囲にある高MFRで低融点のプロピレン・α-オレフィンランダム共重合体とし、且つ、前記芯部のMFRと前記鞘部のMFRとの差が1g/10分以上である同芯の芯鞘型繊維からなる芯鞘型繊維、並列型繊維若しくは捲縮繊維を用いたスパンボンド不織布。 (X1) A spunbond nonwoven fabric using core-sheath fibers, parallel fibers, or crimped fibers, in which the core is a propylene-based polymer (A) (preferably a propylene homopolymer) having a low MFR and high melting point with an MFR in the range of 10 g/10 min to 200 g/10 min and a melting point in the range of 157°C to 165°C, and the sheath is a propylene-α-olefin random copolymer having a high MFR and low melting point with an MFR in the range of 10 g/10 min to 200 g/10 min and a melting point in the range of 130°C to 150°C, and the difference between the MFR of the core and the MFR of the sheath is 1 g/10 min or more.
 (X2)芯部をMFRが1g/10分~200g/10分の範囲にある低MFRのプロピレン系重合体(A)(好ましくはプロピレン単独重合体)とし、鞘部をMFRが31g/10分~230g/10分の範囲にある高MFRのプロピレン系重合体(A)(好ましくはプロピレン単独重合体)とし、且つ、前記芯部のMFRと前記鞘部のMFRとの差が30g/10分以上である同芯の芯鞘型繊維からなるスパンボンド不織布。
 前述の(a2)にて、芯部をMFRが10g/10分~50g/10分の範囲にある低MFRのプロピレン系重合体(A)とし、鞘部をMFRが50g/10分~100g/10分の範囲にある高MFRのプロピレン系重合体(A)としてもよい。前記芯部のMFRと前記鞘部のMFRとの差は、30g/10分~100g/10分であってもよく、40g/10分~80g/10分以下であってもよい。
(X2) A spunbond nonwoven fabric comprising concentric core-sheath fibers, the core of which is a low MFR propylene polymer (A) (preferably a propylene homopolymer) having an MFR in the range of 1 g/10 min to 200 g/10 min, the sheath of which is a high MFR propylene polymer (A) (preferably a propylene homopolymer) having an MFR in the range of 31 g/10 min to 230 g/10 min, and the difference between the MFR of the core and the MFR of the sheath being 30 g/10 min or more.
In the above-mentioned (a2), the core may be a propylene polymer (A) having a low MFR in the range of 10 g/10 min to 50 g/10 min, and the sheath may be a propylene polymer (A) having a high MFR in the range of 50 g/10 min to 100 g/10 min. The difference between the MFR of the core and the MFR of the sheath may be 30 g/10 min to 100 g/10 min, or 40 g/10 min to 80 g/10 min.
(1.2)弾性不織布
 第1実施形態の不織布積層体は、弾性不織布を備える。
(1.2) Elastic Nonwoven Fabric The nonwoven fabric laminate of the first embodiment includes an elastic nonwoven fabric.
 弾性不織布の種類は、特に限定されず、スパンボンド不織布、メルトブローン不織布、フラッシュ紡糸不織布、短繊維等が挙げられる。中でも、弾性不織布の種類は、弾性不織布に含まれる繊維を長繊維とする観点から、スパンボンド不織布であることが好ましい。 The type of elastic nonwoven fabric is not particularly limited, and examples include spunbond nonwoven fabric, meltblown nonwoven fabric, flash spun nonwoven fabric, staple fiber, etc. Among these, the type of elastic nonwoven fabric is preferably spunbond nonwoven fabric, from the viewpoint of using long fibers in the elastic nonwoven fabric.
 弾性不織布の目付は、好ましくは2g/m~120g/mで、より好ましくは2g/m~40g/m以下、さらに好ましくは12g/m~37g/m、特に好ましくは12g/m~32g/m、一層好ましくは16g/m~26g/m、より一層好ましくは16g/m~20g/mである。
 弾性不織布の目付の測定方法は、実施例に記載の方法と同様である。
The weight per unit area of the elastic nonwoven fabric is preferably 2 g/m 2 to 120 g/m 2 , more preferably 2 g/m 2 to 40 g/m 2 or less, even more preferably 12 g/m 2 to 37 g/m 2 , particularly preferably 12 g/m 2 to 32 g/m 2 , even more preferably 16 g/m 2 to 26 g/m 2 , and even more preferably 16 g/m 2 to 20 g/m 2 .
The method for measuring the basis weight of the elastic nonwoven fabric is the same as that described in the examples.
(1.2.1)繊維
 弾性繊維の平均繊維径bは、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは35μm以下、特に好ましくは30μm以下である。弾性繊維の平均繊維径bは、好ましくは1μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上、特に好ましくは24μm以上である。弾性繊維の平均繊維径bが20μm超え35μm以下であって、かつ、伸長性繊維の平均繊維径aが弾性繊維の平均繊維径bよりも細いことが、ブロッキング抑制と柔軟性の観点から好ましい態様である。弾性繊維の平均繊維径bが20μm超え35μm以下であって、かつ、繊維系比率(b/a)が1.0以上1.35以下であると、糸切れ防止の観点から好ましい。繊維系比率(b/a)が1.0超1.35以下であることがより好ましい。
 弾性繊維の平均繊維径bの測定方法は、実施例に記載の方法と同様である。
(1.2.1) Fiber The average fiber diameter b of the elastic fiber is preferably 50 μm or less, more preferably 40 μm or less, even more preferably 35 μm or less, and particularly preferably 30 μm or less. The average fiber diameter b of the elastic fiber is preferably 1 μm or more, more preferably 10 μm or more, even more preferably 20 μm or more, and particularly preferably 24 μm or more. In terms of blocking suppression and flexibility, it is a preferred embodiment that the average fiber diameter b of the elastic fiber is more than 20 μm and 35 μm or less, and the average fiber diameter a of the extensible fiber is smaller than the average fiber diameter b of the elastic fiber. It is preferred from the viewpoint of preventing thread breakage that the average fiber diameter b of the elastic fiber is more than 20 μm and 35 μm or less, and the fiber-based ratio (b/a) is 1.0 or more and 1.35 or less. It is more preferred that the fiber-based ratio (b/a) is more than 1.0 and 1.35 or less.
The method for measuring the average fiber diameter b of the elastic fibers is the same as that described in the Examples.
 弾性繊維の断面形状は、特に限定されず、円形、楕円形、異形等が挙げられる。 The cross-sectional shape of the elastic fiber is not particularly limited, and examples include circular, elliptical, irregular shapes, etc.
 弾性繊維は、例えば、芯鞘型、サイドバイサイド型、海島型、又は並列型であってもよい。芯鞘型繊維は、芯部及び鞘部を備えていればよく、同芯の芯鞘型及び偏芯の芯鞘型のいずれであってもよい。偏芯の芯鞘型繊維は、芯部が表面に露出していてもよく、芯部が表面に露出していなくてもよい。 The elastic fibers may be, for example, sheath-core, side-by-side, sea-island, or parallel. Sheath-core fibers need only have a core and a sheath, and may be either a concentric sheath-core type or an eccentric sheath-core type. Eccentric sheath-core fibers may have a core exposed on the surface, or may not have a core exposed on the surface.
(1.2.2)材質
 弾性繊維は、弾性不織布用樹脂組成物(以下、「樹脂組成物(NW)」ともいう。)からなる。
 樹脂組成物(NW)は、α-オレフィン共重合体を含むことが好ましく、α-オレフィン共重合体のみを含んでもよい。
 プロピレン系重合体は、樹脂組成物(NW)に1種のみ用いられてもよいし、2種以上を組み合わせて用いられてもよい。
(1.2.2) Material The elastic fiber is made of a resin composition for elastic nonwoven fabrics (hereinafter, also referred to as "resin composition (NW)").
The resin composition (NW) preferably contains an α-olefin copolymer, and may contain only an α-olefin copolymer.
The propylene-based polymer may be used alone or in combination of two or more kinds in the resin composition (NW).
(1.2.2.1)α-オレフィン共重合体
 樹脂組成物(NW)は、α-オレフィン共重合体を含むことが好ましい。これにより、α-オレフィン共重合体を含まない弾性不織布(例えば、プロピレン単独重合体からなる弾性不織布)を用いた場合に比べ、不織布積層体の伸縮特性はより優れ、かつ、不織布積層体は、応力維持に優れる。
(1.2.2.1) α-Olefin copolymer The resin composition (NW) preferably contains an α-olefin copolymer. This makes it possible to obtain a nonwoven fabric laminate having better elastic properties and better stress retention than an elastic nonwoven fabric that does not contain an α-olefin copolymer (e.g., an elastic nonwoven fabric made of a propylene homopolymer).
 樹脂組成物(NW)は、α-オレフィン共重合体を含み、かつプロピレン単独重合体を含まないことがより好ましい。換言すると、弾性不織布は、α-オレフィン共重合体を含む弾性不織布(但し、プロピレン単独重合体を含む弾性不織布を除く)であることが好ましい。これにより、α-オレフィン共重合体を含まない弾性不織布(例えば、プロピレン単独重合体からなる弾性不織布)を用いた場合に比べ、不織布積層体の伸縮特性はより優れ、かつ、不織布積層体は、応力維持に優れる。 It is more preferable that the resin composition (NW) contains an α-olefin copolymer and does not contain a propylene homopolymer. In other words, it is preferable that the elastic nonwoven fabric is an elastic nonwoven fabric containing an α-olefin copolymer (excluding elastic nonwoven fabric containing propylene homopolymer). This makes the nonwoven fabric laminate have better elastic properties and better stress maintenance than when an elastic nonwoven fabric not containing an α-olefin copolymer (for example, an elastic nonwoven fabric made of propylene homopolymer) is used.
 「α-オレフィン共重合体」とは、2種以上のα-オレフィン骨格を有する共重合成分が共重合された共重合体を示す。 "α-olefin copolymer" refers to a copolymer in which two or more copolymerization components having α-olefin skeletons are copolymerized.
 α-オレフィン骨格を有する共重合成分としては、例えば、α-オレフィンが挙げられる。α-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。
 中でも、α-オレフィン共重合体は、不織布積層体を、より低応力であり、且つ、伸縮性により優れたものとする観点から、エチレン及びプロピレンを共重合成分とするエチレン及びプロピレンの共重合体を含むことが好ましい。
Examples of the copolymerization component having an α-olefin skeleton include α-olefins, such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene.
Among these, the α-olefin copolymer preferably contains an ethylene and propylene copolymer having ethylene and propylene as copolymerization components, from the viewpoint of making the nonwoven fabric laminate have lower stress and better elasticity.
 エチレン及びプロピレンの共重合体における、エチレンに由来する構成単位の含有率(以下、単に「エチレン含量」ともいう)は、好ましくは1質量%~50質量%、より好ましくは5質量%~25質量%、さらに好ましくは10質量%~20質量%、特に好ましくは12質量%~18質量%である。 The content of structural units derived from ethylene in the ethylene and propylene copolymer (hereinafter simply referred to as "ethylene content") is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 25% by mass, even more preferably 10% by mass to 20% by mass, and particularly preferably 12% by mass to 18% by mass.
 α-オレフィン共重合体は、交互共重合体、グラフト共重合体、ブロック共重合体及びランダム共重合体のいずれであってもよい。 The α-olefin copolymer may be any of an alternating copolymer, a graft copolymer, a block copolymer, and a random copolymer.
 α-オレフィン共重合体の密度(ASTM D 1505)は、好ましくは0.850g/cm~0.950g/cm、より好ましくは0.855g/cm~0.900g/cm、さらに好ましくは0.860g/cm~0.895g/cmである。
 α-オレフィン共重合体の密度は、JIS K7112(1999)の密度勾配法に従って測定して得られた値である。
The density (ASTM D 1505) of the α-olefin copolymer is preferably 0.850 g/cm 3 to 0.950 g/cm 3 , more preferably 0.855 g/cm 3 to 0.900 g/cm 3 , and even more preferably 0.860 g/cm 3 to 0.895 g/cm 3 .
The density of the α-olefin copolymer is a value obtained by measurement according to the density gradient method of JIS K7112 (1999).
 α-オレフィン共重合体の引張弾性率は、不織布積層体の伸縮性を向上させる観点から、好ましくは30MPa以下、より好ましくは20MPa以下、さらに好ましくは15MPa以下である。α-オレフィン共重合体の引張弾性率は、特に限定されず、5MPa以上であってもよい。
 引張弾性率は、JIS K7161(2011)に準拠した方法で測定して得られた値である。
From the viewpoint of improving the stretchability of the nonwoven fabric laminate, the tensile modulus of the α-olefin copolymer is preferably 30 MPa or less, more preferably 20 MPa or less, and further preferably 15 MPa or less. The tensile modulus of the α-olefin copolymer is not particularly limited, and may be 5 MPa or more.
The tensile modulus is a value obtained by measurement according to a method in accordance with JIS K7161 (2011).
