WO2024127720A1 - Antenna module and communication device equipped with same - Google Patents

Antenna module and communication device equipped with same Download PDF

Info

Publication number
WO2024127720A1
WO2024127720A1 PCT/JP2023/030488 JP2023030488W WO2024127720A1 WO 2024127720 A1 WO2024127720 A1 WO 2024127720A1 JP 2023030488 W JP2023030488 W JP 2023030488W WO 2024127720 A1 WO2024127720 A1 WO 2024127720A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric block
antenna module
substrate
dielectric
power supply
Prior art date
Application number
PCT/JP2023/030488
Other languages
French (fr)
Japanese (ja)
Inventor
薫 須藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024127720A1 publication Critical patent/WO2024127720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • This disclosure relates to an antenna module and a communication device equipped with the same, and more specifically to a configuration for adjusting the radiation direction of a dielectric resonator antenna.
  • Patent Document 1 JP 2000-209020 A discloses a dielectric resonator antenna (DRA) that radiates radio waves by supplying a high-frequency signal to a rectangular parallelepiped (dielectric block) made of dielectric material placed on a flat substrate.
  • DPA dielectric resonator antenna
  • a supplied high-frequency signal (electric field) resonates within the dielectric block, causing radio waves to be emitted in the opposite direction to the ground electrode placed on the substrate, i.e., in the normal direction of the substrate.
  • the frequency characteristics of the radio waves radiated from the dielectric resonator antenna are determined by the shape, dimensions and dielectric constant of the dielectric block.
  • there is only one supply path for the high-frequency signal to the dielectric block so radio waves are radiated from the dielectric block in only one specific polarization direction.
  • Antenna devices such as those described above may be used in mobile communication devices such as mobile phones or smartphones.
  • mobile communication devices in order to ensure reliable communication with other devices such as base stations or routers, multiple antennas are arranged within the device, and a configuration is used that allows radio waves to be emitted in different directions.
  • the present disclosure has been made to solve these problems, and its purpose is to provide a dielectric resonator antenna that can radiate radio waves in a direction different from the normal direction of the substrate.
  • the antenna module comprises a substrate, a dielectric block, a flat-plate shaped first ground electrode, and a power supply wiring.
  • the dielectric block has a first surface and a second surface that intersect with each other, and is disposed facing the mounting surface of the substrate on the first surface.
  • the first ground electrode intersects with the substrate and is disposed facing the second surface of the dielectric block.
  • the power supply wiring is disposed on the substrate and transmits a high frequency signal to the dielectric block. When viewed in a plan view from the normal direction of the substrate, the end of the power supply wiring is disposed in a position that overlaps with the dielectric block.
  • the antenna module disclosed herein has a flat ground electrode in a direction intersecting with the substrate, and the dielectric block is arranged opposite the mounting surface of the substrate so that a surface other than the surface facing the substrate faces the ground electrode.
  • FIG. 1 is a block diagram of a communication device to which an antenna module according to a first embodiment is applied;
  • FIG. 2 is a perspective view of the antenna module of FIG. 1 .
  • FIG. 2 is a side perspective view of the antenna module of FIG. 1 .
  • 11A and 11B are diagrams for explaining modified examples 1 and 2 of the arrangement of power supply wiring in a dielectric block.
  • 13A and 13B are diagrams for explaining modified examples 3 and 4 of the coupling state between the dielectric block and the power supply line.
  • FIG. 13 is a side perspective view of an antenna module according to a fifth modified example.
  • FIG. 13 is a side perspective view of an antenna module according to a sixth modified example.
  • FIG. 11 is a block diagram of a communication device to which an antenna module according to a second embodiment is applied.
  • FIG. 9 is a perspective view of the antenna module of FIG. 8 .
  • FIG. 9 is a side perspective view of the antenna module of FIG. 8 .
  • FIG. 13 is a side perspective view of an antenna module according to a seventh modified example.
  • FIG. 23 is a side perspective view of an antenna module according to an eighth modified example.
  • FIG. 11 is a partial side perspective view of a communication device according to a third embodiment.
  • 14 is a partial plan view of the communication device of FIG. 13 as viewed from the positive direction of the X-axis.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone, or a tablet, or a personal computer equipped with a communication function.
  • An example of the frequency band of radio waves used in the antenna module 100 according to the present embodiment is a millimeter wave band radio wave having a center frequency of, for example, 28 GHz, 39 GHz, or 60 GHz, but radio waves of other frequency bands are also applicable.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 that constitutes a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power supply device, and an antenna device 120.
  • the communication device 10 upconverts an intermediate frequency signal transmitted from the BBIC 200 to the antenna module 100 to a high frequency signal and radiates the high frequency signal from the antenna device 120, and downconverts a high frequency signal received by the antenna device 120 to an intermediate frequency signal and processes the signal in the BBIC 200.
  • the antenna device 120 includes a flat dielectric substrate 130 having a substantially rectangular shape, and a plurality of dielectric blocks 121 arranged on the dielectric substrate 130.
  • a flat dielectric substrate 130 having a substantially rectangular shape
  • a plurality of dielectric blocks 121 arranged on the dielectric substrate 130.
  • FIG. 1 an example of an array configuration in which four dielectric blocks 121 are arranged in a row on the dielectric substrate 130 is shown, but the number of dielectric blocks 121 is not limited to this.
  • a single dielectric block 121 may be arranged on the dielectric substrate 130, or a configuration in which a plurality of dielectric blocks 121 other than four are arranged may be used.
  • an array configuration in which the dielectric blocks 121 are arranged two-dimensionally may be used.
  • the dielectric blocks 121 are arranged in a one-dimensional array configuration, it is desirable to set the center-to-center distance between adjacent dielectric blocks to approximately ⁇ /2, assuming that the wavelength in free space of the radio wave radiated from the dielectric block 121 is ⁇ .
  • the dielectric block 121 has a substantially rectangular parallelepiped shape.
  • a high-frequency signal in a predetermined frequency band is supplied to the dielectric block 121, an electric field resonates inside the dielectric block 121, and radio waves corresponding to the resonant frequency are radiated from the dielectric block 121 to the outside.
  • the antenna module 100 is a dielectric resonator antenna (DRA).
  • the resonant frequency of the resonance occurring in the dielectric block 121 is determined by the shape and dimensions of the dielectric block 121 and the dielectric constant of the dielectric that constitutes the block.
  • the dielectric constant of the dielectric block 121 is set higher than the dielectric constant of the dielectric substrate 130.
  • the relative dielectric constant of the dielectric block 121 is, for example, 10 or more, and preferably 15 to 20.
  • the antenna module 100 of the first embodiment high-frequency signals are supplied to each dielectric block 121 via two power supply wirings.
  • the polarization direction of the radiated radio waves differs depending on the power supply position of the high-frequency signal to the dielectric block 121.
  • the antenna module 100 is a so-called dual-polarized type antenna module capable of radiating radio waves in two different polarization directions.
  • the RFIC 110 includes two power feed circuits 110A and 110B.
  • the power feed circuit 110A is a circuit for supplying a high-frequency signal for a first polarization direction.
  • the power feed circuit 110B is a circuit for supplying a high-frequency signal for a second polarization direction. Note that since the internal configuration of the power feed circuit 110B is similar, in order to facilitate explanation, in FIG. 1, only the detailed configuration of the power feed circuit 110A is shown, and the configuration of the power feed circuit 110B is omitted. Below, the function of the power feed circuit 110A will be explained as a representative.
  • the power supply circuit 110A includes switches 111A-111D, 113A-113D, and 117, power amplifiers 112AT-112DT, low-noise amplifiers 112AR-112DR, attenuators 114A-114D, phase shifters 115A-115D, a signal combiner/distributor 116, a mixer 118, and an amplifier circuit 119.
  • switches 111A-111D and 113A-113D are switched to the power amplifiers 112AT-112DT side, and switch 117 is connected to the transmitting amplifier of amplifier circuit 119.
  • switches 111A-111D and 113A-113D are switched to the low-noise amplifiers 112AR-112DR side, and switch 117 is connected to the receiving amplifier of amplifier circuit 119.
  • the intermediate frequency signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the up-converted high frequency signal, the transmission signal is split into four by the signal combiner/distributor 116, passes through the corresponding signal paths, and is fed to different dielectric blocks 121.
  • the signal combiner/distributor 116 passes through the corresponding signal paths, and is fed to different dielectric blocks 121.
  • the attenuators 114A-114D adjust the strength of the transmission signal.
  • the received signal which is a high-frequency signal received by each dielectric block 121, is transmitted to the power supply circuit 110A of the RFIC 110 and is combined in the signal combiner/distributor 116 via four different signal paths.
  • the combined received signal is down-converted to an intermediate frequency signal by the mixer 118, and further amplified by the amplifier circuit 119 before being transmitted to the BBIC 200.
  • the RFIC 110 is formed, for example, as a one-chip integrated circuit component including the above circuit configuration. Alternatively, it may be formed as an individual integrated circuit component for each power supply circuit. Furthermore, for the devices corresponding to each dielectric block (switch, power amplifier, low-noise amplifier, attenuator, phase shifter), it may be formed as a one-chip integrated circuit component for each corresponding dielectric block.
  • Fig. 2 is a perspective view of the antenna module 100 according to the first embodiment.
  • Fig. 3 is a side view of the antenna module 100 when viewed from the Y-axis direction in Fig. 2.
  • the normal direction of the flat plate-shaped dielectric substrate 130 is the Z-axis direction
  • the direction along the short side of the dielectric substrate 130 is the X-axis direction
  • the direction along the long side of the dielectric substrate 130 is the X-axis direction.
  • the positive direction of the Z-axis may be referred to as the upper side
  • the negative direction may be referred to as the lower side.
  • the antenna module 100 further includes ground electrodes GND1 and GND2 and power supply wiring 140 and 145.
  • the dielectric substrate 130 may be, for example, a low temperature co-fired ceramics (LTCC) multilayer substrate, a multilayer resin substrate formed by laminating multiple resin layers made of resins such as epoxy and polyimide, a multilayer resin substrate formed by laminating multiple resin layers made of liquid crystal polymer (LCP) having a lower dielectric constant, a multilayer resin substrate formed by laminating multiple resin layers made of fluorine-based resin, a multilayer resin substrate formed by laminating multiple resin layers made of PET (Polyethylene Terephthalate), or a ceramic multilayer substrate other than LTCC.
  • LCP liquid crystal polymer
  • PET Polyethylene Terephthalate
  • the dielectric substrate 130 does not necessarily have to have a multilayer structure and may be a single-layer substrate.
  • the dielectric substrate 130 has an upper surface 131 and a lower surface 132.
  • a ground electrode GND2 is disposed over the entire surface of the dielectric substrate 130.
  • a flat ground electrode GND1 is disposed on the end side of the dielectric substrate 130 in the positive direction of the X-axis in a direction intersecting the dielectric substrate 130.
  • the ground electrode GND1 extends from the upper surface 131 of the dielectric substrate 130 in the positive direction of the Z-axis and has a flat shape disposed so as to be parallel to the YZ plane.
  • Each of the ground electrodes GND1 and GND2 is electrically connected to a ground terminal on a mounting substrate (not shown).
  • the ground electrodes GND1 and GND2 may be connected to each other.
  • the dielectric blocks 121 are arranged on the dielectric substrate 130 at a distance from each other along the Y-axis direction, further toward the end in the positive direction of the X-axis than the ground electrode GND1.
  • the dielectric blocks 121 are arranged so that the lower surface 122 of the approximately rectangular parallelepiped faces the upper surface 131 of the dielectric substrate 130 and protrudes further in the X-axis direction from the end surface in the positive direction of the X-axis of the dielectric substrate 130.
  • the surface 123 of the dielectric block 121 in the negative direction of the X-axis is arranged to face the main surface of the ground electrode GND1.
  • the surface 123 of the dielectric block 121 has an approximately square shape.
  • the dielectric block 121 may be in contact with the ground electrode GND1 or may be spaced apart from it.
  • a SiP (System In Package) module 105 is disposed on the upper surface 131 of the dielectric substrate 130.
  • the SiP module 105 is a control device that incorporates an RFIC 110, as well as a circuit in which a power module IC for a power supply and a power inductor (not shown) are mounted on the substrate.
  • the circuit is sealed with resin 106, and is mounted on the dielectric substrate 130 by a connecting member such as a solder bump 160. Note that the SiP module 105 is omitted in FIG. 2.
  • power supply wiring 140, 145 for transmitting high frequency signals from the RFIC 110 to the dielectric block 121 is arranged on the upper surface 131 of the dielectric substrate 130.
  • the power supply wiring 140 includes a wiring electrode 141 connected to the solder bumps 160 that connect the SiP module 105 to the dielectric substrate 130 and to the dielectric block 121, and a stub 142 branching off from the wiring electrode 141.
  • the wiring electrode 141 extends in the X-axis direction on the upper surface 131 of the dielectric substrate 130, passes through an opening OP1 in the ground electrode GND1, and is connected to the end of the lower surface 122 of the dielectric block 121 in the negative direction of the Y-axis.
  • the stub 142 branches off in the negative direction of the Y-axis from midway through the wiring electrode 141 on the dielectric substrate 130.
  • the power supply wiring 145 includes a wiring electrode 146 connected to the solder bump 160 and the dielectric block 121, and a stub 147 branching off from the wiring electrode 146.
  • the wiring electrode 146 extends in the X-axis direction on the upper surface 131 of the dielectric substrate 130, passes through an opening OP2 in the ground electrode GND1, and is connected to the end of the lower surface 122 of the dielectric block 121 in the positive direction of the Y-axis.
