WO2024128158A1 - 硬化性組成物、硬化体、積層体、レンズ、及び眼鏡 - Google Patents

硬化性組成物、硬化体、積層体、レンズ、及び眼鏡 Download PDF

Info

Publication number
WO2024128158A1
WO2024128158A1 PCT/JP2023/044056 JP2023044056W WO2024128158A1 WO 2024128158 A1 WO2024128158 A1 WO 2024128158A1 JP 2023044056 W JP2023044056 W JP 2023044056W WO 2024128158 A1 WO2024128158 A1 WO 2024128158A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
curable composition
polymerizable monomer
meth
Prior art date
Application number
PCT/JP2023/044056
Other languages
English (en)
French (fr)
Inventor
有輝 服部
利光 平連
真行 宮崎
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2024128158A1 publication Critical patent/WO2024128158A1/ja

Links

Images

Definitions

  • the present invention relates to a curable composition, a cured product, a laminate, a lens, and glasses.
  • Photochromic compounds such as naphthopyran compounds, fulgide compounds, and spirooxazine compounds, are compounds that can reversibly take two isomers with different absorption spectra when irradiated with ultraviolet light, such as sunlight or mercury lamp light.
  • ultraviolet light such as sunlight or mercury lamp light.
  • photochromic when a colorless, decolorized compound is irradiated with ultraviolet light, it quickly changes color and isomerizes (coloring reaction) to a colored state, and when the light irradiation is stopped and the compound is placed in a dark place, it returns to its original color (hereinafter referred to as photochromic). Taking advantage of this property, they are used in a variety of applications, especially as optical materials.
  • photochromic eyeglass lenses which are given photochromic properties through the use of photochromic compounds, quickly become tinted and function as sunglasses when exposed to light containing ultraviolet rays such as sunlight outdoors, and fade and function as clear, normal eyeglasses indoors when not exposed to such light, and demand for such lenses has been increasing in recent years.
  • Patent Document 1 the coating method shown in Patent Document 1 in which a photochromic curable composition is applied to a plastic lens by spin coating or the like and then photocured to form a photochromic coating layer is particularly effective because it can be applied to a variety of existing lenses.
  • T-type photochromic compounds those that, when isomerized from a colored state to a colorless state (fading reaction), return to their original colorless state not only when exposed to light of a specific wavelength, but also when exposed to heat, are called T-type photochromic compounds.
  • T-type photochromic compounds have been extensively researched and developed as materials for photochromic lenses.
  • T-type photochromic compounds generally require the following characteristics (1) to (5).
  • initial coloration The degree of coloration in the visible light range before exposure to ultraviolet light (hereinafter referred to as initial coloration) is small.
  • the speed at which it returns to its original state after UV irradiation is stopped (hereinafter referred to as the fading speed) is high.
  • chromene compounds have been studied as T-type photochromic compounds that satisfy these characteristics. Chromene compounds exhibit excellent photochromic properties in environments where structural changes are likely to occur, such as in solutions. However, in environments where structural changes are unlikely to occur, such as in polymer solid matrices, the fading half-life tends to be longer, i.e., the fading rate tends to decrease. This is thought to be because the free space in polymer solid matrices is overwhelmingly smaller than in solutions, restricting the reversible structural changes of chromene compounds. Thus, when chromene compounds are dispersed in polymer solid matrices such as various plastic materials, the excellent photochromic properties inherent to the chromene compounds cannot be fully exhibited, and the fading rate in particular may decrease. Therefore, various photochromic curable compositions have been investigated to form free space even in polymer solid matrices.
  • a polymerizable monomer having one (meth)acryloyl group, a polymerizable monomer having two (meth)acryloyl groups, and a polymerizable monomer having three or more (meth)acryloyl groups are combined in a specific ratio, and a photochromic compound is dissolved in the combination (see Patent Document 2).
  • polymerizable monomer component only a plurality of types selected from polymerizable monomers having two (meth)acryloyl groups are used, and a photochromic compound is dissolved in such a polymerizable monomer component (see Patent Document 3).
  • a curable composition containing a photochromic compound, an amine compound, a radical polymerizable monomer having a silanol group, and/or a radical polymerizable monomer having an isocyanate group (see Patent Document 4).
  • the object of the present invention is to provide a curable composition capable of producing a cured product with excellent performance of a functional dye, as well as a cured product, a laminate, a lens, and glasses.
  • the present disclosure relates to a curable composition.
  • the curable composition includes a first radical polymerizable monomer represented by the following formula (1) and a functional dye.
  • R 1 is a hydrogen atom or a methyl group.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 3 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 4 is a linear or branched alkylene group having 1 to 7 carbon atoms which may have a substituent.
  • R 5 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 6 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 7 is a hydrogen atom or a methyl group.
  • a is 0 to 10.
  • b is 0 to 20.
  • c is 10 to 70.
  • c is a number larger than each of a, b, d, and e. d is 0 to 20. e is 0 to 10.
  • the present disclosure also provides a cured body.
  • the cured body is obtained by curing the curable composition according to the embodiment.
  • the present disclosure also provides a laminate.
  • the laminate includes an optical substrate and a cured body according to an embodiment that is located on the surface of the optical substrate.
  • the present disclosure also provides a lens.
  • the lens includes a lens substrate and a cured body according to an embodiment that is positioned on a surface of the optical substrate.
  • the present disclosure also provides eyeglasses.
  • the eyeglasses include a lens according to an embodiment.
  • the present invention provides a curable composition capable of producing a cured product with excellent functionality of a functional dye, as well as a cured product, a laminate, a lens, and glasses.
  • FIG. 1 is a cross-sectional view illustrating an example of a laminate according to an embodiment.
  • the curable composition according to the embodiment uses a first radically polymerizable monomer (A-1) represented by formula (1) as the radically polymerizable component (A) to be combined with the functional dye (B).
  • A-1 first radically polymerizable monomer represented by formula (1)
  • B functional dye
  • functional dyes such as photochromic compounds include compounds that undergo a structural change due to energy such as light, and develop, lose, or change color.
  • the soft segment in the polymer solid matrix is important.
  • the first radical polymerizable monomer has a polyalkylene glycol chain structure in which alkylene oxides having 3 to 10 carbon atoms are repeated as a unit.
  • the polymer of the curable composition containing the first radical polymerizable monomer it is considered that multiple alkylene oxide chain portions aggregate, and a soft segment in which these alkylene oxide chain polymers are arranged is formed.
  • the distance between oxygen atoms of the alkylene oxide chain in this soft segment is considered to be greater than the distance between oxygen atoms of the alkylene oxide chain in the soft segment formed by a radical polymerizable monomer having a polyalkylene glycol chain structure with 2 or less carbon atoms.
  • alkylene oxide chains with a relatively large number of carbon atoms are less likely to aggregate than alkylene oxide chains with a relatively small number of carbon atoms, and therefore the distance between polymer chains is considered to be greater. It is believed that when the distance between polymer chains is large, the free space required for structural changes in the functional dye is larger, making the structural changes less likely to be hindered.
  • a cured body that has both high functionality and high hardness of the functional dye can be realized. That is, a cured body with high hardness has low flexibility of the soft segment or a small proportion of the soft segment, and the functionality of the functional dye tends to be reduced. Since the curable composition according to the embodiment uses a monomer having an alkylene oxide chain with a relatively large number of carbon atoms, the flexibility of the alkylene oxide chain constituting the soft segment is considered to be lower than the flexibility of a soft segment composed of an alkylene oxide chain with 2 or less carbon atoms.
  • the distance between the alkylene oxide chains is large, the free space in the soft segment is wide, and the functionality of the functional dye can be enhanced. Therefore, even if the proportion of the first radical polymerizable monomer in the curable composition is increased in order to enhance the functionality of the functional dye, a cured body with high hardness can be realized.
  • the radical polymerizable monomer (A) includes a first radical polymerizable monomer represented by formula (1) (A-1).
  • the first radical polymerizable monomer represented by formula (1) is also referred to as component (A-1).
  • the radical polymerizable monomer (A) is also referred to as component (A).
  • the radical polymerizable monomer (A) may include other radical polymerizable monomers depending on the desired properties of the cured body.
  • component (A-1) it is not particularly limited, and known monomers can be used, but a radical polymerizable monomer having a (meth)acrylate group is preferred, and (A-2) a radical polymerizable monomer having three or more (meth)acryloyl groups in one molecule, and (A-3) other radical polymerizable monomers having a (meth)acryloyl group are preferably used.
  • R 1 and R 7 are each independently a hydrogen atom or a methyl group. That is, the component (A-1) may be a diacrylate, dimethacrylate, or methacrylate acrylate represented by the above formula (1). When the component (A-1) is a diacrylate, a cured product in which the fading rate of the photochromic dye is high tends to be obtained. When the component (A-1) is a dimethacrylate, a cured product in which the color development density of the photochromic dye is high tends to be obtained. It is preferable that R 1 and R 7 are a methyl group.
  • R4 is a linear or branched alkylene group having 1 to 7 carbon atoms which may have a substituent.
  • c is 10 to 70.
  • c is a number larger than a, a number larger than b, a number larger than d, and a number larger than e.
  • the repeating unit -(OCH 2 CH 2 R 4 )- to which the subscript c is added is a first alkylene oxide unit having 3 to 9 carbon atoms.
  • the polymer moiety constituted by this repeating unit can form a soft segment of the cured body.
  • R 4 is preferably a linear alkylene group.
  • the number of carbon atoms in the alkylene group is preferably 1 to 4, and more preferably 2 to 4. The greater the number of carbon atoms in the alkylene group, the greater the functionality of the cured body.
  • the number of carbon atoms in the alkylene group is too high, the amount of soft segments per unit mass decreases, and the functionality of the cured body may decrease.
  • c is preferably 11 to 85, more preferably 11 to 70, even more preferably 12 to 50, and particularly preferably 13 to 45. c may be 30 or less, or 25 or less.
  • R 2 , R 3 , R 5 , and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. It is preferable that R 2 , R 3 , R 5 , and R 6 are each independently a hydrogen atom or a methyl group. R 2 and R 3 are different groups. R 5 and R 6 are different groups. R 2 and R 6 may be the same group. R 3 and R 5 may be the same group.
  • a and e are 0 to 10. From the viewpoint of achieving both functionality and hardness, a and e are preferably 0 to 5, more preferably 0 to 2, even more preferably 0 or 1, and most preferably 0.
  • b and d are 0 to 20. From the viewpoint of achieving both functionality and hardness, 0 to 15 is preferable, 0 to 10 is more preferable, 0 to 5 is even more preferable, and 0 is particularly preferable.
  • component (A-1) may be a monomer further comprising at least one of a second alkylene oxide unit, which is a repeating unit having b and d attached thereto, and a third alkylene oxide unit, which is a repeating unit having a and e attached thereto.
  • a, b, d, and e of the (A-1) component are 0, that is, the component contains only the first alkylene oxide unit.
  • c may be 11 or more and 20 or less, or 12 or more and 15 or less.
  • the biomass degree of the (A-1) component is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more. The upper limit of the biomass degree is, for example, 100% by mass or less, or 98% by mass or less.
  • This component (A-1) is, for example, represented by the following formula (3):
  • R 1 , R 7 and c are defined as the same as in formula (1).
  • R 11 is a linear alkylene group having 1 to 7 carbon atoms.
  • R 11 is preferably a linear alkylene group having 1 to 5 carbon atoms, more preferably a linear alkylene group having 1 to 3 carbon atoms, and most preferably a linear alkylene group having 2 carbon atoms.
  • compounds represented by the above formula (3) include polytrimethylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, polypentamethylene glycol di(meth)acrylate, polyhexamethylene glycol di(meth)acrylate, etc.
  • the number average molecular weight of component (A-1) represented by formula (3) is preferably 800 or more and 9000 or less, more preferably 850 or more and 7000 or less, even more preferably (900) or more and 6000 or less, and most preferably 1000 or more and 5000 or less.
  • the number average molecular weight of component (A-1) may be 800 or more and 3500 or less, or may be 900 or more and 3000 or less.
  • the number average molecular weight can be measured, for example, by gel permeation chromatography (GPC).
  • b and d are 1 or more, that is, when an (A-1) component further containing a second alkylene oxide unit is used, a cured product with high functionality of the functional dye tends to be obtained.
  • b and d may be 2 or more and 15 or less, or 4 or more and 10 or less.
  • component (A-1) may be a monomer in which a, b, d, and e are 1 or more, that is, further comprising both a second alkylene oxide unit and a third alkylene oxide unit.
  • the second alkylene oxide unit and the third alkylene oxide unit have mutually different structures.
  • Component (A-1) can be produced, for example, by the following method.
  • the component (A-1) having an acryloyl group can be synthesized by esterification of a polyol compound represented by the following formula with acrylic acid.
  • R 2 , R 3 , R 4 , R 5 , R 6 , a, b, c, d, and e in the following polyol compound have the same meanings as those in formula (1).
  • the polyol compound may be derived from plants or petroleum.
  • the polyol compound and acrylic acid dissolved in a solvent such as toluene can be reacted by stirring while heating as necessary in the presence of a mineral acid such as sulfuric acid or hydrochloric acid, an organic acid such as aromatic sulfonic acid, or a Lewis acid such as boron fluoride ether, and removing the generated water by azeotropy.
  • a mineral acid such as sulfuric acid or hydrochloric acid
  • an organic acid such as aromatic sulfonic acid
  • a Lewis acid such as boron fluoride ether
  • ester compound such as acrylic anhydride or methyl acrylate.
  • a method can be adopted in which the above polyol compound and acrylic acid are dissolved in a solvent such as toluene in the presence of an acidic catalyst such as aromatic sulfonic acid or a basic catalyst such as sodium acetate or pyridine, and stirred while heating as necessary.
  • the (A-1) component having a methacryloyl group can be synthesized in the same manner as above, for example, by using methacrylic acid instead of acrylic acid.
  • polyol compounds in which a and e are 0 and b and d are 1 or more can be synthesized, for example, by the following method.
  • a polyol having a second alkylene oxide unit can be synthesized by reacting H-(OCH 2 CH 2 R 4 )c-OH with a cyclic ether compound such as ethylene oxide or propylene oxide.
  • the polyol compound having a second alkylene oxide unit can be synthesized, for example, by carrying out the reaction in a nitrogen-substituted autoclave in the presence of a catalyst such as an alkali metal hydroxide, e.g., potassium hydroxide, under high temperature and pressure.
  • polyol compounds in which a, b, d, and e are 1 or more, i.e., component (A-1) further containing second and third alkylene oxide units can be synthesized, for example, by the following method.
  • a polyol compound having a third alkylene oxide unit is synthesized by reacting a polyol compound having a second alkylene oxide unit with a cyclic ether compound, and the resulting polyol compound further having a third alkylene oxide unit is reacted with acrylic acid or methacrylic acid in a manner similar to that described above to synthesize component (A-1) further containing second and third alkylene oxide units.
  • the curable composition according to the embodiment may further contain a second radical polymerizable monomer having three or more (meth)acryloyl groups in one molecule.
  • the second radical polymerizable monomer having three or more (meth)acryloyl groups in one molecule is also referred to as component (A-2).
  • component (A-2) examples include polyfunctional (meth)acrylates represented by the following formula (I), polyfunctional (meth)acrylates having a urethane bond, and polyfunctional (meth)acrylates other than those listed above, with polyfunctional (meth)acrylates represented by the following formula (I) being particularly preferred.
  • Q10 is a methylene group.
  • a1 is an integer of 0 or 1.
  • Q 11 is a linear or branched alkylene group having from 1 to 3 carbon atoms.
  • Q 11 is preferably a linear alkylene group.
  • Q 11 is preferably an alkylene group having 2 or 3 carbon atoms.
  • Q 11 is more preferably an ethylene group, an n-propylene group, or an n-butylene group.
  • a2 is 0, 1, 2, or 3. a2 is preferably 1, 2, or 3.
  • Q 12 is a hydrogen atom or a methyl group , and preferably a methyl group.
  • Q 13 is a trivalent to hexavalent organic group having 1 to 10 carbon atoms. Examples of the organic group represented by Q 13 include a group derived from a polyol, a trivalent to hexavalent hydrocarbon group, and an organic group containing a trivalent to hexavalent urethane bond.
  • Q 13 is preferably a tetravalent hydrocarbon group or a hexavalent hydrocarbon group.
  • Q 13 may be a group derived from trimethylolpropane, a group derived from glycerin, a group derived from pentaerythritol, a group derived from ditrimethylolpropane, or a group derived from dipentaerythritol.
  • a3 is 3, 4, 5, or 6.
  • a3 is preferably 3 or 4.
  • the polyfunctional (meth)acrylate represented by formula (I) more preferably contains a tri- or tetrafunctional (meth)acrylate represented by the following formula (II).
  • Q 20 , Q 21 , Q 22 and Q 23 each independently represent a methylene group. a4, a5, a6 and a7 each independently represent an integer of 0 or 1.
  • Q 24 , Q 25 , and Q 26 are each independently a monovalent group represented by the following formula (III).
  • Q 24 , Q 25 , and Q 26 may have different structures from each other or may have the same structure. It is preferable that Q 24 , Q 25 , and Q 26 have the same structure.
  • Q27 is a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or a monovalent group represented by the following formula (III).
  • Q27 is preferably a hydrogen atom, a linear alkyl group having 1 to 3 carbon atoms, or a monovalent group represented by the following formula (III).
  • polyfunctional (meth)acrylates represented by the above formula (I) include trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, tetramethylolmethane trimethacrylate, tetramethylolmethane triacrylate, tetramethylolmethane tetramethacrylate, tetramethylolmethane tetraacrylate, trimethylolpropane triethylene glycol trimethacrylate, trimethylolpropane triethylene glycol triacrylate, ditrimethylolpropane tetramethacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexamethacrylate, dipentaerythritol pentamethacrylate, glycerin trimethacrylate, glycerin trim
  • the polyfunctional (meth)acrylate having a urethane bond is obtained by reacting a polyisocyanate compound having three or more isocyanate groups in the molecule, a polyol compound having two or more hydroxyl groups in the molecule, and a hydroxyl group-containing (meth)acrylate.
  • the polyfunctional (meth)acrylate having a urethane bond is preferably a polyfunctional (meth)acrylate having a urethane bond having four or more (meth)acryloyl groups in the molecule.
  • Examples of commercially available products include U-4HA (molecular weight 596, number of functional groups 4), U-6HA (molecular weight 1,019, number of functional groups 6), U-6LPA (molecular weight 818, number of functional groups 6), and U-15HA (molecular weight 2,300, number of functional groups 15) manufactured by Shin-Nakamura Chemical Co., Ltd.
  • polyester (meth)acrylate compounds examples include compounds in which the terminals of polyester compounds are modified with (meth)acryloyl groups.
  • polyester (meth)acrylate compounds various polyester (meth)acrylate compounds having different molecular weights of raw polyester compounds and different amounts of modification with (meth)acryloyl groups are commercially available, and these can be used.
  • tetrafunctional polyester oligomers (molecular weight 2,500 to 3,500, Daicel UCB, EB80, etc.), hexafunctional polyester oligomers (molecular weight 6,000 to 8,000, Daicel UCB, EB450, etc.), hexafunctional polyester oligomers (molecular weight 45,000 to 55,000, Daicel UCB, EB1830, etc.), and tetrafunctional polyester oligomers (particularly those having a molecular weight of 10,000, Dai-ichi Kogyo Seiyaku, GX8488B, etc.).
  • radical polymerizable monomers having a (meth)acryloyl group include radical polymerizable monomers having a (meth)acryloyl group in the molecular structure and not corresponding to (A-1) or (A-2).
  • radical polymerizable monomers are not particularly limited and known monomers can be used, and may include bifunctional (meth)acrylates having two (meth)acryloyl groups in the molecule and monofunctional (meth)acrylates having only one (meth)acryloyl group.
  • the curable composition according to the embodiment may contain a difunctional (meth)acrylate as shown below.
  • a di(meth)acrylate other than the first radical polymerizable compound is contained, the hardness of the cured body may be increased.
  • the di(meth)acrylate include a di(meth)acrylate represented by formula (1) in which c is 1 to 9, a difunctional (meth)acrylate represented by formula (4), formula (5), or formula (6), a difunctional (meth)acrylate having a urethane bond, and a difunctional (meth)acrylate other than the above.
  • R 12 and R 13 are each a hydrogen atom or a methyl group.
  • j and k are each independently an integer of 0 or more, and j+k is an integer of 2 or more.
  • the bifunctional (meth)acrylate compound represented by formula (4) is often obtained as a mixture in production. Therefore, j+k is an average value of 2 or more, and preferably an average value of an integer of 2 to 50.
  • R 14 and R 15 are each a hydrogen atom or a methyl group.
  • R 16 and R 17 are each a hydrogen atom or a methyl group.
  • A is a divalent organic group.