 α-オレフィン共重合体の分子量分布(Mw/Mn)は、好ましくは1.5~5.0である。紡糸性が良好であり、かつ繊維強度が特に優れる繊維が得られる点で、Mw/Mnは、好ましくは1.5~4.5である。
 α-オレフィン共重合体の質量平均分子量(Mw)及び数平均分子量(Mn)は、GPC(ゲルパーミエーションクロマトグラフィー)によって、以下の条件で求めた値である。質量平均分子量(Mw)は、ポリスチレン換算の質量平均分子量であり、分子量分布(Mw/Mn)は、同様にして測定した数平均分子量(Mn)及び質量平均分子量(Mw)より算出した値である。
<GPC測定条件>
 カラム:TOSO GMHHR-H(S)HT
 検出器:液体クロマトグラム用RI検出器 WATERS 150C
 溶媒:1,2,4-トリクロロベンゼン
 測定温度:145℃
 流速:1.0ml/分
 試料濃度:2.2mg/ml
 注入量:160μl
 検量線:Universal Calibration
解析プログラム:HT-GPC(Ver.1.0)
The molecular weight distribution (Mw/Mn) of the α-olefin copolymer is preferably 1.5 to 5.0. In terms of obtaining fibers having good spinnability and particularly excellent fiber strength, Mw/Mn is preferably 1.5 to 4.5.
The mass average molecular weight (Mw) and number average molecular weight (Mn) of the α-olefin copolymer are values determined by gel permeation chromatography (GPC) under the following conditions. The mass average molecular weight (Mw) is the mass average molecular weight converted into polystyrene, and the molecular weight distribution (Mw/Mn) is a value calculated from the number average molecular weight (Mn) and mass average molecular weight (Mw) measured in the same manner.
<GPC measurement conditions>
Column: TOSO GMHHR-H(S)HT
Detector: RI detector for liquid chromatography WATERS 150C
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145°C
Flow rate: 1.0 ml/min Sample concentration: 2.2 mg/ml
Injection volume: 160 μl
Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver. 1.0)
 α-オレフィン共重合体のMFRは、特に限定されず、好ましくは1g/10分~100g/10分、より好ましくは10g/10分~80g/10分、さらに好ましくは15g/10分~70g/10分、特に好ましくは15g/10分~50g/10分である。
 α-オレフィン共重合体のMFRの測定方法は、ASTM D-1238に準拠し、測定条件は、230℃、荷重2.16kgである。
The MFR of the α-olefin copolymer is not particularly limited, and is preferably 1 g/10 min to 100 g/10 min, more preferably 10 g/10 min to 80 g/10 min, further preferably 15 g/10 min to 70 g/10 min, and particularly preferably 15 g/10 min to 50 g/10 min.
The MFR of the α-olefin copolymer is measured in accordance with ASTM D-1238 under the conditions of 230° C. and a load of 2.16 kg.
 α-オレフィン共重合体は、合成品であってもよく、市販品であってもよい。
 α-オレフィン共重合体が合成品である場合、α-オレフィン共重合体は、チーグラーナッタ系触媒、メタロセン系触媒などの従来公知の触媒の存在下に、モノマーを気相法、バルク法、スラリー法、溶液法などの従来公知の重合法により重合あるいは共重合させることにより調製することができる。
 α-オレフィン共重合体の市販品としては、例えば、タフマー(三井化学社製)、Vistamaxxシリーズ(エクソンモービルケミカル社製)、Versify等が挙げられる。
The α-olefin copolymer may be a synthetic product or a commercially available product.
When the α-olefin copolymer is a synthetic product, the α-olefin copolymer can be prepared by polymerizing or copolymerizing a monomer in the presence of a conventionally known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst by a conventionally known polymerization method such as a gas phase method, a bulk method, a slurry method or a solution method.
Commercially available α-olefin copolymers include, for example, Tafmer (manufactured by Mitsui Chemicals, Inc.), Vistamaxx series (manufactured by ExxonMobil Chemical Corporation), and Versify.
 α-オレフィン共重合体の組成については、従来公知の方法(例えば、IR分析、NMR分析、微量分析等)を用いて行うことができる。 The composition of the α-olefin copolymer can be determined using conventional methods (e.g., IR analysis, NMR analysis, microanalysis, etc.).
 弾性不織布の総量に対するα-オレフィン共重合体の割合は、好ましくは90質量%~100質量%、より好ましくは98質量%~100質量%である。 The proportion of the α-olefin copolymer in the total amount of the elastic nonwoven fabric is preferably 90% by mass to 100% by mass, and more preferably 98% by mass to 100% by mass.
 α-オレフィン共重合体がエチレン及びプロピレンの共重合体を含む場合、弾性不織布の総量に対するエチレン及びプロピレンの共重合体の割合は、不織布積層体における伸縮特性の観点から、好ましくは80質量%~100質量%、より好ましくは90質量%~100質量%である。 When the α-olefin copolymer contains a copolymer of ethylene and propylene, the ratio of the ethylene and propylene copolymer to the total amount of the elastic nonwoven fabric is preferably 80% by mass to 100% by mass, more preferably 90% by mass to 100% by mass, from the viewpoint of the stretch properties of the nonwoven fabric laminate.
 α-オレフィン共重合体がエチレン及びプロピレンの共重合体である場合、α-オレフィンの融点は、好ましくは130℃以下、より好ましくは115℃以下、さらに好ましくは100℃以下、特に好ましくは40℃~85℃、一層好ましくは40℃~60℃である。
 融点の測定方法は、実施例に記載の方法と同様である。
When the α-olefin copolymer is a copolymer of ethylene and propylene, the melting point of the α-olefin is preferably 130° C. or lower, more preferably 115° C. or lower, even more preferably 100° C. or lower, particularly preferably 40° C. to 85° C., and even more preferably 40° C. to 60° C.
The melting point was measured in the same manner as described in the Examples.
(1.1.2.1)特定α-オレフィン共重合体
 弾性不織布は、40℃における貯蔵弾性率E40と23℃における貯蔵弾性率E23との比(E40/E23)が37%以上であるα-オレフィン共重合体(以下、「特定α-オレフィン共重合体」ともいう。)を含むことが好ましい。これにより、温度変化環境下(例えば、40℃~23℃)において、弾性不織布の弾性の低下は抑制され易やすい。そのため、不織布積層体は、応力維持に優れる。
(1.1.2.1) Specific α-olefin copolymer The elastic nonwoven fabric preferably contains an α-olefin copolymer (hereinafter also referred to as "specific α-olefin copolymer") having a ratio (E40/E23) of the storage modulus E40 at 40°C to the storage modulus E23 at 23°C of 37% or more. This makes it easy to suppress the decrease in elasticity of the elastic nonwoven fabric in a temperature changing environment (for example, 40°C to 23°C). Therefore, the nonwoven fabric laminate has excellent stress maintenance.
 比(E40/E23)は、応力維持に優れた不織布積層体を得る観点から、大きいほど好ましく、より好ましくは40%以上、さらに好ましくは45%以上、特に好ましくは50%以上である。比(E40/E23)は、特に限定されず、100%以下であってもよく、95%以下であってもよく、90%以下であってもよい。 From the viewpoint of obtaining a nonwoven fabric laminate with excellent stress maintenance, the larger the ratio (E40/E23), the better, and it is more preferably 40% or more, even more preferably 45% or more, and particularly preferably 50% or more. The ratio (E40/E23) is not particularly limited, and may be 100% or less, 95% or less, or 90% or less.
 特定α-オレフィン共重合体の比(E40/E23)を、上記特定範囲とする手法としては、例えば、α-オレフィン共重合体をエチレンとプロピレンとの共重合体とする手法等が挙げられる。 An example of a method for setting the ratio (E40/E23) of the specific α-olefin copolymer within the above-mentioned specific range is to use a copolymer of ethylene and propylene as the α-olefin copolymer.
 特定α-オレフィン共重合体の貯蔵弾性率E23は、不織布積層体の伸縮性を向上させる観点から、好ましくは30MPa以下、より好ましくは22MPa以下、さらに好ましくは20MPa以下、特に好ましくは18MPa以下である。特定α-オレフィン共重合体の貯蔵弾性率E23は、好ましくは5MPa以上、より好ましくは10MPa以上である。
 特定α-オレフィン共重合体の貯蔵弾性率E40は、不織布積層体を、より低応力であり、且つ、伸縮性により優れたものとする観点から、好ましくは10MPa以下、より好ましくは9MPa以下である。特定α-オレフィン共重合体の貯蔵弾性率E40は、好ましくは3MPa以上、より好ましくは5MPa以上である。
From the viewpoint of improving the stretchability of the nonwoven fabric laminate, the storage modulus E23 of the specific α-olefin copolymer is preferably 30 MPa or less, more preferably 22 MPa or less, further preferably 20 MPa or less, and particularly preferably 18 MPa or less. The storage modulus E23 of the specific α-olefin copolymer is preferably 5 MPa or more, more preferably 10 MPa or more.
From the viewpoint of making the nonwoven fabric laminate have lower stress and better stretchability, the storage modulus E40 of the specific α-olefin copolymer is preferably 10 MPa or less, more preferably 9 MPa or less. The storage modulus E40 of the specific α-olefin copolymer is preferably 3 MPa or more, more preferably 5 MPa or more.
 前記弾性不織布は、特定α-オレフィン共重合体を含み、
 前記弾性不織布の総量に対する前記特定α-オレフィン共重合体の割合は、90質量%~100質量%であり、
 前記特定α-オレフィン共重合体は、エチレン及びプロピレンの共重合体であり、かつ前記特定α-オレフィン共重合体の融点は、130℃以下であることが好ましい。
The elastic nonwoven fabric contains a specific α-olefin copolymer,
The ratio of the specific α-olefin copolymer to the total amount of the elastic nonwoven fabric is 90% by mass to 100% by mass,
The specific α-olefin copolymer is preferably a copolymer of ethylene and propylene, and the melting point of the specific α-olefin copolymer is preferably 130° C. or lower.
(1.2.2.2)任意の成分
 樹脂組成物(NW)は、本開示の目的を損なわない範囲で、任意成分として、酸化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、スリップ剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、親水剤等の種々公知の添加剤を含んでもよい。
(1.2.2.2) Optional Components The resin composition (NW) may contain various known additives as optional components, such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the present disclosure.
(1.3)他の層
 第1実施形態の不織布積層体は、用途に応じて、他の層を備えてもよいし、備えなくていなくてもよい。他の層は、伸長性スパンボンド不織布の少なくとも一方に積層される。
(1.3) Other Layers The nonwoven laminate of the first embodiment may or may not include other layers depending on the application. The other layers are laminated to at least one of the extensible spunbond nonwoven fabrics.
 他の層として、弾性不織布及び伸長性スパンボンド不織布以外の不織布、編布、織布、フィルム等が挙げられる。不織布積層体に他の層をさらに積層する(貼り合せる)方法は特に制限されず、熱エンボス加工、熱融着法(例えば、超音波融着等)、機械的交絡法(例えば、ニードルパンチ、ウォータージェット等)、接着剤(例えば、ホットメルト接着剤、ウレタン系接着剤等)を用いる方法、押出しラミネート等が挙げられる。 Other layers include nonwoven fabrics other than elastic nonwoven fabrics and extensible spunbond nonwoven fabrics, knitted fabrics, woven fabrics, films, etc. The method of further laminating (bonding) other layers to the nonwoven fabric laminate is not particularly limited, and examples include heat embossing, heat fusion methods (e.g., ultrasonic fusion, etc.), mechanical entanglement methods (e.g., needle punch, water jet, etc.), methods using adhesives (e.g., hot melt adhesives, urethane adhesives, etc.), extrusion lamination, etc.
 第1実施形態の不織布積層体は、さらにフィルム層を有してもよい。フィルム層は、弾性フィルムであっても非弾性フィルムであってもよいし、通気性や透湿性を備えても、備えなくてもよい。フィルム層は、不織布積層体の一方の面(すなわち、伸長性スパンボンド不織布)上に配置されてもよいし、不織布積層体の両方の面(すなわち、伸長性スパンボンド不織布)上に配置されてもよい。例えば、伸縮性不織布/フィルム、伸縮性不織布/フィルム/伸縮性不織布、フィルム/伸縮性不織布/フィルムの積層態様が挙げられる。第1実施形態の不織布積層体が、さらにフィルム層を有することで、フィルムの性質に応じて様々な用途に適した不織布積層体を提供できる。フィルム層は、伸長性スパンボンド不織布に熱溶着していてもよいし、接着剤を用いて伸長性スパンボンド不織布に接着していてもよい。 The nonwoven fabric laminate of the first embodiment may further have a film layer. The film layer may be an elastic film or a nonelastic film, and may or may not have breathability or moisture permeability. The film layer may be disposed on one side of the nonwoven fabric laminate (i.e., the extensible spunbond nonwoven fabric) or on both sides of the nonwoven fabric laminate (i.e., the extensible spunbond nonwoven fabric). For example, the laminate may have a laminate configuration of elastic nonwoven fabric/film, elastic nonwoven fabric/film/elastic nonwoven fabric, or film/elastic nonwoven fabric/film. By further having a film layer in the nonwoven fabric laminate of the first embodiment, a nonwoven fabric laminate suitable for various applications can be provided depending on the properties of the film. The film layer may be heat-welded to the extensible spunbond nonwoven fabric, or may be bonded to the extensible spunbond nonwoven fabric using an adhesive.