  • the stub 147 branches off in the positive direction of the Y-axis from midway along the wiring electrode 146 on the dielectric substrate 130.
  • the wiring electrodes 141 and 146 are spaced apart from each other in a direction parallel to the surface 123 of the dielectric block 121 (the Y-axis direction).
  • the wiring electrodes 141 and 146 are arranged opposite the ground electrode GND2 of the dielectric substrate 130, and function as strip lines.
  • the power supply wiring 140, 145 is arranged on the upper surface 131 of the dielectric substrate 130, but the power supply wiring 140, 145 may be arranged on an inner layer of the dielectric substrate 130.
  • radio waves polarized in the direction of the arrow AR1 in FIG. 2 i.e., one diagonal direction of the substantially square end face 123
  • radio waves polarized in the positive direction of the X-axis the direction of the arrow AR3 in FIG. 3
  • radio waves polarized in the direction of the arrow AR2 in FIG. 2 in FIG. 2 i.e., the other diagonal direction of the substantially square end face 123, are radiated in the positive direction of the X-axis.
  • the antenna module 100 is a dual-polarized type antenna module.
  • the surface 123 of the dielectric block 121 is approximately square, so that the polarization directions of the two radiated radio waves are perpendicular to each other.
  • the dielectric block 121 opposite the main surface of the ground electrode GND1 that is arranged crosswise to the dielectric substrate 130, it is possible to radiate radio waves in a direction different from the normal direction of the dielectric substrate 130. Furthermore, by supplying high-frequency signals to different positions on the surface of the dielectric block 121 that faces the ground electrode GND1, it is possible to make a dual-polarized type antenna module. Note that by making the polarization directions of the two radio waves radiated from the dielectric block 121 orthogonal to each other, it is possible to improve the cross-polarization discrimination ratio (XPD).
  • XPD cross-polarization discrimination ratio
  • the ground electrode GND1 for the dielectric block 121 is arranged so as to be perpendicular to the dielectric substrate 130, i.e., so that the angle between the ground electrode GND1 and the dielectric substrate 130 is 90°; however, the angle between the ground electrode GND1 and the dielectric substrate 130 does not necessarily have to be 90°.
  • ground electrode GND1" and “ground electrode GND2" in embodiment 1 correspond to the “first ground electrode” and “second ground electrode” in this disclosure, respectively.
  • the “wiring electrode 141" and “wiring electrode 146" in embodiment 1 correspond to the “first wiring” and “second wiring” in this disclosure, respectively.
  • the “lower surface 122" and “surface 123" of the dielectric block 121 in embodiment 1 correspond to the “first surface” and “second surface” in this disclosure, respectively.
  • Fig. 4 is a diagram for explaining the first and second modifications of the arrangement of the power feed wirings 140 and 145 in the dielectric block 121.
  • the power supply wiring 145 is connected to the end of the lower surface 122 of the dielectric block 121 in the positive direction of the Y axis, and the power supply wiring 140 is connected to the end of the lower surface 122 of the dielectric block 121 in the negative direction of the Y axis.
  • connection portions of the power supply wirings 140A, 145A with the dielectric block 121 in the antenna module 100A of the first modification have a substantially L-shaped cross section when viewed in a plan view from the X-axis direction. That is, the power supply wiring 140A extends from the bottom surface 122 to the side surface 125 at the end of the bottom surface 122 of the dielectric block 121 in the negative direction of the Y-axis.
  • the power supply wiring 145A extends from the bottom surface 122 to the side surface 124 at the end of the bottom surface 122 of the dielectric block 121 in the positive direction of the Y-axis.
  • the power supply wiring 140B, 145B in the antenna module 100B of the second modification has a cross-sectional shape similar to that of the power supply wiring 140, 145 in the first embodiment, but is connected to the dielectric block 121 at a position slightly offset inward from the end of the lower surface 122 in the Y-axis direction.
  • Fig. 5 is a diagram for explaining the third and fourth modified examples of the state of coupling between the dielectric block 121 and the power supply lines 140 and 145.
  • the antenna module 100 of the first embodiment a configuration in which the dielectric block 121 and the power supply wirings 140 and 145 are directly connected has been described.
  • the antenna module 100C of the third modification (the left diagram of FIG. 5)
  • a small gap is provided between the lower surface 122 of the dielectric block 121 and the power supply wirings 140 and 145, and the dielectric block 121 and the power supply wirings 140 and 145 are in a non-contact state. If the attenuation of the high-frequency signal due to this gap is less than a predetermined amount, the high-frequency signal can be transmitted to the dielectric block 121 even in a non-contact state, and radio waves can be emitted from the dielectric block 121.
  • the impedance can be adjusted by adjusting the gap amount between the dielectric block 121 and the power supply wirings 140 and 145. If the free space wavelength of the radio waves emitted from the dielectric block 121 is ⁇ , the gap amount between the dielectric block 121 and the power supply wirings 140 and 145 is set to within ⁇ /10.
  • the gap may be an air space, or another dielectric such as a resist may be disposed in the gap.
  • the power supply wiring 140 is connected to a flat plate electrode 150 arranged on the lower surface 122 of the dielectric block 121 via a solder bump 155.
  • the power supply wiring 145 is also connected to a flat plate electrode arranged on the dielectric block 121 via a solder bump in a similar manner.
  • the connection strength between the power supply wiring 140, 145 and the dielectric block 121 can be increased.
  • the dielectric substrate 130A in the antenna module 100E has a dimension in the X-axis direction that is longer than the dielectric substrate 130 in the antenna module 100.
  • the dielectric block 121 is positioned so that the end of the dielectric block 121 in the positive direction along the X-axis is substantially in the same position as the end of the dielectric substrate 130 in the positive direction along the X-axis.
  • the ground electrode GND2 arranged on the dielectric substrate 130A is arranged only up to the position where the power supply wiring 140, 145 is arranged. In other words, the ground electrode GND2 is not arranged near the end of the dielectric substrate 130A in the positive direction of the X-axis. Therefore, when viewed in a plan view from the normal direction of the dielectric substrate 130A, at least a part of the area where the dielectric substrate 130A and the dielectric block 121 overlap does not overlap with the ground electrode GND2.
  • the electric field leaking out from the dielectric block 121 may cause the area of the dielectric substrate 130A where there is no ground electrode GND2 to resonate, which may improve the gain.
  • connection between the dielectric block 121 and the dielectric substrate 130A can be stabilized by supporting the dielectric block 121 with resin or double-sided tape placed between the dielectric block 121 and the dielectric substrate 130A.
  • FIG. 7 is a side perspective view of an antenna module 100F of the sixth modification.
  • the SiP module 105 in the antenna module 100 of the first embodiment is replaced with a SiP module 105A, and further the ground electrode GND1 is removed.
  • the description of the elements that overlap with Fig. 3 will not be repeated.
  • a conductive shielding member 107 configured to block electromagnetic waves is disposed around the outer periphery of the SiP module 105A in the antenna module 100F.
  • the shielding member 107 is formed from a metal member such as copper, aluminum, or iron, and is electrically connected to a ground potential. This shielding member 107 prevents electromagnetic waves generated in the internal circuitry of the SiP module 105A from leaking to the outside, thereby suppressing the effects on external devices.
  • the shielding member 107 also prevents electromagnetic noise from entering the internal circuitry of the SiP module 105A from the outside.
  • the dielectric block 121 is arranged so that the surface 123 in the negative direction of the X axis faces the shielding member 107 on the side of the SiP module 105A. This configuration can reduce the ground electrode GND1, lowering manufacturing costs and contributing to the miniaturization of the antenna module.
  • the "shield member 107" in variant example 6 corresponds to the "conductive member" in this disclosure.
  • FIG. 8 is a block diagram of a communication device to which an antenna module 100G according to embodiment 2 is applied.
  • the RFIC 110 in the antenna module 100 of FIG. 1 is replaced with an RFIC 110X, and a flat radiating element 127 is added to the dielectric substrate 130.
  • FIG. 8 shows an example in which four radiating elements 127 are arranged on the dielectric substrate 130.
  • the radiating element 127 has a substantially square shape when viewed in a plan view from the normal direction of the dielectric substrate 130.
  • the radiating element 127 has two feed points SP1 and SP2 arranged at positions offset in different directions from the center of the element, and a high-frequency signal is supplied to each of the feed points SP1 and SP2.
  • the RFIC 110X further includes feed circuits 110C and 110D in addition to the feed circuits 110A and 110B.
  • the feed circuits 110A and 110B are circuits for supplying a high-frequency signal to the dielectric block 121, similar to the antenna module 100 of the first embodiment.
  • the feed circuit 110C is a circuit for supplying a high-frequency signal to the feed point SP1 of the radiating element 127.
  • the feed circuit 110D is a circuit for supplying a high-frequency signal to the feed point SP2 of the radiating element 127.
  • the internal configurations of the feed circuits 110B to 110D are the same as the feed circuit 110A, and FIG. 8 shows the detailed configuration only for the feed circuit 110A.
  • Fig. 9 is a perspective view of the antenna module 100G of Fig. 8
  • Fig. 110 is a side perspective view of the antenna module 100G as viewed from the opposite direction of the Y axis. Note that the SiP module 105 is omitted in Fig. 9.
  • dielectric blocks 121 are arranged spaced apart from one another along the Y-axis direction on the end side in the positive direction of the X-axis of a dielectric substrate 130. If the wavelength of the radio wave radiated from the dielectric block 121 is ⁇ 1 , adjacent dielectric blocks 121 are arranged at a pitch of ⁇ 1 /2.
  • radiating elements 127 are arranged spaced apart from one another along the Y-axis direction on the lower surface 132 side of the dielectric substrate 130. If the wavelength of the radio waves radiated from the radiating elements 127 is ⁇ 2 , adjacent radiating elements 127 are arranged at a pitch of ⁇ 2 /2.
  • the frequency band of the radio waves radiated from the radiating elements 127 may be the same as or different from the frequency band of the radio waves radiated from the dielectric block 121.
  • the radiating element 127 is disposed on the bottom surface 132 side of the ground electrode GND2 disposed on the dielectric substrate 130, facing the ground electrode GND2.
  • the radiating element 127 may be disposed so as to be exposed on the bottom surface 122 of the dielectric substrate 130, as shown in FIG. 10, or may be disposed on an inner layer between the ground electrode GND2 and the bottom surface 132.
  • a high-frequency signal is transmitted from RFIC 110A to radiating element 127 via power supply wiring 151, 152.
  • Power supply wiring 151 passes from solder bump 160 through ground electrode GND2 and is connected to power supply point SP1 of radiating element 127.
  • Power supply wiring 152 passes from solder bump 160 through ground electrode GND2 and is connected to power supply point SP2 of radiating element 127.
  • Feed point SP1 is located at a position offset in the Y-axis direction from the center of radiating element 127.
  • feed point SP1 When a high-frequency signal is supplied to feed point SP1, radio waves polarized in the Y-axis direction are radiated in the negative direction of the Z-axis (the direction of arrow AR4 in Figure 10).
  • Feed point SP2 is located at a position offset in the negative direction of the X-axis from the center of radiating element 127.
  • radio waves polarized in the X-axis direction are radiated in the negative direction of the Z-axis.
  • dielectric block 121 is similar to that of the antenna module 100 in embodiment 1, so its description will not be repeated.
  • Fig. 11 is a side perspective view of an antenna module 100H of Modification 7.
  • the antenna module 100H has a configuration in which a flat patch antenna is provided on the dielectric substrate 130 in the configuration of Modification 6 described in Fig. 7.
  • Fig. 11 the description of elements that overlap with Fig. 7 will not be repeated.
  • a flat radiating element 127 is disposed on the lower surface 132 of the dielectric substrate 130. High-frequency signals are supplied from the RFIC 110 to the power supply points SP1 and SP2 of the radiating element 127 via the power supply wirings 151 and 152, respectively.
  • the antenna module 100H By configuring the antenna module 100H, it is possible to eliminate the ground electrode GND1, thereby reducing manufacturing costs and miniaturizing the antenna module, and it is also possible to radiate radio waves in two different directions.
  • (Variation 8) 12 is a side perspective view of an antenna module 100I according to Modification 8.
  • the antenna module 100I is an example in which the antenna module 100H shown in FIG.
  • the dimensions in the X-axis direction of dielectric substrate 130 and SiP module 105A are smaller than those in antenna module 100H.
  • Radiating element 127 is disposed close to the end of dielectric substrate 130 in the positive direction of the X-axis. In other words, when viewed in a plan view from the normal direction of dielectric substrate 130, at least a portion of radiating element 127 overlaps dielectric block 121.
  • antenna module 100I By using a configuration like antenna module 100I, it is possible to further reduce the size of the antenna module.
  • FIG. 13 is a partial side perspective view of a communication device 10 according to embodiment 3.
  • the antenna module 100 described in FIG. 3 of embodiment 1 will be used for explanation.
  • FIG. 14 is a partial plan view of the communication device in FIG. 13 as viewed from the positive direction of the X-axis. Note that in the following explanation, the explanation of each element of the antenna module 100 that overlaps with FIG. 3 will not be repeated.
  • the communication device 10 includes a housing 20 for housing internal equipment including the antenna module 100.
  • the housing 20 includes a first portion 21 formed of a material that contains metal, and a second portion 22 formed of a dielectric material that does not contain metal, such as a resin.
  • the second portion 22 is disposed inside a through hole 23 formed in the first metal portion 21.
  • the antenna module 100 is arranged so that the entire surface 126 of the dielectric block 121 opposite surface 123, i.e., the radio wave radiation surface (the surface in the positive direction of the X-axis), is in contact with the second portion 22 of the housing 20.