  • A is a linear or branched alkylene group having 1 to 20 carbon atoms, a phenylene group that may be substituted with a halogen or an alkyl group having 1 to 5 carbon atoms, a cycloalkylene group, a bicycloalkylene group, a tricycloalkylene group, or a group represented by any of the following formulas.
  • R 18A and R 18B are a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a halogen atom.
  • xx and xy are integers from 0 to 4 or 0 to 10.
  • Ring X is a benzene ring or a cyclohexane ring.
  • YY is -O-, -S-, -(SO 2 )-, -CO-, -CH 2 -, -CH ⁇ CH-, -C(CH 3 ) 2 -, -C(CH 3 )(C 6 H 5 )-, or a group represented by any of the following formulas:
  • l and m are each an integer of 1 or more, and l+m is an average value of 2 or more and 30 or less.
  • a specific example of the bifunctional (meth)acrylate represented by the above formula (5) is the following bisphenol A di(meth)acrylate.
  • R 19 and R 20 are each a hydrogen atom or a methyl group.
  • n is the average value and is a number between 1 and 20.
  • B and B' are each independently a linear or branched alkylene group having 2 to 15 carbon atoms. B and B' may be the same or different. When there are multiple B's, the multiple B's may be the same or different groups.
  • the bifunctional (meth)acrylate represented by the above formula (6) can be produced by reacting a polycarbonate diol with (meth)acrylic acid.
  • the polycarbonate diols used here include, for example, the following: polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of trimethylene glycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of tetramethylene glycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of pentamethylene glycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of hexamethylene glycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of octamethylene glycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation with nonamethylene glycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of triethylene glycol and tetramethylene glycol.
  • Examples include recarbonate diol (average molecular weight 500-2000), polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of tetramethylene glycol and hexamethylene diglycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of pentamethylene glycol and hexamethylene glycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of tetramethylene glycol and octamethylene glycol, polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of hexamethylene glycol and octamethylene glycol, and polycarbonate diol (average molecular weight 500-2000) obtained by phosgenation of 1-methyltrimethylene glycol.
  • bifunctional (meth)acrylates having a urethane bond examples include those obtained by reacting a polyisocyanate compound having two or more isocyanate groups in the molecule, a polyol compound having two or more hydroxyl groups in the molecule, and a hydroxyl group-containing (meth)acrylate.
  • polyisocyanates include hexamethylene diisocyanate, isophorone diisocyanate, lysine isocyanate, 2,2,4-hexamethylene diisocyanate, dimer acid diisocyanate, isopropylidenebis-4-cyclohexyl isocyanate, dicyclohexylmethane diisocyanate, norbornene diisocyanate, and methylcyclohexane diisocyanate.
  • polyols examples include polyalkylene glycols having 2 to 4 carbon atoms and repeating units of ethylene oxide, propylene oxide, or hexamethylene oxide, and polyester diols such as polycaprolactone diol.
  • polyester diols such as polycaprolactone diol.
  • Other examples include polycarbonate diol, polybutadiene diol, pentaerythritol, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, glycerin, and trimethylolpropane.
  • reaction mixtures in which a urethane prepolymer made by the reaction of these polyisocyanates and polyols is further reacted with 2-hydroxy(meth)acrylate and reaction mixtures in which the diisocyanates are directly reacted with 2-hydroxy(meth)acrylate to form urethane(meth)acrylate monomers, etc., can also be used.
  • hydroxyl group-containing (meth)acrylates examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
  • bifunctional (meth)acrylate having a urethane bond commercially available products can be used without any restrictions.
  • examples of commercially available products include U-2PPA (molecular weight 482), UA-122P (molecular weight 1,100), and U-122P (molecular weight 1,100) manufactured by Shin-Nakamura Chemical Co., Ltd., and EB4858 (molecular weight 454) manufactured by Daicel-UCB Ltd.
  • bifunctional (meth)acrylates other than those listed above other than the bifunctional (meth)acrylates shown in the above formula (4), (5) or (6) and the bifunctional (meth)acrylates having a urethane bond
  • sulfur atom is preferably a sulfide group that forms part of the molecular chain.
  • Specific examples include bis(2-methacryloyloxyethylthioethyl)sulfide, bis(methacryloyloxyethyl)sulfide, bis(acryloyloxyethyl)sulfide, 1,2-bis(methacryloyloxyethylthio)ethane, 1,2-bis(acryloyloxyethyl)ethane, bis(2-methacryloyloxyethylthioethyl)sulfide, bis(2-acryloyloxyethylthioethyl)sulfide, 1,2-bis(methacryloyloxyethylthioethylthio)ethane, 1,2-bis(acryloyloxyethylthioethylthio)ethane, 1,2-bis(methacryloyloxyisopropylthioisopropyl)sulfide, and 1,2-bis(acryloyloxyisopropylthi
  • the above bifunctional (meth)acrylate compounds may be used as a single component of each of the components described individually, or as multiple components. Also, each of the components described individually may be used in combination with multiple components. When multiple components or multiple combinations are used, the reference mass is the total amount of the multiple types.
  • the curable composition according to the embodiment may further include a third radical polymerizable monomer having one (meth)acryloyl group in one molecule.
  • the third radical polymerizable monomer may be a monofunctional (meth)acrylate.
  • An example of a monofunctional (meth)acrylate is the monofunctional (meth)acrylate represented by the following formula (7).
  • R 21 is a hydrogen atom, a methyldimethoxysilyl group, a trimethoxysilyl group, a glycidyl group, a pentamethylpiperidino group, a 2,2,6,6-tetramethyl group, or a piperidino group.
  • R 22 is a hydrogen atom or a methyl group. o is an integer of 0 to 10. p is an integer of 0 to 20.
  • R 21 is preferably a methyldimethoxysilyl group, a trimethoxysilyl group, or a glycidyl group.
  • a monofunctional acrylate having such a functional group is contained, the adhesion between the cured body and the substrate tends to be improved.
  • monofunctional (meth)acrylates represented by the above formula (7) include methoxypolyethylene glycol methacrylate, methoxypolyethylene glycol acrylate, stearyl methacrylate, lauryl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, lauryl acrylate, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane, glycidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, etc.
  • the curable composition according to the embodiment may further contain other radical polymerizable monomers.
  • the other radical polymerizable monomers are not particularly limited as long as they are radical polymerizable monomers that can be polymerized with the component (A-1), and known monomers can be used.
  • radical polymerizable polyrotaxanes, radical polymerizable silsesquioxane compounds, allyl compounds, and vinyl compounds are preferably used.
  • Polyrotaxane having radical polymerization ability has a composite molecular structure consisting of an axis molecule and a plurality of cyclic molecules that encapsulate the axis molecule. Bulky terminal groups are formed at both ends of the axis molecule, preventing the cyclic molecules from falling off from the axis molecule.
  • a polyrotaxane having radical polymerizability is a polyrotaxane in which a radical polymerizable group is introduced into the side chain of a cyclic molecule.
  • the radical polymerizable group is introduced, for example, by modifying 1 mol % or more and less than 100 mol % of the hydroxyl groups of the cyclic molecule into a radical polymerizable group.
  • the modification ratio can be calculated by (moles of polymerizable groups introduced) / (moles of all OH groups in the side chain) ⁇ 100.
  • the modification ratio is 10 mol % or more and 95 mol % or less.
  • the weight average molecular weight of the axial molecule is preferably in the range of 1,000 to 10,0000, more preferably in the range of 5,000 to 80,000, and most preferably in the range of 8,000 to 50,000.
  • the cyclic molecules are preferably cyclodextrin rings, crown ether rings, benzocrown rings, dibenzocrown rings and dicyclohexanocrown rings, with cyclodextrin rings and crown ether rings being particularly preferred, and cyclodextrin rings being the most preferred.
  • cyclodextrin rings there are ⁇ -cyclodextrin rings (inner ring diameter 0.45-0.6 nm), ⁇ -cyclodextrin rings (inner ring diameter 0.6-0.8 nm) and ⁇ -cyclodextrin rings (inner ring diameter 0.8-0.95 nm), with ⁇ -cyclodextrin rings and ⁇ -cyclodextrin rings being preferred, and ⁇ -cyclodextrin rings being the most preferred.
  • the inclusion number when all cyclic molecules are introduced into the axis molecule is taken as 1, the inclusion number of the cyclic molecules is preferably in the range of 0.001-0.6, more preferably in the range of 0.002-0.5, and most preferably in the range of 0.003-0.4.
  • radical polymerizable group taking into consideration reactivity with other polymerizable monomers, a (meth)acryloyl group is preferred. There is no particular restriction on the number of radical polymerizable groups, and it is preferable that there be 0 to 5,000 groups in one molecule.
  • Silsesquioxane radical polymerizable compound has various molecular structures such as cage-like, ladder-like, and random structures, and have radically polymerizable groups such as (meth)acrylic groups.
  • q is the degree of polymerization and is an integer from 3 to 100.
  • the multiple R23 may be the same or different and are a radical polymerizable group, an organic group containing a radical polymerizable group, a hydrogen atom , an alkyl group, a cycloalkyl group, an alkoxy group, or a phenyl group. At least one of the multiple R23 is a radical polymerizable group or an organic group containing a radical polymerizable group.
  • examples of the radically polymerizable group or organic group containing a radically polymerizable group represented by R 23 include a (meth)acrylic group; an organic group having a (meth)acrylic group, such as a (meth)acryloyloxypropyl group or a (3-(meth)acryloyloxypropyl)dimethylsiloxy group; an allyl group; an organic group having an allyl group, such as an allylpropyl group or an allylpropyldimethylsiloxy group; a vinyl group; and an organic group having a vinyl group, such as a vinylpropyl group or a vinyldimethylsiloxy group.
  • allyl-based polymerizable compounds having an allyl group include the following: diethylene glycol bisallyl carbonate, methoxypolyethylene glycol allyl ether, methoxypolyethylene glycol-polypropylene glycol allyl ether, butoxypolyethylene glycol-polypropylene glycol allyl ether, phenoxypolyethylene glycol allyl ether, vinyloxypolyethylene glycol allyl ether, styryloxypolyethylene glycol allyl ether, and methoxypolyethylenethioglycol allyl thioether.
  • vinyl-based polymerizable compounds having a vinyl group examples include methyl vinyl ketone, ethyl vinyl ketone, ethyl vinyl ether, styrene, vinylcyclohexane, butadiene, 1,4-pentadiene, divinyl sulfide, divinyl sulfone, 1,2-divinylbenzene, 1,3-divinyl-1,1,3,3-tetramethylpropanedisiloxane, diethylene glycol divinyl ether, divinyl adipate, divinyl sebacate, ethylene glycol divinyl ether, divinyl sulfoxide, divinyl persulfide, dimethyldivinylsilane, 1,2,4-trivinylcyclohexane, methyltrivinylsilane, ⁇ -methylstyrene, and ⁇ -methylstyrene dimer.
  • ⁇ Mixing ratio in curable composition In the curable composition according to the embodiment, when the ratio of the first radical polymerizable monomer is high, the performance of the functional dye in the cured product tends to be improved.
  • This ratio may be 35% by mass or more, preferably 40% by mass or more, more preferably 45% by mass or more, even more preferably 50% by mass or more, and particularly preferably 60% by mass or more.
  • This ratio may be 15% by mass or more, may be 20% by mass or more, may be 25% by mass or more, or may be 30% by mass or more.
  • this ratio may be 99% by mass or less, preferably 90% by mass or less, and more preferably 80% by mass or less.
  • the curable composition according to the embodiment preferably contains a second radical polymerizable monomer in terms of increasing the hardness of the cured body.
  • the proportion of the second radical polymerizable monomer is preferably 1% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, and particularly preferably 25% by mass or more.
  • This proportion is preferably 85% by mass or less, more preferably 50% by mass or less, and even more preferably 35% by mass or less.
  • the curable composition according to the embodiment preferably contains a third radical polymerizable monomer in terms of increasing the adhesion of the cured body.
  • the proportion of the third radical polymerizable monomer is preferably 0.1% by mass or more, more preferably 1% by mass or more, and even more preferably 3% by mass or more.
  • This proportion is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 7% by mass or less.
  • the content of di(meth)acrylate other than the first radical polymerizable monomer is preferably 70% by mass or less. That is, if the content of di(meth)acrylate such as (meth)acrylate having an alkylene oxide chain with 2 or less carbon atoms or polyalkylene carbonate polyol di(meth)acrylate is high, the performance of the functional dye of the cured body may be deteriorated.
  • the content of di(meth)acrylate other than the first radical polymerizable monomer is more preferably 30% by mass or less, and even more preferably 20% by mass or less. The lower limit of this content is 0% by mass in one example, and 5% by mass or more in another example.
  • the content of (poly)ethylene glycol di(meth)acrylate is preferably 30% by mass or less.
  • the content of (poly)ethylene glycol di(meth)acrylate is preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the lower limit of this content is 0% by mass in one example, and 5% by mass or more in another example.
  • the content of the first radical polymerizable monomer may be 40% by mass or more and 80% by mass or less
  • the content of the second radical polymerizable monomer may be 10% by mass or more and 40% by mass or less
  • the content of the third radical polymerizable monomer may be 1% by mass or more and 10% by mass or less
  • the remainder may be the proportion of functional dyes and additives.
  • the proportion of methacrylate is preferably 50% by mass or more. If this proportion is high, a cured product with high functionality of the functional dye tends to be obtained.
  • This proportion is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more. In one example, the upper limit of this proportion is 100% by mass or less, and in another example, 95% by mass or less.
  • the ratio M10/M11 of the mass M10 of the methacrylate to the mass M11 of the acrylate may be 0.1 or more and 10 or less, 0.5 or more and 5 or less, or 1.2 or more and 6 or less.
  • the ratio M1/M3 of the mass M1 of the first radical polymerizable monomer to the mass M3 of the second radical polymerizable monomer is preferably 0.1 or more and 20 or less.
  • the ratio M1/M3 is more preferably 0.5 or more and 10 or less, and even more preferably 1 or more and 5 or less.
  • the ratio M1/M4 of the mass M1 of the first radical polymerizable monomer to the mass M4 of the third radical polymerizable monomer is preferably 0.1 or more and 50 or less.
  • the ratio M1/M3 is more preferably 1 or more and 30 or less, and even more preferably 5 or more and 15 or less.
  • the amount of component (A) when the amount of component (A) is 100 parts by mass, the amount of component (A-1) may be 15 to 100 parts by mass, 20 to 95 parts by mass, 30 to 95 parts by mass, or 35 to 90 parts by mass.
  • the amount of the (A-2) component may be 1 to 500 parts by mass, 1 to 300 parts by mass, 3 to 300 parts by mass, or 5 to 250 parts by mass, based on 100 parts by mass of the (A-1) component.
  • the amount of the (A-3) component may be 0.01 to 20 parts by mass, 0.1 to 17 parts by mass, or 0.5 to 15 parts by mass, per 100 parts by mass of the (A) component.
  • the functional dye includes a compound having a selective absorption ability of visible light, and a compound that develops, loses, or changes color due to energy such as light, heat, an electric field, or pressure. Such a functional dye can exhibit a specific function by undergoing a structural change under a specific condition.
  • the functional dye includes, for example, at least one selected from the group consisting of a photochromic compound, an ultraviolet absorbing agent, a blue light absorbing agent, an infrared absorbing agent, and an electrochromic compound.
  • the ratio M1/M2 of the mass M1 of the first radical polymerizable monomer to the mass M2 of the functional dye is, for example, 10 or more and 10,000 or less.
  • This ratio M1/M2 is preferably 15 or more and 1,000 or less, and more preferably 20 or more and 100 or less.
  • the content of the functional dye in the curable composition is, for example, 0.01% by mass or more and 10% by mass or less.
  • the content of the functional dye is preferably 0.1% by mass or more and 8% by mass or less, and more preferably 1% by mass or more and 5% by mass or less.
  • the photochromic compound is used in an amount sufficient to obtain the desired photochromic properties, preferably from 0.01 to 10 parts by mass per 100 parts by mass of component (A).
  • the curable composition containing the photochromic compound is to be made into a thin film such as a coating, for example, a thin film of about 100 ⁇ m (a polymer film formed by polymerizing the photochromic curable composition)
  • a thin film of about 100 ⁇ m a polymer film formed by polymerizing the photochromic curable composition
  • a thick cured body a polymer molded body obtained by polymerizing a photochromic curable composition
  • a cured body having a thickness of 1 mm or more it is advisable to mix 0.01 to 1 part by mass of a photochromic compound per 100 parts by mass of the thick cured body or 100 parts by mass of a polymerizable compound that gives a thick cured body, to adjust the color tone.
  • the photochromic compound can be any known compound without any restrictions, and can be used alone or in combination of two or more.
  • Representative photochromic compounds include chromene compounds, fulgide compounds, fulgimide compounds, and spirooxazine compounds, which are disclosed in many documents, such as JP-A-2-28154, JP-A-62-288830, WO-94/22850, WO-96/14596, WO-2022/075330, and WO-2022/168989.
  • chromene compounds and spirooxazine compounds are particularly preferable. Chromene compounds include compounds having a 1-benzopyran skeleton, spiropyran compounds containing a spiropyran skeleton, and naphthopyran compounds having a naphthopyran skeleton.
  • the naphthopyran compound preferably includes compounds represented by the following formulas (9), (10), (11), (12), (13), and (14):
  • ring AA is a substituted or unsubstituted aromatic hydrocarbon ring, a substituted or unsubstituted aromatic heterocycle, or a substituted or unsubstituted fused polycycle in which an aromatic ring or an aromatic heterocycle is fused to the ring. Ring AA does not necessarily have to be present.
  • Ring AB is a substituted or unsubstituted aromatic hydrocarbon ring, a substituted or unsubstituted aromatic heterocycle, or a substituted or unsubstituted condensed polycycle in which an aromatic ring or aromatic heterocycle is condensed to the ring.
  • R 24 and R 25 each independently represent a hydrogen atom or a substituent, and two or more of the substituents may be bonded to form a ring structure.
  • the substituents are hydroxyl, alkyl, haloalkyl, cycloalkyl, alkoxy, alkoxyalkyl, formyl, hydroxycarbonyl, alkylcarbonyl, alkoxycarbonyl, halogen, aralkyl which may have a substituent, aralkoxy which may have a substituent, aryloxy which may have a substituent, alkylthio, arylthio which may have a substituent, aryl which may have a substituent, amino, substituted amino, and heterocyclic which may have a substituent, and are preferably at least one selected from the group consisting of haloalkylthio, cycloalkylthio which may have a substituent, oligomer, and the group represented by the following formula (15).
  • Q 1 is an alkylene group which may contain a halogen atom in the substituent.
  • Q 2 is an alkylene group which may contain a halogen atom in the substituent.
  • Q 3 is an alkyl group which may contain a halogen atom in the substituent.
  • P 1 and P 2 are each independently O, S, NR 700 , PR 701 , or P( ⁇ O).
  • R 700 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • R 701 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • aa is 0 or 1 to 10.
  • M is CR26R27 , SiR26R27 , GeR26R27 , or NR26 .
  • R26 and R27 are each independently a hydrogen atom or a substituent , and two or more of the substituents may be bonded to form a ring structure.
  • the substituent is preferably at least one selected from the group consisting of a hydroxyl group, an alkyl group, a haloalkyl group, a cycloalkyl group, an alkoxy group, an alkoxyalkyl group, a formyl group, a hydroxycarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, a halogen atom, an aralkyl group which may have a substituent, an aralkoxy group which may have a substituent, an aryloxy group which may have a substituent, an alkylthio group, an arylthio group which may have a substituent, an aryl group which may have a substituent, an amino group, a substituted amino group, a heterocyclic group which may have a substituent, and a group represented by the above formula (15).
  • R 26 and R 27 are taken together to form a ring structure, it is preferable that they form an aliphatic ring having 3 to 20 ring carbon atoms, a condensed polycycle in which an aromatic ring or an aromatic heterocycle is condensed to an aliphatic ring, a heterocycle having 3 to 20 ring atoms, or a condensed polycycle in which an aromatic ring or an aromatic heterocycle is condensed to a heterocycle.
  • R 1000 , R 1001 and R 1002 are each independently a hydrogen atom or a substituent, and two or more substituents may be bonded to form a ring structure.
  • the same types of substituents as those described in formula (9) may be used.
  • mm is an integer of 1 to 10.
  • R 1003 , R 1004 and R 1005 are each independently a hydrogen atom or a substituent, and two or more substituents may be bonded to form a ring structure.
  • the substituents may be the same as those described in formula (9).
  • nn is an integer of 1 to 10.
  • R 1006 , R 1007 and R 1008 are each independently a hydrogen atom or a substituent, and two or more substituents may be bonded to form a ring structure.
  • the same types of substituents as those described in formula (9) may be used.
  • oo is an integer of 1 to 12.
  • R 1009 , R 1010 and R 1011 are each independently a hydrogen atom or a substituent, and two or more substituents may be bonded to form a ring structure.
  • the substituents may be the same as those described in formula (9).
  • pp is an integer of 1 to 12.
  • R 1012 , R 1013 and R 1014 are each independently a hydrogen atom or a substituent, and two or more substituents may be bonded to form a ring structure.
  • the same types of substituents as those described in formula (9) may be used.
  • qq is an integer of 1 to 12.
  • Naphthopyran compounds include indenonaphthopyran compounds having an indenonaphthopyran skeleton.
  • the indenonaphthopyran compound preferably has an indeno[2,1-f]naphtho[1,2-b]pyran skeleton.