 弾性不織布及び伸長性スパンボンド不織布以外の不織布としては、スパンボンド不織布、メルトブローン不織布、湿式不織布、乾式不織布、乾式パルプ不織布、フラッシュ紡糸不織布、開繊不織布等が挙げられる。これらの不織布は伸縮性不織布であっても、非伸縮性不織布であってもよい。
 「非伸縮性不織布」とは、流れ方向(MD)又は巾方向(CD)に伸長後、戻り応力を発生させないものをいう。
Examples of nonwoven fabrics other than elastic nonwoven fabrics and extensible spunbond nonwoven fabrics include spunbond nonwoven fabrics, meltblown nonwoven fabrics, wet nonwoven fabrics, dry nonwoven fabrics, dry pulp nonwoven fabrics, flash spun nonwoven fabrics, spread nonwoven fabrics, etc. These nonwoven fabrics may be stretchable or non-stretchable nonwoven fabrics.
The term "non-elastic nonwoven fabric" refers to a fabric that does not generate a return stress after being stretched in the machine direction (MD) or cross direction (CD).
 フィルム層としては、通気性(透湿性)フィルムが好ましい。通気性フィルムとしては、透湿性を有するポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマーからなるフィルム、無機微粒子又は有機微粒子を含む熱可塑性樹脂からなるフィルムを延伸して多孔化してなる多孔フィルム等の、種々の公知の通気性フィルムが挙げられる。多孔フィルムに用いる熱可塑性樹脂としては、高圧法低密度ポリエチレン、線状低密度ポリエチレン(所謂LLDPE)、高密度ポリエチレン、ポリプロピレン、ポリプロピレンランダム共重合体、これらの組み合わせ等のポリオレフィンが好ましい。用途に応じて、不織布積層体の通気性及び親水性を保持する必要がない場合には、ポリエチレン、ポリプロピレン、これらの組み合わせ等の熱可塑性樹脂のフィルムを用いてもよい。中でも、第1実施形態の不織布積層体と同一種類の熱可塑性樹脂を用いたフィルムを用いることが、フィルムを含む不織布積層体の剥離強度を高める観点から好ましい。例えば、前記伸長性スパンボンド不織布用樹脂組成物に、プロピレン系重合体(A)と、ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)とを用いる態様において、非弾性フィルムを用いる場合、非弾性フィルムの熱可塑性樹脂としては、ポリプロピレン、α-オレフィン共重合体(プロピレン系ランダム共重合体を含む)、もしくはこれらの組み合わせが好ましい。弾性フィルムを用いる場合、弾性フィルムの熱可塑性樹脂としては、α-オレフィン共重合体を用いることが好ましい。 As the film layer, a breathable (moisture-permeable) film is preferred. Examples of breathable films include various known breathable films, such as films made of thermoplastic elastomers such as polyurethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers that have moisture permeability, and porous films made by stretching a film made of a thermoplastic resin containing inorganic or organic fine particles to make it porous. As thermoplastic resins used for porous films, polyolefins such as high-pressure low-density polyethylene, linear low-density polyethylene (so-called LLDPE), high-density polyethylene, polypropylene, polypropylene random copolymers, and combinations thereof are preferred. Depending on the application, if it is not necessary to maintain the breathability and hydrophilicity of the nonwoven fabric laminate, a film of a thermoplastic resin such as polyethylene, polypropylene, or a combination thereof may be used. Among them, it is preferable to use a film made of the same type of thermoplastic resin as the nonwoven fabric laminate of the first embodiment from the viewpoint of increasing the peel strength of the nonwoven fabric laminate including the film. For example, in an embodiment in which the resin composition for extensible spunbonded nonwoven fabrics uses a propylene-based polymer (A) and a polymer (B) that is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters, when a non-elastic film is used, the thermoplastic resin of the non-elastic film is preferably polypropylene, an α-olefin copolymer (including a propylene-based random copolymer), or a combination thereof. When an elastic film is used, the thermoplastic resin of the elastic film is preferably an α-olefin copolymer.
(2)第2実施形態の不織布積層体
 本開示の第2実施形態の不織布積層体は、弾性不織布と、前記弾性不織布の両面側に配置された伸長性スパンボンド不織布とを備える。前記伸長性スパンボンド不織布に含まれる繊維(以下、「伸長性繊維」ともいう)が海島型繊維である。前記海島型繊維は、伸長性スパンボンド不織布用樹脂組成物からなる。前記伸長性スパンボンド不織布用樹脂組成物は、プロピレン単独重合体を含むプロピレン系重合体(A)と、ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と、を含む。前記伸長性スパンボンド不織布に含まれる前記繊維の平均繊維径aは、前記弾性不織布に含まれる繊維(以下、「弾性繊維」ともいう)の平均繊維径bよりも細い。
(2) Nonwoven fabric laminate of second embodiment The nonwoven fabric laminate of the second embodiment of the present disclosure comprises an elastic nonwoven fabric and an extensible spunbonded nonwoven fabric arranged on both sides of the elastic nonwoven fabric. The fibers contained in the extensible spunbonded nonwoven fabric (hereinafter also referred to as "extensible fibers") are islands-in-the-sea fibers. The islands-in-the-sea fibers are made of a resin composition for extensible spunbonded nonwoven fabrics. The resin composition for extensible spunbonded nonwoven fabrics contains a propylene-based polymer (A) containing a propylene homopolymer, and a polymer (B) which is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters. The average fiber diameter a of the fibers contained in the extensible spunbonded nonwoven fabric is smaller than the average fiber diameter b of the fibers contained in the elastic nonwoven fabric (hereinafter also referred to as "elastic fibers").
 第2実施形態の不織布積層体は、上記の構成を有するので、不織布ロールから高速で(例えば、200m/分)巻き出されても、ブロッキングの発生を抑制することができる。
 この効果は、以下の理由によると推測されるが、これに限定されない。
 特定繊維径バランスの伸長性スパンボンド不織布と弾性不織布とを積層することにより、弾性繊維の不織布積層体表面への露出を抑えることができ、不織布積層体表面の粘着性を低減できる。さらに、伸長性スパンボンド不織布の地合いがより均一であると、よりよい効果を得ることができる。
Since the nonwoven fabric laminate of the second embodiment has the above-mentioned configuration, the occurrence of blocking can be suppressed even when the nonwoven fabric laminate is unwound from the nonwoven fabric roll at high speed (for example, 200 m/min).
This effect is believed to be due to, but not limited to, the following reasons.
By laminating the extensible spunbonded nonwoven fabric having a specific fiber diameter balance with the elastic nonwoven fabric, it is possible to suppress the exposure of the elastic fibers to the surface of the nonwoven fabric laminate, and to reduce the tackiness of the surface of the nonwoven fabric laminate. Furthermore, if the texture of the extensible spunbonded nonwoven fabric is more uniform, better effects can be obtained.
 第2実施形態の不織布積層体は、上記式(1)で表される表面係数が38以上であることが必須の発明特定事項ではないことと、伸長性繊維が特定の海島型繊維を含むことと、伸長性繊維の平均繊維径aが弾性繊維の平均繊維径bよりも細いこととの他は、第1実施形態の不織布積層体と同様の構成である。第2実施形態の不織布積層体の記載は、第1実施形態の不織布積層体の記載を援用することができる。 The nonwoven fabric laminate of the second embodiment has the same configuration as the nonwoven fabric laminate of the first embodiment, except that the surface coefficient represented by the above formula (1) of 38 or more is not an essential feature of the invention, the extensible fibers include specific sea-island type fibers, and the average fiber diameter a of the extensible fibers is smaller than the average fiber diameter b of the elastic fibers. The description of the nonwoven fabric laminate of the first embodiment may be used to describe the nonwoven fabric laminate of the second embodiment.
 ブロッキングをより抑制する観点からは、伸長性繊維の平均繊維径aが弾性繊維の平均繊維径bよりも細い。ブロッキング抑制の観点及び、糸切れ回数低減の観点から、前記伸長性繊維の平均繊維径aに対する前記弾性繊維の平均繊維径bの繊維系比率(b/a)が、1.0以上1.35以下であることが好ましく、1.0超1.35以下であることがより好ましい。 From the viewpoint of further suppressing blocking, the average fiber diameter a of the extensible fibers is smaller than the average fiber diameter b of the elastic fibers. From the viewpoint of suppressing blocking and reducing the number of thread breaks, the fiber ratio (b/a) of the average fiber diameter b of the elastic fibers to the average fiber diameter a of the extensible fibers is preferably 1.0 or more and 1.35 or less, and more preferably greater than 1.0 and 1.35 or less.
 不織布積層体の表面係数は、不織布ロールから高速で(例えば、200m/分)巻き出されても、ブロッキングの発生をより抑制する観点から、好ましくは38以上、より好ましくは38~60、さらに好ましくは38~50である。 The surface coefficient of the nonwoven fabric laminate is preferably 38 or more, more preferably 38 to 60, and even more preferably 38 to 50, from the viewpoint of further suppressing the occurrence of blocking even when the nonwoven fabric laminate is unwound from a nonwoven fabric roll at high speed (e.g., 200 m/min).
 表面係数を38以上にする方法は、第1実施形態で例示したものと同様である。 The method for increasing the surface coefficient to 38 or more is the same as that exemplified in the first embodiment.
 不織布積層体の目付割合(NW/全体)は、特に限定されず、18%~48%であることが好ましい。これにより、不織布積層体の弾性特性とロール製造時の耐ブロッキング性とを両立できる。
 目付割合(NW/全体)は、より好ましくは20%~48%、さらに好ましくは20%~43%、特に好ましくは25%~43%である。
The basis weight ratio (NW/total) of the nonwoven fabric laminate is not particularly limited, but is preferably 18% to 48%, which allows the nonwoven fabric laminate to have both elastic properties and blocking resistance during roll production.
The weight ratio (NW/total) is more preferably 20% to 48%, further preferably 20% to 43%, and particularly preferably 25% to 43%.
 不織布積層体の総合目付は、第1実施形態で例示したものと同様である。 The total basis weight of the nonwoven fabric laminate is the same as that exemplified in the first embodiment.
(2.1)伸長性スパンボンド不織布
 第2実施形態の不織布積層体は、伸長性スパンボンド不織布を備える。
(2.1) Extensible Spunbond Nonwoven Fabric The nonwoven fabric laminate of the second embodiment includes an extensible spunbond nonwoven fabric.
 伸長性スパンボンド不織布の目付は、第1実施形態で例示したものと同様である。 The basis weight of the extensible spunbond nonwoven fabric is the same as that exemplified in the first embodiment.
(2.1.1)繊維
 伸長性スパンボンド不織布は、伸長性繊維を含む。
(2.1.1) Fibers The extensible spunbond nonwoven fabric comprises extensible fibers.
 伸長性繊維の平均繊維径aは、第1実施形態で例示したものと同様である。 The average fiber diameter a of the extensible fiber is the same as that exemplified in the first embodiment.
 伸長性繊維の断面形状は、特に制限されず、例えば、円形、楕円形、異形断面等が挙げられる。 The cross-sectional shape of the extensible fiber is not particularly limited, and examples include circular, elliptical, irregular cross-sections, etc.
 第2実施形態の伸長性繊維は、海島型繊維である。伸長性繊維が海島型繊維であるので、伸長性スパンボンド不織布の原料である樹脂組成物の紡糸時に発生する糸切れ回数が少なくなる。その結果、不織布積層体の生産性は、向上する。糸切れ回数が少ないと、繊維末端が不織布表面に露出する繊維本数も減らすことができ、チクチク感といった肌触りをも改善できる。 The extensible fiber of the second embodiment is an island-in-the-sea type fiber. Because the extensible fiber is an island-in-the-sea type fiber, the number of thread breaks that occur during spinning of the resin composition that is the raw material of the extensible spunbond nonwoven fabric is reduced. As a result, the productivity of the nonwoven fabric laminate is improved. Fewer thread breaks can reduce the number of fibers whose fiber ends are exposed on the nonwoven fabric surface, and can also improve the feel of the skin, such as a prickly feeling.
(2.1.2)伸長性スパンボンド不織布用樹脂組成物
 海島型繊維は、伸長性スパンボンド不織布用樹脂組成物(以下、「樹脂組成物(SB)」ともいう。)からなる。
 樹脂組成物(SB)は、プロピレン単独重合体を含むプロピレン系重合体(A)(以下、「特定プロピレン系重合体(A)」ともいう)と、ポリマー(B)と、を含む。
(2.1.2) Resin composition for extensible spunbond nonwoven fabric The islands-in-the-sea type fiber is made of a resin composition for extensible spunbond nonwoven fabric (hereinafter also referred to as "resin composition (SB)").