  • the entire surface 126 of the dielectric block 121 overlaps with the second portion 22.
  • the dielectric block 121 It is desirable to bring the dielectric block 121 into close contact with the second portion 22 of the housing 20. If there is a space between the dielectric block 121 and the second portion 22, the dielectric constant of the radiation path of the radio waves will change due to the air layer in the space, and reflections will occur at the boundary between the dielectric block 121 and the air layer, and at the boundary between the air layer and the second portion 22 of the housing 20, which can cause deterioration of the antenna gain. Therefore, by bringing the dielectric block 121 into close contact with the second portion 22, it is possible to reduce the reflection of radio waves and suppress deterioration of the antenna gain.
  • the difference between the dielectric constant of the dielectric block 121 and the dielectric constant of the second portion 22 is preferable to make the difference between the dielectric constant of the dielectric block 121 and the dielectric constant of the second portion 22 as small as possible.
  • first portion 21 was made of a material that contained metal, but as long as the strength of the housing 20 can be ensured, the entire housing 20 may be made of a material that does not contain metal.
  • An antenna module includes a substrate, a dielectric block, a flat-plate shaped first ground electrode, and a power feed wiring.
  • the dielectric block has a first surface and a second surface that intersect with each other, and is disposed on the first surface facing a mounting surface of the substrate.
  • the first ground electrode intersects with the substrate and is disposed facing the second surface of the dielectric block.
  • the power feed wiring is disposed on the substrate and transmits a high frequency signal to the dielectric block. When viewed in a plan view from the normal direction of the substrate, an end of the power feed wiring is disposed in a position that overlaps with the dielectric block.
  • the power supply wiring includes a first wiring and a second wiring.
  • the first wiring and the second wiring are arranged spaced apart from each other in a first direction parallel to the second surface.
  • the second surface of the dielectric block has a substantially square shape.
  • the first surface of the dielectric block has a first end and a second end that face each other in the first direction.
  • the first wiring is disposed at the first end, and the second wiring is disposed at the second end.
  • the antenna module described in any one of paragraphs 1 to 3 further includes a second ground electrode and a flat radiating element.
  • the second ground electrode is disposed on the substrate opposite the power supply wiring.
  • the radiating element is disposed on the substrate opposite the second ground electrode.
  • the power supply wiring is arranged in contact with the dielectric block.
  • the dielectric block is disposed at a distance from the first ground electrode.
  • the power supply wiring is arranged at a distance from the dielectric block. If the free space wavelength of the radio wave radiated from the dielectric block is ⁇ , the distance between the power supply wiring and the dielectric block is within ⁇ /10.
  • the dielectric block is arranged in contact with the first ground electrode.
  • the antenna module described in any one of Items 1 to 8 further includes a second ground electrode disposed on the substrate opposite the power supply wiring. When viewed in a plan view from the normal direction of the substrate, at least a portion of the area where the substrate and the dielectric block overlap does not overlap with the second ground electrode.
  • the dielectric constant of the dielectric block is greater than the dielectric constant of the substrate.
  • the dielectric constant of the dielectric block is 10 or more.
  • the antenna module described in any one of paragraphs 1 to 3 further includes a power supply device.
  • the power supply device is disposed on the main surface of the substrate on which the dielectric block is mounted, and is configured to supply a high-frequency signal to the dielectric block.
  • the power supply device is surrounded by a conductive member. A part of the conductive member is used as a first ground electrode.
  • the antenna module described in clause 12 further includes a second ground electrode and a flat radiating element.
  • the second ground electrode is disposed on the substrate opposite the power supply wiring.
  • the radiating element is disposed on the substrate opposite the second ground electrode.
  • the antenna module described in clause 4 further includes a power supply circuit disposed on the substrate and configured to supply a high-frequency signal to the dielectric block and the radiating element.
  • a communication device is equipped with an antenna module as described in any one of the preceding paragraphs 1 to 15.
  • the communication device described in clause 16 further includes a housing that houses the antenna module.
  • the housing includes a specific portion that is at least partially formed of a material that does not contain metal. When viewed in a plan view from the normal direction of the radio wave radiation surface of the dielectric block, the entire radiation surface overlaps with the specific portion.
  • 10 communication device 20 housing, 21 first part, 22 second part, 23 through hole, 100, 100A to 100I antenna module, 105, 105A SiP module, 106 resin, 107 shielding member, 110, 100X RFIC, 110A to 110D power supply circuit, 111A to 111D, 113A to 113D, 117 switch, 112AR to 112DR low noise amplifier, 112AT to 112DT power amplifier, 114A to 114D attenuator, 115A to 115D phase shifter, 116 signal combiner/distributor, 11 8 mixer, 119 amplifier circuit, 120 antenna device, 121 dielectric block, 122, 132 bottom surface, 123, 126 top surface, 124, 125 side surface, 127 radiating element, 130, 130A dielectric substrate, 131 top surface, 140, 140A, 140B, 145, 145A, 145B, 151, 152 power supply wiring, 141, 146 wiring electrode, 142, 147 stub, 150 flat plate electrode,

Landscapes

  • Details Of Aerials (AREA)

Abstract

This antenna module (100) comprises a dielectric board (130), dielectric blocks (121), a tabular ground electrode (GND1), and electric power supply wiring (140, 145). The dielectric blocks (121) have mutually perpendicular surfaces (122, 123) and are positioned so that the surfaces (122) face a mounting surface of the dielectric board (130). The ground electrode (GND1) is positioned so as to be perpendicular to the dielectric board (130) and to face the surfaces (123) of the dielectric blocks (121). The electric power supply wiring (140, 145) is positioned on the dielectric board (130) and transmits high-frequency signals to the dielectric blocks (121). When seen in plan view from the direction normal to the dielectric board (130), end portions of the electric power supply wiring (140, 145) are positioned at positions that overlap the dielectric blocks (121).

Description

アンテナモジュールおよびそれを搭載した通信装置Antenna module and communication device equipped with same
 本開示は、アンテナモジュールおよびそれを搭載した通信装置に関し、より特定的には、誘電体共振器アンテナの放射方向を調整する構成に関する。 This disclosure relates to an antenna module and a communication device equipped with the same, and more specifically to a configuration for adjusting the radiation direction of a dielectric resonator antenna.
 特開2000-209020号公報(特許文献1)には、平板形状の基板上に配置された誘電体材料の直方体(誘電体ブロック)に高周波信号を供給して電波を放射させる、誘電体共振器アンテナ(DRA:Dielectric Resonator Antenna)が開示されている。 JP 2000-209020 A (Patent Document 1) discloses a dielectric resonator antenna (DRA) that radiates radio waves by supplying a high-frequency signal to a rectangular parallelepiped (dielectric block) made of dielectric material placed on a flat substrate.
 特許文献1に開示された誘電体共振器アンテナにおいては、供給された高周波信号(電界)が、誘電体ブロック内で共振することによって、基板に配置された接地電極とは反対方向、すなわち基板の法線方向に電波が放射される。誘電体共振器アンテナから放射される電波の周波数特性は、誘電体ブロックの形状、寸法および誘電率によって定まる。また、特許文献1の誘電体共振器アンテナにおいては、誘電体ブロックへの高周波信号の供給経路は1つであるので、誘電体ブロックからは、特定の1つの偏波方向にのみ電波が放射される。 In the dielectric resonator antenna disclosed in Patent Document 1, a supplied high-frequency signal (electric field) resonates within the dielectric block, causing radio waves to be emitted in the opposite direction to the ground electrode placed on the substrate, i.e., in the normal direction of the substrate. The frequency characteristics of the radio waves radiated from the dielectric resonator antenna are determined by the shape, dimensions and dielectric constant of the dielectric block. Furthermore, in the dielectric resonator antenna of Patent Document 1, there is only one supply path for the high-frequency signal to the dielectric block, so radio waves are radiated from the dielectric block in only one specific polarization direction.
特開2000-209020号公報JP 2000-209020 A
 上述のようなアンテナ装置は、携帯電話あるいはスマートフォンに代表されるモバイル通信装置に用いられる場合がある。モバイル通信装置においては、基地局またはルータなどの他の機器との確実な通信を実現するために、装置内に複数のアンテナを配置し、異なる放射方向に電波を放射することが可能な構成が用いられている。 Antenna devices such as those described above may be used in mobile communication devices such as mobile phones or smartphones. In mobile communication devices, in order to ensure reliable communication with other devices such as base stations or routers, multiple antennas are arranged within the device, and a configuration is used that allows radio waves to be emitted in different directions.
 このような通信装置に特許文献1に開示された誘電体共振器アンテナを適用する場合、誘電体ブロックが配置される基板の法線方向にしか電波を放射することができない。 If the dielectric resonator antenna disclosed in Patent Document 1 is applied to such a communication device, radio waves can only be emitted in the normal direction of the substrate on which the dielectric block is placed.
 本開示は、このような課題を解決するためになされたものであって、その目的は、基板の法線方向とは異なる方向に電波を放射可能な誘電体共振器アンテナを提供することである。 The present disclosure has been made to solve these problems, and its purpose is to provide a dielectric resonator antenna that can radiate radio waves in a direction different from the normal direction of the substrate.
 本開示に係るアンテナモジュールは、基板と、誘電体ブロックと、平板形状の第1接地電極と、給電配線とを備える。誘電体ブロックは、互いに交差する第1面および第2面を有し、第1面において基板の実装面に対向して配置されている。第1接地電極は、基板に対して交差するとともに、誘電体ブロックの第2面に対向して配置されている。給電配線は、基板に配置され、誘電体ブロックに高周波信号を伝達する。基板の法線方向から平面視した場合に、給電配線の端部は、誘電体ブロックと重なる位置に配置されている。 The antenna module according to the present disclosure comprises a substrate, a dielectric block, a flat-plate shaped first ground electrode, and a power supply wiring. The dielectric block has a first surface and a second surface that intersect with each other, and is disposed facing the mounting surface of the substrate on the first surface. The first ground electrode intersects with the substrate and is disposed facing the second surface of the dielectric block. The power supply wiring is disposed on the substrate and transmits a high frequency signal to the dielectric block. When viewed in a plan view from the normal direction of the substrate, the end of the power supply wiring is disposed in a position that overlaps with the dielectric block.
 本開示のアンテナモジュールによれば、基板と交差する方向に平板形状の接地電極を有しており、基板の実装面に対向して配置された誘電体ブロックにおいて、基板に対向する面とは異なる面が当該接地電極に対向するように配置されている。このように誘電体ブロックを配置することによって、誘電体ブロックに高周波信号を供給すると、当該接地電極の法線方向に電波を放射することができる。したがって、誘電体ブロックが配置された基板の法線方向とは異なる方向に電波を放射することができる。 The antenna module disclosed herein has a flat ground electrode in a direction intersecting with the substrate, and the dielectric block is arranged opposite the mounting surface of the substrate so that a surface other than the surface facing the substrate faces the ground electrode. By arranging the dielectric block in this manner, when a high-frequency signal is supplied to the dielectric block, radio waves can be radiated in the normal direction of the ground electrode. Therefore, radio waves can be radiated in a direction different from the normal direction of the substrate on which the dielectric block is arranged.
実施の形態1に係るアンテナモジュールが適用される通信装置のブロック図である。1 is a block diagram of a communication device to which an antenna module according to a first embodiment is applied; 図1のアンテナモジュールの斜視図である。FIG. 2 is a perspective view of the antenna module of FIG. 1 . 図1のアンテナモジュールの側面透視図である。FIG. 2 is a side perspective view of the antenna module of FIG. 1 . 誘電体ブロックにおける給電配線の配置の変形例1,2を説明するための図である。11A and 11B are diagrams for explaining modified examples 1 and 2 of the arrangement of power supply wiring in a dielectric block. 誘電体ブロックと給電配線との結合状態の変形例3,4を説明するための図である。13A and 13B are diagrams for explaining modified examples 3 and 4 of the coupling state between the dielectric block and the power supply line. 変形例5のアンテナモジュールの側面透視図である。FIG. 13 is a side perspective view of an antenna module according to a fifth modified example. 変形例6のアンテナモジュールの側面透視図である。FIG. 13 is a side perspective view of an antenna module according to a sixth modified example. 実施の形態2に係るアンテナモジュールが適用される通信装置のブロック図である。FIG. 11 is a block diagram of a communication device to which an antenna module according to a second embodiment is applied. 図8のアンテナモジュールの斜視図である。FIG. 9 is a perspective view of the antenna module of FIG. 8 . 図8のアンテナモジュールの側面透視図である。FIG. 9 is a side perspective view of the antenna module of FIG. 8 . 変形例7のアンテナモジュールの側面透視図である。FIG. 13 is a side perspective view of an antenna module according to a seventh modified example. 変形例8のアンテナモジュールの側面透視図である。FIG. 23 is a side perspective view of an antenna module according to an eighth modified example. 実施の形態3に係る通信装置の部分的な側面透視図である。FIG. 11 is a partial side perspective view of a communication device according to a third embodiment. 図13の通信装置をX軸の正方向から見たときの部分平面図である。14 is a partial plan view of the communication device of FIG. 13 as viewed from the positive direction of the X-axis.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Below, the embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings will be given the same reference numerals and their description will not be repeated.