  • indeno[2,1-f]naphtho[1,2-b]pyrans examples include those described in WO 1996/014596, WO 2001/019813, WO 2001/060811, WO 2005/028465, WO 2006/110221, WO 2007/073462, WO 2007/140071, WO 2008/054942, WO 2009/040073, WO 2010/040074, WO 2011/040075, WO 2012/040076, WO 2013/040077, WO 2014/040078, WO 2015/040079, WO 2016/040079, WO 2017/040079, WO 2018/040079, WO 2019 ... Compounds described in International Publication No. 2010/065393, International Publication No.
  • photochromic compounds having an oligomer chain group in the molecule can also be suitably used.
  • Photochromic compounds having such oligomer chain groups are disclosed in many documents, such as WO 2000/015630, WO 2004/041961, WO 2009/146509, WO 2012/149599, WO 2012/162725, WO 2013/078086, WO 2019/013249, and WO 2019/203205.
  • photochromic compounds having an oligomer chain group in the molecule it is preferable to use photochromic compounds having an oligomer chain group described in WO 2019/013249 and WO 2019/203205, because they exhibit superior photochromic properties and durability.
  • the indenonaphthopyran compound preferably contains a compound shown in the following formula (16):
  • R 24 , R 25 , R 26 and R 27 are the same as defined above.
  • r is an integer of 0 to 4.
  • s is an integer of 0 to 4.
  • multiple R 28 may be the same or different from each other.
  • multiple R 29 may be the same or different from each other.
  • the two adjacent R 28 may be joined together with the carbon atom bonded to those R 28 to form a ring that may contain at least one heteroatom selected from the group consisting of oxygen atoms, carbon atoms, sulfur atoms, and nitrogen atoms, and the ring may have a substituent.
  • the two adjacent R 29 may be joined together with the carbon atom bonded to those R 29 to form a ring that may contain at least one heteroatom selected from the group consisting of oxygen atoms, carbon atoms, sulfur atoms, or nitrogen atoms, and the ring may have a substituent.
  • R 28 and R 29 are each independently a group represented by formula (15), a hydroxyl group, an alkyl group, a haloalkyl group, a cycloalkyl group which may have a substituent, an alkoxy group, an amino group, a substituted amino group, a heterocyclic group which may have a substituent, a cyano group, a halogen atom, an alkylthio group, an arylthio group which may have a substituent, a nitro group, a formyl group, a hydroxycarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, an aralkyl group which may have a substituent, an aralkoxy group which may have a substituent, an aryloxy group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, a thiol group, an alkoxyalkylthio group
  • E is an oxygen atom or NR 101
  • R 101 is a hydrogen atom or an alkyl group.
  • F is an oxygen atom or a sulfur atom.
  • G is an oxygen atom, a sulfur atom, or NR 202.
  • R 202 is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group.
  • gg is an integer of 0 or 1.
  • R 201 is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group.
  • R 201 is a group other than a hydrogen atom.
  • R 400 is a hydrogen atom, an alkyl group, an aryl group, a silyl group having a substituent, a polymerizable group, or a photochromic group.
  • the substituent of the silyl group is an alkyl group, an alkoxyl group, or an aryl group.
  • L is a group represented by the following formula (18).
  • J is a divalent group, each independently being a direct bond, a substituted methylene group, an oxygen atom, a sulfur atom, or NR 301.
  • R 301 is a hydrogen atom or an alkyl group.
  • L in formula (18) is an oxygen atom or a sulfur atom.
  • R 300 is an alkylene group, or a silylene group having an alkyl group or an aryl group as a substituent.
  • R 302 , R 303 , and R 304 are alkylene groups.
  • hh, jj, kk, and ll are 0 or 1.
  • ii is an integer from 1 to 200. A plurality of ii units may be the same or different.
  • the dashed line represents a bond with R 400 .
  • the curable composition contains the above-mentioned components (A) and (B) as essential components.
  • Various known compounding agents can be compounded into the curable composition within a range that does not impair the effect.
  • the compounding agents include various stabilizers such as release agents, ultraviolet absorbers, infrared absorbers, ultraviolet stabilizers, antioxidants, coloring inhibitors, antistatic agents, fluorescent dyes, dyes, pigments, and fragrances.
  • Solvents and leveling agents can also be compounded.
  • Thiols such as t-dodecyl mercaptan can be compounded as polymerization regulators.
  • UV stabilizer When an ultraviolet stabilizer is mixed and used, the durability of the photochromic compound can be further improved, and therefore it is preferable to add it.
  • a hindered amine light stabilizer As the ultraviolet stabilizer, a hindered amine light stabilizer, a hindered phenol antioxidant, or a sulfur-based antioxidant can be preferably used.
  • the hindered amine light stabilizer there is no particular limitation, but bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate is particularly preferable from the viewpoint of preventing deterioration of the photochromic compound.
  • hindered amine light stabilizers commercially available from ADEKA Corporation under the trade names of Adeka STAB LA-52, LA-57, LA-62, LA-63, LA-67, LA-77, LA-87, etc. can also be preferably used.
  • Hindered phenol antioxidants are preferred in terms of preventing deterioration of photochromic compounds.
  • 2,6-di-t-butyl-4-methyl-phenol IRGANOX245 (ethylene bis(oxyethylene) bis[3,5-tert-butyl-4-hydroxy-m-tolyl]propionate) manufactured by BASF Japan Ltd.
  • IRGANOX1076 octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate
  • UV stabilizers examples include IRGANOX 1010: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] manufactured by BASF Japan Co., Ltd., and IRGANOX 1035, 1075, 1098, 1135, 1141, 1222, 1330, 1425, 1520, 259, 3114, 3790, 5057, and 565 manufactured by BASF Japan Co., Ltd.
  • the amount of such UV stabilizers used is not particularly limited as long as it does not impair the effect, but is usually in the range of 0.001 to 10 parts by mass, and particularly 0.01 to 1 part by mass, per 100 parts by mass of the curable composition.
  • the polymerization initiator includes a thermal polymerization initiator and a photopolymerization initiator, and specific examples thereof are as follows.
  • Thermal polymerization initiators include: Diacyl peroxide; benzoyl peroxide, p-chlorobenzoyl peroxide, decanoyl peroxide, lauroyl peroxide, acetyl peroxide, Peroxyesters: t-butyl peroxy-2-ethylhexanate, t-butyl peroxy neodecanate, cumyl peroxy neodecanate, t-butyl peroxy benzoate, Peroxydicarbonates: diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, Azo compounds: azobisisobutyronitrile, etc.
  • Photopolymerization initiators include: Acetophenone compounds: 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, ⁇ -Dicarbonyl compounds: 1,2-diphenylethanedione, methylphenylglycoxylate, Acylphosphine oxide compounds: 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine acid methyl ester, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, Examples include:
  • a known polymerization curing accelerator such as a tertiary amine can also be used in combination.
  • Adding a surfactant can improve the wettability of the optical substrate and the primer layer and prevent the occurrence of poor appearance.
  • the surfactant include known surfactants such as silicone surfactants having a silicone chain (polyalkylsiloxane unit) as a hydrophobic group and fluorine surfactants having a fluorocarbon chain.
  • silicone surfactants having a silicone chain polyalkylsiloxane unit
  • fluorine surfactants having a fluorocarbon chain fluorocarbon chain.
  • two or more types may be mixed and used.
  • the surfactant may be either polymerizable with the (A) component or non-polymerizable.
  • silicone surfactants and fluorosurfactants that can be suitably used include L-7001, L-7002, L-7604, FZ-2123, and FZ-2110 manufactured by Dow Toray Co., Ltd., Megafac F-470, Megafac F-1405, and Megafac F-479 manufactured by DIC Corporation, Florad FC-430 manufactured by 3M Japan Ltd., TEGORAD 2100 and TEGORAD 2300 manufactured by Evonik Japan Co., Ltd., and BYK-UV3505 manufactured by BYK Japan Co., Ltd.
  • UV absorbing agent known ultraviolet absorbing agents such as benzophenone-based compounds, benzotriazole-based compounds, cyanoacrylate-based compounds, triazine-based compounds, benzoate-based compounds, cinnamic acid ester-based compounds, and oxanilide-based compounds can be used, and in particular, cyanoacrylate-based compounds, benzophenone-based compounds, benzotriazole-based compounds, and cinnamic acid ester-based compounds are preferred.
  • the ultraviolet absorbing agent is preferably used in an amount of 0.001 to 5 parts by mass relative to 100 parts by mass of the curable composition containing the photochromic compound and the polymerizable compound.
  • the cured product is obtained by curing the curable composition.
  • the curing of the curable composition is carried out by inducing a radical polymerization reaction by irradiation with active energy rays such as ultraviolet rays, ⁇ rays, ⁇ rays, ⁇ rays, and LEDs, heat, or a combination of both. That is, a suitable curing means may be adopted depending on the type of polymerizable monomer and polymerization curing accelerator used and the form of the cured product to be formed.
  • active energy rays such as ultraviolet rays, ⁇ rays, ⁇ rays, ⁇ rays, and LEDs, heat, or a combination of both.
  • a suitable curing means may be adopted depending on the type of polymerizable monomer and polymerization curing accelerator used and the form of the cured product to be formed.
  • the thermal polymerization temperature affects the properties of the resulting cured product.
  • the temperature conditions cannot be generalized because they are affected by the type and amount of the thermal polymerization initiator and the type of polymerizable compound, but it is generally preferable to start the polymerization at a relatively low temperature and slowly increase the temperature.
  • the polymerization time also varies depending on various factors, so it is preferable to determine the optimal time in advance based on these conditions, but it is generally preferable to select conditions so that the polymerization is completed within 2 to 48 hours.
  • UV intensity in particular affects the properties of the obtained photochromic cured body.
  • the illuminance conditions cannot be generally limited because they are affected by the type and amount of the photopolymerization initiator and the type of the polymerizable monomer, but it is generally preferable to select conditions such as irradiating with UV light of 50 to 500 mW/ cm2 at a wavelength of 365 nm for 0.5 to 5 minutes.
  • the biomass plastic degree of the hardened body is preferably 10% by mass or more.
  • the biomass plastic degree can be calculated by a method conforming to ISO standard 16620-3.
  • the biomass plastic degree of the hardened body is preferably 25% by mass or more, more preferably 30% by mass or more, and even more preferably 40% by mass or more. There is no particular upper limit to this biomass plastic degree, but in one example it is 100% by mass or less, and in another example it is 80% by mass or less.
  • a laminate includes an optical substrate and a cured body according to the embodiment located on a surface of the optical substrate.
  • the optical substrate includes a resin such as a diallyl carbonate resin, a urethane resin, or a thiourethane resin.
  • the optical substrate may be a lens substrate.
  • a primer layer may be provided between the laminate and the cured body.
  • the primer layer includes a urethane resin.
  • the biomass plastic content of the optical substrate is preferably 25% by mass or more.
  • the biomass plastic content can be calculated by a method conforming to ISO standard 16620-3.
  • the biomass plastic content of the optical substrate is preferably 30% by mass or more, and more preferably 40% by mass or more. There is no particular upper limit to this biomass plastic content, but in one example it is 100% by mass or less, and in another example it is 80% by mass or less.
  • FIG. 1 is a cross-sectional view that shows a schematic example of a laminate according to an embodiment.
  • the laminate 10 shown in FIG. 1 includes an optical substrate 11, a primer layer 1 provided on one main surface of the optical substrate 11, and a functional resin layer 12 provided on the main surface of the primer layer 1.
  • the functional resin layer 12 includes a cured body according to an embodiment.
  • the optical substrate 11 is a convex meniscus lens having an uneven shape.
  • the cured body according to the embodiment can be widely used as an optical article, for example, various memory materials such as various memory materials replacing silver halide photosensitive materials, copying materials, printing photoreceptors, cathode ray tube memory materials, laser photosensitive materials, and holography photosensitive materials, and lenses. Lenses are suitable for glasses.
  • the photochromic cured body containing a photochromic compound can also be used as a photochromic lens material, an optical filter material, a display material, a light meter, a decoration, and the like.
  • the cured body according to the embodiment is particularly suitable for use in photochromic lenses.
  • Photochromic lenses are suitable as lenses for glasses such as sunglasses.
  • Photochromic lenses can be manufactured by any known method as long as it provides uniform photochromic performance.
  • the above-mentioned curable composition is injected between glass molds held by elastomer gaskets or spacers, and depending on the type of polymerizable compound and polymerization curing accelerator, a photochromic cured product molded into the shape of an optical material such as a lens can be obtained by casting polymerization through heating in an air oven or irradiation with active energy rays such as ultraviolet rays.
  • a coating liquid is prepared by dissolving the curable composition in an appropriate organic solvent, and the coating liquid is applied to the surface of an optical substrate such as a lens substrate by spin coating or dipping, and the organic solvent is removed by drying.
  • polymerization and curing are performed by UV irradiation or heating in an inert gas such as nitrogen, thereby forming a photochromic layer made of a photochromic cured product on the surface of the optical substrate (coating method).
  • a photochromic layer made of a photochromic cured product can be formed on the surface of an optical substrate by placing an optical substrate such as a lens substrate facing a glass mold so that a predetermined gap is formed, injecting a curable composition into this gap, and then performing cast polymerization using an inner mold in which polymerization and curing are performed by UV irradiation, heating, etc. (cast polymerization method).
  • the adhesion between the photochromic layer and the optical substrate can be improved by previously subjecting the surface of the optical substrate to chemical treatment using an alkaline solution, acid solution, etc., or physical treatment using corona discharge, plasma discharge, polishing, etc.
  • chemical treatment using an alkaline solution, acid solution, etc.
  • physical treatment using corona discharge, plasma discharge, polishing, etc.
  • the cured product formed by the curable composition may be subjected to post-processing depending on its application.
  • post-processing include dyeing with a dye such as a disperse dye, laminating a protective layer containing a urethane resin or an epoxy resin, forming a hard coat film using a hard coat agent mainly composed of a sol of a silane coupling agent or silicon, zirconium, antimony, aluminum, tin, tungsten, etc., forming a thin film by vapor deposition of a metal oxide such as SiO 2 , TiO 2 , ZrO 2 , anti-reflection treatment using a thin film by applying an organic polymer, anti-static treatment, etc.
  • a dye such as a disperse dye
  • TMPT trimethylolpropane trimethacrylate
  • D-TMP ditrimethylolpropane tetramethacrylate
  • A-TMMT pentaerythritol tetraacrylate
  • M-TMMT pentaerythritol tetramethacrylate
  • A-DPEHA dipentaerythritol hexaacrylate
  • M-PPG Dimethacrylate of the following formula
  • APC56 Diacrylate of polycarbonate diol obtained by phosgenation of pentamethylene glycol and hexamethylene glycol (average molecular weight 606)
  • MPCD56 Dimethacrylate of polycarbonate diol obtained by phosgenation of pentamethylene glycol and hexamethylene glycol (average molecular weight 634)
  • M-GDM Glycerin dimethacrylate
  • M-NEO Neopentyl glycol dimethacrylate LA82: 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate
  • TSL ⁇ -methacryloyloxypropyltrimethoxysilane
  • RX-1 Polyrotaxane having an acryloyl group According to the method described in WO 2018/030257, a polyrotaxane having an acryloyl group satisfying the following characteristics was synthesized.
  • Axle molecule linear polyethylene glycol (PEG) with a molecular weight of 11,000.
  • Inclusion ring ⁇ -cyclodextrin ( ⁇ -CD) introduction ratio: 0.25. Ends of the axial molecule: capped with adamantane.
  • Side chain introduced into the inclusion ring; (average) molecular weight of the side chain is approximately 500. Number of acryloyl groups per molecule: approximately 90.
  • the weight-average molecular weight Mw of polyrotaxane (RX-1) was measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a liquid chromatograph manufactured by Nihon Waters was used as the apparatus.
  • Two TSKgel Super HM-M columns (molecular weight exclusion limit: 4,000,000, manufactured by Tosoh Corporation) were used in series.
  • the measurement was also performed using tetrahydrofuran as the developing liquid at a flow rate of 0.6 ml/min and a temperature of 40°C.
  • the weight average molecular weight of RX-1 was calculated by comparative conversion using polystyrene as the standard sample, and found to be 180,000.
  • SO-1 A silsesquioxane having a methacryloyl group and the following characteristics: Number of methacrylate groups per molecule: 20. Weight average molecular weight: 4,800.
  • SO-1 was synthesized by the following method. First, 248 ml of ethanol and 54 g (3.0 mol) of water were added to 248 g (1.0 mol) of 3-trimethoxysilylpropyl methacrylate, 0.20 g (0.005 mol) of sodium hydroxide was added as a catalyst, and the mixture was reacted at 30° C. for 3 hours.
  • Shodex GPC KF-802 (exclusion limit molecular weight: 5000, manufactured by Showa Denko K.K.), Shodex GPC GPC KF802.5 (exclusion limit molecular weight: 20000, manufactured by Showa Denko K.K.) and Shodex GPC KF-803 (exclusion limit molecular weight: 70000, manufactured by Showa Denko K.K.), were used in series as columns. Further, tetrahydrofuran was used as a developing liquid, and the measurements were performed under conditions of a flow rate of 1 ml/min and a temperature of 40° C. Polystyrene was used as a standard sample, and the weight average molecular weight was calculated by comparative conversion.
  • Component PC1 A compound represented by the following formula.
  • PC2 A compound represented by the following formula:
  • PC3 A compound represented by the following formula:
  • PC4 A compound represented by the following formula:
  • PC5 A compound represented by the following formula:
  • PC6 A compound represented by the following formula:
  • PC7 A compound represented by the following formula:
  • Stabilizer HALS bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate
  • HP ethylene bis(oxyethylene) bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate] (manufactured by BASF Japan, Irganox 245).
  • Example 1 (Production of Photochromic Curable Composition) First, the components were prepared according to the following formulation.
  • Component (A) Component (A-1): M-PTMG100 56.9 parts by mass.
  • Component (A-2) TMPT 37.5 parts by mass.
  • Component (A-3) TSL 5.6 parts by mass.
  • Component (B) PC1, 1.6 parts by mass.
  • component (A) All the compounds corresponding to component (A) were mixed together, and then component (B) and other additives were mixed to obtain a mixture. 1000 ppm of leveling agent L7001 manufactured by Dow Toray Industries, Inc. was added to the obtained mixture and mixed to obtain a photochromic curable composition.
  • This photochromic curable composition was used to obtain a photochromic laminate by a lamination method in which polymerization was carried out as follows.
  • a thiourethane plastic lens with a center thickness of 2 mm and a refractive index of 1.60 was prepared as the optical substrate.
  • This thiourethane plastic lens was previously subjected to alkaline etching at 50°C for 5 minutes using a 5% aqueous solution of sodium hydroxide, and was then thoroughly washed with distilled water.
  • the surface of the above plastic lens was coated with a moisture-curing primer (product name: TR-SC-P, manufactured by Tokuyama Corporation) at a rotation speed of 70 rpm for 15 seconds, followed by 10 seconds at 700 rpm. After that, approximately 1 g of the photochromic curable composition obtained above was spin-coated so that the photochromic coating layer had a thickness of 40 ⁇ m.
  • a moisture-curing primer product name: TR-SC-P, manufactured by Tokuyama Corporation
  • the lens having the photochromic curable composition (photochromic coating layer) applied on its surface was irradiated with light for 90 seconds using a metal halide lamp with an output of 200 mW/ cm2 in a nitrogen gas atmosphere to cure the coating. It was then further heated at 90°C for 1 hour to produce a photochromic laminate having a photochromic layer.
  • the evaluation was carried out according to the following evaluation methods, and the results are shown in Table 6.
  • the Vickers hardness was measured using a micro Vickers hardness tester PMT-X7A (manufactured by Matsuzawa Co., Ltd.). A pyramidal diamond indenter was used as the indenter, and the measurement was performed under the conditions of a load of 10 gf and a holding time of the indenter of 30 seconds. The measurement results were shown as the average value of the three measurements, excluding the first measurement, which had a large measurement error, after four measurements were performed.
  • Examples 2 to 43 and Comparative Examples 1 to 8 Photochromic cured products were prepared in the same manner as in Example 1, except that the photochromic curable compositions shown in Tables 1 to 6 were used, and evaluations were carried out according to the same evaluation items. The results are shown in Tables 7 to 12.
  • the curable composition using the first radical polymerizable monomer represented by formula (1) of the present invention has excellent photochromic properties, and in particular, an excellent fading speed.
  • a curable composition comprising a first radical polymerizable monomer represented by the following formula (1) and a functional dye:
  • R1 is a hydrogen atom or a methyl group
  • R2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R3 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 4 is a linear or branched alkylene group having 1 to 7 carbon atoms which may have a substituent
  • R5 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R6 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R7 is a hydrogen atom or a methyl group
  • a is 0 to 10
  • b is 0 to 20
  • c is a number between 10 and 70 and greater than each of a, b, d, and e
  • d is 0 to 20
  • e is 0 to 10.
  • Q10 is a methylene group
  • Q 11 is a linear or branched alkylene group having 1 to 3 carbon atoms
  • Q 12 is a hydrogen atom or a methyl group
  • Q 13 is a trivalent to hexavalent organic group having 1 to 10 carbon atoms, a1 is 0 or 1; a2 is 0, 1, 2, or 3; a3 is 3, 4, 5, or 6.
  • R 1 , R 7 and c are the same as defined in formula (1); R 11 is a linear alkylene group having 1 to 7 carbon atoms.
  • An optical substrate A primer layer that covers at least a portion of a surface of the optical substrate and contains a urethane resin; [16] A cured product according to [16], which covers at least a part of the primer layer; A laminate comprising:

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明の目的は、機能性色素の性能に優れた硬化体を実現可能な硬化性組成物と、硬化体、積層体、レンズ、及び眼鏡とを提供することにある。 実施形態によると、硬化性組成物が提供される。硬化性組成物は、式(1)で表される第1ラジカル重合性単量体及び機能性色素を含む。他の実施形態によると、硬化体が提供される。硬化体は、実施形態に係る硬化性組成物を硬化させて得られる。

Description

硬化性組成物、硬化体、積層体、レンズ、及び眼鏡
 本発明は、硬化性組成物、硬化体、積層体、レンズ、及び眼鏡に関する。
 ナフトピラン化合物、フルギド化合物、スピロオキサジン化合物等に代表されるフォトクロミック化合物は、太陽光あるいは水銀灯の光のような紫外線を含む光を照射することで、吸収スペクトルの異なる2つの異性体を可逆的に取りうる化合物である。一般的に無色の消色状態の化合物に紫外線を照射することで、速やかに色が変わり、有色の発色状態へと異性化(発色反応)し、光の照射をやめて暗所におくと元の色に戻るという特性(以下、フォトクロミック性ともいう。)を有しており、この特性を活かして、種々の用途、特に光学材料の用途に使用されている。
 例えば、フォトクロミック化合物の使用によりフォトクロミック性が付与されているフォトクロミック眼鏡レンズは、太陽光のような紫外線を含む光が照射される屋外では速やかに着色してサングラスとして機能し、そのような光の照射がない屋内においては退色して透明な通常の眼鏡として機能するものであり、近年その需要は増大している。
 光学材料にフォトクロミック性を付与する具体的な方法として、下記(A)~(C)の手段が知られている。
 (A)重合性モノマーにフォトクロミック化合物を混合させ、それを重合させることにより、直接、レンズ等の光学材料を成形する方法。
 (B)レンズ等のプラスチック成形品の表面に、フォトクロミック化合物が分散された樹脂層を、コーティング或いは注型重合により設ける方法。
 (C)2枚の光学シートを、フォトクロミック化合物が分散された接着材樹脂により形成された接着層により接合すること。
 これらの中でも、特に、特許文献1に示されるように、プラスチックレンズ上にフォトクロミック硬化性組成物をスピンコート等により塗布し、光硬化させてフォトクロミックコーティング層を形成するコーティング法は様々な既存のレンズに適応可能であることから、有効な手段である。
 ところで、フォトクロミック光学物品に使用されるフォトクロミック化合物のうち発色状態から消色状態への異性化(退色反応)の際に、特定の波長の光のみならず、熱によっても元の消色状態に戻るものをT型フォトクロミック化合物と呼ぶ。T型フォトクロミック化合物はフォトクロミックレンズの材料としてよく研究、開発されている。
 T型フォトクロミック化合物においては、一般的に、以下(1)~(5)の特性が求められる。
 (1)紫外線を照射する前の可視光領域での着色度(以下、初期着色という。)が小さい。
 (2)紫外線を照射し始めてから発色濃度が飽和に達するまでの速度が高い(以下、発色感度が高いともいう。)。
 (3)紫外線の照射を止めてから元の状態に戻るまでの速度(以下、退色速度という)が高い。
 (4)上記(2)及び(3)の可逆作用の繰り返し耐久性がよい。
 (5)モノマー組成物に高濃度に溶解し、モノマー組成物の硬化体中での分散性が高い。
 これら特性を満たすT型フォトクロミック化合物としてクロメン化合物が数多く研究されてきている。クロメン化合物は、溶液中などの構造変化が起こりやすい環境下においては優れたフォトクロミック性を示す。しかしながら、高分子固体マトリックス中などの構造変化が起こりにくい環境下においては、退色半減期が長くなる傾向すなわち退色速度が低下する傾向にある。この原因は、溶液中に比べて高分子固体マトリックス中では自由空間が圧倒的に小さいため、クロメン化合物の可逆的な構造変化が制約を受けるためと考えられる。このように各種プラスチック材料のような高分子固体マトリックスにクロメン化合物を分散させた場合には、クロメン化合物が本来有する優れたフォトクロミック特性を十分に発揮することができず、特に退色速度が低下し得る。そこで、高分子固体マトリックス中でも自由空間を形成させるために様々なフォトクロミック硬化性組成物がこれまで検討されてきている。
 眼鏡レンズに適用されるフォトクロミックコーティング剤の代表的なものとして、以下の(a)~(d)が提案されている。
 (a)ウレタンオリゴマー中にフォトクロミック化合物を溶解させたもの(特許文献1参照)。
 (b)1個の(メタ)アクリロイル基を有する重合性単量体、2個の(メタ)アクリロイル基を有する重合性単量体、及び3個以上の(メタ)アクリロイル基を有する重合性単量体を特定の割合で組み合わせ、これにフォトクロミック化合物を溶解したもの(特許文献2参照)。
 (c)重合性単量体成分として、2個の(メタ)アクリロイル基を有する重合性単量体から選択された複数種のみを使用し、このような重合性単量体成分にフォトクロミック化合物を溶解したもの(特許文献3参照)。
 (d)フォトクロミック化合物、アミン化合物、シラノール基を有するラジカル重合性単量体及び/又はイソシアネート基を有するラジカル重合性単量体を含有する硬化性組成物(特許文献4参照)。
国際公開第98/37115号 米国特許第5914174号明細書 国際公開第01/02449号 国際公開第03/11967号 国際公開第2015/054036号 国際公開第2009/075388号 欧州特許第3418347号明細書
 本発明の目的は、機能性色素の性能に優れた硬化体を実現可能な硬化性組成物と、硬化体、積層体、レンズ、及び眼鏡とを提供することにある。
 本開示は、硬化性組成物に関する。硬化性組成物は、下記式(1)で表される第1ラジカル重合性単量体及び機能性色素を含む。
Figure JPOXMLDOC01-appb-C000004
 式中、Rは水素原子またはメチル基である。Rは水素原子または炭素数1~3のアルキル基である。Rは水素原子または炭素数1~3のアルキル基である。Rは置換基を有してもよい直鎖状または分岐状の炭素数1~7のアルキレン基である。Rは水素原子または炭素数1~3のアルキル基である。Rは水素原子または炭素数1~3のアルキル基である。Rは水素原子またはメチル基である。aは0~10である。bは0~20である。cは10~70である。cは、a、b、d、及びeの各々よりも大きい数である。dは0~20である。eは0~10である。
 また、本開示によると、硬化体が提供される。硬化体は、実施形態に係る硬化性組成物を硬化させて得られる。
 また、本開示によると、積層体が提供される。積層体は、光学基材と、光学基材の表面上に位置する実施形態に係る硬化体とを含む。
 また、本開示によると、レンズが提供される。レンズは、レンズ基材と、光学基材の表面上に位置する実施形態に係る硬化体とを含む。
 また、本開示によると、眼鏡が提供される。眼鏡は、実施形態に係るレンズを含む。
 本発明によると、機能性色素の機能性に優れた硬化体を実現可能な硬化性組成物と、硬化体、積層体、レンズ、及び眼鏡とが提供される。
実施形態に係る積層体の一例を概略的に示す断面図。
 実施形態に係る硬化性組成物は、(B)機能性色素と組み合わせる(A)ラジカル重合性成分として、式(1)で示される(A-1)第1ラジカル重合性単量体を用いる。このような硬化性組成物を用いると、機能性色素の機能性に優れた硬化体が実現できる。この理由は、明確に解明されたわけではないが、本発明者等は次のように推定している。
 先ず、フォトクロミック化合物等の機能性色素は、光等のエネルギーにより構造変化し、発色、消色、又は変色する化合物を含む。このような機能性色素が高分子固体マトリックス中で容易に構造変化するためには、高分子固体マトリックス中のソフトセグメントが重要である。第1ラジカル重合性単量体は、炭素数3~10のアルキレンオキシドを繰り返し単位とするポリアルキレングリコール鎖構造を有する。第1ラジカル重合性単量体を含む硬化性組成物の重合体中では、複数のアルキレンオキシド鎖部分が凝集し、これらアルキレンオキシド鎖ポリマーが配列したソフトセグメントが形成されると考えられる。そして、このソフトセグメントにおけるアルキレンオキシド鎖の酸素原子間距離は、炭素数2以下のポリアルキレングリコール鎖構造を有するラジカル重合性単量体により形成されるソフトセグメントにおけるアルキレンオキシド鎖の酸素原子間距離よりも大きいと考えられる。すなわち、比較的炭素数の多いアルキレンオキシド鎖同士は、比較的炭素数の少ないアルキレンオキシド鎖同士よりも凝集しにくく、それゆえ、ポリマー鎖間距離が大きいと思われる。ポリマー鎖間距離が大きいと、機能性色素の構造変化に必要な自由空間がより大きいため、構造変化が妨げられにくいと考えられる。
 更に、実施形態に係る硬化性組成物を用いると、機能性色素の機能性の高さと、硬度の高さとを両立した硬化体を実現できる。すなわち、硬度が高い硬化体は、ソフトセグメントの柔軟性が低い、若しくは、ソフトセグメントの割合が少なく、機能性色素の機能性が低下する傾向にある。実施形態に係る硬化性組成物は、比較的炭素数の多いアルキレンオキシド鎖を有するモノマーを用いるため、ソフトセグメントを構成するアルキレンオキシド鎖の柔軟性は、炭素数2以下のアルキレンオキシド鎖により構成されるソフトセグメントの柔軟性よりも低いと考えられる。その一方で、上述したとおり、アルキレンオキシド鎖間の距離が大きいため、ソフトセグメントにおける自由空間は広く、機能性色素の機能性を高められる。したがって、機能性色素の機能性を高めるために、硬化性組成物中における第1ラジカル重合性単量体の割合を高めたとしても、高い硬度を有する硬化体を実現できる。
 以下、各成分について詳細に説明する。
 <(A)ラジカル重合性単量体>
 ラジカル重合性単量体(A)は、(A-1)式(1)で示される第1ラジカル重合性単量体を含む。以下、式(1)で示される第1ラジカル重合性単量体を、(A-1)成分とも称する。ラジカル重合性単量体(A)を、(A)成分とも称する。ラジカル重合性単量体(A)は、求める硬化体の特性に応じ、その他のラジカル重合性単量体を含んでいてもよい。(A-1)成分と重合し得る重合性単量体であれば、特に制限されるものではなく、公知のものを使用することができるが、(メタ)アクレート基を有するラジカル重合性単量体が好ましく、(A-2)一分子中に3つ以上の、(メタ)アクリロイル基を有するラジカル重合性単量体および、(A-3)(メタ)アクロイル基を有するその他のラジカル重合性単量体が好適に使用される。
 <(A-1)成分;下記式(1)で示されるラジカル重合性単量体>
Figure JPOXMLDOC01-appb-C000005
 式中、R及びRは、それぞれ独立に、水素原子またはメチル基である。すなわち、(A-1)成分は、上記式(1)で示されるジアクリレート、ジメタクリレート又はメタクリレートアクリレートであり得る。ジアクリレートである(A-1)成分を用いると、フォトクロミック色素の退色速度が高い硬化体が得られる傾向にある。ジメタクリレートである(A-1)成分を用いると、フォトクロミック色素の発色濃度が高い硬化体が得られる傾向にある。RおよびRは、メチル基であることが好ましい。
 Rは、置換基を有してもよい直鎖状または分岐状の炭素数1~7のアルキレン基である。cは10~70である。cは、aよりも大きい数であり、bよりも大きい数であり、dよりも大きい数であり、かつ、eよりも大きい数である。
 すなわち、添え字cが添えられた繰り返し単位-(OCHCH)-は、炭素数3以上9以下の第1アルキレンオキシドユニットである。この繰り返し単位により構成されるポリマー部位は、硬化体のソフトセグメントを形成し得る。Rは、直鎖状のアルキレン基であることが好ましい。アルキレン基の炭素数は、1以上4以下であることが好ましく、2以上4以下であることがより好ましい。アルキレン基の炭素数が多いと、硬化体の機能性がより高まる。一方、アルキレン基の炭素数が多すぎると、単位質量あたりのソフトセグメント量が低下するため、硬化体の機能性が低下し得る。
 cは、機能性及び硬度の両立という観点からは、11~85が好ましく、11~70がより好ましく、12~50がさらに好ましく、13~45が特に好ましい。cは、30以下であってもよく、25以下であってもよい。
 R、R、R、および、Rは、それぞれ独立に、水素原子または炭素数1~3のアルキル基である。R、R、R、および、Rは、それぞれ独立に、水素原子またはメチル基が好ましい。R及びRは、互いに異なる基である。R及びRは、互いに異なる基である。R及びRは、同一の基であってもよい。R及びRは、同一の基であってもよい。
 aおよびeは、0~10である。機能性、硬度の両立という観点からはaおよびeは0~5が好ましく、0~2がより好ましく、0または1がさらに好ましく、0が最も好ましい。
 bおよびdは0~20である。機能性、硬度の両立という観点からは0~15が好ましく、0~10がより好ましく、0~5がさらに好ましく、0が特に好ましい。
 言い換えると、(A-1)成分は、bおよびdが添えられた繰り返し単位である第2アルキレンオキシドユニット、及び、aおよびeが添えられた繰り返し単位である第3アルキレンオキシドユニットの少なくとも一方を更に備えたモノマーであってもよい。
 (A-1)成分は、a、b、d、およびeが0である、すなわち、第1アルキレンオキシドユニットのみを含むことが好ましい。このような(A-1)成分を用いると、硬化体の硬度が高まる傾向にある。cは、11以上20以下であってもよく、12以上15以下であってもよい。
 (A-1)成分のバイオマス度は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。バイオマス度の上限値は、例えば、100質量%以下であり、あるいは、98質量%以下である。
 この(A-1)成分は、例えば、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000006
 上記式(3)中、R、R、cは式(1)と同義である。
 R11は炭素数1~7の直鎖状アルキレン基である。R11は、炭素数1~5の直鎖状アルキレン基が好ましく、炭素数1~3の直鎖状アルキレン基がより好ましく、炭素数2の直鎖状アルキレン基が最も好ましい。
 上記式(3)で示される化合物を具体的に例示すると、ポリトリメチレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリペンタメチレングリコールジ(メタ)アクリレート、ポリヘキサメチレングリコールジ(メタ)アクリレートなどがあげられる。
 フォトクロミック性、硬度の両立という観点、さらに得られる硬化性組成物の粘度などを考えると、式(3)で表される(A-1)成分の数平均分子量は、800以上9000以下であることが好ましく、850以上7000以下であることがより好ましく、(900)以上6000以下であることがさらに好ましく、1000以上5000以下であることが最も好ましい。(A-1)成分の数平均分子量は、800以上3500以下であってもよく、900以上(3000以下であってもよい。数平均分子量は、例えば、ゲル濾過クロマトグラフィー(GPC)により測定できる。
 aおよびeが0であり、bおよびdが1以上である(A-1)成分、すなわち、第2アルキレンオキシドユニットを更に含む(A-1)成分を用いると、機能性色素の機能性が高い硬化体が得られる傾向にある。b及びdは、2以上15以下であってもよく、4以上10以下であってもよい。
 このような(A-1)成分の具体例は、下記のとおりである。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 また、(A-1)成分は、a、b、d及びeが1以上である、すなわち、第2アルキレンオキシドユニットと、第3アルキレンオキシドユニットとの両方を更に備えたモノマーであってもよい。この際、第2アルキレンオキシドユニットと、第3アルキレンオキシドユニットとは、互いに異なる構造を有する。
 このような(A-1)成分の具体例は、下記のとおりである。
Figure JPOXMLDOC01-appb-C000009
 (A-1)成分は、例えば、下記の方法で製造できる。
 アクリロイル基を有する(A-1)成分は、下記式で表されるポリオール化合物とアクリル酸とのエステル化で合成できる。下記ポリオール化合物のR、R、R、R、R、a、b、c、d及びeは、式(1)におけるものと同義である。ポリオール化合物は、植物由来のものであってもよく、石油由来のものであってもよい。
Figure JPOXMLDOC01-appb-C000010
 具体的には、硫酸、塩酸等の鉱酸、芳香族スルホン酸等の有機酸、あるいはフッ化ホウ素エーテル等のルイス酸存在下、トルエン等の溶媒に溶解させた上記ポリオール化合物とアクリル酸とを、必要に応じて加熱しながら撹拌し、生成する水を共沸により除去して反応させることができる。なお、エステル化反応において、水を除去する方法としては、無水硫酸マグネシウム、若しくはモレキュラーシーブス等の乾燥剤により水を除去する方法、又は、ジシクロヘキシルカルボジイミド等に代表される脱水剤の存在下で水を除去する方法が挙げられる。
 また、アクリル酸ハライドを用いてエステル化反応を行うことによっても合成することができる。具体的には、ピリジン、ジメチルアニリン等の塩基の存在下、テトラヒドロフラン等のエーテル系溶媒に溶解させた上記ポリオール化合物とアクリル酸とを、必要に応じて加熱しながら撹拌し、生成するハロゲン化水素を除去する方法等を採用することができる。
 さらに、アクリル酸無水物やアクリル酸メチルのようなエステル化合物とのエステル交換反応を行うことにより合成することもできる。具体的には、芳香族スルホン酸等の酸性触媒または酢酸ナトリウムやピリジン等の塩基性触媒の存在下にトルエン等の溶媒に溶解させた上記ポリオール化合物とアクリル酸とを、必要に応じて加熱しながら撹拌する方法等を採用することができる。
 メタクリロイル基を有する(A-1)成分は、例えばアクリル酸の代わりにメタクリル酸を用いることによって、上記と同様に合成できる。
 上記ポリオール化合物のうち、a及びeが0であり、b及びdが1以上であるポリオール化合物、すなわち、第2アルキレンオキシドユニットを有するポリオールは、例えば、以下の方法で合成できる。
 H-(OCHCH)c-OHとエチレンオキサイドやプロピレンオキサイドのような環状エーテル化合物とを反応させることで、第2アルキレンオキシドユニットを有するポリオールを合成できる。第2アルキレンオキシドユニットを有するポリオール化合物は、例えば、窒素置換されたオートクレーブ中、水酸化カリウム等のアルカリ金属水酸化物などの触媒存在下、高温高圧化で反応を行うことで合成することができる。
 上記ポリオール化合物のうち、a、b、d及びeが1以上であるポリオール化合物、すなわち、第2及び第3アルキレンオキシドユニットを更に含む(A-1)成分は、例えば、以下の方法で合成できる。
 第2アルキレンオキシドユニットを有するポリオール化合物と、環状エーテル化合物とを反応させることで、第3アルキレンオキシドユニットを有するポリオール化合物を合成し、得られた第3アルキレンオキシドユニットを更に有するポリオール化合物を、アクリル酸やメタクリル酸と上記に記載した方法と同様の方法で反応させることで第2及び第3アルキレンオキシドユニットを更に含む(A-1)成分を合成できる。
 <(A-2)一分子中に3つ以上の(メタ)アクリロイル基を有する第2ラジカル重合性単量体>
 実施形態に係る硬化性組成物は、一分子中に3つ以上の(メタ)アクリロイル基を有する第2ラジカル重合性単量体を更に含んでいてもよい。以下、一分子中に3つ以上の(メタ)アクリロイル基を有する第2ラジカル重合性単量体を(A-2)成分とも称する。多官能(メタ)アクリレートを含むと、硬化体の硬度が高まる傾向にある。
 (A-2)成分としては、下記式(I)で示される多官能(メタ)アクリレート、ウレタン結合を有する多官能(メタ)アクリレート、前記に該当しない多官能(メタ)アクリレートが挙げられ、特に下記式(I)で示される多官能(メタ)アクリレートであることが好ましい。
 <下記式(I)で示される多官能(メタ)アクリレート>
Figure JPOXMLDOC01-appb-C000011
 式(I)において、Q10は、メチレン基である。a1は、0又は1の整数である。
 Q11は、炭素数1以上3以下の直鎖状若しくは分岐状のアルキレン基である。Q11は、直鎖状のアルキレン基であることが好ましい。Q11は、炭素数2又は3のアルキレン基であることが好ましい。Q11は、エチレン基、n-プロピレン基、又はn-ブチレン基であることがより好ましい。
 a2は、0、1、2、又は3である。a2は、1、2又は3であることが好ましい。
 Q12は、水素原子又はメチル基である。Q12は、メチル基であることが好ましい。
 Q13は、炭素数1~10の3~6価の有機基である。Q13で示される有機基としては、ポリオールから誘導される基、3~6価の炭化水素基、3~6価のウレタン結合を含む有機基が挙げられる。Q13は、4価の炭化水素基、又は、6価の炭化水素基であることが好ましい。Q13は、トリメチロールプロパン由来の基、グリセリン由来の基、ペンタエリトリトール由来の基、ジトリメチロールプロパン由来の基、又は、ジペンタエリスリトール由来の基であり得る。
 a3は、3、4、5、又は6である。a3は、3又は4であることが好ましい。
 式(I)で示される多官能(メタ)アクリレートは、下記式(II)に表される3~4官能(メタ)アクリレートを含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(II)において、Q20、Q21、Q22、及びQ23は、それぞれ独立に、メチレン基である。a4、a5、a6、及びa7は、それぞれ独立に、0又は1の整数である。
 Q24、Q25、及びQ26は、それぞれ独立に、下記式(III)に表される一価の基である。Q24、Q25、及びQ26は、互いに異なる構造を有していてもよく、同一の構造を有していてもよい。Q24、Q25、及びQ26は、同一構造を有することが好ましい。
 Q27は、水素原子、炭素数1以上5以下の直鎖状若しくは分岐状のアルキル基、炭素数1以上5以下の直鎖状若しくは分岐状のアルコキシ基、又は、下記式(III)に表される一価の基である。Q27は、水素原子、炭素数1以上3以下の直鎖状アルキル基、又は、下記式(III)に表される一価の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(III)において、Q11、Q12、a2は、式(I)におけるものと同義である。