The resin composition (SB) contains a propylene polymer (A) containing a propylene homopolymer (hereinafter also referred to as “specific propylene polymer (A)”) and a polymer (B).
(2.1.2.1)特定プロピレン系重合体(A)
 特定プロピレン系重合体(A)は、プロピレン単独重合体を含み、プロピレン共重合体を含んでもよいし、含んでいなくてもよい。プロピレン共重合体は、第1実施形態で例示したものと同様である。なかでも、特定プロピレン系重合体(A)は、プロピレン単独重合体を含むことが好ましく、プロピレン単独重合体であることがより好ましい。
(2.1.2.1) Specific propylene polymer (A)
The specific propylene-based polymer (A) contains a propylene homopolymer, and may or may not contain a propylene copolymer. The propylene copolymer is the same as that exemplified in the first embodiment. In particular, the specific propylene-based polymer (A) preferably contains a propylene homopolymer, and more preferably is a propylene homopolymer.
 特定プロピレン系重合体(A)の融点は、第1実施形態のプロピレン系重合体(A)の融点として例示したものと同様である。 The melting point of the specific propylene-based polymer (A) is the same as the melting point of the propylene-based polymer (A) in the first embodiment.
 特定プロピレン系重合体(A)のMFRは、第1実施形態のプロピレン系重合体(A)のMFRとして例示したものと同様である。 The MFR of the specific propylene-based polymer (A) is the same as the MFR of the propylene-based polymer (A) exemplified in the first embodiment.
 プロピレン単独重合体の含有量は、特定プロピレン系重合体(A)の全量に対して、好ましくは0質量%~100質量%、より好ましくは20質量%~100質量%、更に好ましくは40質量%~100質量%、特に好ましくは60質量%~90質量%、最も好ましくは70質量%~90質量%である。 The content of the propylene homopolymer is preferably 0% by mass to 100% by mass, more preferably 20% by mass to 100% by mass, even more preferably 40% by mass to 100% by mass, particularly preferably 60% by mass to 90% by mass, and most preferably 70% by mass to 90% by mass, based on the total amount of the specific propylene polymer (A).
 特定プロピレン系重合体(A)の含有量は、樹脂組成物(SB)の全量に対して、好ましくは55.0質量%~95.0質量%、より好ましくは65.0質量%~95.0質量%、更に好ましくは75.0質量%~95.0質量%、特に好ましくは85.0質量%~95.0質量%である。 The content of the specific propylene polymer (A) is preferably 55.0% by mass to 95.0% by mass, more preferably 65.0% by mass to 95.0% by mass, even more preferably 75.0% by mass to 95.0% by mass, and particularly preferably 85.0% by mass to 95.0% by mass, based on the total amount of the resin composition (SB).
 特定プロピレン系重合体(A)は、市販品であってもよい。 The specific propylene polymer (A) may be a commercially available product.
(2.1.2.2)バイオマス由来プロピレン系重合体
 特定プロピレン系重合体(A)は、バイオマス由来プロピレン系重合体であってもよい。バイオマス由来プロピレン系重合体としては、第1実施形態と例示したものと同様である。
(2.1.2.2) Biomass-derived propylene-based polymer The specific propylene-based polymer (A) may be a biomass-derived propylene-based polymer. Examples of the biomass-derived propylene-based polymer include those exemplified in the first embodiment.
(2.1.2.3)ポリマー(B)
 ポリマー(B)は、ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種である。
(2.1.2.3) Polymer (B)
The polymer (B) is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters.
 ポリマー(B)の含有量は、樹脂組成物(SB)の総量に対して、好ましくは5.0質量%~45.0質量%、より好ましくは5.0質量%~35.0質量%、更に好ましくは5.0質量%~25.0質量%、特に好ましくは5.0質量%~15.0質量%である。 The content of polymer (B) is preferably 5.0% by mass to 45.0% by mass, more preferably 5.0% by mass to 35.0% by mass, even more preferably 5.0% by mass to 25.0% by mass, and particularly preferably 5.0% by mass to 15.0% by mass, relative to the total amount of resin composition (SB).
(2.1.2.3.1)ポリオレフィン(特定プロピレン系重合体(A)を除く。)
 ポリオレフィン(プロピレン系重合体(A)を除く。)及びポリオレフィン(特定プロピレン系重合体(A)を除く。)の含有量は、第1実施形態で例示したものと同様である。
(2.1.2.3.1) Polyolefin (excluding specific propylene polymer (A))
The content of the polyolefin (excluding the propylene polymer (A)) and the content of the polyolefin (excluding the specific propylene polymer (A)) are the same as those exemplified in the first embodiment.
 ポリオレフィン(特定プロピレン系重合体(A)を除く。)の含有量は、ポリマー(B)の総量に対して、好ましくは90質量%~100質量%、より好ましくは95質量%~100質量%、更に好ましくは99質量%~100質量%、特に好ましくは100質量%である。 The content of polyolefin (excluding the specific propylene-based polymer (A)) relative to the total amount of polymer (B) is preferably 90% by mass to 100% by mass, more preferably 95% by mass to 100% by mass, even more preferably 99% by mass to 100% by mass, and particularly preferably 100% by mass.
(2.1.2.3.2)ポリエステル
 ポリエステルは、第1実施形態で例示したものと同様である。
 ポリエステルの含有量は、ポリマー(B)の総量に対して、好ましくは0質量%以上10質量%未満、より好ましくは0質量%~5質量%、更に好ましくは0質量%である。
(2.1.2.3.2) Polyester The polyester is the same as that exemplified in the first embodiment.
The content of the polyester is preferably 0% by mass or more and less than 10% by mass, more preferably 0% by mass to 5% by mass, and even more preferably 0% by mass, based on the total amount of the polymer (B).
(2.1.2.4)任意成分
 樹脂組成物(SB)は、本開示の目的を損なわない範囲で、任意成分として、酸化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、スリップ剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、親水剤等の種々公知の添加剤を含んでもよい。
(2.1.2.4) Optional Components The resin composition (SB) may contain, as optional components, various known additives such as antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, and hydrophilic agents, within the scope of the object of the present disclosure.
(2.1.2.5)好ましい組成
 前記ポリマー(B)は、スパンボンド不織布の引張強度を向上させる観点と、スパンボンド不織布の伸長性及び柔軟性の観点とから、密度が0.94g/cm~0.97g/cmであるポリエチレンを含むことが好ましい。
(2.1.2.5) Preferred Composition From the viewpoint of improving the tensile strength of the spunbonded nonwoven fabric and from the viewpoint of the extensibility and flexibility of the spunbonded nonwoven fabric, it is preferred that the polymer (B) contains polyethylene having a density of 0.94 g/cm 3 to 0.97 g/cm 3 .
(2.1.2.6)海島型繊維
 海島型繊維は、海相を特定プロピレン系重合体(A)(好ましくはプロピレンの単独重合体)とし、島相をポリマー(B)(好ましくは高密度ポリエチレン)とする海島構造を有することが好ましい。これにより、主成分の海相の配向結晶化が阻害され、伸長性スパンボンド不織布の伸長性が向上する。
(2.1.2.6) Island-in-sea type fiber The islands-in-sea type fiber preferably has an islands-in-sea structure in which the sea phase is a specific propylene-based polymer (A) (preferably a homopolymer of propylene) and the island phase is a polymer (B) (preferably a high-density polyethylene). This inhibits the orientation and crystallization of the main component of the sea phase, improving the extensibility of the extensible spunbonded nonwoven fabric.
(2.2)弾性不織布
 第2実施形態の不織布積層体は、弾性不織布を備える。弾性不織布は、第1実施形態で例示したものと同様である。
(2.2) Elastic Nonwoven Fabric The nonwoven fabric laminate of the second embodiment includes an elastic nonwoven fabric. The elastic nonwoven fabric is the same as that exemplified in the first embodiment.
 弾性不織布は、40℃における貯蔵弾性率E40と23℃における貯蔵弾性率E23との比(E40/E23)が37%以上であるα-オレフィン共重合体(以下、「特定α-オレフィン共重合体」ともいう。)を含むことが好ましい。これにより、温度変化環境下(例えば、40℃~23℃)において、弾性不織布の弾性の低下は抑制され易やすい。そのため、不織布積層体は、応力維持に優れる。 The elastic nonwoven fabric preferably contains an α-olefin copolymer (hereinafter also referred to as a "specific α-olefin copolymer") in which the ratio of the storage modulus E40 at 40°C to the storage modulus E23 at 23°C (E40/E23) is 37% or more. This makes it easier to suppress the decrease in elasticity of the elastic nonwoven fabric in a temperature changing environment (for example, 40°C to 23°C). Therefore, the nonwoven fabric laminate has excellent stress maintenance.
 前記弾性不織布は、特定α-オレフィン共重合体を含み、
 前記弾性不織布の総量に対する前記特定α-オレフィン共重合体の割合は、90質量%~100質量%であり、
 前記特定α-オレフィン共重合体は、エチレン及びプロピレンの共重合体であり、かつ前記特定α-オレフィン共重合体の融点は、130℃以下であることが好ましい。
The elastic nonwoven fabric contains a specific α-olefin copolymer,
The ratio of the specific α-olefin copolymer to the total amount of the elastic nonwoven fabric is 90% by mass to 100% by mass,
The specific α-olefin copolymer is preferably a copolymer of ethylene and propylene, and the melting point of the specific α-olefin copolymer is preferably 130° C. or lower.
(2.3)他の層
 第2実施形態の不織布積層体は、用途に応じて、他の層を備えてもよいし、備えなくていなくてもよい。他の層は、伸長性スパンボンド不織布の少なくとも一方に積層される。他の層として、第1実施形態で例示したものと同様のものが挙げられる。
(2.3) Other layers The nonwoven fabric laminate of the second embodiment may or may not have other layers depending on the application. The other layers are laminated on at least one of the extensible spunbonded nonwoven fabrics. Examples of the other layers include those similar to those exemplified in the first embodiment.
 第2実施形態の不織布積層体は、さらにフィルム層を有してもよい。フィルム層は、第1実施形態で例示したものと同様である。フィルム層は、不織布積層体の一方の面(すなわち、伸長性スパンボンド不織布)上に配置されてもよいし、不織布積層体の両方の面(すなわち、伸長性スパンボンド不織布)上に配置されてもよい。第2実施形態の不織布積層体が、さらにフィルム層を有することで、フィルムの性質に応じて様々な用途に適した不織布積層体を提供できる。フィルム層は、伸長性スパンボンド不織布に熱溶着していてもよいし、接着剤を用いて伸長性スパンボンド不織布に接着していてもよい。 The nonwoven fabric laminate of the second embodiment may further have a film layer. The film layer is the same as that exemplified in the first embodiment. The film layer may be disposed on one side of the nonwoven fabric laminate (i.e., the extensible spunbond nonwoven fabric) or on both sides of the nonwoven fabric laminate (i.e., the extensible spunbond nonwoven fabric). By the nonwoven fabric laminate of the second embodiment further having a film layer, it is possible to provide a nonwoven fabric laminate suitable for various applications depending on the properties of the film. The film layer may be heat-welded to the extensible spunbond nonwoven fabric or may be bonded to the extensible spunbond nonwoven fabric using an adhesive.
(3)伸縮性不織布積層体
 本開示の伸縮性不織布積層体は、本開示の第1実施形態又は第2実施形態の不織布積層体の延伸加工物である。伸縮性不織布積層体は、伸縮性を有する。
(3) Stretchable Nonwoven Fabric Laminate The stretchable nonwoven fabric laminate of the present disclosure is a stretch-processed product of the nonwoven fabric laminate of the first or second embodiment of the present disclosure. The stretchable nonwoven fabric laminate has stretchability.
 伸縮性不織布積層体は、本開示の不織布積層体を延伸することによって得られる。延伸加工の方法は、特に制限されず、従来公知の方法を適用できる。延伸加工の方法は、部分的に延伸する方法であっても、全体的に延伸する方法であってもよい。一軸延伸する方法であっても、二軸延伸する方法であってもよい。流れ方向(MD)に延伸する方法としては、例えば、2つ以上のニップロールに部分的に融着した混合繊維を通過させる方法が挙げられる。このとき、ニップロールの回転速度を、機械の流れ方向の順に速くすることによって部分的に融着した不織布積層体を延伸できる。図1に示すギア延伸装置を用いてギア延伸加工することもできる。 The stretchable nonwoven fabric laminate can be obtained by stretching the nonwoven fabric laminate of the present disclosure. There are no particular limitations on the stretching method, and conventionally known methods can be applied. The stretching method may be a partial stretching method or a full stretching method. It may be a uniaxial stretching method or a biaxial stretching method. An example of a method for stretching in the machine direction (MD) is a method in which the partially fused mixed fibers are passed through two or more nip rolls. In this case, the partially fused nonwoven fabric laminate can be stretched by increasing the rotation speed of the nip rolls in the machine machine direction. Gear stretching can also be performed using a gear stretching device as shown in Figure 1.