 [実施の形態1]
 (通信装置の基本構成)
 図1は、本実施の形態に係るアンテナモジュール100が適用される通信装置10のブロック図である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。本実施の形態に係るアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
[First embodiment]
(Basic configuration of communication device)
1 is a block diagram of a communication device 10 to which an antenna module 100 according to the present embodiment is applied. The communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone, or a tablet, or a personal computer equipped with a communication function. An example of the frequency band of radio waves used in the antenna module 100 according to the present embodiment is a millimeter wave band radio wave having a center frequency of, for example, 28 GHz, 39 GHz, or 60 GHz, but radio waves of other frequency bands are also applicable.
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電装置の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された中間周波数信号を高周波信号にアップコンバートしてアンテナ装置120から放射するとともに、アンテナ装置120で受信した高周波信号を中間周波数信号にダウンコンバートしてBBIC200にて信号を処理する。 Referring to FIG. 1, the communication device 10 includes an antenna module 100 and a BBIC 200 that constitutes a baseband signal processing circuit. The antenna module 100 includes an RFIC 110, which is an example of a power supply device, and an antenna device 120. The communication device 10 upconverts an intermediate frequency signal transmitted from the BBIC 200 to the antenna module 100 to a high frequency signal and radiates the high frequency signal from the antenna device 120, and downconverts a high frequency signal received by the antenna device 120 to an intermediate frequency signal and processes the signal in the BBIC 200.
 アンテナ装置120は、略矩形形状を有する平板形状の誘電体基板130と、当該誘電体基板130に配置された複数の誘電体ブロック121を含む。図1においては、誘電体基板130に、4つの誘電体ブロック121が一列に配置されたアレイ構成の例が記載されているが、誘電体ブロック121の数はこれに限らない。誘電体基板130に単独の誘電体ブロック121が配置されていてもよいし、4つ以外の複数の誘電体ブロック121が配置された構成であってもよい。また、誘電体ブロック121が二次元的に配列されたアレイ構成であってもよい。誘電体ブロック121が一次元アレイ構成に配置される場合、誘電体ブロック121から放射される電波の自由空間内波長をλとすると、隣接する誘電体ブロック同士の中心間距離は略λ/2に設定されることが望ましい。 The antenna device 120 includes a flat dielectric substrate 130 having a substantially rectangular shape, and a plurality of dielectric blocks 121 arranged on the dielectric substrate 130. In FIG. 1, an example of an array configuration in which four dielectric blocks 121 are arranged in a row on the dielectric substrate 130 is shown, but the number of dielectric blocks 121 is not limited to this. A single dielectric block 121 may be arranged on the dielectric substrate 130, or a configuration in which a plurality of dielectric blocks 121 other than four are arranged may be used. In addition, an array configuration in which the dielectric blocks 121 are arranged two-dimensionally may be used. When the dielectric blocks 121 are arranged in a one-dimensional array configuration, it is desirable to set the center-to-center distance between adjacent dielectric blocks to approximately λ/2, assuming that the wavelength in free space of the radio wave radiated from the dielectric block 121 is λ.
 誘電体ブロック121は、略直方体の形状を有している。誘電体ブロック121に所定の周波数帯域の高周波信号が供給されると、誘電体ブロック121の内部で電界が共振し、当該共振周波数に対応した電波が誘電体ブロック121から外部に放射される。すなわち、アンテナモジュール100は、誘電体共振器アンテナ(DRA)である。誘電体ブロック121において生じる共振の共振周波数は、誘電体ブロック121の形状、寸法およびブロックを構成する誘電体の誘電率によって定まる。誘電体ブロック121の誘電率は、誘電体基板130の誘電率よりも高く設定されている。誘電体ブロック121の比誘電率は、たとえば10以上であり、好ましくは15~20である。誘電体ブロック121の誘電率を誘電体基板130の誘電率よりも高く設定することによって、誘電体ブロック121内で共振する電界の波長を短くできるので、誘電体ブロック121のサイズを小さくすることができる。 The dielectric block 121 has a substantially rectangular parallelepiped shape. When a high-frequency signal in a predetermined frequency band is supplied to the dielectric block 121, an electric field resonates inside the dielectric block 121, and radio waves corresponding to the resonant frequency are radiated from the dielectric block 121 to the outside. In other words, the antenna module 100 is a dielectric resonator antenna (DRA). The resonant frequency of the resonance occurring in the dielectric block 121 is determined by the shape and dimensions of the dielectric block 121 and the dielectric constant of the dielectric that constitutes the block. The dielectric constant of the dielectric block 121 is set higher than the dielectric constant of the dielectric substrate 130. The relative dielectric constant of the dielectric block 121 is, for example, 10 or more, and preferably 15 to 20. By setting the dielectric constant of the dielectric block 121 higher than the dielectric constant of the dielectric substrate 130, the wavelength of the electric field that resonates in the dielectric block 121 can be shortened, and the size of the dielectric block 121 can be reduced.
 実施の形態1のアンテナモジュール100においては、各誘電体ブロック121には、2本の給電配線により高周波信号が供給される。図2等で後述するように、誘電体ブロック121への高周波信号の給電位置によって、放射される電波の偏波方向が異なる。すなわち、アンテナモジュール100は、2つの異なる偏波方向に電波を放射可能な、いわゆるデュアル偏波タイプのアンテナモジュールである。 In the antenna module 100 of the first embodiment, high-frequency signals are supplied to each dielectric block 121 via two power supply wirings. As will be described later with reference to FIG. 2 etc., the polarization direction of the radiated radio waves differs depending on the power supply position of the high-frequency signal to the dielectric block 121. In other words, the antenna module 100 is a so-called dual-polarized type antenna module capable of radiating radio waves in two different polarization directions.
 RFIC110は、2つの給電回路110A,110Bを含む。給電回路110Aは、第1偏波方向用の高周波信号を供給するための回路である。給電回路110Bは、第2偏波方向用の高周波信号を供給するための回路である。なお、給電回路110Bの内部構成は同様であるため、図1においては、説明を容易にするために、給電回路110Aについてのみ詳細構成が記載されており、給電回路110Bの構成は省略されている。以下では、代表として給電回路110Aの機能について説明する。 The RFIC 110 includes two power feed circuits 110A and 110B. The power feed circuit 110A is a circuit for supplying a high-frequency signal for a first polarization direction. The power feed circuit 110B is a circuit for supplying a high-frequency signal for a second polarization direction. Note that since the internal configuration of the power feed circuit 110B is similar, in order to facilitate explanation, in FIG. 1, only the detailed configuration of the power feed circuit 110A is shown, and the configuration of the power feed circuit 110B is omitted. Below, the function of the power feed circuit 110A will be explained as a representative.
 給電回路110Aは、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分配器116と、ミキサ118と、増幅回路119とを備える。 The power supply circuit 110A includes switches 111A-111D, 113A-113D, and 117, power amplifiers 112AT-112DT, low-noise amplifiers 112AR-112DR, attenuators 114A-114D, phase shifters 115A-115D, a signal combiner/distributor 116, a mixer 118, and an amplifier circuit 119.
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。 When transmitting a high-frequency signal, switches 111A-111D and 113A-113D are switched to the power amplifiers 112AT-112DT side, and switch 117 is connected to the transmitting amplifier of amplifier circuit 119. When receiving a high-frequency signal, switches 111A-111D and 113A-113D are switched to the low-noise amplifiers 112AR-112DR side, and switch 117 is connected to the receiving amplifier of amplifier circuit 119.
 BBIC200から伝達された中間周波数信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分配器116で4分波され、対応する信号経路を通過して、それぞれ異なる誘電体ブロック121に給電される。各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、誘電体ブロック121から出力される電波の指向性を調整することができる。また、減衰器114A~114Dは送信信号の強度を調整する。 The intermediate frequency signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118. The up-converted high frequency signal, the transmission signal, is split into four by the signal combiner/distributor 116, passes through the corresponding signal paths, and is fed to different dielectric blocks 121. By individually adjusting the phase shift of the phase shifters 115A-115D arranged on each signal path, the directivity of the radio waves output from the dielectric block 121 can be adjusted. In addition, the attenuators 114A-114D adjust the strength of the transmission signal.
 各誘電体ブロック121で受信された高周波信号である受信信号はRFIC110の給電回路110Aに伝達され、異なる4つの信号経路を経由して信号合成/分配器116において合波される。合波された受信信号はミキサ118で中間周波数信号へダウンコンバートされ、さらに増幅回路119で増幅されてBBIC200へ伝達される。 The received signal, which is a high-frequency signal received by each dielectric block 121, is transmitted to the power supply circuit 110A of the RFIC 110 and is combined in the signal combiner/distributor 116 via four different signal paths. The combined received signal is down-converted to an intermediate frequency signal by the mixer 118, and further amplified by the amplifier circuit 119 before being transmitted to the BBIC 200.
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、各給電回路ごとに個別の集積回路部品として形成されてもよい。さらに、各誘電体ブロックに対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)について、対応する誘電体ブロック毎に1チップの集積回路部品として形成されてもよい。 The RFIC 110 is formed, for example, as a one-chip integrated circuit component including the above circuit configuration. Alternatively, it may be formed as an individual integrated circuit component for each power supply circuit. Furthermore, for the devices corresponding to each dielectric block (switch, power amplifier, low-noise amplifier, attenuator, phase shifter), it may be formed as a one-chip integrated circuit component for each corresponding dielectric block.
 (アンテナモジュールの構造)
 次に、図2および図3を用いて、実施の形態1におけるアンテナモジュール100の構成の詳細を説明する。図2は、実施の形態1に係るアンテナモジュール100の斜視図である。図3は、図2におけるY軸方向からアンテナモジュール100を見たときの側面透過図である。なお、以降の説明おいて、平板形状の誘電体基板130の法線方向をZ軸方向とし、誘電体基板130の短辺に沿った方向をX軸方向とし、誘電体基板130の長辺に沿った方向をX軸方向とする。各図においてZ軸の正方向を上方側、負方向を下方側と称する場合がある。
(Antenna module structure)
Next, the configuration of the antenna module 100 in the first embodiment will be described in detail with reference to Fig. 2 and Fig. 3. Fig. 2 is a perspective view of the antenna module 100 according to the first embodiment. Fig. 3 is a side view of the antenna module 100 when viewed from the Y-axis direction in Fig. 2. In the following description, the normal direction of the flat plate-shaped dielectric substrate 130 is the Z-axis direction, the direction along the short side of the dielectric substrate 130 is the X-axis direction, and the direction along the long side of the dielectric substrate 130 is the X-axis direction. In each figure, the positive direction of the Z-axis may be referred to as the upper side, and the negative direction may be referred to as the lower side.
 アンテナモジュール100は、RFIC110、誘電体ブロック121および誘電体基板130に加えて、接地電極GND1,GND2および給電配線140,145をさらに備える。 In addition to the RFIC 110, the dielectric block 121, and the dielectric substrate 130, the antenna module 100 further includes ground electrodes GND1 and GND2 and power supply wiring 140 and 145.
 誘電体基板130は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、PET(Polyethylene Terephthalate)材から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、誘電体基板130は必ずしも多層構造でなくてもよく、単層の基板であってもよい。 The dielectric substrate 130 may be, for example, a low temperature co-fired ceramics (LTCC) multilayer substrate, a multilayer resin substrate formed by laminating multiple resin layers made of resins such as epoxy and polyimide, a multilayer resin substrate formed by laminating multiple resin layers made of liquid crystal polymer (LCP) having a lower dielectric constant, a multilayer resin substrate formed by laminating multiple resin layers made of fluorine-based resin, a multilayer resin substrate formed by laminating multiple resin layers made of PET (Polyethylene Terephthalate), or a ceramic multilayer substrate other than LTCC. Note that the dielectric substrate 130 does not necessarily have to have a multilayer structure and may be a single-layer substrate.
 誘電体基板130は、上面131および下面132を有している。誘電体基板130の内部の層には、誘電体基板130の全面にわたって接地電極GND2が配置されている。また、誘電体基板130のX軸の正方向の端部側に、誘電体基板130に交差する方向に、平板形状の接地電極GND1が配置されている。アンテナモジュール100の例においては、接地電極GND1は、誘電体基板130の上面131からZ軸正方向に延在し、YZ平面に平行になるように配置された平板形状を有している。なお、接地電極GND1および接地電極GND2の各々は、図示しない実装基板における接地端子に電気的に接続されている。接地電極GND1および接地電極GND2は、互いに接続されていてもよい。 The dielectric substrate 130 has an upper surface 131 and a lower surface 132. In an inner layer of the dielectric substrate 130, a ground electrode GND2 is disposed over the entire surface of the dielectric substrate 130. A flat ground electrode GND1 is disposed on the end side of the dielectric substrate 130 in the positive direction of the X-axis in a direction intersecting the dielectric substrate 130. In the example of the antenna module 100, the ground electrode GND1 extends from the upper surface 131 of the dielectric substrate 130 in the positive direction of the Z-axis and has a flat shape disposed so as to be parallel to the YZ plane. Each of the ground electrodes GND1 and GND2 is electrically connected to a ground terminal on a mounting substrate (not shown). The ground electrodes GND1 and GND2 may be connected to each other.
 誘電体ブロック121は、接地電極GND1よりもさらにX軸の正方向の端部側の誘電体基板130上に、Y軸方向に沿って互いに離間して配置されている。誘電体ブロック121は、略直方体の下面122が誘電体基板130の上面131に面しており、誘電体基板130のX軸の正方向の端面からさらにX軸方向に突出するように配置されている。誘電体ブロック121のX軸の負方向の面123は、接地電極GND1の主面に対向するように配置されている。誘電体ブロック121の面123は、略正方形の形状を有している。なお、誘電体ブロック121は、接地電極GND1に接していてもよいし、離間していてもよい。 The dielectric blocks 121 are arranged on the dielectric substrate 130 at a distance from each other along the Y-axis direction, further toward the end in the positive direction of the X-axis than the ground electrode GND1. The dielectric blocks 121 are arranged so that the lower surface 122 of the approximately rectangular parallelepiped faces the upper surface 131 of the dielectric substrate 130 and protrudes further in the X-axis direction from the end surface in the positive direction of the X-axis of the dielectric substrate 130. The surface 123 of the dielectric block 121 in the negative direction of the X-axis is arranged to face the main surface of the ground electrode GND1. The surface 123 of the dielectric block 121 has an approximately square shape. The dielectric block 121 may be in contact with the ground electrode GND1 or may be spaced apart from it.