 上記式(I)で示される多官能(メタ)アクリレートの具体例としては、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラメタクリレート、テトラメチロールメタンテトラアクリレート、トリメチロールプロパントリエチレングリコールトリメタクリレート、トリメチロールプロパントリエチレングリコールトリアクリレート、ジトリメチロールプロパンテトラメタクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサメタクリレート、ジペンタエリスリトールペンタメタクリレート、グリセリントリメタクリレート、グリセリントリアクリレート、エトキシ化トリメチロールプロパントリメタクリレート、プロポキシ化トリメチロールプロパントリメタクリレート、ブトキシ化トリメチロールプロパントリメタクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、ブトキシ化トリメチロールプロパントリアクリレート、エトキシ化グリセリントリメタクリレート、プロポキシ化グリセリントリメタクリレート、ブトキシ化グリセリントリメタクリレート、エトキシ化グリセリントリアクリレート、プロポキシ化グリセリントリアクリレート、及びブトキシ化グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラメタクリレート、プロポキシ化ペンタエリスリトールテトラメタクリレート、ブトキシ化ペンタエリスリトールテトラメタクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、プロポキシ化ペンタエリスリトールテトラアクリレート、及びブトキシ化ペンタエリスリトールテトラアクリレート等を挙げることができる。
 <ウレタン結合を有する多官能(メタ)アクリレート>
 ウレタン結合を有する多官能(メタ)アクリレートは、分子内にイソシアネート基を3個以上有するポリイソシアネート化合物と分子内に水酸基を2個以上有するポリオール化合物と水酸基含有(メタ)アクリレートとを反応させて得られるものである。ウレタン結合を有する多官能(メタ)アクリレートは、分子中に4つ以上の(メタ)アクリロイル基を有するウレタン結合を有する多官能(メタ)アクリレートが好適である。市販品として、新中村化学工業株式会社製のU-4HA(分子量596、官能基数4)、U-6HA(分子量1,019、官能基数6)、U-6LPA(分子量818、官能基数6)、U-15HA(分子量2,300、官能基数15)を挙げることができる。
 <前記に該当しない多官能(メタ)アクリレート>
 式(I)で示される多官能(メタ)アクリレート、及び、ウレタン結合を有する多官能(メタ)アクリレート以外の多官能(メタ)アクリレートとしては、ポリエステル化合物の末端を(メタ)アクリロイル基で修飾した化合物が挙げられる。このようなポリエステル(メタ)アクリレート化合物としては、原料となるポリエステル化合物の分子量や(メタ)アクリロイル基の修飾量が異なる種々のポリエステル(メタ)アクリレート化合物が市販されており、これらを使用することができる。具体的には、4官能ポリエステルオリゴマー(分子量2,500~3,500、ダイセルユーシービー社、EB80等)、6官能ポリエステルオリゴマー(分子量6,000~8,000、ダイセルユーシービー社、EB450等)、6官能ポリエステルオリゴマー(分子量45,000~55,000、ダイセルユーシービー社、EB1830等)、4官能ポリエステルオリゴマー(特に分子量10,000の第一工業製薬社、GX8488B等)等を挙げることができる。
 <(A-3)その他の(メタ)アクリロイル基を有するラジカル重合性単量体>
 その他の(メタ)アクリロイル基を有するラジカル重合性単量体としては分子構造中に、(メタ)アクリロイル基を有しており、かつ(A-1)及び(A-2)に該当しないラジカル重合性単量体が挙げられる。このようなラジカル重合性単量体は特に制限されるものではなく、公知のものを使用することができ、(メタ)アクリロイル基を分子内に2つ有する2官能(メタ)アクリレートや(メタ)アクリロイル基を1つしか有さない単官能(メタ)アクリレートを含むこともできる。
 <(メタ)アクリロイル基を分子内に2つ有する2官能(メタ)アクリレート>
 実施形態に係る硬化性組成物は、以下に示す2官能(メタ)アクリレートを含んでいてもよい。第1ラジカル重合性化合物以外のジ(メタ)アクリレートを含むと、硬化体の硬度が高まり得る。具体的には、式(1)に表され、cが1~9であるジ(メタ)アクリレート、下記式(4)、下記式(5)又は下記式(6)に示す2官能(メタ)アクリレート、ウレタン結合を有する2官能(メタ)アクリレート、前記に該当しない2官能(メタ)アクリレートが挙げられる。
 <下記式(4)で示される2官能(メタ)アクリレート化合物>
Figure JPOXMLDOC01-appb-C000014
 R12及びR13は、それぞれ、水素原子、又はメチル基である。j及びkはそれぞれ独立に0以上の整数であり、かつ、j+kは2以上の整数である。また、式(4)で示される2官能(メタ)アクリレート化合物は、製造上、混合物で得られる場合が多い。そのため、j+kは平均値で2以上であり、好ましくは平均値で2以上50以下の整数である。
 上記式(4)で示される化合物を具体的に例示すると、以下のとおりである。
 ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ペンタエチレングリコールジメタクリレート、ペンタプロピレングリコールジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ペンタエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、テトラプロピレングリコールジアクリレート、ペンタプロピレングリコールジアクリレート、ポリプロピレングリコールとポリエチレングリコールの混合物よりなるジメタアクリレート(ポリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、テトラプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールメタクリレートアクリレート。
 <下記式(5)で示される2官能(メタ)アクリレート>
Figure JPOXMLDOC01-appb-C000015
 R14およびR15は、それぞれ、水素原子またはメチル基である。R16およびR17は、それぞれ、水素原子またはメチル基である。
 Aは、2価の有機基である。Aは、炭素数1~20の直鎖または分岐アルキレン基、ハロゲンまたは炭素数1~5のアルキル基を置換として有してもよいフェニレン基、シクロアルキレン基、ビシクロアルキレン基、トリシクロアルキレン基、又は、下記の何れかの式で示される基である。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式中、R18A、R18Bは、水素原子、炭素数1~5のアルキル基またはハロゲン原子である。xxおよび、xyは0~4、又は、0~10の整数である。環Xはベンゼン環またはシクロヘキサン環である。YYは-O-,-S-,-(SO)-,-CO-,-CH-,-CH=CH-,-C(CH-,-C(CH)(C)-、又は、下記式の何れかで示される基である。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 上記式(5)において、lおよびmはそれぞれ1以上の整数であり、l+mは平均値で2以上30以下である。
 上記式(5)で示される2官能(メタ)アクリレートの具体例としては、例えば、以下のビスフェノールAジ(メタ)アクリレートを挙げることができる。
 2,2-ビス[4-(メタクリロイルオキシエトキシ)フェニル]プロパン、2,2-ビス[3,5-ジブロモ-4-(メタクリロイルオキシエトキシ)フェニル]プロパン、2,2-ビス(4-(メタクリロイルオキシジプロポキシ)フェニル)プロパン、2,2-ビス[4-(アクリロイルオキシジエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロイルオキシポリエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロイルキシポリエトキシ)フェニル]プロパン、1,3-アダマンタンジオールジメタクリレート、ジトリメチロールシクロデカンジアクリレート。
 <下記式(6)で示される2官能(メタ)アクリレート>
Figure JPOXMLDOC01-appb-C000023
 R19およびR20は、それぞれ、水素原子またはメチル基である。
 nは平均値で1~20の数である。
 B及びB’は、それぞれ独立に、炭素数2~15の直鎖状または分岐状のアルキレン基である。B及びB’は、互いに同一でも異なっていてもよい。Bが複数存在する場合には、複数のBは同一の基であっても、異なる基であってもよい。
 上記式(6)で示される2官能(メタ)アクリレートは、ポリカーボネートジオールと(メタ)アクリル酸とを反応させることにより製造することができる。
 ここで、使用されるポリカーボネートジオールとしては、以下のものを例示することができる。具体的には、トリメチレングリコールのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、テトラメチレングリコールのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、ペンタメチレングリコールのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、ヘキサメチレングリコールのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、オクタメチレングリコールのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、ノナメチレングリコールとのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、トリエチレングリコールとテトラメチレングリコールとのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、テトラメチレングリコールとヘキサメチレンジグリコールとのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、ペンタメチレングリコールとヘキサメチレングリコールとのホスゲン化で得られるポリカーボネージオール(平均分子量500~2000)、テトラメチレングリコールとオクタメチレングリコールとのホスゲン化で得られるポリカーボネージオール(平均分子量500~2000)、ヘキサメチレングリコールとオクタメチレングリコールとのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)、1-メチルトリメチレングリコールとのホスゲン化で得られるポリカーボネートジオール(平均分子量500~2000)が挙げられる。
 <ウレタン結合を有する2官能(メタ)アクリレート>
 ウレタン結合を有する2官能(メタ)アクリレートとしては、分子内にイソシアネート基を2個以上有するポリイソシアネート化合物と分子内に水酸基を2個以上有するポリオール化合物と水酸基含有(メタ)アクリレートとを反応させて得られるものを挙げることができる。
 ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、リジンイソシアネート、2,2,4-ヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、イソプロピリデンビス-4-シクロヘキシルイソシアネート、ジシクロヘキシルメタンジイソシアネート、ノルボルネンジイソシアネートまたはメチルシクロヘキサンジイソシアネートを、好適なものとして挙げることができる。
 ポリオールとしては、炭素数2~4のエチレンオキシド、プロピレンオキシド、ヘキサメチレンオキシドの繰り返し単位を有するポリアルキレングルコール、或いはポリカプロラクトンジオール等のポリエステルジオールを挙げることができる。また、ポリカーボネートジオール、ポリブタジエンジオール、又はペンタエリスリトール、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、グリセリン、トリメチロールプロパン等も例示することができる。
 また、これらポリイソシアネート及びポリオールの反応によりウレタンプレポリマーとしたものを、2-ヒドロキシ(メタ)アクリレートで更に反応させた反応混合物や、前記ジイソシアネートを2-ヒドロキシ(メタ)アクリレートと直接反応させた反応混合物であるウレタン(メタ)アクリレートモノマー等も使用することができる。
 水酸基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどが挙げられる。
 ウレタン結合を有する2官能(メタ)アクリレートは、市販されているものも何ら制限なく使用することができ、例えば、市販品としては、新中村化学工業株式会社製のU-2PPA(分子量482)、UA-122P(分子量1,100)、U-122P(分子量1,100)、及びダイセルユーシービー社製のEB4858(分子量454)を挙げることができる。
 <前記に該当しない2官能(メタ)アクリレート>
 上記式(4)、上記式(5)又は上記式(6)に示す2官能(メタ)アクリレート、及びウレタン結合を有する2官能(メタ)アクリレート以外の、「前記に該当しない2官能(メタ)アクリレート」としては、ネオペンチルグリコールジ(メタ)アクリレートや、硫黄原子を含むような2官能(メタ)アクリレートも挙げることができる。硫黄原子はスルフィド基として分子鎖の一部を成しているものが好ましい。具体的には、ビス(2-メタクリロイルオキシエチルチオエチル)スルフィド、ビス(メタクリロイルオキシエチル)スルフィド、ビス(アクリロイルオキシエチル)スルフィド、1,2-ビス(メタクリロイルオキシエチルチオ)エタン、1,2-ビス(アクリロイルオキシエチル)エタン、ビス(2-メタクリロイルオキシエチルチオエチル)スルフィド、ビス(2-アクリロイルオキシエチルチオエチル)スルフィド、1,2-ビス(メタクリロイルオキシエチルチオエチルチオ)エタン、1,2-ビス(アクリロイルオキシエチルチオエチルチオ)エタン、1,2-ビス(メタクリロイルオキシイソプロピルチオイソプロピル)スルフィド、1,2-ビス(アクリロイルオキシイソプロピルチオイソプロピル)スルフィドが挙げられる。
 以上の2官能(メタ)アクリレート化合物は、個々に説明した各成分における単独成分を使用することもできるし、複数成分を使用することもできる。また、個々に説明した各成分を複数組み合わせて使用することもできる。複数成分、複数組み合わせて使用する場合には、基準となる質量は、複数種類のものの合計量である。
 <1分子中に1つの(メタ)アクリロイル基を第3ラジカル重合性単量体>
 実施形態に係る硬化性組成物は、1分子中に1つの(メタ)アクリロイル基をもつ第3ラジカル重合性単量体を更に含んでいてもよい。第3ラジカル重合性単量体は、単官能(メタ)アクリレートであってもよい。
 単官能(メタ)アクリレートとしては、下記式(7)で示される単官能(メタ)アクリレートが挙げられる。
Figure JPOXMLDOC01-appb-C000024
 R21は、水素原子、メチルジメトキシシリル基、トリメトキシシリル基、グリシジル基、ペンタメチルピペリジノ基、2,2,6,6-テトラメチル、又はピペリジノ基である。R22は、水素原子またはメチル基である。oは、0~10の整数である。pは、0~20の整数である。
 R21は、メチルジメトキシシリル基、トリメトキシシリル基、又は、グリシジル基であることが好ましい。このような官能基を有する単官能アクリレートを含むと、硬化体と基材との密着性が向上する傾向にある。
 上記式(7)で示される単官能(メタ)アクリレートを具体的に示すと、メトキシポリエチレングリコールメタクリレート、メトキシポリエチレングリコールアクリレート、ステアリルメタクリレート、ラウリルメタクリレート、メチルアクリレート、エチルアクリレート、ブチルアクリレート、オクチルアクリレート、ラウリルアクリレート、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、グリシジルメタクリレート、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレートなどが挙げられる。
 <その他のラジカル重合性単量体>
 実施形態に係る硬化性組成物はさらに、その他のラジカル重合性単量体を含んでいてもよい。その他のラジカル重合性単量体としては、(A-1)成分と重合し得るラジカル重合性単量体であれば、特に制限されるものではなく、公知のものを使用することができる。例えばラジカル重合性ポリロタキサン、ラジカル重合性シルセスキオキサン化合物、アリル系化合物、ビニル系化合物が好適に使用される。
 <ラジカル重合性を有するポリロタキサン>
 ポリロタキサンは、軸分子と、軸分子を包接する複数の環状分子とからなる複合分子構造を有する。軸分子の両端には、嵩高い末端基が形成されており、環状分子の軸分子からの脱落が防止されている。ラジカル重合性を有するポリロタキサンは、環状分子の側鎖にラジカル重合性基が導入されたポリロタキサンである。ラジカル重合性基は、例えば、環状分子の水酸基の1モル%以上100モル%未満を、ラジカル重合性基に変性することにより導入される。変性割合は、(重合性基が導入されたモル数)/(側鎖の全OH基のモル数)×100で算出できる。なお、密着性や得られる硬化体の機械的強度、機能性の観点から変性割合は10モル%以上95モル%以下とすることが好ましい。
 軸分子の重量平均分子量は、大きすぎるとその他の重合性単量体等との相溶性が低下する傾向があり、小さすぎると環状分子の可動性が低下する傾向にある。軸分子の重量平均分子量は、1,000~10,0000の範囲にあることが好ましく、5,000~80,000の範囲にあることがさらに好ましく、8,000~50,000の範囲にあることが最も好ましい。
 環状分子は、シクロデキストリン環、クラウンエーテル環、ベンゾクラウン環、ジベンゾクラウン環及びジシクロヘキサノクラウン環が好ましく、特にシクロデキストリン環、クラウンエーテル環が好ましく、シクロデキストリン環が最も好ましい。さらにシクロデキストリン環の中でも、α体(環内径0.45~0.6nm)、β体(環内径0.6~0.8nm)、γ体(環内径0.8~0.95nm)があるが、α-シクロデキストリン環及びβ-シクロデキストリン環が好ましく、α-シクロデキストリン環が最も好ましい。軸分子に全ての環状分子が導入された場合の包接数を1とした場合、環状分子の包接数は、0.001~0.6の範囲にあることが好ましく、0.002~0.5の範囲にあることがさらに好ましく、0.003~0.4の範囲にあることが最も好ましい。
 ラジカル重合性基としては、他の重合性単量体との反応性などを考量すると、(メタ)アクリロイル基が好ましい。ラジカル重合性基の数も特に制限されず、1分子中に0~5000個とすることが好ましい。
 以上のような(メタ)アクリロイル基を有するポリロタキサンは、国際公開第2018/030257に記載されている。
 <シルセスキオキサンラジカル重合性化合物>
 シルセスキオキサンラジカル重合性化合物は、ケージ状、ハシゴ状、ランダムといった種々の分子構造を取るものであり、(メタ)アクリル基等のラジカル重合性基を有している。
 このようなシルセスキオキサン重合性化合物の例としては、下記式(8)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000025
 式(8)中、qは、重合度であり、3~100の整数である。
 複数個あるR23は、互いに同一若しくは異なっていてもよく、ラジカル重合性基、ラジカル重合性基を含む有機基、水素原子、アルキル基、シクロアルキル基、アルコキシ基又はフェニル基である。複数個のR23のうち少なくとも1つのR23は、ラジカル重合性基、又はラジカル重合性基を含む有機基である。
 ここで、R23で示されるラジカル重合性基、又はラジカル重合性基を含む有機基としては、(メタ)アクリル基;(メタ)アクリロイルオキシプロピル基、(3-(メタ)アクリロイルオキシプロピル)ジメチルシロキシ基等の(メタ)アクリル基を有する有機基;アリル基;アリルプロピル基、アリルプロピルジメチルシロキシ基等のアリル基を有する有機基;ビニル基;ビニルプロピル基、ビニルジメチルシロキシ基等のビニル基を有する有機基等が挙げられる。
 <アリル系重合性化合物>
 アリル基を有するアリル系重合性化合物としては、以下のものを例示することができる。ジエチレングリコールビスアリルカーボネート、メトキシポリエチレングリコールアリルエーテル、メトキシポリエチレングリコール-ポリプロピレングリコールアリルエーテル、ブトキシポリエチレングリコール-ポリプロピレングリコールアリルエーテル、フェノキシポリエチレングリコールアリルエーテル、ビニロキシポリエチレングリコールアリルエーテル、スチリロキシポリエチレングリコールアリルエーテル、メトキシポリエチレンチオグリコールアリルチオエーテル。
 <ビニル系重合性化合物>
 ビニル基を有するビニル系重合性化合物としては、メチルビニルケトン、エチルビニルケトン、エチルビニルエーテル、スチレン、ビニルシクロヘキサン、ブタジエン、1,4-ペンタジエン、ジビニルスルフィド、ジビニルスルホン、1,2-ジビニルベンゼン、1,3-ジビニル-1,1,3,3-テトラメチルプロパンジシロキサン、ジエチレングリコールジビニルエーテル、アジピン酸ジビニル、セバシン酸ジビニル、エチレングリコールジビニルエーテル、ジビニルスルホキシド、ジビニルペルスルフィド、ジメチルジビニルシラン、1,2,4-トリビニルシクロヘキサン、メチルトリビニルシラン、α-メチルスチレン及びα-メチルスチレンダイマー等を挙げることができる。
 <硬化性組成物中の配合割合>
 実施形態に係る硬化性組成物において、第1ラジカル重合性単量体が占める割合が高いと、硬化体において機能性色素の性能が高まる傾向にある。この割合は、35質量%以上であってもよく、40質量%以上であることが好ましく、45質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、60質量%以上であることが特に好ましい。この割合は、15質量%以上であってもよく、20質量%以上であってもよく、25質量%以上であってもよく、30質量%以上であってもよい。一方、この割合が過剰に高いと、硬化体の硬度が低下する傾向にある。この割合は、99質量%以下であってもよく、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。
 実施形態に係る硬化性組成物は、硬化体の硬度を高めるという点からは、第2ラジカル重合性単量体を含むことが好ましい。第2ラジカル重合性単量体が占める割合は、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、25質量%以上であることが特に好ましい。一方、この割合が過剰に高いと、硬化体の機能性色素の性能が低下する傾向にある。この割合は、85質量%以下であることが好ましく、50質量%以下であることがより好ましく、35質量%以下であることが更に好ましい。
 実施形態に係る硬化性組成物は、硬化体の密着性を高めるという点からは、第3ラジカル重合性単量体を含むことが好ましい。第3ラジカル重合性単量体が占める割合は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。一方、この割合が過剰に高いと、硬化体の機能性色素の性能が低下する傾向にある。この割合は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、7質量%以下であることが更に好ましい。