 延伸倍率は、好ましくは50%以上、より好ましくは100%以上、さらに好ましくは200%以上である。延伸倍率は、好ましくは1000%以下、より好ましくは500%以下である。 The stretching ratio is preferably 50% or more, more preferably 100% or more, and even more preferably 200% or more. The stretching ratio is preferably 1000% or less, and more preferably 500% or less.
 一軸延伸の場合、流れ方向(MD)の延伸倍率、又は巾方向(CD)のいずれかが上記延伸倍率を満たすことが好ましい。二軸延伸の場合には流れ方向(MD)と巾方向(CD)のうち、少なくとも一方が上記延伸倍率を満たすことが好ましい。 In the case of uniaxial stretching, it is preferable that either the stretch ratio in the machine direction (MD) or the cross direction (CD) meets the above stretch ratio. In the case of biaxial stretching, it is preferable that at least one of the machine direction (MD) and the cross direction (CD) meets the above stretch ratio.
 上述の様に延伸倍率で延伸加工することにより、弾性繊維及び伸長性繊維はいずれも延伸される。伸長性繊維は、塑性変形して、上記延伸倍率に応じて伸長される(つまり、長くなる)。
 不織布積層体を延伸した後、応力が解放されると、弾性繊維は弾性回復し、伸長性繊維は、弾性回復せずに褶曲し、不織布積層体に嵩高感が発現する。さらに、伸長性繊維は細くなる傾向にある。そのため、柔軟性及び触感が良くなるとともに、伸び止り機能を付与することができると考えられる。
By performing the drawing process at the draw ratio as described above, both the elastic fiber and the extensible fiber are drawn. The extensible fiber undergoes plastic deformation and is elongated (i.e., lengthened) in accordance with the draw ratio.
When the stress is released after stretching the nonwoven fabric laminate, the elastic fibers elastically recover, while the extensible fibers fold without elastic recovery, resulting in a bulky feel in the nonwoven fabric laminate. Furthermore, the extensible fibers tend to become thinner. This is believed to improve the flexibility and touch, as well as provide stretch-resistance properties.
(4)繊維製品
 本開示の繊維製品は、本開示の第1実施形態又は第2実施形態の不織布積層体又は本開示の伸縮性不織布積層体を含む。繊維製品は特に制限されず、使い捨ておむつ、生理用品等の吸収性物品、マスク等の衛生物品、包帯等の医療物品、衣料素材、包装材などが挙げられる。本開示の繊維製品は、本開示の不織布積層体又は伸縮性不織布積層体を伸縮部材として含むことが好ましい。
(4) Textile products The textile products of the present disclosure include the nonwoven fabric laminate of the first or second embodiment of the present disclosure or the elastic nonwoven fabric laminate of the present disclosure. The textile products are not particularly limited, and examples thereof include disposable diapers, absorbent articles such as sanitary products, hygiene articles such as masks, medical articles such as bandages, clothing materials, packaging materials, etc. The textile products of the present disclosure preferably include the nonwoven fabric laminate or elastic nonwoven fabric laminate of the present disclosure as an elastic member.
 本開示の繊維製品は、さらに係合可能な係合手段を含むことが好ましい。係合可能な係合手段を不織布積層体の最表面に施すことで、本開示の繊維製品は、取り外し可能な伸縮シートとして機能する。加えて、本開示の不織布積層体は優れたフィット性(戻り応力)を有する。そのため、本開示の繊維製品を引き伸ばして人体もしくは、物品の周囲に巻いて、係合手段により係合することで、伸縮性を有する不織布積層体を物品などに密着させたり、弱く圧着させることができる。特に、本開示の繊維製品が密着される物品が凹凸形状を有する場合であっても、本開示の繊維製品は、物品の凹凸形状に追随させることができる。この観点において、本開示の繊維製品は、包帯やガウン、衣料素材、絆創膏やハップ材の基材、包装材として有用である。加えて、不織布積層体が他の層を備えない場合、不織布積層体は通気性に優れることから、繊維製品の着け心地も優れる。 The textile product of the present disclosure preferably further includes an engaging means. By providing the engaging means on the outermost surface of the nonwoven fabric laminate, the textile product of the present disclosure functions as a removable stretchable sheet. In addition, the nonwoven fabric laminate of the present disclosure has excellent fit (rebound stress). Therefore, by stretching the textile product of the present disclosure and wrapping it around the human body or an article, and engaging it with the engaging means, the stretchable nonwoven fabric laminate can be adhered to the article or weakly pressed against it. In particular, even if the article to which the textile product of the present disclosure is adhered has an uneven shape, the textile product of the present disclosure can follow the uneven shape of the article. From this perspective, the textile product of the present disclosure is useful as a base material for bandages, gowns, clothing materials, bandages and poultices, and packaging materials. In addition, when the nonwoven fabric laminate does not have other layers, the nonwoven fabric laminate has excellent breathability, so the textile product is also comfortable to wear.
 係合可能な係合手段としては、係合突止を有する面ファスナー、メカニカルファスニング、再剥離性・再粘着性の粘着テープ、鉤爪、やクリップ等が挙げられる。係合手段は、公知の係合手段であってもよい。係合手段は、表面摩擦特性を高めることによりズレを防止することを目的に設けられてもよいし、用途に応じて、不織布積層体の一部を滑り止め加工として用いられてもよい。係合手段は、絆創膏や包帯の先端を仮止めする目的で不織布積層体の表面の一部に設けられてもよい。メカニカルファスニングとして、捲縮不織布を用いることができる。捲縮不織布の中でも、プロピレン系熱可塑性樹脂を用いる捲縮不織布とすることで、ポリオレフィン原料のみからなる不織布積層体を構成でき、リサイクル性に優れる伸縮性の繊維製品を提供できる。 The engaging means may be a hook-and-loop fastener with an engaging protrusion, a mechanical fastening, a removable and re-adhesive adhesive tape, a claw, a clip, or the like. The engaging means may be a known engaging means. The engaging means may be provided for the purpose of preventing slippage by increasing the surface friction characteristics, or may be used as a non-slip treatment on a part of the nonwoven fabric laminate depending on the application. The engaging means may be provided on a part of the surface of the nonwoven fabric laminate for the purpose of temporarily fixing the tip of a bandage or a dressing. A crimped nonwoven fabric may be used as the mechanical fastening. Among the crimped nonwoven fabrics, a crimped nonwoven fabric using a propylene-based thermoplastic resin can be used to form a nonwoven fabric laminate made only of polyolefin raw materials, and a stretchable textile product with excellent recyclability can be provided.
(5)吸収性物品
 本開示の吸収性物品は、本開示の不織布積層体又は本開示の伸縮性不織布積層体を含む。
 吸収性物品は、液体を吸収する吸収体を更に含んでもよい。本開示の不織布積層体又は本開示の伸縮性不織布積層体は、吸収性物品の装着時において、装着者の肌と接触する位置に配置されていてもよい。
(5) Absorbent Articles The absorbent articles of the present disclosure include the nonwoven fabric laminate of the present disclosure or the stretchable nonwoven fabric laminate of the present disclosure.
The absorbent article may further include an absorbent body that absorbs liquid. The nonwoven fabric laminate of the present disclosure or the stretchable nonwoven fabric laminate of the present disclosure may be disposed in a position that contacts the wearer's skin when the absorbent article is worn.
(6)マスク
 本開示のマスクは、本開示の不織布積層体又は伸縮性不織布積層体を含む。
 マスクは、装着者の顔の少なくとも一部を覆う被覆部と、前記被覆部の両側から延出する耳掛部と、を備え、前記耳掛部は、本開示の不織布積層体又は本開示の伸縮性不織布積層体を含んでもよい。
(6) Mask The mask of the present disclosure comprises the nonwoven laminate or stretchable nonwoven laminate of the present disclosure.
The mask comprises a covering portion that covers at least a portion of the wearer's face and ear loops extending from both sides of the covering portion, and the ear loops may comprise a nonwoven fabric laminate of the present disclosure or a stretchable nonwoven fabric laminate of the present disclosure.
(7)ハップ材
 本開示のハップ材は、本開示の不織布積層体又は伸縮性不織布積層体を含む。「ハップ材」とは、通常、シート(例えば、不織布や織布など)の片面に膏体層を形成したものである。ハップ材は、装着者の身体の少なくとも一部を覆う被覆部を備えてもよい。当該被覆部の基材として、本開示の第1実施形態又は第2実施形態の不織布積層体又は本開示の伸縮性不織布積層体を含んでもよい。膏体層は、公知の膏体層であればよい。本開示のハップ材は、具体的に被覆用品(例えば、湿布等)、貼付材、皮膚塗布用粘着シート、医療用包袋、滅菌シート、又は医療用パッチに用いられる。医療用包袋、滅菌シート及び医療用パッチの各々の表面には、薬剤、薬、治療薬、貼付薬、塗り薬、経皮薬、経皮剤又は貼り薬が付されている。
(7) Patch The patch of the present disclosure includes the nonwoven fabric laminate or the stretchable nonwoven fabric laminate of the present disclosure. The term "patch" generally refers to a sheet (e.g., nonwoven fabric, woven fabric, etc.) having a paste layer formed on one side thereof. The patch may include a covering portion that covers at least a part of the wearer's body. The base material of the covering portion may include the nonwoven fabric laminate of the first or second embodiment of the present disclosure or the stretchable nonwoven fabric laminate of the present disclosure. The paste layer may be any known paste layer. The patch of the present disclosure is specifically used for covering products (e.g., compresses, etc.), patches, adhesive sheets for skin application, medical dressings, sterile sheets, or medical patches. The surfaces of the medical dressings, sterile sheets, and medical patches are each provided with a drug, medicine, therapeutic drug, patch, ointment, transdermal drug, transdermal agent, or patch.
 以下、本開示を実施例に基づきさらに詳細に説明するが、本開示は下記実施例により限定されない。以下の実施例に示す材料、使用量、割合、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。なお、特に断りがない限り「部」は「質量部」を意味する。 Below, the present disclosure will be explained in more detail based on examples, but the present disclosure is not limited to the following examples. The materials, amounts used, ratios, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present disclosure. In addition, "parts" means "parts by mass" unless otherwise specified.
[1]測定方法
 不織布積層体等の物性値等は、以下の方法により測定した。
[1] Measurement Methods The physical properties of nonwoven fabric laminates and the like were measured by the following methods.
[1.1]目付
 弾性不織布、伸長性スパンボンド不織布又は不織布積層体(以下、「弾性不織布等」ともいう。)から、流れ方向(MD)が300mm、巾方向(CD)が250mmの試験片を10枚採取した。採取箇所は、弾性不織布等の任意の10箇所とした。次いで、採取した各試験片の質量(g)を、上皿電子天秤(研精工業社製)を用いてそれぞれ測定した。各試験片の質量の平均値を求めた。求めた平均値から1m当たりの質量(g)に換算し、小数点第1位を四捨五入して、弾性不織布等の目付とした。
[1.1] Basis weight Ten test pieces with a machine direction (MD) of 300 mm and a width direction (CD) of 250 mm were taken from an elastic nonwoven fabric, an extensible spunbond nonwoven fabric, or a nonwoven fabric laminate (hereinafter also referred to as "elastic nonwoven fabric, etc."). The test pieces were taken from 10 arbitrary locations on the elastic nonwoven fabric, etc. Next, the mass (g) of each test piece taken was measured using an upper plate electronic balance (manufactured by Kensei Kogyo Co., Ltd.). The average value of the mass of each test piece was calculated. The calculated average value was converted to mass (g) per 1 m2 and rounded off to the nearest tenth to obtain the basis weight of the elastic nonwoven fabric, etc.
[1.2]平均繊維径
 弾性不織布又は伸長性スパンボンド不織布から10mm×10mmの試験片を10点採取し、Nikon社製のECLIPSE E400顕微鏡を用い、倍率20倍で、繊維の直径をμm単位で小数点第1位まで読み取った。1試験片毎に任意の20箇所の径を測定し、平均値を平均繊維径とした。
[1.2] Average fiber diameter Ten test pieces measuring 10 mm x 10 mm were taken from the elastic nonwoven fabric or the extensible spunbond nonwoven fabric, and the fiber diameter was measured in μm units to the first decimal place at a magnification of 20 times using a Nikon ECLIPSE E400 microscope. The diameter was measured at 20 random points for each test piece, and the average value was taken as the average fiber diameter.