 誘電体基板130の上面131には、SiP(System In Package)モジュール105が配置されている。SiPモジュール105は、RFIC110、ならびに、図示しない電源用のパワーモジュールICおよびパワーインダクタなどが基板上に実装された回路を内蔵した制御装置である。当該回路は、図3に示されるように、樹脂106により封止されており、はんだバンプ160のような接続部材によって誘電体基板130に実装される。なお、図2においては、SiPモジュール105は省略されている。 A SiP (System In Package) module 105 is disposed on the upper surface 131 of the dielectric substrate 130. The SiP module 105 is a control device that incorporates an RFIC 110, as well as a circuit in which a power module IC for a power supply and a power inductor (not shown) are mounted on the substrate. As shown in FIG. 3, the circuit is sealed with resin 106, and is mounted on the dielectric substrate 130 by a connecting member such as a solder bump 160. Note that the SiP module 105 is omitted in FIG. 2.
 また、誘電体基板130の上面131には、RFIC110から誘電体ブロック121に高周波信号を伝達するための給電配線140,145が配置されている。 Furthermore, power supply wiring 140, 145 for transmitting high frequency signals from the RFIC 110 to the dielectric block 121 is arranged on the upper surface 131 of the dielectric substrate 130.
 給電配線140は、SiPモジュール105を誘電体基板130に接続するはんだバンプ160と誘電体ブロック121とに接続された配線電極141と、当該配線電極141から分岐したスタブ142とを含む。配線電極141は、誘電体基板130の上面131をX軸方向に延伸し、接地電極GND1の開口部OP1を貫通して、誘電体ブロック121の下面122におけるY軸の負方向の端部に接続される。スタブ142は、誘電体基板130において、配線電極141の途中からY軸の負方向へと分岐している。 The power supply wiring 140 includes a wiring electrode 141 connected to the solder bumps 160 that connect the SiP module 105 to the dielectric substrate 130 and to the dielectric block 121, and a stub 142 branching off from the wiring electrode 141. The wiring electrode 141 extends in the X-axis direction on the upper surface 131 of the dielectric substrate 130, passes through an opening OP1 in the ground electrode GND1, and is connected to the end of the lower surface 122 of the dielectric block 121 in the negative direction of the Y-axis. The stub 142 branches off in the negative direction of the Y-axis from midway through the wiring electrode 141 on the dielectric substrate 130.
 同様に、給電配線145は、はんだバンプ160と誘電体ブロック121とに接続された配線電極146と、当該配線電極146から分岐したスタブ147とを含む。配線電極146、誘電体基板130の上面131をX軸方向に延伸し、接地電極GND1の開口部OP2を貫通して、誘電体ブロック121の下面122におけるY軸の正方向の端部に接続される。スタブ147は、誘電体基板130において、配線電極146の途中からY軸の正方向へと分岐している。 Similarly, the power supply wiring 145 includes a wiring electrode 146 connected to the solder bump 160 and the dielectric block 121, and a stub 147 branching off from the wiring electrode 146. The wiring electrode 146 extends in the X-axis direction on the upper surface 131 of the dielectric substrate 130, passes through an opening OP2 in the ground electrode GND1, and is connected to the end of the lower surface 122 of the dielectric block 121 in the positive direction of the Y-axis. The stub 147 branches off in the positive direction of the Y-axis from midway along the wiring electrode 146 on the dielectric substrate 130.
 配線電極141および配線電極146は、誘電体ブロック121の面123に平行な方向(Y軸方向)に互いに離間して配置されている。配線電極141および配線電極146は、誘電体基板130の接地電極GND2に対向して配置されており、ストリップ線路として機能する。 The wiring electrodes 141 and 146 are spaced apart from each other in a direction parallel to the surface 123 of the dielectric block 121 (the Y-axis direction). The wiring electrodes 141 and 146 are arranged opposite the ground electrode GND2 of the dielectric substrate 130, and function as strip lines.
 スタブ142,147は、誘電体ブロック121とのインピーダンス整合のために設けられる。なお、スタブ142,147は必須構成ではなく、誘電体ブロック121とのインピーダンスマッチングが実現できれば、スタブ142,147はなくてもよい。 The stubs 142 and 147 are provided for impedance matching with the dielectric block 121. Note that the stubs 142 and 147 are not essential components, and if impedance matching with the dielectric block 121 can be achieved, the stubs 142 and 147 can be omitted.
 なお、実施の形態1のアンテナモジュール100においては、給電配線140,145が誘電体基板130の上面131に配置される例が示されているが、給電配線140,145は、誘電体基板130の内層に配置されていてもよい。 In the antenna module 100 of the first embodiment, an example is shown in which the power supply wiring 140, 145 is arranged on the upper surface 131 of the dielectric substrate 130, but the power supply wiring 140, 145 may be arranged on an inner layer of the dielectric substrate 130.
 このような構成のアンテナモジュール100において、給電配線140に高周波信号を供給すると、図2における矢印AR1の方向、すなわち、略正方形の端面123の一方の対角線方向を偏波方向とする電波が、X軸の正方向(図3の矢印AR3の方向)に放射される。また、給電配線145に高周波信号を供給すると、図2における矢印AR2の方向、すなわち、略正方形の端面123の他方の対角線方向を偏波方向とする電波が、X軸の正方向に放射される。 In an antenna module 100 configured as described above, when a high-frequency signal is supplied to the power supply wiring 140, radio waves polarized in the direction of the arrow AR1 in FIG. 2, i.e., one diagonal direction of the substantially square end face 123, are radiated in the positive direction of the X-axis (the direction of the arrow AR3 in FIG. 3). When a high-frequency signal is supplied to the power supply wiring 145, radio waves polarized in the direction of the arrow AR2 in FIG. 2, i.e., the other diagonal direction of the substantially square end face 123, are radiated in the positive direction of the X-axis.
 このように、誘電体ブロック121の断面において、互いに異なる位置に高周波信号を供給することによって、互いに異なる偏波方向を有する2つの電波を放射することができる。すなわち、アンテナモジュール100は、デュアル偏波タイプのアンテナモジュールである。アンテナモジュール100においては、誘電体ブロック121の面123が略正方形であるため、放射される2つの電波の偏波方向は互いに直交する。 In this way, by supplying high-frequency signals to different positions on the cross section of the dielectric block 121, two radio waves having different polarization directions can be radiated. In other words, the antenna module 100 is a dual-polarized type antenna module. In the antenna module 100, the surface 123 of the dielectric block 121 is approximately square, so that the polarization directions of the two radiated radio waves are perpendicular to each other.
 以上のように、実施の形態1のアンテナモジュール100においては、誘電体基板130に対して交差して配置される接地電極GND1の主面に対向して誘電体ブロック121を配置することによって、誘電体基板130の法線方向とは異なる方向に電波を放射することができる。さらに、誘電体ブロック121における接地電極GND1に対向する面において、互いに異なる位置に高周波信号を供給することによって、デュアル偏波タイプのアンテナモジュールとすることができる。なお、誘電体ブロック121から放射される2つの電波の偏波方向を互いに直交させることで、交差偏波識別度(XPD:Cross-Polarization Discrimination ratio)を改善することができる。 As described above, in the antenna module 100 of the first embodiment, by arranging the dielectric block 121 opposite the main surface of the ground electrode GND1 that is arranged crosswise to the dielectric substrate 130, it is possible to radiate radio waves in a direction different from the normal direction of the dielectric substrate 130. Furthermore, by supplying high-frequency signals to different positions on the surface of the dielectric block 121 that faces the ground electrode GND1, it is possible to make a dual-polarized type antenna module. Note that by making the polarization directions of the two radio waves radiated from the dielectric block 121 orthogonal to each other, it is possible to improve the cross-polarization discrimination ratio (XPD).
 なお、アンテナモジュール100の例においては、誘電体ブロック121用の接地電極GND1は、誘電体基板130に対して直交、すなわち接地電極GND1と誘電体基板130とのなす角が90°となるように配置されていたが、接地電極GND1と誘電体基板130とのなす角は、必ずしも90°でなくてもよい。 In the example of the antenna module 100, the ground electrode GND1 for the dielectric block 121 is arranged so as to be perpendicular to the dielectric substrate 130, i.e., so that the angle between the ground electrode GND1 and the dielectric substrate 130 is 90°; however, the angle between the ground electrode GND1 and the dielectric substrate 130 does not necessarily have to be 90°.
 実施の形態1における「接地電極GND1」および「接地電極GND2」は、本開示における「第1接地電極」および「第2接地電極」にそれぞれ対応する。実施の形態1における「配線電極141」および「配線電極146」は、本開示における「第1配線」および「第2配線」にそれぞれ対応する。実施の形態1における誘電体ブロック121の「下面122」および「面123」は、本開示における「第1面」および「第2面」にそれぞれ対応する。 The "ground electrode GND1" and "ground electrode GND2" in embodiment 1 correspond to the "first ground electrode" and "second ground electrode" in this disclosure, respectively. The "wiring electrode 141" and "wiring electrode 146" in embodiment 1 correspond to the "first wiring" and "second wiring" in this disclosure, respectively. The "lower surface 122" and "surface 123" of the dielectric block 121 in embodiment 1 correspond to the "first surface" and "second surface" in this disclosure, respectively.
 (変形例1,2)
 変形例1,2においては、誘電体ブロック121における給電位置のバリエーションについて説明する。図4は、誘電体ブロック121における給電配線140,145の配置の変形例1,2を説明するための図である。
(Modifications 1 and 2)
In the first and second modifications, a description will be given of variations in the power feed position in the dielectric block 121. Fig. 4 is a diagram for explaining the first and second modifications of the arrangement of the power feed wirings 140 and 145 in the dielectric block 121.
 実施の形態1で説明したように、誘電体ブロック121における接地電極GND1に対向する面123に平行な方向に離間して給電配線140,145を配置することによって、互いに異なる偏波方向の2つの電波を誘電体ブロック121から放射することができる。実施の形態1のアンテナモジュール100においては、誘電体ブロック121の下面122におけるY軸の正方向の端部に給電配線145が接続され、Y軸の負方向の端部に給電配線140が接続されていた。 As explained in the first embodiment, by arranging the power supply wirings 140, 145 at a distance in a direction parallel to the surface 123 of the dielectric block 121 facing the ground electrode GND1, two radio waves with different polarization directions can be radiated from the dielectric block 121. In the antenna module 100 of the first embodiment, the power supply wiring 145 is connected to the end of the lower surface 122 of the dielectric block 121 in the positive direction of the Y axis, and the power supply wiring 140 is connected to the end of the lower surface 122 of the dielectric block 121 in the negative direction of the Y axis.
 変形例1のアンテナモジュール100Aにおける給電配線140A,145Aの各々の誘電体ブロック121との接続部分は、X軸方向から平面視した場合に断面が略L字形状となっている。すなわち、給電配線140Aは、誘電体ブロック121の下面122のY軸の負方向の端部において、下面122から側面125にわたって延在している。また、給電配線145Aは、誘電体ブロック121の下面122のY軸の正方向の端部において、下面122から側面124にわたって延在している。変形例1のような構成とすることによって、誘電体ブロック121の対角線方向の電界の対称性が安定するため、2つの電波の偏波特性を向上させることができる。 The connection portions of the power supply wirings 140A, 145A with the dielectric block 121 in the antenna module 100A of the first modification have a substantially L-shaped cross section when viewed in a plan view from the X-axis direction. That is, the power supply wiring 140A extends from the bottom surface 122 to the side surface 125 at the end of the bottom surface 122 of the dielectric block 121 in the negative direction of the Y-axis. The power supply wiring 145A extends from the bottom surface 122 to the side surface 124 at the end of the bottom surface 122 of the dielectric block 121 in the positive direction of the Y-axis. By adopting a configuration like that of the first modification, the symmetry of the electric field in the diagonal direction of the dielectric block 121 is stabilized, thereby improving the polarization characteristics of the two radio waves.
 変形例2のアンテナモジュール100Bにおける給電配線140B,145Bは、実施の形態1における給電配線140,145と同様の断面形状となっているが、下面122におけるY軸方向の端部から若干内側にオフセットした位置において、誘電体ブロック121に接続されている。 The power supply wiring 140B, 145B in the antenna module 100B of the second modification has a cross-sectional shape similar to that of the power supply wiring 140, 145 in the first embodiment, but is connected to the dielectric block 121 at a position slightly offset inward from the end of the lower surface 122 in the Y-axis direction.
 変形例1,2のような給電位置に高周波信号を供給した場合にも、互いに偏波方向が異なる2つの電波を放射することができる。 Even when a high-frequency signal is supplied to the power supply position as in variants 1 and 2, two radio waves with different polarization directions can be emitted.
 (変形例3,4)
 変形例3,4においては、誘電体ブロック121と給電配線140,145との結合状態のバリエーションについて説明する。図5は、誘電体ブロック121と給電配線140,145との結合状態の変形例3,4を説明するための図である。
(Modifications 3 and 4)
In the third and fourth modified examples, a description will be given of variations in the state of coupling between the dielectric block 121 and the power supply lines 140 and 145. Fig. 5 is a diagram for explaining the third and fourth modified examples of the state of coupling between the dielectric block 121 and the power supply lines 140 and 145.