 実施形態に係る硬化性組成物は、第1ラジカル重合性単量体以外のジ(メタ)アクリレートの含有量が、70質量%以下であることが好ましい。すなわち、炭素数2以下のアルキレンオキシド鎖を有する(メタ)アクリレートや、ポリアルキレンカーボネートポリオールジ(メタ)アクリレート等のジ(メタ)アクリレートの含有量が多いと、硬化体の機能性色素の性能が低下するおそれがある。第1ラジカル重合性単量体以外のジ(メタ)アクリレートの含有量は、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。この含有量の下限値は、一例によると、0質量%であり、他の例によると、5質量%以上である。特に、(ポリ)エチレングリコールジ(メタ)アクリレートの含有量が30質量%以下であることが好ましい。(ポリ)エチレングリコールジ(メタ)アクリレートの含有量は、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。この含有量の下限値は、一例によると、0質量%であり、他の例によると、5質量%以上である。
 第1~第3ラジカル重合性単量体を含む硬化性組成物においては、第1ラジカル重合性単量体の含有量は40質量%以上80質量%以下であり、第2ラジカル重合性単量体の含有量は10質量%以上40質量%以下であり、第3ラジカル重合性単量体の含有量は1質量%以上10質量%以下であり、残部が機能性色素及び添加剤の割合であってもよい。
 実施形態に係る硬化性組成物において、メタクリレートが占める割合は、50質量%以上であることが好ましい。この割合が高いと、機能性色素の機能が高い硬化体が得られる傾向にある。この割合は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。この割合の上限値は、一例によると、100質量%以下であり、他の例によると、95質量%以下である。
 実施形態に係る硬化性組成物において、メタクリレートの質量M10と、アクリレートの質量M11との比M10/M11は、0.1以上10以下であってもよく、0.5以上5以下であってもよく、1.2以上6以下であってもよい。
 第1ラジカル重合性単量体の質量M1と、第2ラジカル重合性単量体の質量M3との比M1/M3は、0.1以上20以下であることが好ましい。比M1/M3がこの範囲内にある硬化性組成物を用いると、硬化体の機能性色素の性能及び硬度がより高まる傾向にある。比M1/M3は、0.5以上10以下であることがより好ましく、1以上5以下であることが更に好ましい。
 第1ラジカル重合性単量体の質量M1と、第3ラジカル重合性単量体の質量M4との比M1/M4は、0.1以上50以下であることが好ましい。比M1/M3がこの範囲内にある硬化性組成物を用いると、硬化体の機能性色素の性能及び硬度がより高まる傾向にある。比M1/M3は、1以上30以下であることがより好ましく、5以上15以下であることが更に好ましい。
 (A)成分を100質量部とした場合に、(A-1)成分は15~100質量部であってもよく、20~95質量部であってもよく、30~95質量部であってもよく、35~90質量部であってもよい。
 (A-2)成分を配合する場合には、(A-1)成分100質量部としたときに、(A-2)成分1~500質量部であってもよく、1~300質量部であってもよく、3~300質量部であってもよく、5~250質量部であってもよい。
 さらに(A-3)成分を含む場合には、(A)成分100質量部とした場合に、(A-3)成分0.01~20質量部であってもよく、0.1~17質量部であってもよく、0.5~15質量部であってもよい。
 <(B)機能性色素>
 機能性色素は、可視光線の選択的吸収能を有する化合物、並びに、光、熱、電場、又は圧力等のエネルギーにより発色、消色、又は変色する化合物を含む。このような機能性色素は、特定の条件下で構造変化することにより、特定の機能を発揮し得る。機能性色素は、例えば、フォトクロミック化合物、紫外線吸収剤、青色光吸収剤、赤外線吸収剤、及びエレクトロミック化合物からなる群より選ばれる少なくとも1種を含む。
 第1ラジカル重合性単量体の質量M1と、機能性色素の質量M2との比M1/M2は、例えば、10以上10000以下である。この比M1/M2は、好ましくは15以上1000以下であり、より好ましくは20以上100以下である。
 硬化性組成物における機能性色素の含有量は、例えば、0.01質量%以上10質量%以下である。機能性色素の含有量は、好ましくは0.1質量%以上8質量%以下であり、より好ましくは1質量%以上5質量%以下である。
 <フォトクロミック化合物>
 フォトクロミック化合物は、所望のフォトクロミック特性が得られる配合量で用いられる。(A)成分100質量部に対し、0.01~10質量部で用いられることが好ましい。
 この配合量は、使用する用途に応じて、最適配合量を調整することが好ましい。
 具体的には、フォトクロミック化合物を含む硬化性組成物をコーティングのような薄膜、たとえば、100μm程度の薄膜(フォトクロミック硬化性組成物が重合してなる高分子膜)とする場合は、重合性化合物100質量部に対して、0.1~10質量部のフォトクロミック化合物を配合して色調を調整するのがよい。
 また、厚い硬化体(フォトクロミック硬化性組成物を重合してなる高分子成型体)とする場合、たとえば、厚み1ミリ以上の硬化体の場合は、厚い硬化体100質量部、あるいは厚い硬化体を与える重合性化合物100質量部に対して、0.01~1質量部のフォトクロミック化合物を配合して色調を調整するのがよい。
 フォトクロミック化合物としては、何ら制限なく、公知のものを使用することができ、これらは、1種単独で使用することもできるし、2種以上を併用することもできる。このようなフォトクロミック化合物として代表的なものとしては、クロメン化合物、フルギド化合物、フルギミド化合物、及びスピロオキサジン化合物であり、例えば、特開平2-28154号公報、特開昭62-288830号公報、国際公開第94/22850号、国際公開第96/14596号、国際公開第2022/075330号、国際公開第2022/168989号等、多くの文献に開示されている。
 これらフォトクロミック化合物の中でも、クロメン化合物、スピロオキサジン化合物を用いることが好ましい。特にクロメン化合物が好ましい。クロメン化合物は、1-ベンゾピラン骨格を有する化合物、スピロピラン骨格を含むスピロピラン化合物、及び、ナフトピラン骨格を有するナフトピラン化合物を含む。
 ナフトピラン化合物は、下記式(9)、下記式(10)、下記式(11)、下記式(12)、下記式(13)、および下記式(14)に示す化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(9)において、環AAは、置換若しくは無置換の芳香族炭化水素環、置換若しくは無置換の芳香族複素環、又は、これら環に芳香族環若しくは芳香族複素環が縮環した、置換若しくは無置換の縮合多環である。環AAは存在しなくてもよい。
 環ABは、置換若しくは無置換の芳香族炭化水素環、置換若しくは無置換の芳香族複素環、又は、これら環に芳香族環若しくは芳香族複素環が縮環した、置換若しくは無置換の縮合多環である。
 R24およびR25はそれぞれ独立に、水素原子、または置換基であり、2つ以上の置換基が結合して環構造を形成してもよい。
 置換基としてはヒドロキシル基、アルキル基、ハロアルキル基、シクロアルキル基、アルコキシ基、アルコキシアルキル基、ホルミル基、ヒドロキシカルボニル基、アルキルカルボニル基、アルコキシカルボニル基、ハロゲン原子、置換基を有してもよいアラルキル基、置換基を有してもよいアラルコキシ基、置換基を有してもよいアリールオキシ基、アルキルチオ基、置換基を有してもよいアリールチオ基、置換基を有してもよいアリール基、アミノ基、置換アミノ基、置換基を有してもよい複素環基であり、ハロアルキルチオ基、置換基を有してもよいシクロアルキルチオ基、オリゴマー基、及び下記式(15)に表される基からなる群より選択される少なくとも1種が好ましい。
   -Q-(Paa-P  (15)
 Qは、置換基にハロゲン原子を含んでもよいアルキレン基である。Qは、置換基にハロゲン原子を含んでもよいアルキレン基である。Qは、置換基にハロゲン原子を含んでもよいアルキル基である。P、及び、Pは、それぞれ独立に、O、S、NR700、PR701、又は、P(=O)である。R700は、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基である。R701は、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基である。aaは、0又は1以上10以下である。
 MはCR2627、SiR2627、GeR2627、又は、NR26である。R26およびR27はそれぞれ独立に、水素原子、または置換基であり、2つ以上の置換基が結合して環構造を形成してもよい。
 置換基としてはヒドロキシル基、アルキル基、ハロアルキル基、シクロアルキル基、アルコキシ基、アルコキシアルキル基、ホルミル基、ヒドロキシカルボニル基、アルキルカルボニル基、アルコキシカルボニル基、ハロゲン原子、置換基を有してもよいアラルキル基、置換基を有してもよいアラルコキシ基、置換基を有してもよいアリールオキシ基、アルキルチオ基、置換基を有してもよいアリールチオ基、置換基を有してもよいアリール基、アミノ基、置換アミノ基、置換基を有してもよい複素環基、及び上記式(15)に表される基からなる群より選択される少なくとも1種が好ましい。
 また、R26およびR27は2つが一緒になって、環構造を形成する場合には、環員炭素数が3~20である脂肪族環、脂肪族環に芳香族環若しくは芳香族複素環が縮環した縮合多環、環員原子数が3~20である複素環、または複素環に芳香族環若しくは芳香族複素環が縮環した縮合多環を形成することが好ましい。
Figure JPOXMLDOC01-appb-C000027
 式(10)において、R1000、R1001およびR1002はそれぞれ独立に、水素原子、または置換基であり、2つ以上の置換基が結合して環構造を形成してもよい。置換基は式(9)において説明したものと同種のものを用い得る。mmは1~10の整数である。
Figure JPOXMLDOC01-appb-C000028
 式(11)において、R1003、R1004およびR1005はそれぞれ独立に、水素原子、または置換基であり、2つ以上の置換基が結合して環構造を形成してもよい。置換基は式(9)において説明したものと同種のものを用い得る。nnは1~10の整数である。
Figure JPOXMLDOC01-appb-C000029
 式(12)において、R1006、R1007およびR1008はそれぞれ独立に、水素原子、または置換基であり、2つ以上の置換基か結合して環構造を形成してもよい。置換基は式(9)において説明したものと同種のものを用い得る。ooは1~12の整数である。
Figure JPOXMLDOC01-appb-C000030
 式(13)において、R1009、R1010およびR1011はそれぞれ独立に、水素原子、または置換基であり、2つ以上の置換基か結合して環構造を形成してもよい。置換基は式(9)において説明したものと同種のものを用い得る。ppは1~12の整数である。
Figure JPOXMLDOC01-appb-C000031
 式(14)において、R1012、R1013およびR1014はそれぞれ独立に、水素原子、または置換基であり、2つ以上の置換基か結合して環構造を形成してもよい。置換基は式(9)において説明したものと同種のものを用い得る。qqは1~12の整数である。
 ナフトピラン化合物は、インデノナフトピラン骨格を有するインデノナフトピラン化合物を含む。インデノナフトピラン化合物は、インデノ〔2,1-f〕ナフト〔1,2-b〕ピラン骨格を有することが好ましい。
 インデノ[2,1-f]ナフト[1,2-b]ピランとしては、例えば、国際公開第1996/014596号、国際公開第2001/019813号、国際公開第2001/060811号、国際公開第2005/028465号、国際公開第2006/110221号、国際公開第2007/073462号、国際公開第2007/140071号、国際公開第2008/054942号、国際公開第2010/065393号、国際公開第2011/10744号、国際公開第2011/016582号、国際公開第2011/025056号、国際公開第2011/034202号、国際公開第2011/078030号、国際公開第2012/102409号、国際公開第2012/102410号、国際公開第2012/121414号、等に記載の化合物が何ら制限なく使用できる。
 上記に加え、分子内にオリゴマー鎖基を有するようなフォトクロミック化合物も好適に用いることができる。このようなオリゴマー鎖基を有するフォトクロミック化合物としては、国際公開第2000/015630号、国際公開第2004/041961号、国際公開第2009/146509号、国際公開第2012/149599号、国際公開第2012/162725号、国際公開第2013/078086号、国際公開第2019/013249号、国際公開第2019/203205号等、多くの文献に開示されている。これら分子内にオリゴマー鎖基を有するようなフォトクロミック化合物の中では、より優れたフォトクロミック性、耐久性を示すため、国際公開第2019/013249号、国際公開第2019/203205号に記載のオリゴマー鎖基を有するようなフォトクロミック化合物を用いることが好ましい。
 インデノナフトピラン化合物は、下記式(16)に示す化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000032
 式中、R24、R25、R26およびR27は前述のものと同じである。
 rは0~4の整数である。sは0~4の整数である。rが2~4である場合には、複数のR28は互いに同一でも異なってもよい。sが2~4である場合には、複数のR29は互いに同一でも異なってもよい。また、rが2~4であって、隣接するR28が存在する場合には、隣接する2つのR28が一緒になってそれらR28と結合する炭素原子と共に、酸素原子、炭素原子、硫黄原子、及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子を含んでもよい環を形成してもよく、さらに環は置換基を有してもよい。また、sが2~4であって、隣接するR29が存在する場合には、隣接する2つのR29が一緒になってそれらR29と結合する炭素原子と共に、酸素原子、炭素原子、硫黄原子、又は窒素原子からなる群より選択される少なくとも1種のヘテロ原子を含んでもよい環を形成してもよく、さらに環は置換基を有してもよい。
 R28、およびR29は、それぞれ独立に、式(15)で表される基、ヒドロキシル基、アルキル基、ハロアルキル基、置換基を有してもよいシクロアルキル基、アルコキシ基、アミノ基、置換アミノ基、置換基を有してもよい複素環基、シアノ基、ハロゲン原子、アルキルチオ基、置換基を有してもよいアリールチオ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、アルキルカルボニル基、アルコキシカルボニル基、置換基を有してもよいアラルキル基、置換基を有してもよいアラルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、チオール基、アルコキシアルキルチオ基、ハロアルキルチオ基、又は置換基を有してもよいシクロアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいオキシシリル基、下記式(17)で表される基、又は、L-R400に表される基である。
Figure JPOXMLDOC01-appb-C000033
 Eは、酸素原子、又はNR101であり、R101は、水素原子又はアルキル基である。Fは、酸素原子又は硫黄原子である。Gは、酸素原子、硫黄原子又はNR202である。R202は、水素原子、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基である。ggは、0または1の整数である。R201は、水素原子、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基である。Gが酸素原子、又は硫黄原子となる場合には、R201は水素原子以外の基である。
 R400は、水素原子、アルキル基、アリール基、置換基を有するシリル基、重合基またはフォトクロミック性基である。シリル基の置換基は、アルキル基、アルコキシル基又はアリール基である。Lは下記式(18)で表される基である。
Figure JPOXMLDOC01-appb-C000034
 Jは2価の基であり、それぞれ独立に、直結、置換メチレン基、酸素原子、硫黄原子、又はNR301であり。R301は、水素原子又はアルキル基である。式(18)におけるLは酸素原子又は、硫黄原子である。R300は、アルキレン基、又は、置換基としてアルキル基又はアリール基を有するシリレン基である。R302、R303及びR304は、アルキレン基である。hh、jj、kk及びllは、0または1である。iiは1から200の整数である。複数あるiiの単位は同一でも異なっていてもよい。破線はR400との結合を表す。
 <その他の添加剤>
 硬化性組成物は、以上の(A)成分、(B)成分を必須成分とするものである。硬化性組成物には、効果を損なわない範囲で公知の各種配合剤を配合することができる。配合剤は、例えば、離型剤、紫外線吸収剤、赤外線吸収剤、紫外線安定剤、酸化防止剤、着色防止剤、帯電防止剤、蛍光染料、染料、顔料、香料等の各種安定剤を含む。また、溶剤、レベリング剤を配合することもできる。t-ドデシルメルカプタン等のチオール類を重合調整剤として、配合することができる。
 <紫外線安定剤>
 紫外線安定剤を混合して使用するとフォトクロミック化合物の耐久性をさらに向上させることができるために配合することが好ましい。紫外線安定剤としては、ヒンダードアミン光安定剤、ヒンダードフェノール酸化防止、イオウ系酸化防止剤を好適に使用することができる。ヒンダードアミン光安定剤としては、特に限定されないが、特にフォトクロミック化合物の劣化防止の点で、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートが好ましい。また、株式会社ADEKAにより、アデカスタブLA-52、LA-57、LA-62、LA-63、LA-67、LA-77、LA-87、等の商品名で市販されているヒンダードアミン系光安定剤も好適に使用することができる。
 ヒンダードフェノール酸化防止剤としては、フォトクロミック化合物の劣化防止の点で好ましい。例えば2,6-ジ-t-ブチル-4-メチル-フェノール、BASFジャパン株式会社製IRGANOX245:エチレンビス(オキシエチレン)ビス[3,5-tert-ブチル-4-ヒドロキシ-m-トルイル]プロピオネート]、BASFジャパン株式会社製IRGANOX1076:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、BASFジャパン株式会社製IRGANOX1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、その他にもBASFジャパン株式会社製のIRGANOX1035、1075、1098、1135、1141、1222、1330、1425、1520、259、3114、3790、5057、565等を挙げることができる。このような紫外線安定剤の使用量は、効果を損なわない限り特に制限されるものではないが、通常、硬化性組成物100質量部当り、0.001~10質量部、特に0.01~1質量部の範囲である。
 <重合開始剤>
 重合開始剤には、熱重合開始剤と光重合開始剤とがあり、その具体例は以下のとおりである。
 熱重合開始剤としては、
 ジアシルパーオキサイド;ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、アセチルパーオキサイド、
 パーオキシエステル;t-ブチルパーオキシ-2-エチルヘキサネート、t-ブチルパーオキシネオデカネート、クミルパーオキシネオデカネート、t-ブチルパーオキシベンゾエート、
 パーカーボネート;ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、
 アゾ化合物;アゾビスイソブチロニトリル
等が挙げられる。
 光重合開始剤としては、
 アセトフェノン系化合物;1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、
 α-ジカルボニル系化合物;1,2-ジフェニルエタンジオン、メチルフェニルグリコキシレート、
 アシルフォスフィンオキシド系化合物;2,6-ジメチルベンゾイルジフェニルフォスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルフォスフィン酸メチルエステル、2,6-ジクロルベンゾイルジフェニルフォスフィンオキシド、2,6-ジメトキシベンゾイルジフェニルフォスフィンオキシド、
が挙げられる。
 なお、光重合開始剤を用いる場合には、3級アミン等の公知の重合硬化促進助剤を併用することもできる。
 <界面活性剤>
 界面活性剤を添加すると、光学基材や、プライマー層に対する濡れ性を向上させると共に外観不良の発生を防止できる。界面活性剤としては、シリコーン鎖(ポリアルキルシロキサンユニット)を疎水基とするシリコーン界面活性剤、フッ化炭素鎖を有するフッ素界面活性剤などの、公知の界面活性剤が挙げられる。界面活性剤の使用に当たっては、2種以上を混合して使用してもよい。さらに、(A)成分と重合可能な界面活性剤であってもよく、重合できない界面活性剤であってもよい。
 好適に使用できるシリコーン界面活性剤及びフッ素界面活性剤を具体的に例示すると、ダウ・東レ株式会社製L-7001、L-7002、L-7604、FZ-2123、FZ-2110、DIC株式会社製メガファックF-470、メガファックF-1405、メガファックF-479、スリーエムジャパン株式会社製フローラッドFC-430、エボニックジャパン株式会社製のTEGORAD2100、TEGORAD2300、ビックケミー・ジャパン株式会社製のBYK-UV3505、BYK-UV3505、BYK-UV3510、BYK-UV3530、BYK-3550、BYK-3560、BYK-UV3565、BYK-3566、BYK-UV3500、BYK-UV3535、BYK-UV3570、BYK-UV3575、BYK-UV3576、信越化学工業株式会社製のKR-513、X-22-2445、X-40-9296、X-22-164、X-22-164A、X-22-164B、X-22-164C、X-22-164E等を挙げることができる。
 <紫外線吸収剤>
 紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、トリアジン系化合物、ベンゾエート系化合物、桂皮酸エステル系化合物、オキサニリド系化合物等の公知の紫外線吸収剤を使用することができ、特に、シアノアクリレート系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、桂皮酸エステル系化合物が好ましい。上記紫外線安定剤は、フォトクロミック化合物、および重合性化合物を含む硬化性組成物100質量部に対し、0.001~5質量部の範囲で用いることが好ましい。
 <硬化体>