[1.3]地合係数
 野村商事(株)ファーメーションテスター FMT-MIIIを用いて、不織布積層体の地合指数を測定した。任意の5箇所の平均値を求め、小数点第1位を四捨五入した。地合係数(V)はV=10σ/Eで表される。ここでσは不織布の濃淡ムラの標準偏差であり、Eは不織布の光透過率(T〔%〕)から E=2-logT で求められる値である。透過率が100%に近い場合(地合不良)、E≒0となり、Vは無限大に大きな値を示す。地合指数が小さいほど、地合が良好であることを示す。
[1.3] Formation coefficient The formation index of the nonwoven fabric laminate was measured using a Nomura Shoji Co., Ltd. Formation Tester FMT-MIII. The average value of five randomly selected points was calculated and rounded off to the nearest tenth. The formation coefficient (V) is expressed as V = 10σ/E. Here, σ is the standard deviation of the nonwoven fabric's uneven shading, and E is the value calculated from the nonwoven fabric's light transmittance (T [%]) by E = 2-logT. When the transmittance is close to 100% (poor formation), E ≒ 0, and V shows an infinitely large value. The smaller the formation index, the better the formation.
[1.4]表面係数
 表面係数は、平均繊維径及び地合係数の各々の測定値を上記式(1)に代入して算出した。
[1.4] Surface Coefficient The surface coefficient was calculated by substituting the measured values of the average fiber diameter and the formation coefficient into the above formula (1).
[1.5]貯蔵弾性率E40及び貯蔵弾性率E23
 後述する「α-オレフィン共重合体」の貯蔵弾性率E40は下記の装置及び条件にて測定した。
 温度    :23℃又は40℃
 装置    :RSA-III(ティー・アイ・インスツルメント社製)
 変形モード :引張りモード
 温度範囲  :-20℃~120℃
 昇温速度  :2℃/分
 変形周波数 :10Hz
 初期歪   :0.1%
 測定温度感覚:0.3℃
 環境    :窒素雰囲気下
[1.5] Storage modulus E40 and storage modulus E23
The storage modulus E40 of the "α-olefin copolymer" described below was measured using the following device and conditions.
Temperature: 23°C or 40°C
Apparatus: RSA-III (manufactured by TI Instruments)
Deformation mode: Tensile mode Temperature range: -20℃ to 120℃
Heating rate: 2°C/min Deformation frequency: 10Hz
Initial distortion: 0.1%
Measurement temperature: 0.3℃
Environment: Nitrogen atmosphere
[1.6]融点
 後述する「α-オレフィン共重合体」の融点は、示差走査型熱量計(DSC)を用いて、窒素雰囲気下-100℃で5分間保持した後10℃/分で昇温させることにより得られた融解吸熱カーブの最も低温側に観測されるピークのピークトップとして定義される。具体的には、示差走査型熱量計(パーキン・エルマー社製、DSC-7)を用い、試料5mgを窒素雰囲気下-100℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も低温側に観測されるピークのピークトップとして求めることができる。
[1.6] Melting point The melting point of the "α-olefin copolymer" described later is defined as the peak top of the peak observed on the lowest temperature side of the melting endothermic curve obtained by holding the sample at -100°C for 5 minutes under a nitrogen atmosphere and then heating at 10°C/min using a differential scanning calorimeter (DSC). Specifically, the melting point can be determined as the peak top of the peak observed on the lowest temperature side of the melting endothermic curve obtained by holding 5 mg of a sample at -100°C for 5 minutes under a nitrogen atmosphere and then heating at 10°C/min using a differential scanning calorimeter (Perkin-Elmer, DSC-7).
[1.7]最大点伸度(%)
 実施例1~実施例8、及び比較例1~比較例4の外層(1層目又は3層目)を構成するスパンボンド不織布のみを、下記の「[3]不織布積層体」の方法と同様にして得た。スパンボンド不織布から200mm(MD)×50mm(CD)の試験片と、50mm(MD)×200mm(CD)の試験片とを、それぞれ5点ずつ採取した。なお、採取箇所はMD、CDともに任意の5箇所とした(計10箇所)。次いで、採取した各試験片を万能引張試験機(インテスコ社製、IM-201型)を用いて、チャック間100mm、引張速度100mm/minの条件で引張試験を行い、伸度(最大点伸度〔%〕)を求めた。上記10点(MD、CD各5点)の伸度の平均値を、「実施例1~実施例8、及び比較例1~比較例4を構成するスパンボンド不織布の最大点伸度」とした。
 実施例1~実施例8、及び比較例1~比較例4の外層を構成するスパンボンド不織布の最大点伸度は、50%以上であった。つまり、実施例1~実施例8、及び比較例1~比較例4の外層を構成するスパンボンド不織布は、伸長性スパンボンド不織布であった。
[1.7] Maximum elongation (%)
Only the spunbonded nonwoven fabric constituting the outer layer (first layer or third layer) of Examples 1 to 8 and Comparative Examples 1 to 4 was obtained in the same manner as in the method of "(3) Nonwoven fabric laminate" below. Five test pieces of 200 mm (MD) x 50 mm (CD) and five test pieces of 50 mm (MD) x 200 mm (CD) were taken from the spunbonded nonwoven fabric. The test pieces were taken from five arbitrary locations in both MD and CD (10 locations in total). Next, a tensile test was performed on each of the taken test pieces using a universal tensile tester (IM-201 model, manufactured by Intesco Co., Ltd.) under conditions of a chuck distance of 100 mm and a tensile speed of 100 mm/min to determine the elongation (maximum point elongation [%]). The average value of the elongations at the above 10 points (five points each in MD and CD) was taken as "maximum point elongation of the spunbonded nonwoven fabric constituting Examples 1 to 8 and Comparative Examples 1 to 4".
The maximum point elongation of the spunbonded nonwoven fabric constituting the outer layer of each of Examples 1 to 8 and Comparative Examples 1 to 4 was 50% or more. In other words, the spunbonded nonwoven fabric constituting the outer layer of each of Examples 1 to 8 and Comparative Examples 1 to 4 was an extensible spunbonded nonwoven fabric.
[2]材料の準備
 弾性不織布の原料として、以下の材料を準備した。
[2] Preparation of Materials The following materials were prepared as raw materials for the elastic nonwoven fabric.
[2.1]外層(伸長性スパンボンド不織布)
[2.1.1]海島型繊維の原料
・「h-pp」(プロピレン単独重合体、MFR(ASTMD1238に準拠して、温度230℃、荷重2.16kgで測定):60g/10分、密度:0.91g/cm、融点:160℃)
・「HDPE」(高密度ポリエチレン、MFR(ASTMD1238に準拠して、温度190℃、荷重2.16kgで測定):5g/10分、密度:0.95g/cm、融点:134℃)
[2.1] Outer layer (stretchable spunbond nonwoven fabric)
[2.1.1] Raw materials for islands-in-the-sea fibers: "h-pp" (propylene homopolymer, MFR (measured in accordance with ASTM D1238 at 230°C and 2.16 kg load): 60 g/10 min, density: 0.91 g/cm 3 , melting point: 160°C)
"HDPE" (high density polyethylene, MFR (measured in accordance with ASTM D1238 at a temperature of 190°C and a load of 2.16 kg): 5 g/10 min, density: 0.95 g/cm 3 , melting point: 134°C)
[2.1.2]芯鞘型繊維の原料
・「h-pp(MFR60)」プロピレン単独重合体、MFR(ASTM D1238に準拠して、温度230℃、荷重2.16kgで測定)60g/10分、密度:0.91g/cm3、融点:160℃
・h-pp(MFR8.5):プロピレン単独重合体、MFR(ASTM D1238に準拠して、温度230℃、荷重2.16kgで測定):8.5g/10分、密度:0.91g/cm3、融点:160℃
[2.1.2] Raw materials for core-sheath fiber: "h-pp (MFR60)" propylene homopolymer, MFR (measured in accordance with ASTM D1238 at 230°C and 2.16 kg load) 60g/10min, density: 0.91g/cm 3 , melting point: 160°C
h-pp (MFR 8.5): propylene homopolymer, MFR (measured in accordance with ASTM D1238 at a temperature of 230° C. and a load of 2.16 kg): 8.5 g/10 min, density: 0.91 g/cm 3 , melting point: 160° C.
[2.2]中間層(弾性不織布)
[2.2.1]繊維の原料
・「α-オレフィン共重合体」(ExxonMobil社製、製品名「VistamaxxTM7050FL」、組成:プロピレン/エチレン共重合体、MFR(230℃、荷重2.16kg):48g/10分、エチレン含量:13質量%、引張弾性率:9.82MPa、貯蔵弾性率E23:17.4MPa、貯蔵弾性率E40:8.77MPa、比(E40/E23):50.4%、融点:44.4℃)
[2.2] Middle layer (elastic nonwoven fabric)
[2.2.1] Fiber raw material: "α-olefin copolymer" (manufactured by ExxonMobil, product name "Vistamaxx 7050FL", composition: propylene/ethylene copolymer, MFR (230°C, load 2.16 kg): 48 g/10 min, ethylene content: 13 mass%, tensile modulus: 9.82 MPa, storage modulus E23: 17.4 MPa, storage modulus E40: 8.77 MPa, ratio (E40/E23): 50.4%, melting point: 44.4°C)
 実施例1~実施例8、及び比較例1~比較例4の中間層(2層目)を構成するスパンボンド不織布は、下記の「[3]不織布積層体」の方法に記載の通り、貯蔵弾性率が22.0MPa以下である弾性不織布用樹脂組成物の繊維からなる。つまり、実施例1~実施例8、及び比較例1~比較例4の中間層を構成するスパンボンド不織布は、弾性不織布であった。 The spunbond nonwoven fabric constituting the intermediate layer (second layer) in Examples 1 to 8 and Comparative Examples 1 to 4 was made of fibers of a resin composition for elastic nonwoven fabrics having a storage modulus of 22.0 MPa or less, as described in the method of "[3] Nonwoven fabric laminate" below. In other words, the spunbond nonwoven fabric constituting the intermediate layer in Examples 1 to 8 and Comparative Examples 1 to 4 was an elastic nonwoven fabric.
[3]不織布積層体
[3.1]実施例1
 94質量部の「h-pp」と、6質量部の「HDPE」との混合物を、75mmφの押出機を用い溶融し、孔数1093ホールの紡糸口金を有するスパンボンド不織布成形機(捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、樹脂温度とダイ温度がともに205℃、樹脂吐出量38.7kg/時、冷却風温度20℃、延伸エアー風速2762m/分の条件でスパンボンド法により溶融紡糸を行い、海島型繊維からなる伸長性スパンボンド不織布を捕集面上に第1層目として堆積させた。
 次いで、その堆積面上に、「α-オレフィン共重合体」を、スクリュー径75mmφの単軸押出機を用いて溶融した後、紡糸口金(ダイ、孔数1093ホール)を有するスパンボンド不織布成形機(捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、樹脂温度とダイ温度がともに225℃、冷却風温度20℃、延伸エアー風速4667m/分の条件でスパンボンド法により溶融紡糸し、第2層目として弾性不織布(弾性スパンボンド不織布)を堆積させた。
 次いで、第3層目として、第1層目と同様の海島型繊維を、同様の方法により堆積させ、3層堆積物とした。
 この堆積物をエンボスロールで加熱加圧処理(エンボス面積率18%、エンボス温度60℃)して、不織布積層体を作製した。弾性不織布層が全体に対して占める質量分率が33.3%であった。
 不織布積層体の総合目付、目付比率(中間層/全体)及び地合係数、外層(すなわち、第1層目及び第3層目)である伸長性スパンボンド不織布層の目付及び平均繊維径、中間層(すなわち、2層目)である弾性不織布層の目付及び平均繊維径を、表1に示す。
[3] Nonwoven fabric laminate [3.1] Example 1
A mixture of 94 parts by mass of "h-pp" and 6 parts by mass of "HDPE" was melted using a 75 mmφ extruder, and melt spun by the spunbond method using a spunbond nonwoven fabric molding machine having a spinneret with 1093 holes (length in the direction perpendicular to the machine flow direction on the collecting surface: 320 mm) under conditions of resin temperature and die temperature both at 205° C., resin output rate of 38.7 kg/hour, cooling air temperature of 20° C., and stretching air speed of 2762 m/min, and an extensible spunbond nonwoven fabric consisting of islands-in-the-sea fibers was deposited on the collecting surface as a first layer.
Next, on the deposition surface, the "α-olefin copolymer" was melted using a single-screw extruder with a screw diameter of 75 mmφ, and then melt-spun by the spunbond method using a spunbond nonwoven fabric molding machine (length perpendicular to the machine flow direction on the collection surface: 320 mm) having a spinneret (die, number of holes: 1093) under conditions of resin temperature and die temperature both 225°C, cooling air temperature 20°C, and stretching air speed 4667 m/min, to deposit an elastic nonwoven fabric (elastic spunbond nonwoven fabric) as a second layer.
Next, as a third layer, the same islands-in-the-sea type fibers as in the first layer were deposited in the same manner to form a three-layer deposit.
This pile was subjected to a heat and pressure treatment with an embossing roll (embossed area ratio 18%, embossing temperature 60° C.) to produce a nonwoven fabric laminate. The mass fraction of the elastic nonwoven fabric layer relative to the entire pile was 33.3%.