 実施の形態1のアンテナモジュール100においては、誘電体ブロック121と給電配線140,145とが直接接続された構成について説明した。変形例3のアンテナモジュール100C(図5の左図)においては、誘電体ブロック121の下面122と給電配線140,145との間に僅かなギャップが設けられており、誘電体ブロック121と給電配線140,145とが非接触状態となっている。このギャップによる高周波信号の減衰が所定量よりも少ない場合には、非接触状態であっても、誘電体ブロック121に高周波信号を伝達することができ、誘電体ブロック121から電波を放射することができる。また、誘電体ブロック121と給電配線140,145との間のギャップ量を調整することによって、インピーダンスを調整することもできる。なお、誘電体ブロック121から放射される電波の自由空間内波長をλとすると、誘電体ブロック121と給電配線140,145との間のギャップ量はλ/10以内に設定される。 In the antenna module 100 of the first embodiment, a configuration in which the dielectric block 121 and the power supply wirings 140 and 145 are directly connected has been described. In the antenna module 100C of the third modification (the left diagram of FIG. 5), a small gap is provided between the lower surface 122 of the dielectric block 121 and the power supply wirings 140 and 145, and the dielectric block 121 and the power supply wirings 140 and 145 are in a non-contact state. If the attenuation of the high-frequency signal due to this gap is less than a predetermined amount, the high-frequency signal can be transmitted to the dielectric block 121 even in a non-contact state, and radio waves can be emitted from the dielectric block 121. In addition, the impedance can be adjusted by adjusting the gap amount between the dielectric block 121 and the power supply wirings 140 and 145. If the free space wavelength of the radio waves emitted from the dielectric block 121 is λ, the gap amount between the dielectric block 121 and the power supply wirings 140 and 145 is set to within λ/10.
 なお、上記のギャップの部分は空気層であってもよいし、レジストなどの他の誘電体がギャップ内に配置された構成であってもよい。 The gap may be an air space, or another dielectric such as a resist may be disposed in the gap.
 変形例4のアンテナモジュール100D(図5の右図)においては、給電配線140は、誘電体ブロック121の下面122に配置された平板電極150と、はんだバンプ155を介して接続されている。なお、図示されていないが、給電配線145についても同様に、誘電体ブロック121に配置された平板電極とはんだバンプを介して接続される。 In the antenna module 100D of the fourth modified example (the right diagram in FIG. 5), the power supply wiring 140 is connected to a flat plate electrode 150 arranged on the lower surface 122 of the dielectric block 121 via a solder bump 155. Although not shown, the power supply wiring 145 is also connected to a flat plate electrode arranged on the dielectric block 121 via a solder bump in a similar manner.
 アンテナモジュール100Dのように、給電配線140,145と誘電体ブロック121とをはんだバンプによって接続する構成とすることによって、給電配線140,145と誘電体ブロック121との接続強度を高めることができる。 By configuring the power supply wiring 140, 145 and the dielectric block 121 to be connected by solder bumps, as in the antenna module 100D, the connection strength between the power supply wiring 140, 145 and the dielectric block 121 can be increased.
 (変形例5)
 変形例5においては、誘電体基板と誘電体ブロックとの配置のバリエーションについて説明する。図6は、変形例5のアンテナモジュール100Eの側面透視図である。アンテナモジュール100Eにおいては、図3で示した実施の形態1のアンテナモジュール100における誘電体基板130が、誘電体基板130Aに置き換わった構成となっている。アンテナモジュール100Eのその他の構成はアンテナモジュール100と同様であり、図3と重複する要素の説明は繰り返さない。
(Variation 5)
In the fifth modification, variations in the arrangement of the dielectric substrate and the dielectric block will be described. Fig. 6 is a side perspective view of an antenna module 100E of the fifth modification. In the antenna module 100E, the dielectric substrate 130 in the antenna module 100 of the first embodiment shown in Fig. 3 is replaced with a dielectric substrate 130A. The other configuration of the antenna module 100E is similar to that of the antenna module 100, and the description of the elements overlapping with Fig. 3 will not be repeated.
 図6を参照して、アンテナモジュール100Eにおける誘電体基板130Aは、アンテナモジュール100の誘電体基板130よりもX軸方向の寸法が長い。これにより、誘電体ブロック121は、誘電体ブロック121のX軸の正方向の端部が、誘電体基板130のX軸の正方向の端部とほぼ同じ位置になるように配置されている。 Referring to FIG. 6, the dielectric substrate 130A in the antenna module 100E has a dimension in the X-axis direction that is longer than the dielectric substrate 130 in the antenna module 100. As a result, the dielectric block 121 is positioned so that the end of the dielectric block 121 in the positive direction along the X-axis is substantially in the same position as the end of the dielectric substrate 130 in the positive direction along the X-axis.
 一方で、誘電体基板130Aに配置される接地電極GND2は、給電配線140,145が配置される位置辺りまでしか配置されていない。言い換えれば、誘電体基板130AのX軸の正方向の端部付近には、接地電極GND2は配置されていない。そのため、誘電体基板130Aの法線方向から平面視した場合に、誘電体基板130Aと誘電体ブロック121とが重なる領域の少なくとも一部は、接地電極GND2とは重なっていない。 On the other hand, the ground electrode GND2 arranged on the dielectric substrate 130A is arranged only up to the position where the power supply wiring 140, 145 is arranged. In other words, the ground electrode GND2 is not arranged near the end of the dielectric substrate 130A in the positive direction of the X-axis. Therefore, when viewed in a plan view from the normal direction of the dielectric substrate 130A, at least a part of the area where the dielectric substrate 130A and the dielectric block 121 overlap does not overlap with the ground electrode GND2.
 このような構成とすることによって、誘電体ブロック121から漏れ出た電界によって、誘電体基板130Aにおける接地電極GND2のない領域が共振し、利得を向上できる場合がある。あるいは、利得を維持した状態で誘電体ブロック121を小型化することによって、アンテナモジュールを小型化することも可能である。 By configuring in this way, the electric field leaking out from the dielectric block 121 may cause the area of the dielectric substrate 130A where there is no ground electrode GND2 to resonate, which may improve the gain. Alternatively, it is possible to miniaturize the antenna module by miniaturizing the dielectric block 121 while maintaining the gain.
 また、誘電体ブロック121と誘電体基板130Aとの間に樹脂あるいは両面テープを配置して誘電体ブロック121を支持することによって、誘電体ブロック121と誘電体基板130Aとの接続状態を安定化することもできる。 In addition, the connection between the dielectric block 121 and the dielectric substrate 130A can be stabilized by supporting the dielectric block 121 with resin or double-sided tape placed between the dielectric block 121 and the dielectric substrate 130A.
 (変形例6)
 変形例6においては、誘電体ブロック用の接地電極として、SiPモジュールの金属製パッケージを利用する構成について説明する。図7は、変形例6のアンテナモジュール100Fの側面透視図である。アンテナモジュール100Fにおいては、実施の形態1のアンテナモジュール100におけるSiPモジュール105がSiPモジュール105Aに置き換えられ、さらに接地電極GND1が除かれた構成となっている。図7において、図3と重複する要素の説明は繰り返さない。
(Variation 6)
In the sixth modification, a configuration will be described in which a metal package of a SiP module is used as a ground electrode for a dielectric block. Fig. 7 is a side perspective view of an antenna module 100F of the sixth modification. In the antenna module 100F, the SiP module 105 in the antenna module 100 of the first embodiment is replaced with a SiP module 105A, and further the ground electrode GND1 is removed. In Fig. 7, the description of the elements that overlap with Fig. 3 will not be repeated.
 図7を参照して、アンテナモジュール100FにおけるSiPモジュール105Aの外周には、電磁波を遮断するように構成された、導電性のシールド部材107が配置されている。シールド部材107は、たとえば、銅、アルミ、鉄などの金属部材によって形成されており、接地電位に電気的に接続されている。このシールド部材107によって、SiPモジュール105Aの内部の回路で生じる電磁波が外部に漏洩することを防いで、外部機器への影響を抑制することができる。また、シールド部材107は、外部からSiPモジュール105Aの内部の回路へ電磁ノイズが混入することも防止できる。 Referring to FIG. 7, a conductive shielding member 107 configured to block electromagnetic waves is disposed around the outer periphery of the SiP module 105A in the antenna module 100F. The shielding member 107 is formed from a metal member such as copper, aluminum, or iron, and is electrically connected to a ground potential. This shielding member 107 prevents electromagnetic waves generated in the internal circuitry of the SiP module 105A from leaking to the outside, thereby suppressing the effects on external devices. The shielding member 107 also prevents electromagnetic noise from entering the internal circuitry of the SiP module 105A from the outside.
 さらに、誘電体ブロック121は、Xの軸負方向の面123が、SiPモジュール105Aの側面のシールド部材107に対向して配置されている。このような構成とすることによって、接地電極GND1を削減して製造コストを低減できるとともに、アンテナモジュールの小型化に寄与することができる。 Furthermore, the dielectric block 121 is arranged so that the surface 123 in the negative direction of the X axis faces the shielding member 107 on the side of the SiP module 105A. This configuration can reduce the ground electrode GND1, lowering manufacturing costs and contributing to the miniaturization of the antenna module.
 変形例6における「シールド部材107」は、本開示における「導電部材」に対応する。 The "shield member 107" in variant example 6 corresponds to the "conductive member" in this disclosure.
 [実施の形態2]
 (通信装置の基本構成)
 実施の形態2においては、電波の放射素子として、誘電体ブロックに加えて平板形状のパッチアンテナを備え、異なる方向に電波を放射可能な構成について説明する。
[Embodiment 2]
(Basic configuration of communication device)
In the second embodiment, a configuration will be described in which a flat patch antenna is provided as a radio wave radiating element in addition to a dielectric block, and radio waves can be radiated in different directions.
 図8は、実施の形態2に係るアンテナモジュール100Gが適用される通信装置のブロック図である。図8のアンテナモジュール100Gにおいては、図1のアンテナモジュール100におけるRFIC110がRFIC110Xに置き換えられるとともに、平板形状の放射素子127が誘電体基板130に追加された構成となっている。なお、図8においては、誘電体基板130に4つの放射素子127が配置された例について示されている。 FIG. 8 is a block diagram of a communication device to which an antenna module 100G according to embodiment 2 is applied. In the antenna module 100G of FIG. 8, the RFIC 110 in the antenna module 100 of FIG. 1 is replaced with an RFIC 110X, and a flat radiating element 127 is added to the dielectric substrate 130. Note that FIG. 8 shows an example in which four radiating elements 127 are arranged on the dielectric substrate 130.
 図8を参照して、放射素子127は、誘電体基板130の法線方向から平面視した場合に略正方形の形状を有している。放射素子127には、素子の中心から互いに異なる方向にオフセットした位置に配置された2つの給電点SP1,SP2が配置されており、当該給電点SP1,SP2の各々に高周波信号が供給されている。 Referring to FIG. 8, the radiating element 127 has a substantially square shape when viewed in a plan view from the normal direction of the dielectric substrate 130. The radiating element 127 has two feed points SP1 and SP2 arranged at positions offset in different directions from the center of the element, and a high-frequency signal is supplied to each of the feed points SP1 and SP2.
 RFIC110Xは、給電回路110A,110Bに加えて、給電回路110C,110Dをさらに含んでいる。給電回路110A、0110Bは、実施の形態1のアンテナモジュール100と同様に、誘電体ブロック121に高周波信号を供給するための回路である。給電回路110Cは、放射素子127の給電点SP1に高周波信号を供給するための回路である。また、給電回路110Dは、放射素子127の給電点SP2に高周波信号を供給するための回路である。なお、給電回路110B~110Dの内部構成は給電回路110Aと同様であり、図8においては、給電回路110Aについてのみ詳細構成が記載されている。 The RFIC 110X further includes feed circuits 110C and 110D in addition to the feed circuits 110A and 110B. The feed circuits 110A and 110B are circuits for supplying a high-frequency signal to the dielectric block 121, similar to the antenna module 100 of the first embodiment. The feed circuit 110C is a circuit for supplying a high-frequency signal to the feed point SP1 of the radiating element 127. The feed circuit 110D is a circuit for supplying a high-frequency signal to the feed point SP2 of the radiating element 127. The internal configurations of the feed circuits 110B to 110D are the same as the feed circuit 110A, and FIG. 8 shows the detailed configuration only for the feed circuit 110A.
 (アンテナモジュールの構造)
 次に、図9および図10を用いて、アンテナモジュール100Gの詳細について説明する。図9は、図8のアンテナモジュール100Gの斜視図であり、図110は、アンテナモジュール100GをY軸の不方向から見たときの側面透視図である。なお、図9においては、SiPモジュール105は省略されている。
(Antenna module structure)
Next, the antenna module 100G will be described in detail with reference to Fig. 9 and Fig. 10. Fig. 9 is a perspective view of the antenna module 100G of Fig. 8, and Fig. 110 is a side perspective view of the antenna module 100G as viewed from the opposite direction of the Y axis. Note that the SiP module 105 is omitted in Fig. 9.