 硬化体は、硬化性組成物を硬化させることにより得られる。硬化性組成物の硬化は、紫外線、α線、β線、γ線、LED等の活性エネルギー線の照射、熱、あるいは両者の併用等により、ラジカル重合反応を引き起こすことにより行われる。即ち、用いる重合性単量体や重合硬化促進剤の種類及び形成される硬化体の形態に応じて、適宜の硬化手段を採用すればよい。積層体を後述するコーティング法によって形成する場合には、均一な膜厚が得られる理由から、光重合を採用することが好ましい。
 重合性化合物が配合されている硬化性組成物を熱重合させるに際しては、熱重合温度が得られる硬化体の性状に影響を与える。この温度条件は、熱重合開始剤の種類と量や重合性化合物の種類によって影響を受けるので一概に限定はできないが、一般的に比較的低温で重合を開始し、ゆっくりと温度を上げていく方法が好適である。重合時間も温度と同様に各種の要因によって異なるので、予めこれらの条件に応じた最適の時間を決定するのが好適であるが、一般には、2~48時間で重合が完結するように条件を選ぶのが好ましい。フォトクロミック積層シートを得る場合には、重合性官能基同士の反応が進行する温度で重合し、その際、目的とする分子量になるように最適な温度と時間を決定することが好ましい。
 また、硬化性組成物を光重合させる際には、重合条件のうち、特にUV強度は得られるフォトクロミック硬化体の性状に影響を与える。この照度条件は、光重合開始剤の種類と量や重合性モノマーの種類によって影響を受けるので一概に限定はできないが、一般的に365nmの波長で50~500mW/cmのUV光を0.5~5分の時間で光照射するように条件を選ぶのが好ましい。
 硬化体のバイオマスプラスチック度は、10質量%以上であることが好ましい。バイオマスプラスチック度は、ISO規格16620-3に準じた方法により算出できる。硬化体のバイオマスプラスチック度は、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましい。このバイオマスプラスチック度に上限値は特にないが、一例によると、100質量%以下であり、他の例によると、80質量%以下である。
 <積層体>
 他の実施形態によると、積層体が提供される。積層体は、光学基材と、光学基材の表面上に位置する実施形態に係る硬化体とを含む。光学基材は、例えば、ジアリルカーボネート樹脂、ウレタン樹脂、チオウレタン樹脂等の樹脂を含む。光学基材は、レンズ基材であり得る。積層体と、硬化体との間には、プライマー層が設けられていてもよい。プライマー層は、ウレタン樹脂を含む。
 光学基材のバイオマスプラスチック度は、25質量%以上であることが好ましい。バイオマスプラスチック度は、ISO規格16620-3に準じた方法により算出できる。光学基材のバイオマスプラスチック度は、30質量%以上であることが好ましく、40質量%以上であることが更に好ましい。このバイオマスプラスチック度に上限値は特にないが、一例によると、100質量%以下であり、他の例によると、80質量%以下である。
 図1は、実施形態に係る積層体の一例を概略的に示す断面図である。図1に示す積層体10は、光学基材11と、光学基材11の一方の主面上に設けられたプライマー層1と、プライマー層1の主面上に設けられた機能性樹脂層12とを含む。機能性樹脂層12は、実施形態に係る硬化体を含む。光学基材11は、凹凸形状を有する凸メニスカスレンズである。
 <光学物品>
 実施形態に係る硬化体は、光学物品として広範囲に利用でき、例えば、銀塩感光材に代る各種の記憶材料、複写材料、印刷用感光体、陰極線管用記憶材料、レーザー用感光材料、ホログラフィー用感光材料などの種々の記憶材料、及び、レンズとして利用できる。レンズは、眼鏡用に好適である。フォトクロミック化合物を含むフォトクロミック硬化体は、フォトクロミックレンズ材料、光学フィルター材料、ディスプレイ材料、光量計、装飾などの材料としても利用できる。
 実施形態に係る硬化体は、特にフォトクロミックレンズ用途に好適である。フォトクロミックレンズは、サングラス等の眼鏡用レンズとして好適である。フォトクロミックレンズの製造方法は、均一な調光性能が得られる方法であれば、公知の方法が採用できる。
 練り込み法によりフォトクロミック性を発現させる場合には、エストラマーガスケット又はスペーサーで保持されているガラスモールド間に、上記の硬化性組成物を注入し、重合性化合物や重合硬化促進剤の種類に応じて、空気炉中での加熱や紫外線等の活性エネルギー線照射によっての注型重合によって、レンズ等の光学材料の形態に成形されたフォトクロミック硬化体を得ることができる。
 積層法によりフォトクロミック性を発現させる場合には、硬化性組成物を適宜有機溶剤に溶解させて塗布液を調製し、スピンコートやディッピング等により、レンズ基材等の光学基材の表面に塗布液を塗布し、乾燥して有機溶剤を除去し、次いで、窒素等の不活性ガス中でのUV照射や加熱等により重合硬化を行うことにより、光学基材の表面にフォトクロミック硬化体からなるフォトクロミック層が形成される(コーティング法)。
 また、レンズ基材等の光学基板を所定の空隙が形成されるようにガラスモールドに対面して配置し、この空隙に硬化性組成物を注入し、この状態で、UV照射や加熱等により重合硬化を行うインナーモールドによる注型重合によっても、光学基材の表面にフォトクロミック硬化体からなるフォトクロミック層を形成することができる(注型重合法)。
 上記のような積層法(コーティング法及び注型重合法)によりフォトクロミック層を光学基材の表面に形成する場合には、予め光学基材の表面に、アルカリ溶液、酸溶液等による化学的処理、コロナ放電、プラズマ放電、研磨等による物理的処理を行っておくことにより、フォトクロミック層と光学基材との密着性を高めることもできる。勿論、光学基材の表面に透明な接着樹脂層を設けておくことも可能である。
 また、硬化性組成物により形成される硬化体は、その用途に応じて、後加工が施されてもよい。後加工には、分散染料等の染料を用いる染色、ウレタン樹脂やエポキシ樹脂等を含む保護層の積層、シランカップリング剤やケイ素、ジルコニウム、アンチモン、アルミニウム、スズ、タングステン等のゾルを主成分とするハードコート剤を用いてのハードコート膜の形成、SiO、TiO、ZrO等の金属酸化物の蒸着による薄膜形成、有機高分子を塗布しての薄膜による反射防止処理、帯電防止処理等が挙げられる。
 次に、実施例及び比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。各成分の表記、および評価方法等は、以下の通りである。
 <各成分>
 (A)成分
(A-1)成分
M-PTMG85:ポリテトラメチレングリコールジメタクリレート(平均分子量1005、c=11.8)
M-PTMG100:ポリテトラメチレングリコールジメタクリレート(平均分子量1156、c=13.9)
A-PTMG100:ポリテトラメチレングリコールジアクリレート(平均分子量1128、c=13.9)
M-PTMG100Bio:バイオマス度95質量%のポリテトラメチレングリコールを用いたポリテトラメチレングリコールジメタクリレート(平均分子量1171、c=14.1、バイオマス度82.5質量%)
M-PTMG150:ポリテトラメチレングリコールジメタクリレート(平均分子量1654、c=20.8)
M-PTMG200:ポリテトラメチレングリコールジメタクリレート(平均分子量2209、c=28.5)
M-PTMG200Bio:バイオマス度95質量%のポリテトラメチレングリコールを用いたポリテトラメチレングリコールジメタクリレート(平均分子量2151、c=27.7、バイオマス度88.2質量%)
M-PTMG300:ポリテトラメチレングリコールジメタクリレート(平均分子量3081、c=40.6)
M-EGTMG160:下記式のジメタクリレート
Figure JPOXMLDOC01-appb-C000035
 M-EGTMG130:下記式のジメタクリレート
Figure JPOXMLDOC01-appb-C000036
 (A-2)
TMPT:トリメチロールプロパントリメタクリレート
D-TMP:ジトリメチロールプロパンテトラメタクリレート
A-TMMT:ペンタエリスリトールテトラアクリレート
M-TMMT:ペンタエリスリトールテトラメタクリレート
A-TMMT-43:ペンタエリスリトールトリアクリレート:ペンタエリスリトールテトラアクリレート=57:43(重量比)混合物
M-TMMT-80:ペンタエリスリトールトリメタクリレート:ペンタエリスリトールテトラメタクリレート=18:82(重量比)混合物
A-DPEHA:ジペンタエリスリトールヘキサアクリレート
 (A-3)
M-PTMG65:ポリテトラメチレングリコールジメタクリレート(平均分子量803、c=9)
M-PTMG65Bio:バイオマス度95質量%のポリテトラメチレングリコールを用いたポリテトラメチレングリコールジメタクリレート(平均分子量803、c=9、バイオマス度76.8質量%)
A-PTMG65:ポリテトラメチレングリコールジアクリレート(平均分子量775、c=9)
M-PPG:下記式のジメタクリレート
Figure JPOXMLDOC01-appb-C000037
9G:ポリエチレングリコールジメタクリレート(平均分子量550)
14G:ポリエチレングリコールジメタクリレート(平均分子量770)
M-EGTMG110:下記式のジメタクリレート
Figure JPOXMLDOC01-appb-C000038
APC56:ペンタメチレングリコールとヘキサメチレングリコールとのホスゲン化で得られるポリカーボネージオールのジアクリレート体(平均分子量606)
MPCD56:ペンタメチレングリコールとヘキサメチレングリコールとのホスゲン化で得られるポリカーボネージオールのジメタクリレート体(平均分子量634)
M-GDM:グリセリンジメタクリート
M-NEO:ネオペンチルグリコールジメタクリレート
LA82:1,2,2,6,6、-ペンタメチル―4-ピぺリジルメタクリレート
TSL:γ-メタクリロイルオキシプロピルトリメトキシシラン
 (その他のラジカル重合性単量体)
RX-1:アクリロイル基を有するポリロタキサン
 国際公開第2018/030257号に記載の方法に従って、以下の特性を満足するアクリロイル基を有するポリロタキサンを合成した。
アクリロイル基を有するポリロタキサン(RX-1)の重量平均分子量Mw(GPC);180,000。
側鎖におけるアクリロイル基変性割合:80モル%。
側鎖に残存するOH基の割合;20モル%。
軸分子;分子量11,000の直鎖状ポリエチレングリコール(PEG)。
包接環;α-シクロデキストリン(α-CD) 導入割合0.25。
軸分子の末端;アダマンタンで封止。
包接環に導入した側鎖;側鎖の(平均)分子量が約500。
1分子当たりのアクリロイル基の個数:約90個。
 ポリロタキサン(RX-1)の重量平均分子量Mwは、ゲル浸透クロマトグラフィー法(GPC法)により測定した。装置としては、液体クロマトグラフ装置(日本ウォーターズ社製)を用いた。カラムとしては、TSKgel SuperHM-M(排除限界分子量:4,000,000、東ソー株式会社製)2本を直列で使用した。
 また、展開液としてテトラヒドロフランを用い、流速0.6ml/min、温度40℃の条件にて測定した。標準試料にポリスチレンを用い、比較換算により重量平均分子量を求めたところ、RX-1の重量平均分子量は180,000であった。
 SO-1:メタクリロイル基を有し、下記の特性を有するシルセスキオキサン。
 1分子当たりのメタクリレート基の個数:20個。
 重量平均分子量;4,800。
なお、SO-1は、以下の方法で合成した。先ず、3-トリメトキシシリルプロピルメタクリレート248g(1.0mol)にエタノール248mlおよび水54g(3.0mol)を加え、触媒として水酸化ナトリウム0.20g(0.005mol)を添加し、30℃で3時間反応させた。原料の消失をH-NMRにより確認後、希塩酸で中和し、トルエン174ml、ヘプタン174ml、および水174gを添加し、水層を除去した。その後、水層が中性になるまで有機層を水洗し、溶媒を濃縮することによってSO-1を得た。なお、29Si-NMRにより、SO-1は、ケージ状構造、ラダー状構造およびランダム構造の混合物であることを確認した。
 SO-1の重量平均分子量Mwは、ゲル浸透クロマトグラフィー法(GPC法)により測定した。装置としては、液体クロマトグラフ装置(日本ウォーターズ社製)を用いた。カラムとしては、Shodex GPC KF-802(排除限界分子量:5000、昭和電工株式会社製)、Shodex GPC GPC KF802.5(排除限界分子量:20000、昭和電工株式会社製)及びShodex GPC KF-803(排除限界分子量:70000、昭和電工株式会社製)の3本を直列で使用した。
また、展開液としてテトラヒドロフランを用い、流速1ml/min、温度40℃の条件にて測定した。標準試料にポリスチレンを用い、比較換算により重量平均分子量を求めた。
(B)成分
PC1:下記式で示される化合物。
Figure JPOXMLDOC01-appb-C000039
PC2:下記式で示される化合物。
Figure JPOXMLDOC01-appb-C000040
PC3:下記式で示される化合物。
Figure JPOXMLDOC01-appb-C000041
PC4:下記式で示される化合物。
Figure JPOXMLDOC01-appb-C000042
PC5:下記式で示される化合物。
Figure JPOXMLDOC01-appb-C000043
PC6:下記式で示される化合物。
Figure JPOXMLDOC01-appb-C000044
PC7:下記式で示される化合物。
Figure JPOXMLDOC01-appb-C000045
 (その他配合剤)
 (安定剤)
HALS:ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート
HP:エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](BASFジャパン社製、Irganox245)。
 (光重合開始剤) 
PI:フェニルビス(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド(IGM社製、Omnirad819)
 実施例1
(フォトクロミック硬化性組成物の製造)
 先ず、下記の処方のとおり各成分を準備した。
(A)成分
 (A-1)成分:M-PTMG100 56.9質量部。
 (A-2)成分:TMPT 37.5質量部。
 (A-3)成分:TSL 5.6質量部。
(B)成分:PC1 1.6質量部。
(その他配合剤)
(重合開始剤):PI 0.3質量部。 
(安定剤):HP 1質量部。
      HALS 31質量部。
 次に、(A)成分に該当する化合物をすべて混合した後、これに(B)成分、及びその他添加剤を混合して混合物を得た。得られた混合物に、ダウ・東レ株式会社製レベリング剤L7001を1000ppm添加し、混合することでフォトクロミック硬化性組成物を得た。
(光学物品の製造)
 このフォトクロミック硬化性組成物を用いて、以下のように重合を行っての積層法によりフォトクロミック積層体を得た。
 まず、光学基材として中心厚が2mmで屈折率が1.60のチオウレタン系プラスチックレンズを用意した。なお、このチオウレタン系プラスチックレンズは、事前に5%水酸化ナトリウム水溶液を用いて、50℃で5分間のアルカリエッチングを行い、その後十分に蒸留水で洗浄を実施した。
 スピンコーター(1H-DX2、MIKASA製)を用いて、上記のプラスチックレンズの表面に、湿気硬化型プライマー(製品名;TR-SC-P、(株)トクヤマ製)を回転数70rpmで15秒、続いて700rpmで10秒コートした。その後、上記で得られたフォトクロミック硬化性組成物 約1gを、フォトクロミックコーティング層の膜厚が40μmになるようにスピンコートした。
 このようにフォトクロミック硬化性組成物(フォトクロミックコーティング層)が表面に塗布されているレンズを、窒素ガス雰囲気中で出力200mW/cmのメタルハライドランプを用いて、90秒間光を照射し、塗膜を硬化させた。その後さらに90℃で1時間加熱して、フォトクロミック層を有するフォトクロミック積層体を作製した。
以下の評価方法に従い評価を行い、その結果を表6に記載した。
 <評価方法>
 得られたフォトクロミック積層体を下記に示す方法で評価した。
(1)フォトクロミック特性
[1] 極大吸収波長(λmax):
 大塚電子(株)製の分光光度計(瞬間マルチチャンネルフォトディテクターMCPD3000)により求めた発色後の極大吸収波長であり、発色時の色調の指標とした。
[2]23℃発色濃度(A23):
 前記極大吸収波長における、23℃で240秒間光照射した後の吸光度{ε(240)}と光未照射時の吸光度ε(0)との差であり、発色濃度の指標とした。この値が高いほどフォトクロミック性が優れているといえる。
[3]23℃退色半減期〔τ1/2(sec.)〕:
 23℃において、300秒間光照射後、光の照射を止めたときに、試料の前記極大吸収波長における吸光度が{ε(300)-ε(0)}の1/2まで低下するのに要する時間であり、退色速度の指標とした。この時間が短いほど退色速度が速い。
(2)ビッカーズ硬度
 ビッカーズ硬度は、マイクロビッカーズ硬度計PMT-X7A(株式会社マツザワ製)を用いて測定した。圧子には、四角錐型ダイヤモンド圧子を用い、荷重10gf、圧子の保持時間30秒の条件で測定した。測定結果は、計4回の測定を行い、測定誤差の大きい1回目の値を除いた計3回の平均値で示した。
(3)クラック評価
 フォトクロミック積層体を20枚作成し、目視で、クラック発生の有無を確認し、以下基準に従い、クラックを評価した。
A:20枚全てのフォトクロミック積層体において、クラックは全く見られない。
B:20枚のフォトクロミック積層体において、クラックが見られるフォトクロミック積層体が1枚存在している。
C:20枚のフォトクロミック積層体において、クラックが見られるフォトクロミック積層体が1~3枚以上存在している。
D:20枚のフォトクロミック積層体において、表面の一部にクラックが見られるフォトクロミック積層体が5枚以上存在している。
 実施例2~43及び比較例1~8
 表1~表6に記載のフォトクロミック硬化性組成物を用いたこと以外は、実施例1と同様にフォトクロミック硬化体を作成し、同様の評価項目に従い、評価を行った。結果を表7~12に記載する。
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
 表1及び表7からも明らかなように、同一のフォトクロミック化合物を用いた実施例と比較例の比較において、本発明の式(1)で表される第1ラジカル重合性単量体を用いた硬化性組成物は優れたフォトクロミック性、特に優れた退色速度を有することがわかる。
 以下に、本発明の好ましい態様を付記する。
[1]
 下記式(1)で表される第1ラジカル重合性単量体及び機能性色素を含む硬化性組成物:
Figure JPOXMLDOC01-appb-C000058
 式中、
 Rは水素原子またはメチル基であり、
 Rは水素原子または炭素数1~3のアルキル基であり、
 Rは水素原子または炭素数1~3のアルキル基であり、
 Rは置換基を有してもよい直鎖状または分岐状の炭素数1~7のアルキレン基であり、
 Rは水素原子または炭素数1~3のアルキル基であり、
 Rは水素原子または炭素数1~3のアルキル基であり、
 Rは水素原子またはメチル基であり、
 aは0~10であり、
 bは0~20であり、
 cは10~70であり、かつ、a、b、d、及びeの各々よりも大きい数であり、
 dは0~20であり、
 eは0~10である。
[2]
 前記第1ラジカル重合性単量体の質量M1と、前記機能性色素の質量M2との比M1/M2は、10以上10000以下である、[1]に記載の硬化性組成物。
[3]
 前記第1ラジカル重合性単量体の含有量は、35質量%以上99質量%以下である、[1]又は[2]に記載の硬化性組成物。
[4]
 前記機能性色素の含有量は、0.01質量%以上10質量%以下である、[1]乃至[3]の何れかに記載の硬化性組成物。
[5]
 一分子中に3つ以上の(メタ)アクリロイル基を有する第2ラジカル重合性単量体を更に含む、[1]乃至[4]の何れかに記載の硬化性組成物。
[6]
 前記第2ラジカル重合性単量体は、下記式(I)で表される多官能(メタ)アクリレートを含む、[5]に記載の硬化性組成物:
Figure JPOXMLDOC01-appb-C000059
 式中、
10は、メチレン基であり、
 Q11は、炭素数1以上3以下の直鎖状若しくは分岐状のアルキレン基であり、
 Q12は、水素原子又はメチル基であり、
 Q13は、炭素数1~10の3~6価の有機基であり、
 a1は、0又は1であり、
 a2は、0、1、2、又は3であり、
 a3は、3、4、5、又は6である。
[7]
 前記第2ラジカル重合性単量体の含有量は、1質量%以上85質量%以下である、[5]又は[6]に記載の硬化性組成物。
[8]
 前記第1ラジカル重合性単量体の質量M1と、前記第2ラジカル重合性単量体の質量M3との比M1/M3は、0.1以上20以下である、[5]乃至[7]の何れかに記載の硬化性組成物。
[9]
 前記第1ラジカル重合性単量体は、下記式(3)で表される2官能(メタ)アクリレートを含む、[1]乃至[8]の何れかに記載の硬化性組成物:
Figure JPOXMLDOC01-appb-C000060
 式中、
 R、R、及びcは、前記式(1)と同義であり、
 R11は炭素数1~7の直鎖状アルキレン基である。
[10]
 前記第1ラジカル重合性単量体の数平均分子量は、800以上9000以下である、[1]乃至[9]の何れかに記載の硬化性組成物。
[11]
 前記機能性色素は、クロメン化合物及びスピロオキサジン化合物からなる群より選ばれる少なくとも1種の化合物を含む、[1]乃至[10]の何れかに記載の硬化性組成物。
[12]
 一分子中に1つの(メタ)アクリロイル基を有する第3ラジカル重合性単量体を更に含む、[1]乃至[11]の何れかに記載の硬化性組成物。
[13]
 前記第3ラジカル重合性単量体の含有量は、0.1質量%以上20質量%以下である、[12]に記載の硬化性組成物。
[14]
 前記第1ラジカル重合性単量体の質量M1と、前記第3ラジカル重合性単量体の質量M4との比M1/M4は、0.1以上50以下である、[12]又は[13]の何れかに記載の硬化性組成物。
[15]
 (ポリ)エチレングリコールジ(メタ)アクリレートの含有量が、30質量%以下である、[1]乃至[14]の何れかに記載の硬化性組成物。
[16]
 [1]乃至[15]の何れかに記載の硬化性組成物を硬化させて得られる硬化体。
[17]
 光学基材と、
 前記光学基材の表面上に位置する[16]に記載の硬化体と
を含む積層体。
[18]
 光学基材と、
 前記光学基材の表面の少なくとも一部を被覆し、ウレタン樹脂を含むプライマー層と、
 前記プライマー層の少なくとも一部を被覆する[16]に記載の硬化体と、
を含む積層体。
[19]
 レンズ基材と、
 前記レンズ基材の表面上に位置する[16]に記載の硬化体と
を含むレンズ。
[20]
 [19]に記載のレンズを含む眼鏡。
[21]
 ISO規格16620-3に準じた方法によるバイオマスプラスチック度が10質量%以上である[16]に記載の硬化体。
[22]
 ISO規格16620-3に準じた方法による前記光学基材のバイオマスプラスチック度が25質量%以上である[17]、または[18]に記載の積層体。