The total basis weight, basis weight ratio (middle layer/whole) and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the outer layers (i.e., the first and third layers) of the extensible spunbonded nonwoven fabric layers, and the basis weight and average fiber diameter of the middle layer (i.e., the second layer) of the elastic nonwoven fabric layer are shown in Table 1.
[3.2]実施例2~実施例7、及び比較例2~比較例4
 不織布積層体の総合目付、目付比率(中間層/全体)及び地合係数、伸長性スパンボンド不織布層の目付及び平均繊維径、伸長性スパンボンドおよび弾性不織布のエア速度、並びに弾性不織布層の目付及び平均繊維径の各々を表1及び表2に示すように変更したことの他は、実施例1と同様にして、不織布積層体を得た。
[3.2] Examples 2 to 7 and Comparative Examples 2 to 4
A nonwoven fabric laminate was obtained in the same manner as in Example 1, except that the total basis weight, basis weight ratio (middle layer/total), and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the extensible spunbond nonwoven fabric layer, the air speed of the extensible spunbond and elastic nonwoven fabric, and the basis weight and average fiber diameter of the elastic nonwoven fabric layer were changed as shown in Tables 1 and 2.
[3.3]実施例8
 「h-pp(MFR8.5)」を50mmφの押出機を用い溶融し、それとは独立して「h-pp(MFR60)」を75mmφの押出機を用いて溶融した後、「h-pp(MFR8.5)」が芯、「h-pp(MFR60)」が鞘となるような同芯の芯鞘繊維の成形が可能な紡糸口金(ダイ、孔数2887ホール)を有するスパンボンド不織布成形機(捕集面上の機械の流れ方向に垂直な方向の長さ:800mm)を用いて、樹脂温度とダイ温度がともに250℃、冷却風温度20℃、延伸エアー風速3750m/分の条件でスパンボンド法により複合溶融紡糸を行い、芯部と鞘部の質量比が10/90の同芯の芯鞘型繊維からなる伸長性スパンボンド不織布を捕集面上に第1層目として堆積させた。
 次いで、弾性不織布層の目付及び平均繊維径の各々を表2に示すように変更したことの他は、実施例1と同様にして、その堆積面上に、第2層目として弾性不織布(弾性スパンボンド不織布)を堆積させた。
 次いで、第3層目として、第1層目と同様の芯鞘型繊維を、同様の方法により堆積させ、3層堆積物とした。
 この堆積物をエンボスロールで加熱加圧処理(エンボス面積率18%、エンボス温度60℃)して、不織布積層体を作製した(弾性不織布層が全体に対して占める質量分率が33.3%)。
 不織布積層体の総合目付、目付比率(中間層/全体)及び地合係数、外層(すなわち、第1層目及び第3層目)である伸長性スパンボンド不織布層の目付及び平均繊維径、中間層(すなわち、2層目)である弾性不織布層の目付及び平均繊維径を、表2に示す。
[3.3] Example 8
"h-pp (MFR 8.5)" was melted using a 50 mmφ extruder, and "h-pp (MFR 60)" was melted separately using a 75 mmφ extruder. Then, using a spunbond nonwoven fabric molding machine (length in the direction perpendicular to the machine flow direction on the collection surface: 800 mm) having a spinneret (die, number of holes: 2887) capable of molding concentric core-sheath fibers in which "h-pp (MFR 8.5)" was the core and "h-pp (MFR 60)" was the sheath, composite melt spinning was performed by the spunbond method under conditions of resin temperature and die temperature both at 250° C., cooling air temperature of 20° C., and drawing air speed of 3750 m/min, and an extensible spunbond nonwoven fabric consisting of concentric core-sheath type fibers with a core/sheath mass ratio of 10/90 was deposited on the collection surface as a first layer.
Next, an elastic nonwoven fabric (elastic spunbond nonwoven fabric) was deposited on the deposition surface as a second layer in the same manner as in Example 1, except that the basis weight and average fiber diameter of the elastic nonwoven fabric layer were changed as shown in Table 2.
Next, as a third layer, the same core-sheath type fibers as in the first layer were deposited in the same manner to form a three-layer deposit.
This pile was subjected to a heat and pressure treatment with an embossing roll (embossed area ratio 18%, embossing temperature 60° C.) to produce a nonwoven fabric laminate (mass fraction of the elastic nonwoven fabric layer relative to the entire mass was 33.3%).
Table 2 shows the total basis weight, basis weight ratio (middle layer/whole), and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the outer layers (i.e., the first and third layers) of the extensible spunbonded nonwoven fabric layers, and the basis weight and average fiber diameter of the middle layer (i.e., the second layer) of the elastic nonwoven fabric layer.
[3.4]比較例1
 不織布積層体の総合目付、目付比率(中間層/全体)及び地合係数、伸長性スパンボンド不織布層の目付及び平均繊維径、並びに弾性不織布層の目付及び平均繊維径の各々を表2に示すように変更したことの他は、実施例7と同様にして、不織布積層体を得た。
[3.4] Comparative Example 1
A nonwoven fabric laminate was obtained in the same manner as in Example 7, except that the total basis weight, basis weight ratio (middle layer/whole), and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the extensible spunbonded nonwoven fabric layer, and the basis weight and average fiber diameter of the elastic nonwoven fabric layer were each changed as shown in Table 2.
[3.5]参考例1~参考例3
 不織布積層体の総合目付、目付比率(中間層/全体)及び地合係数、伸長性スパンボンド不織布層の目付及び平均繊維径、並びに弾性不織布層の目付及び平均繊維径の各々を表3に示すように変更したことと、表3に示すように外層(伸長性スパンボンド不織布)上にフィルム層を更に接着したことの他は、実施例1と同様にして、不織布積層体を得た。
 フィルム層は、不織布積層体の表面に、表3に示す組成の樹脂を、290℃、30μm厚で押出ラミネートして、伸長性スパンボンド不織布上にフィルム層を接着した。参考例2はサンド側基材にも同不織布積層体を用い、これらの間で表3に示す組成の樹脂を、290℃、30μm厚で押出サンドラミネートして、フィルム層の両面に伸長性スパンボンド不織布層を接着した。不織布積層体とフィルム層との間の層間剥離評価を実施した。結果を表3に示す。
[3.5] Reference Examples 1 to 3
A nonwoven fabric laminate was obtained in the same manner as in Example 1, except that the total basis weight, basis weight ratio (middle layer/whole), and formation coefficient of the nonwoven fabric laminate, the basis weight and average fiber diameter of the extensible spunbonded nonwoven fabric layer, and the basis weight and average fiber diameter of the elastic nonwoven fabric layer were each changed as shown in Table 3, and a film layer was further adhered onto the outer layer (extensible spunbonded nonwoven fabric) as shown in Table 3.
The film layer was formed by extrusion laminating the resin having the composition shown in Table 3 to a thickness of 30 μm at 290° C. on the surface of the nonwoven fabric laminate, and bonding the film layer onto the extensible spunbonded nonwoven fabric. In Reference Example 2, the same nonwoven fabric laminate was used as the sandwich-side substrate, and the resin having the composition shown in Table 3 was extrusion-laminated between them to a thickness of 30 μm at 290° C. to bond the extensible spunbonded nonwoven fabric layers to both sides of the film layer. An evaluation of delamination between the nonwoven fabric laminate and the film layer was performed. The results are shown in Table 3.
[4]評価方法
 不織布積層体の下記のブロッキング評価、糸切れ回数評価及び層間剥離評価を行った。評価結果を表1~表3に示す。
[4] Evaluation Method The nonwoven fabric laminate was evaluated for blocking, the number of thread breakages, and delamination as described below. The evaluation results are shown in Tables 1 to 3.
[4.1]ブロッキング評価
 上記製造方法で作製した巻長4000mのジャンボロールを下出しで繰り出した。徐々に速度をあげ、200m/minまで加速後、ブロッキング評価を5分間実施した。ブロッキング評価の間、ジャンボロールの層間で過度の接着がなく、不織布の破断がない場合をブロッキング評価「A」とした。一方、ジャンボロールの層間で過度の接着が発生し、不織布の破断した場合をブロッキング評価「B」とした。
 上記の基準で目視で評価した。許容可能なブロッキング評価は、「A」である。
[4.1] Blocking evaluation The jumbo roll with a winding length of 4000 m produced by the above manufacturing method was unwound from the bottom. The speed was gradually increased to 200 m/min, and then blocking evaluation was performed for 5 minutes. If there was no excessive adhesion between the layers of the jumbo roll and no breakage of the nonwoven fabric during the blocking evaluation, the blocking evaluation was rated as "A". On the other hand, if there was excessive adhesion between the layers of the jumbo roll and the nonwoven fabric broke, the blocking evaluation was rated as "B".
The blocking was evaluated visually according to the above criteria. An acceptable blocking rating is "A".
[4.2]糸切れ回数の評価
 伸長性スパンボンド不織布の紡糸時に、30分間に発生した糸切れの回数(以下、「糸切れ回数」という。)を測定した。許容可能な糸切れの回数は、2回/30分以下である。
[4.2] Evaluation of the number of yarn breakages The number of yarn breakages that occurred in 30 minutes during the spinning of the extensible spunbond nonwoven fabric (hereinafter referred to as "number of yarn breakages") was measured. The acceptable number of yarn breakages is 2 times/30 minutes or less.
[4.3]層間剥離評価
 フィルム層を積層した不織布積層体を幅25mm×長さ100mmに断裁して試料とする。断裁した試料の両面に幅25mm×長さ150mmに切った布粘着ガムテープを試料の中央部に長さ方向にテープ両端がはみ出すように貼り付ける。テープを貼った試料の上でJIS Z 0237:2009に準ずる手動式圧着ローラを2往復転がし、テープを試料に均一に貼り付ける。貼り付けたテープの試料からはみ出した部分を持ち、テープ同士をゆっくりと剥がし、試料が剥離する層間を観察する。試料を5枚準備して、5回のテストを行った。5回のテストにて、以下の基準で層間剥離評価を行った。
[4.3] Evaluation of delamination The nonwoven fabric laminate with the film layer laminated thereon is cut to a width of 25 mm x length of 100 mm to prepare a sample. A cloth adhesive tape cut to a width of 25 mm x length of 150 mm is attached to both sides of the cut sample so that both ends of the tape protrude from the center of the sample in the length direction. A manual pressure roller conforming to JIS Z 0237:2009 is rolled twice back and forth on the sample with the tape attached, and the tape is attached evenly to the sample. The part of the attached tape that protrudes from the sample is held, and the tapes are slowly peeled off from each other, and the interlayer where the sample peels off is observed. Five samples were prepared and five tests were performed. In the five tests, delamination evaluation was performed according to the following criteria.
 A:5回全てSB層とフィルム層で剥がれず、SB層の層間で剥離する。
 B:1回以上SB層とフィルム層の層間で剥離する。
A: The SB layer and the film layer did not peel off in all five tests, and peeling occurred between the SB layer and the other layers.
B: Peeling occurs between the SB layer and the film layer at least once.
 表1~表3中、「外層(SB)」とは、伸長性スパンボンド不織布を示す。「中間層(NW)」とは、弾性不織布を示す。炭素鎖の項目の「C3/C2」とは、α-オレフィン共重合体がプロピレン/エチレン共重合体であることを示す。「目付比率(中間層/全体)」とは、不織布積層体の総合目付に対する弾性不織布の目付の割合を示す。「h-PP」とは、プロピレンを単独で重合したホモポリプロピレンを示す。 In Tables 1 to 3, "outer layer (SB)" refers to extensible spunbond nonwoven fabric. "middle layer (NW)" refers to elastic nonwoven fabric. "C3/C2" in the carbon chain column indicates that the α-olefin copolymer is a propylene/ethylene copolymer. "Basis weight ratio (middle layer/total)" refers to the ratio of the basis weight of the elastic nonwoven fabric to the total basis weight of the nonwoven fabric laminate. "h-PP" refers to homopolypropylene formed by polymerizing propylene alone.
 比較例1~比較例4では、不織布積層体の表面係数は、38未満であった。そのため、比較例1~比較例4のブロッキング評価は、「B」であった。この結果から、比較例1~比較例4の不織布積層体は、不織布ロールから高速で巻き出されると、ブロッキングの発生を抑制することができないことがわかった。 In Comparative Examples 1 to 4, the surface coefficient of the nonwoven fabric laminate was less than 38. Therefore, the blocking evaluation for Comparative Examples 1 to 4 was "B." From this result, it was found that the nonwoven fabric laminates of Comparative Examples 1 to 4 cannot suppress the occurrence of blocking when unwound from the nonwoven fabric roll at high speed.