 図9および図10を参照して、アンテナモジュール100Gにおいては、誘電体基板130のX軸の正方向の端部側に、4つの誘電体ブロック121がY軸方向に沿って互いに離間して配置されている。誘電体ブロック121から放射される電波の波長をλとすると、隣接する誘電体ブロック121は、λ/2のピッチで配置される。 9 and 10, in the antenna module 100G, four dielectric blocks 121 are arranged spaced apart from one another along the Y-axis direction on the end side in the positive direction of the X-axis of a dielectric substrate 130. If the wavelength of the radio wave radiated from the dielectric block 121 is λ1 , adjacent dielectric blocks 121 are arranged at a pitch of λ1 /2.
 また、誘電体基板130の下面132側に、4つの放射素子127がY軸方向に沿って互いに離間して配置されている。放射素子127から放射される電波の波長をλとすると、隣接する放射素子127は、λ/2のピッチで配置される。なお、放射素子127から放射される電波の周波数帯域は、誘電体ブロック121から放射される電波の周波数帯域と同じであってもよいし、異なっていてもよい。 Furthermore, four radiating elements 127 are arranged spaced apart from one another along the Y-axis direction on the lower surface 132 side of the dielectric substrate 130. If the wavelength of the radio waves radiated from the radiating elements 127 is λ2 , adjacent radiating elements 127 are arranged at a pitch of λ2 /2. The frequency band of the radio waves radiated from the radiating elements 127 may be the same as or different from the frequency band of the radio waves radiated from the dielectric block 121.
 放射素子127は、誘電体基板130に配置された接地電極GND2よりも下面132側に、接地電極GND2に対向して配置されている。なお、放射素子127は、図10のように、誘電体基板130の下面122に露出するように配置されていてもよいし、接地電極GND2と下面132との間の内層に配置されていてもよい。 The radiating element 127 is disposed on the bottom surface 132 side of the ground electrode GND2 disposed on the dielectric substrate 130, facing the ground electrode GND2. The radiating element 127 may be disposed so as to be exposed on the bottom surface 122 of the dielectric substrate 130, as shown in FIG. 10, or may be disposed on an inner layer between the ground electrode GND2 and the bottom surface 132.
 放射素子127には、給電配線151,152によって、RFIC110Aから高周波信号が伝達される。給電配線151は、はんだバンプ160から接地電極GND2を貫通して、放射素子127の給電点SP1に接続される。また、給電配線152は、はんだバンプ160から接地電極GND2を貫通して、放射素子127の給電点SP2に接続される。 A high-frequency signal is transmitted from RFIC 110A to radiating element 127 via power supply wiring 151, 152. Power supply wiring 151 passes from solder bump 160 through ground electrode GND2 and is connected to power supply point SP1 of radiating element 127. Power supply wiring 152 passes from solder bump 160 through ground electrode GND2 and is connected to power supply point SP2 of radiating element 127.
 給電点SP1は、放射素子127の中心からY軸方向にオフセットした位置に配置されている。給電点SP1に高周波信号が供給されることによって、Y軸方向を偏波方向とする電波が、Z軸の負方向(図10の矢印AR4の方向)に放射される。給電点SP2は、放射素子127の中心からX軸の負方向にオフセットした位置に配置されている。給電点SP2に高周波信号が供給されることによって、X軸方向を偏波方向とする電波がZ軸の負方向に放射される。 Feed point SP1 is located at a position offset in the Y-axis direction from the center of radiating element 127. When a high-frequency signal is supplied to feed point SP1, radio waves polarized in the Y-axis direction are radiated in the negative direction of the Z-axis (the direction of arrow AR4 in Figure 10). Feed point SP2 is located at a position offset in the negative direction of the X-axis from the center of radiating element 127. When a high-frequency signal is supplied to feed point SP2, radio waves polarized in the X-axis direction are radiated in the negative direction of the Z-axis.
 なお、誘電体ブロック121の構成については、実施の形態1のアンテナモジュール100と同様であるため、その説明は繰り返さない。 Note that the configuration of the dielectric block 121 is similar to that of the antenna module 100 in embodiment 1, so its description will not be repeated.
 このように、誘電体ブロックに加えて、誘電体基板にパッチアンテナを備えることによって、異なる2方向に電波を放射することが可能となる。 In this way, by providing a patch antenna on the dielectric substrate in addition to the dielectric block, it is possible to radiate radio waves in two different directions.
 (変形例7)
 図11は、変形例7のアンテナモジュール100Hの側面透視図である。アンテナモジュール100Hは、図7で説明した変形例6の構成における誘電体基板130に、平板形状のパッチアンテナが設けられた構成となっている。図11において、図7と重複する要素の説明は繰り返さない。
(Variation 7)
Fig. 11 is a side perspective view of an antenna module 100H of Modification 7. The antenna module 100H has a configuration in which a flat patch antenna is provided on the dielectric substrate 130 in the configuration of Modification 6 described in Fig. 7. In Fig. 11, the description of elements that overlap with Fig. 7 will not be repeated.
 図11を参照して、アンテナモジュール100Hにおいては、実施の形態2のアンテナモジュール100Gと同様に、誘電体基板130の下面132に平板形状の放射素子127が配置されている。そして、給電配線151,152を介して、RFIC110から放射素子127の給電点SP1,SP2に、高周波信号がそれぞれ供給されている。 Referring to FIG. 11, in the antenna module 100H, similar to the antenna module 100G of the second embodiment, a flat radiating element 127 is disposed on the lower surface 132 of the dielectric substrate 130. High-frequency signals are supplied from the RFIC 110 to the power supply points SP1 and SP2 of the radiating element 127 via the power supply wirings 151 and 152, respectively.
 アンテナモジュール100Hの構成とすることによって、接地電極GND1を削減して製造コストの削減およびアンテナモジュールの小型化を実現するとともに、異なる2方向に電波を放射することが可能となる。 By configuring the antenna module 100H, it is possible to eliminate the ground electrode GND1, thereby reducing manufacturing costs and miniaturizing the antenna module, and it is also possible to radiate radio waves in two different directions.
 (変形例8)
 図12は、変形例8のアンテナモジュール100Iの側面透視図である。アンテナモジュール100Iは、図11で示したアンテナモジュール100Hをさらに小型化した場合の例である。
(Variation 8)
12 is a side perspective view of an antenna module 100I according to Modification 8. The antenna module 100I is an example in which the antenna module 100H shown in FIG.
 具体的には、アンテナモジュール100Iにおいては、アンテナモジュール100Hに比べて誘電体基板130およびSiPモジュール105AのX軸方向の寸法が小さくされている。そして、放射素子127が誘電体基板130のX軸の正方向の端部に近接して配置されている。言い換えれば、誘電体基板130の法線方向から平面視した場合に、放射素子127の少なくとも一部が、誘電体ブロック121と重なっている。 Specifically, in antenna module 100I, the dimensions in the X-axis direction of dielectric substrate 130 and SiP module 105A are smaller than those in antenna module 100H. Radiating element 127 is disposed close to the end of dielectric substrate 130 in the positive direction of the X-axis. In other words, when viewed in a plan view from the normal direction of dielectric substrate 130, at least a portion of radiating element 127 overlaps dielectric block 121.
 アンテナモジュール100Iのような構成とすることによって、アンテナモジュールのさらなる小型化を実現することができる。 By using a configuration like antenna module 100I, it is possible to further reduce the size of the antenna module.
 [実施の形態3]
 実施の形態3においては、通信装置におけるアンテナモジュールの配置の一例について説明する。
[Embodiment 3]
In the third embodiment, an example of the arrangement of antenna modules in a communication device will be described.
 図13は、実施の形態3に係る通信装置10の部分的な側面透視図である。図13においては、実施の形態1の図3で説明したアンテナモジュール100を用いて説明する。また、図14は、図13の通信装置をX軸の正方向から見たときの部分平面図である。なお、以降の説明において、図3と重複するアンテナモジュール100の各要素の説明は繰り返さない。 FIG. 13 is a partial side perspective view of a communication device 10 according to embodiment 3. In FIG. 13, the antenna module 100 described in FIG. 3 of embodiment 1 will be used for explanation. Also, FIG. 14 is a partial plan view of the communication device in FIG. 13 as viewed from the positive direction of the X-axis. Note that in the following explanation, the explanation of each element of the antenna module 100 that overlaps with FIG. 3 will not be repeated.
 通信装置10は、アンテナモジュール100を含む内部の機器を収容するための筐体20を備えている。筐体20は、金属を含む材料で形成された第1部分21と、金属を含まない樹脂などの誘電体で形成された第2部分22とを含む。第2部分22は、金属の第1部分21に形成された貫通孔23の内部に配置されている。 The communication device 10 includes a housing 20 for housing internal equipment including the antenna module 100. The housing 20 includes a first portion 21 formed of a material that contains metal, and a second portion 22 formed of a dielectric material that does not contain metal, such as a resin. The second portion 22 is disposed inside a through hole 23 formed in the first metal portion 21.
 アンテナモジュール100は、誘電体ブロック121における面123と対向する面126、すなわち電波の放射面(X軸の正方向の面)の全体が、筐体20の第2部分22に接するように配置されている。そして、図14のように、通信装置10をX軸の正方向から平面視した場合に、誘電体ブロック121の面126の全体が第2部分22と重なっている。 The antenna module 100 is arranged so that the entire surface 126 of the dielectric block 121 opposite surface 123, i.e., the radio wave radiation surface (the surface in the positive direction of the X-axis), is in contact with the second portion 22 of the housing 20. When the communication device 10 is viewed in a plan view from the positive direction of the X-axis as shown in FIG. 14, the entire surface 126 of the dielectric block 121 overlaps with the second portion 22.
 このように、誘電体ブロック121から放射される電波の放射方向の筐体部分に、金属を含まない材料を配置することによって、放射された電波が筐体20によって遮断あるいは部分的に干渉することが防止できる。したがって、アンテナモジュール100のアンテナゲインの劣化を抑制することができる。 In this way, by arranging a material that does not contain metal in the housing portion in the direction of radiation of the radio waves radiated from the dielectric block 121, it is possible to prevent the radiated radio waves from being blocked or partially interfered with by the housing 20. Therefore, it is possible to suppress deterioration of the antenna gain of the antenna module 100.
 なお、誘電体ブロック121は、筐体20の第2部分22に密着させることが望ましい。誘電体ブロック121と第2部分22との間に空間がある場合、当該空間の空気層によって、電波の放射経路の誘電率が変化するため、誘電体ブロック121と空気層との境界面、および、空気層と筐体20の第2部分22との境界面において反射が生じ、アンテナゲインの劣化の要因となり得る。そのため、誘電体ブロック121と第2部分22とを密着させることで電波の反射を低減し、アンテナゲインの劣化を抑制することができる。 It is desirable to bring the dielectric block 121 into close contact with the second portion 22 of the housing 20. If there is a space between the dielectric block 121 and the second portion 22, the dielectric constant of the radiation path of the radio waves will change due to the air layer in the space, and reflections will occur at the boundary between the dielectric block 121 and the air layer, and at the boundary between the air layer and the second portion 22 of the housing 20, which can cause deterioration of the antenna gain. Therefore, by bringing the dielectric block 121 into close contact with the second portion 22, it is possible to reduce the reflection of radio waves and suppress deterioration of the antenna gain.
 また、誘電率の違いによる反射防止の観点から、誘電体ブロック121の誘電率と、第2部分22の誘電率との差をできるだけ小さくすることが好ましい。 In addition, from the viewpoint of preventing reflections due to differences in dielectric constant, it is preferable to make the difference between the dielectric constant of the dielectric block 121 and the dielectric constant of the second portion 22 as small as possible.
 なお、上記の説明では、筐体20の一部(第1部分21)が金属を含む材料で形成される例について説明したが、筐体20の強度が確保できれば、筐体20の全体が金属を含まない材料で形成されていてもよい。 In the above description, an example was described in which a portion of the housing 20 (first portion 21) was made of a material that contained metal, but as long as the strength of the housing 20 can be ensured, the entire housing 20 may be made of a material that does not contain metal.
 実施の形態3における「第2部分22」は、本開示における「特定部分」に対応する。
 [態様]
 (第1項)一態様に係るアンテナモジュールは、基板と、誘電体ブロックと、平板形状の第1接地電極と、給電配線とを備える。誘電体ブロックは、互いに交差する第1面および第2面を有し、第1面において基板の実装面に対向して配置されている。第1接地電極は、基板に対して交差するとともに、誘電体ブロックの第2面に対向して配置されている。給電配線は、基板に配置され、誘電体ブロックに高周波信号を伝達する。基板の法線方向から平面視した場合に、給電配線の端部は、誘電体ブロックと重なる位置に配置されている。
The "second portion 22" in the third embodiment corresponds to the "specific portion" in the present disclosure.
[Aspects]
(Item 1) An antenna module according to one embodiment includes a substrate, a dielectric block, a flat-plate shaped first ground electrode, and a power feed wiring. The dielectric block has a first surface and a second surface that intersect with each other, and is disposed on the first surface facing a mounting surface of the substrate. The first ground electrode intersects with the substrate and is disposed facing the second surface of the dielectric block. The power feed wiring is disposed on the substrate and transmits a high frequency signal to the dielectric block. When viewed in a plan view from the normal direction of the substrate, an end of the power feed wiring is disposed in a position that overlaps with the dielectric block.
 (第2項)第1項に記載のアンテナモジュールにおいて、給電配線は、第1配線および第2配線を含む。第1配線および第2配線は、第2面に平行な第1方向に互いに離間して配置されている。 (2) In the antenna module described in 1, the power supply wiring includes a first wiring and a second wiring. The first wiring and the second wiring are arranged spaced apart from each other in a first direction parallel to the second surface.