Claims (22)

  1.  下記式(1)で表される第1ラジカル重合性単量体及び機能性色素を含む、硬化性組成物:
    Figure JPOXMLDOC01-appb-C000001
     式中、
     Rは水素原子またはメチル基であり、
     Rは水素原子または炭素数1~3のアルキル基であり、
     Rは水素原子または炭素数1~3のアルキル基であり、
     Rは置換基を有してもよい直鎖状または分岐状の炭素数1~7のアルキレン基であり、
     Rは水素原子または炭素数1~3のアルキル基であり、
     Rは水素原子または炭素数1~3のアルキル基であり、
     Rは水素原子またはメチル基であり、
     aは0~10であり、
     bは0~20であり、
     cは10~70であり、かつ、a、b、d、及びeの各々よりも大きい数であり、
     dは0~20であり、
     eは0~10である。
  2.  前記第1ラジカル重合性単量体の質量M1と、前記機能性色素の質量M2との比M1/M2は、10以上10000以下である、請求項1に記載の硬化性組成物。
  3.  前記第1ラジカル重合性単量体の含有量は、35質量%以上99質量%以下である、請求項1に記載の硬化性組成物。
  4.  前記機能性色素の含有量は、0.01質量%以上10質量%以下である、請求項1に記載の硬化性組成物。
  5.  一分子中に3つ以上の(メタ)アクリロイル基を有する第2ラジカル重合性単量体を更に含む、請求項1に記載の硬化性組成物。
  6.  前記第2ラジカル重合性単量体は、下記式(I)で表される多官能(メタ)アクリレートを含む、請求項5に記載の硬化性組成物:
    Figure JPOXMLDOC01-appb-C000002
     前記式(I)において、
     Q10は、メチレン基であり、
     Q11は、炭素数1以上3以下の直鎖状若しくは分岐状のアルキレン基であり、
     Q12は、水素原子又はメチル基であり、
     Q13は、炭素数1~10の3~6価の有機基であり、
     a1は、0又は1であり、
     a2は、0、1、2、又は3であり、
     a3は、3、4、5、又は6である。
  7.  前記第2ラジカル重合性単量体の含有量は、1質量%以上85質量%以下である、請求項5に記載の硬化性組成物。
  8.  前記第1ラジカル重合性単量体の質量M1と、前記第2ラジカル重合性単量体の質量M3との比M1/M3は、0.1以上20以下である、請求項5に記載の硬化性組成物。
  9.  前記第1ラジカル重合性単量体は、下記式(3)で表される2官能(メタ)アクリレートを含む、請求項1に記載の硬化性組成物:
    Figure JPOXMLDOC01-appb-C000003
     式中、
     R、R、及びcは、前記式(1)と同義であり、
     R11は炭素数1~7の直鎖状アルキレン基である。
  10.  前記第1ラジカル重合性単量体の数平均分子量は、800以上9000以下である、請求項1に記載の硬化性組成物。
  11.  前記機能性色素は、クロメン化合物及びスピロオキサジン化合物からなる群より選ばれる少なくとも1種の化合物を含む、請求項1に記載の硬化性組成物。
  12.  一分子中に1つの(メタ)アクリロイル基を有する第3ラジカル重合性単量体を更に含む、請求項1に記載の硬化性組成物。
  13.  前記第3ラジカル重合性単量体の含有量は、0.1質量%以上20質量%以下である、請求項12に記載の硬化性組成物。
  14.  前記第1ラジカル重合性単量体の質量M1と、前記第3ラジカル重合性単量体の質量M4との比M1/M4は、0.1以上50以下である、請求項12に記載の硬化性組成物。
  15.  (ポリ)エチレングリコールジ(メタ)アクリレートの含有量が、30質量%以下である、請求項1に記載の硬化性組成物。
  16.  請求項1に記載の硬化性組成物を硬化させて得られる硬化体。
  17.  光学基材と、
     前記光学基材の表面上に位置する請求項16に記載の硬化体と
    を含む積層体。
  18.  光学基材と、
     前記光学基材の表面の少なくとも一部を被覆し、ウレタン樹脂を含むプライマー層と、
     前記プライマー層の少なくとも一部を被覆する請求項16に記載の硬化体と、
    を含む積層体。
  19.  レンズ基材と、
     前記レンズ基材の表面上に位置する請求項16に記載の硬化体と
    を含むレンズ。
  20.  請求項19に記載のレンズを含む眼鏡。
  21.  ISO規格16620-3に準じた方法によるバイオマスプラスチック度が10質量%以上である請求項16に記載の硬化体。
  22.  ISO規格16620-3に準じた方法による前記光学基材のバイオマスプラスチック度が25質量%以上である請求項17、または18に記載の積層体。
PCT/JP2023/044056 2022-12-16 2023-12-08 硬化性組成物、硬化体、積層体、レンズ、及び眼鏡 WO2024128158A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022201648 2022-12-16
JP2022-201648 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024128158A1 true WO2024128158A1 (ja) 2024-06-20

Family

ID=91484926

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2023/044056 WO2024128158A1 (ja) 2022-12-16 2023-12-08 硬化性組成物、硬化体、積層体、レンズ、及び眼鏡
PCT/JP2023/044058 WO2024128160A1 (ja) 2022-12-16 2023-12-08 硬化性組成物、硬化体、積層体、レンズ、及び眼鏡
PCT/JP2023/044057 WO2024128159A1 (ja) 2022-12-16 2023-12-08 硬化性組成物、硬化体、積層体、レンズ、及び眼鏡

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/044058 WO2024128160A1 (ja) 2022-12-16 2023-12-08 硬化性組成物、硬化体、積層体、レンズ、及び眼鏡
PCT/JP2023/044057 WO2024128159A1 (ja) 2022-12-16 2023-12-08 硬化性組成物、硬化体、積層体、レンズ、及び眼鏡

Country Status (1)

Country Link
WO (3) WO2024128158A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016119B2 (ja) * 1999-07-19 2007-12-05 株式会社トクヤマ 硬化性組成物
WO2009075388A1 (ja) * 2007-12-13 2009-06-18 Tokuyama Corporation フォトクロミック硬化性組成物
JP2020071372A (ja) * 2018-10-31 2020-05-07 旭化成株式会社 感光性樹脂フィルム積層体
JP2022105057A (ja) * 2018-03-30 2022-07-12 ホヤ レンズ タイランド リミテッド 光学物品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177177A (ja) * 2005-12-28 2007-07-12 Fujifilm Corp インク組成物、インクジェット記録方法、平版印刷版の製造方法、及び平版印刷版

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016119B2 (ja) * 1999-07-19 2007-12-05 株式会社トクヤマ 硬化性組成物
WO2009075388A1 (ja) * 2007-12-13 2009-06-18 Tokuyama Corporation フォトクロミック硬化性組成物
JP2022105057A (ja) * 2018-03-30 2022-07-12 ホヤ レンズ タイランド リミテッド 光学物品
JP2020071372A (ja) * 2018-10-31 2020-05-07 旭化成株式会社 感光性樹脂フィルム積層体

Also Published As

Publication number Publication date
WO2024128159A1 (ja) 2024-06-20
WO2024128160A1 (ja) 2024-06-20

Similar Documents

Publication Publication Date Title
CA2839250C (en) Photochromic curable composition
AU2005210427B2 (en) Layered product and method of producing the same
JP6355209B2 (ja) フォトクロミック硬化性組成物、その硬化体及びその硬化体を含む積層体
CN111936524B (zh) 光致变色固化性组合物
WO2011125956A1 (ja) フォトクロミック硬化性組成物
CN113166310B (zh) 光学材料用固化性组合物和光学材料
JP6230165B2 (ja) フォトクロミック硬化性組成物
CA2851998A1 (en) (meth)acrylate compound and photochromic curable composition containing the (meth)acrylate compound
JP6209214B2 (ja) フォトクロミック硬化性組成物
JP2014056140A (ja) フォトクロミックレンズの製造方法、及びフォトクロミックコーティング液の前駆体組成物
JP4200032B2 (ja) 重合硬化性組成物
WO2024128158A1 (ja) 硬化性組成物、硬化体、積層体、レンズ、及び眼鏡
WO2016013677A1 (ja) 硬化性組成物、及びフォトクロミック組成物
WO2024143098A1 (ja) ウレタン(メタ)アクリレート、硬化性組成物、硬化体、積層体、光学物品、レンズ、及び眼鏡
JP2021148814A (ja) フォトクロミック積層体、フォトクロミック硬化性組成物、および該組成物の製造方法
KR102683573B1 (ko) 광학 재료용 경화성 조성물 및 광학 재료
WO2022191161A1 (ja) フォトクロミック硬化性組成物
JP2022110997A (ja) フォトクロミック硬化性組成物