 実施例1~実施例8の不織布積層体は、弾性不織布と、前記弾性不織布の両面側に配置された伸長性スパンボンド不織布とを備えた。表面係数が、38以上であった。
 そのため、実施例1~実施例8のブロッキング評価は、「A」であった。この結果から、実施例1~実施例8の不織布積層体は、不織布ロールから高速で巻き出されても、ブロッキングの発生を抑制することができることがわかった。
The nonwoven fabric laminates of Examples 1 to 8 each had an elastic nonwoven fabric and an extensible spunbond nonwoven fabric disposed on both sides of the elastic nonwoven fabric. The surface modulus was 38 or more.
Therefore, the blocking evaluation for Examples 1 to 8 was "A." This result shows that the nonwoven fabric laminates of Examples 1 to 8 can suppress the occurrence of blocking even when unwound from the nonwoven fabric roll at high speed.
 実施例1~実施例7の不織布積層体は、弾性不織布と、前記弾性不織布の両面側に配置された伸長性スパンボンド不織布とを備えた。伸長性繊維は、海島型繊維であった。前記海島型繊維は、伸長性スパンボンド不織布用樹脂組成物からなった。前記伸長性スパンボンド不織布用樹脂組成物は、特定プロピレン系重合体(A)と、ポリオレフィン(プロピレン系重合体(A)を除く)であるポリマー(B)と、を含んでいた。伸長性繊維の平均繊維径aは、弾性繊維の平均繊維径bよりも細かった。
 そのため、実施例1~実施例7のブロッキング評価は、「A」であった。この結果から、実施例1~実施例7の不織布積層体は、不織布ロールから高速で巻き出されても、ブロッキングの発生を抑制することができることがわかった。
The nonwoven fabric laminates of Examples 1 to 7 included an elastic nonwoven fabric and an extensible spunbonded nonwoven fabric arranged on both sides of the elastic nonwoven fabric. The extensible fibers were islands-in-the-sea fibers. The islands-in-the-sea fibers were made of a resin composition for extensible spunbonded nonwoven fabrics. The resin composition for extensible spunbonded nonwoven fabrics contained a specific propylene-based polymer (A) and a polymer (B) which was a polyolefin (excluding the propylene-based polymer (A)). The average fiber diameter a of the extensible fibers was smaller than the average fiber diameter b of the elastic fibers.
Therefore, the blocking evaluation for Examples 1 to 7 was "A." This result shows that the nonwoven fabric laminates of Examples 1 to 7 can suppress the occurrence of blocking even when unwound from the nonwoven fabric roll at high speed.
 実施例のうち、実施例1~実施例6は、糸切れ回数がより少ないことがわかった。
 第1不織布積層体は、実施例のうち、実施例1~実施例6を包含する。
 第1不織布積層体は、弾性不織布と、前記弾性不織布の両面側に配置された伸長性スパンボンド不織布とを備え、上記式(1)で表される表面係数が、38以上であり、前記伸長性スパンボンド不織布に含まれる前記繊維は、伸長性スパンボンド不織布用樹脂組成物からなり、前記伸長性スパンボンド不織布用樹脂組成物は、プロピレン系重合体(A)と、ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と、を含む。
Among the Examples, it was found that Examples 1 to 6 had a smaller number of yarn breakages.
The first nonwoven fabric laminate includes Examples 1 to 6 among the examples.
The first nonwoven fabric laminate comprises an elastic nonwoven fabric and an extensible spunbonded nonwoven fabric arranged on both sides of the elastic nonwoven fabric, and has a surface coefficient represented by the above formula (1) of 38 or more. The fibers contained in the extensible spunbonded nonwoven fabric are made of a resin composition for extensible spunbonded nonwoven fabrics, and the resin composition for extensible spunbonded nonwoven fabrics comprises a propylene-based polymer (A) and a polymer (B) which is at least one type selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters.
 実施例のうち、実施例1~実施例4は、糸切れ回数がさらに少ないことがわかった。
 第2不織布積層体は、実施例のうち、実施例1~実施例4を包含する。
 第2不織布積層体は、第1不織布積層体の発明特定事項に加えて、「伸長性スパンボンド不織布の目付が13g/m~24.9g/mであること」との発明特定事項を有する。
Among the Examples, it was found that Examples 1 to 4 had even fewer occurrences of yarn breakage.
The second nonwoven fabric laminate includes Examples 1 to 4 among the examples.
The second nonwoven fabric laminate has, in addition to the invention-specifying features of the first nonwoven fabric laminate, the invention-specifying feature that "the basis weight of the extensible spunbonded nonwoven fabric is 13 g/m 2 to 24.9 g/m."
 2022年12月15日に出願された日本国特許出願2022-200356の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-200356, filed on December 15, 2022, is incorporated herein by reference in its entirety.
All publications, patent applications, and standards mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent application, or standard was specifically and individually indicated to be incorporated by reference.

Claims (15)

  1.  弾性不織布と、
     前記弾性不織布の両面側に配置された伸長性スパンボンド不織布と
    を備え、
     下記式(1)で表される表面係数が、38以上である、不織布積層体。
     式(1):表面係数=[(前記弾性不織布に含まれる繊維の平均繊維径/前記伸長性スパンボンド不織布に含まれる繊維の平均繊維径)/地合係数]×10
    An elastic nonwoven fabric;
    and an extensible spunbond nonwoven fabric disposed on both sides of the elastic nonwoven fabric;
    A nonwoven fabric laminate having a surface coefficient represented by the following formula (1) of 38 or more.
    Equation (1): Surface coefficient = [(average fiber diameter of fibers contained in the elastic nonwoven fabric/average fiber diameter of fibers contained in the extensible spunbonded nonwoven fabric)/formation coefficient] x 104
  2.  前記弾性不織布に含まれる前記繊維は、弾性不織布用樹脂組成物からなり、
     前記弾性不織布用樹脂組成物は、40℃における貯蔵弾性率E40と23℃における貯蔵弾性率E23との比(E40/E23)が37%以上であるα-オレフィン共重合体を含む、請求項1に記載の不織布積層体。
    The fibers contained in the elastic nonwoven fabric are made of a resin composition for elastic nonwoven fabrics,
    The nonwoven fabric laminate according to claim 1, wherein the resin composition for elastic nonwoven fabric contains an α-olefin copolymer having a ratio (E40/E23) of the storage modulus E40 at 40° C. to the storage modulus E23 at 23° C. of 37% or more.
  3.  前記弾性不織布の総量に対する前記α-オレフィン共重合体の割合は、90質量%~100質量%であり、
     前記α-オレフィン共重合体は、エチレン及びプロピレンの共重合体であり、かつ前記α-オレフィン共重合体の融点は、130℃以下である、請求項2に記載の不織布積層体。
    The ratio of the α-olefin copolymer to the total amount of the elastic nonwoven fabric is 90% by mass to 100% by mass,
    3. The nonwoven fabric laminate according to claim 2, wherein the α-olefin copolymer is a copolymer of ethylene and propylene, and the melting point of the α-olefin copolymer is 130° C. or lower.
  4.  前記伸長性スパンボンド不織布に含まれる前記繊維は、伸長性スパンボンド不織布用樹脂組成物からなり、
     前記伸長性スパンボンド不織布用樹脂組成物は、
     プロピレン系重合体(A)と、
     ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と
    を含む、請求項1に記載の不織布積層体。
    The fibers contained in the extensible spunbonded nonwoven fabric are made of a resin composition for extensible spunbonded nonwoven fabrics,
    The resin composition for extensible spunbonded nonwoven fabrics is
    A propylene-based polymer (A),
    2. The nonwoven fabric laminate according to claim 1, further comprising: a polymer (B) which is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters.
  5.  前記プロピレン系重合体(A)は、プロピレン単独重合体を含み、
     前記ポリマー(B)は、密度が0.94g/cm~0.97g/cmであるポリエチレンを含む、請求項4に記載の不織布積層体。
    The propylene polymer (A) contains a propylene homopolymer,
    5. The nonwoven laminate of claim 4, wherein the polymer (B) comprises polyethylene having a density of 0.94 g/cm 3 to 0.97 g/cm 3 .
  6.  不織布積層体の目付に対する前記弾性不織布の目付の割合が、15%~48%である、請求項1に記載の不織布積層体。 The nonwoven fabric laminate according to claim 1, wherein the ratio of the basis weight of the elastic nonwoven fabric to the basis weight of the nonwoven fabric laminate is 15% to 48%.
  7.  弾性不織布と、
     前記弾性不織布の両面側に配置された伸長性スパンボンド不織布と
    を備え、
     前記伸長性スパンボンド不織布に含まれる繊維が海島型繊維であり、
     前記海島型繊維が、伸長性スパンボンド不織布用樹脂組成物からなり、
     前記伸長性スパンボンド不織布用樹脂組成物が、
     プロピレン単独重合体を含むプロピレン系重合体(A)と、
     ポリオレフィン(プロピレン系重合体(A)を除く)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と、
    を含み、
     前記伸長性スパンボンド不織布に含まれる前記繊維の平均繊維径aが、前記弾性不織布に含まれる繊維の平均繊維径bよりも細い、不織布積層体。
    An elastic nonwoven fabric;
    and an extensible spunbond nonwoven fabric disposed on both sides of the elastic nonwoven fabric;
    The fibers contained in the extensible spunbond nonwoven fabric are islands-in-the-sea fibers,
    The islands-in-the-sea fibers are made of a resin composition for extensible spunbonded nonwoven fabrics,
    The resin composition for extensible spunbonded nonwoven fabrics is
    A propylene-based polymer (A) containing a propylene homopolymer;
    A polymer (B) which is at least one selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters;
    Including,
    A nonwoven fabric laminate, wherein the average fiber diameter a of the fibers contained in the extensible spunbonded nonwoven fabric is smaller than the average fiber diameter b of the fibers contained in the elastic nonwoven fabric.
  8.  前記平均繊維径aに対する前記平均繊維径bの比率(b/a)が、1.0以上1.35以下である、請求項7に記載の不織布積層体。 The nonwoven fabric laminate according to claim 7, wherein the ratio (b/a) of the average fiber diameter b to the average fiber diameter a is 1.0 or more and 1.35 or less.
  9.  さらに、フィルム層を備える、請求項1又は請求項7に記載の不織布積層体。 The nonwoven fabric laminate according to claim 1 or claim 7, further comprising a film layer.
  10.  請求項1又は請求項7に記載の不織布積層体の延伸加工物である、伸縮性不織布積層体。 An elastic nonwoven fabric laminate, which is a stretched product of the nonwoven fabric laminate according to claim 1 or claim 7.
  11.  請求項1又は請求項7に記載の不織布積層体を含む、繊維製品。 A textile product comprising the nonwoven fabric laminate according to claim 1 or claim 7.
  12.  さらに係合可能な係合手段を含む、請求項11に記載の繊維製品。 The textile product according to claim 11, further comprising an engaging means.
  13.  請求項1又は請求項7に記載の不織布積層体を含む、吸収性物品。 An absorbent article comprising the nonwoven fabric laminate according to claim 1 or claim 7.
  14.  請求項1又は請求項7に記載の不織布積層体を含む、マスク。 A mask comprising the nonwoven fabric laminate according to claim 1 or claim 7.
  15.  請求項1又は請求項7に記載の不織布積層体を含む、ハップ材。 A patch material comprising the nonwoven fabric laminate according to claim 1 or claim 7.
PCT/JP2023/044471 2022-12-15 2023-12-12 Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, mask, and poultice WO2024128229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-200356 2022-12-15
JP2022200356 2022-12-15

Publications (1)

Publication Number Publication Date
WO2024128229A1 true WO2024128229A1 (en) 2024-06-20

Family

ID=91485838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044471 WO2024128229A1 (en) 2022-12-15 2023-12-12 Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, mask, and poultice

Country Status (1)

Country Link
WO (1) WO2024128229A1 (en)

Similar Documents

Publication Publication Date Title
JP5670475B2 (en) Spunbond nonwoven fabric laminate
TWI723008B (en) Nonwoven fabric laminate, stretch nonwoven fabric laminate, fiber product, absorbent product and sanitary mask
CN107429458B (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fibrous product, absorbent article, and sanitary mask
JP5931207B2 (en) Spunbond nonwoven fabric
MX2008002376A (en) Propylene based meltblown nonwoven layers and composite structures.
JP6615202B2 (en) Spunbond nonwoven fabric and sanitary material
JP6884750B2 (en) Elastic laminate, its manufacturing method and articles using it
JP2023126282A (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, and hygiene mask
JP7138197B2 (en) Spunbond nonwoven fabric, sanitary material, and method for producing spunbond nonwoven fabric
US20200362492A1 (en) Spunbonded nonwoven fabric, hygiene material, and method for producing spunbonded nonwoven fabric
WO2024128229A1 (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, mask, and poultice
CN112805429A (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fibrous product, absorbent article, and sanitary mask
CN111936685B (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fibrous product, absorbent article, and sanitary mask
JP2023089703A (en) Spun-bonded nonwoven fabric and hygiene material
WO2021200371A1 (en) Spun-bonded non-woven cloth