 (第3項)第2項に記載のアンテナモジュールにおいて、誘電体ブロックの第2面は、略正方形の形状を有している。誘電体ブロックの第1面は、第1方向において互いに対向する第1端部および第2端部を有している。第1配線は第1端部に配置されており、第2配線は第2端部に配置されている。 (3) In the antenna module described in 2, the second surface of the dielectric block has a substantially square shape. The first surface of the dielectric block has a first end and a second end that face each other in the first direction. The first wiring is disposed at the first end, and the second wiring is disposed at the second end.
 (第4項)第1項~第3項のいずれか1項に記載のアンテナモジュールは、第2接地電極と、平板形状の放射素子とをさらに備える。第2接地電極は、基板において、給電配線に対向して配置されている。放射素子は、基板において、第2接地電極に対向して配置されている。 (4) The antenna module described in any one of paragraphs 1 to 3 further includes a second ground electrode and a flat radiating element. The second ground electrode is disposed on the substrate opposite the power supply wiring. The radiating element is disposed on the substrate opposite the second ground electrode.
 (第5項)第1項~第4項のいずれか1項に記載のアンテナモジュールにおいて、給電配線は、誘電体ブロックに接触して配置されている。 (5) In the antenna module described in any one of paragraphs 1 to 4, the power supply wiring is arranged in contact with the dielectric block.
 (第6項)第5項のいずれか1項に記載のアンテナモジュールにおいて、誘電体ブロックは、第1接地電極から離間して配置されている。 (6) In the antenna module described in any one of paragraphs 5, the dielectric block is disposed at a distance from the first ground electrode.
 (第7項)第1項~第4項のいずれか1項に記載のアンテナモジュールにおいて、給電配線は、誘電体ブロックから離間して配置されている。誘電体ブロックから放射される電波の自由空間内波長をλとすると、給電配線と誘電体ブロックとの間の距離はλ/10以内である。 (7) In the antenna module described in any one of paragraphs 1 to 4, the power supply wiring is arranged at a distance from the dielectric block. If the free space wavelength of the radio wave radiated from the dielectric block is λ, the distance between the power supply wiring and the dielectric block is within λ/10.
 (第8項)第7項に記載のアンテナモジュールにおいて、誘電体ブロックは、第1接地電極に接触して配置されている。 (8) In the antenna module described in 7, the dielectric block is arranged in contact with the first ground electrode.
 (第9項)第1項~第8項のいずれか1項に記載のアンテナモジュールは、基板において、給電配線に対向して配置された第2接地電極をさらに備える。基板の法線方向から平面視した場合に、基板と誘電体ブロックとが重なる領域の少なくとも一部が第2接地電極とは重なっていない。 (Item 9) The antenna module described in any one of Items 1 to 8 further includes a second ground electrode disposed on the substrate opposite the power supply wiring. When viewed in a plan view from the normal direction of the substrate, at least a portion of the area where the substrate and the dielectric block overlap does not overlap with the second ground electrode.
 (第10項)第1項~第9項のいずれか1項に記載のアンテナモジュールにおいて、誘電体ブロックの比誘電率は、基板の比誘電率よりも大きい。 (10) In the antenna module described in any one of paragraphs 1 to 9, the dielectric constant of the dielectric block is greater than the dielectric constant of the substrate.
 (第11項)第10項に記載のアンテナモジュールにおいて、誘電体ブロックの比誘電率は10以上である。 (11) In the antenna module described in 10, the dielectric constant of the dielectric block is 10 or more.
 (第12項)第1項~第3項のいずれか1項に記載のアンテナモジュールは、給電装置をさらに備える。給電装置は、基板において誘電体ブロックが実装される主面に配置され、誘電体ブロックに高周波信号を供給するように構成されている。給電装置の周囲は導電部材で覆われている。導電部材の一部が第1接地電極として使用される。 (12) The antenna module described in any one of paragraphs 1 to 3 further includes a power supply device. The power supply device is disposed on the main surface of the substrate on which the dielectric block is mounted, and is configured to supply a high-frequency signal to the dielectric block. The power supply device is surrounded by a conductive member. A part of the conductive member is used as a first ground electrode.
 (第13項)第12項に記載のアンテナモジュールは、第2接地電極と、平板形状の放射素子とをさらに備える。第2接地電極は、基板において、給電配線に対向して配置されている。放射素子は、基板において、第2接地電極に対向して配置されている。 (Clause 13) The antenna module described in clause 12 further includes a second ground electrode and a flat radiating element. The second ground electrode is disposed on the substrate opposite the power supply wiring. The radiating element is disposed on the substrate opposite the second ground electrode.
 (第14項)第13項に記載のアンテナモジュールにおいて、基板の法線方向から平面視した場合に、放射素子の少なくとも一部が誘電体ブロックと重なっている。 (14) In the antenna module described in 13, when viewed in a plan view from the normal direction of the substrate, at least a portion of the radiating element overlaps with the dielectric block.
 (第15項)第4項に記載のアンテナモジュールは、基板上に配置され、誘電体ブロックおよび放射素子に高周波信号を供給するように構成された給電回路をさらに備える。 (Clause 15) The antenna module described in clause 4 further includes a power supply circuit disposed on the substrate and configured to supply a high-frequency signal to the dielectric block and the radiating element.
 (第16項)一態様に係る通信装置は、第1項~第15項のいずれか1項に記載のアンテナモジュールを搭載している。 (16) A communication device according to one embodiment is equipped with an antenna module as described in any one of the preceding paragraphs 1 to 15.
 (第17項)第16項に記載の通信装置は、アンテナモジュールを収容する筐体をさらに備える。筐体は、少なくとも一部に金属を含まない材料で形成された特定部分を含む。誘電体ブロックにおける電波の放射面の法線方向から平面視した場合に、放射面の全体が特定部分と重なっている。 (Clause 17) The communication device described in clause 16 further includes a housing that houses the antenna module. The housing includes a specific portion that is at least partially formed of a material that does not contain metal. When viewed in a plan view from the normal direction of the radio wave radiation surface of the dielectric block, the entire radiation surface overlaps with the specific portion.
 (第18項)第17項に記載の通信装置において、放射面は、特定部分と接している。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(Item 18) In the communication device described in item 17, the radiation surface is in contact with the specific portion.
The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is defined by the claims, not by the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.
 10 通信装置、20 筐体、21 第1部分、22 第2部分、23 貫通孔、100,100A~100I アンテナモジュール、105,105A SiPモジュール、106 樹脂、107 シールド部材、110,100X RFIC、110A~110D 給電回路、111A~111D,113A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A~114D 減衰器、115A~115D 移相器、116 信号合成/分配器、118 ミキサ、119 増幅回路、120 アンテナ装置、121 誘電体ブロック、122,132 下面、123,126 面、124,125 側面、127 放射素子、130,130A 誘電体基板、131 上面、140,140A,140B,145,145A,145B,151,152 給電配線、141,146 配線電極、142,147 スタブ、150 平板電極、155,160 はんだバンプ、200 BBIC、GND1,GND2 接地電極、OP1,OP2 開口部、SP1,SP2 給電点。 10 communication device, 20 housing, 21 first part, 22 second part, 23 through hole, 100, 100A to 100I antenna module, 105, 105A SiP module, 106 resin, 107 shielding member, 110, 100X RFIC, 110A to 110D power supply circuit, 111A to 111D, 113A to 113D, 117 switch, 112AR to 112DR low noise amplifier, 112AT to 112DT power amplifier, 114A to 114D attenuator, 115A to 115D phase shifter, 116 signal combiner/distributor, 11 8 mixer, 119 amplifier circuit, 120 antenna device, 121 dielectric block, 122, 132 bottom surface, 123, 126 top surface, 124, 125 side surface, 127 radiating element, 130, 130A dielectric substrate, 131 top surface, 140, 140A, 140B, 145, 145A, 145B, 151, 152 power supply wiring, 141, 146 wiring electrode, 142, 147 stub, 150 flat plate electrode, 155, 160 solder bump, 200 BBIC, GND1, GND2 ground electrode, OP1, OP2 opening, SP1, SP2 power supply point.

Claims (18)

  1.  基板と、
     互いに交差する第1面および第2面を有し、前記第1面において前記基板の実装面に対向して配置された誘電体ブロックと、
     前記基板に対して交差するとともに、前記誘電体ブロックの前記第2面に対向して配置された平板形状の第1接地電極と、
     前記基板に配置され、前記誘電体ブロックに高周波信号を伝達する給電配線とを備え、
     前記基板の法線方向から平面視した場合に、前記給電配線の端部は、前記誘電体ブロックと重なる位置に配置されている、アンテナモジュール。
    A substrate;
    a dielectric block having a first surface and a second surface intersecting each other, the first surface being disposed facing a mounting surface of the substrate;
    a first ground electrode having a flat plate shape arranged to intersect with the substrate and to face the second surface of the dielectric block;
    a power supply wiring disposed on the substrate and configured to transmit a high-frequency signal to the dielectric block;
    an end of the power supply wiring is disposed at a position overlapping with the dielectric block when viewed in a plan view from a normal direction of the substrate;
  2.  前記給電配線は、第1配線および第2配線を含み、
     前記第1配線および前記第2配線は、前記第2面に平行な第1方向に互いに離間して配置されている、請求項1に記載のアンテナモジュール。
    the power supply wiring includes a first wiring and a second wiring,
    The antenna module according to claim 1 , wherein the first wiring and the second wiring are arranged spaced apart from each other in a first direction parallel to the second surface.
  3.  前記誘電体ブロックの前記第2面は略正方形の形状を有しており、
     前記誘電体ブロックの前記第1面は、前記第1方向において互いに対向する第1端部および第2端部を有しており、
     前記第1配線は、前記第1端部に配置され、
     前記第2配線は、前記第2端部に配置されている、請求項2に記載のアンテナモジュール。
    the second surface of the dielectric block has a substantially square shape,
    the first surface of the dielectric block has a first end and a second end opposed to each other in the first direction,
    The first wiring is disposed at the first end,
    The antenna module according to claim 2 , wherein the second wiring is disposed at the second end portion.
  4.  前記基板において、前記給電配線に対向して配置された第2接地電極と、
     前記基板において、前記第2接地電極に対向して配置された平板形状の放射素子とをさらに備える、請求項1~3のいずれか1項に記載のアンテナモジュール。
    a second ground electrode disposed on the substrate so as to face the power supply wiring;
    The antenna module according to claim 1, further comprising a flat-plate shaped radiating element disposed on the substrate so as to face the second ground electrode.
  5.  前記給電配線は、前記誘電体ブロックに接触して配置されている、請求項1~4のいずれか1項に記載のアンテナモジュール。 An antenna module according to any one of claims 1 to 4, wherein the power supply wiring is arranged in contact with the dielectric block.
  6.  前記誘電体ブロックは、前記第1接地電極から離間して配置されている、請求項5に記載のアンテナモジュール。 The antenna module of claim 5, wherein the dielectric block is disposed at a distance from the first ground electrode.
  7.  前記給電配線は、前記誘電体ブロックから離間して配置されており、
     前記誘電体ブロックから放射される電波の自由空間内波長をλとすると、前記給電配線と前記誘電体ブロックとの間の距離はλ/10以内である、請求項1~4のいずれか1項に記載のアンテナモジュール。
    the power supply wiring is disposed at a distance from the dielectric block,
    5. The antenna module according to claim 1, wherein, when the wavelength in free space of the radio wave radiated from the dielectric block is λ, the distance between the power supply wiring and the dielectric block is within λ/10.
  8.  前記誘電体ブロックは、前記第1接地電極に接触して配置されている、請求項7に記載のアンテナモジュール。 The antenna module according to claim 7, wherein the dielectric block is disposed in contact with the first ground electrode.
  9.  前記基板において、前記給電配線に対向して配置された第2接地電極をさらに備え、
     前記基板の法線方向から平面視した場合に、前記基板と前記誘電体ブロックとが重なる領域の少なくとも一部が前記第2接地電極とは重なっていない、請求項1~8のいずれか1項に記載のアンテナモジュール。
    The substrate further includes a second ground electrode disposed opposite the power supply wiring,
    The antenna module according to any one of claims 1 to 8, wherein, when viewed in a plane from a normal direction of the substrate, at least a portion of an overlapping area between the substrate and the dielectric block does not overlap with the second ground electrode.
  10.  前記誘電体ブロックの比誘電率は、前記基板の比誘電率よりも大きい、請求項1~9のいずれか1項に記載のアンテナモジュール。 An antenna module according to any one of claims 1 to 9, wherein the dielectric constant of the dielectric block is greater than the dielectric constant of the substrate.
  11.  前記誘電体ブロックの比誘電率は10以上である、請求項10に記載のアンテナモジュール。 The antenna module according to claim 10, wherein the dielectric constant of the dielectric block is 10 or more.
  12.  前記基板において前記誘電体ブロックが実装される主面に配置され、前記誘電体ブロックに高周波信号を供給するように構成された給電装置をさらに備え、
     前記給電装置の周囲は導電部材で覆われており、
     前記導電部材の一部が前記第1接地電極として使用される、請求項1~3のいずれか1項に記載のアンテナモジュール。
    a power supply device arranged on a main surface of the substrate on which the dielectric block is mounted and configured to supply a high-frequency signal to the dielectric block,
    The power supply device is surrounded by a conductive member,
    The antenna module according to claim 1, wherein a portion of the conductive member is used as the first ground electrode.
  13.  前記基板において、前記給電配線に対向して配置された第2接地電極と、
     前記基板において、前記第2接地電極に対向して配置された平板形状の放射素子とをさらに備える、請求項12に記載のアンテナモジュール。
    a second ground electrode disposed on the substrate so as to face the power supply wiring;
    The antenna module according to claim 12 , further comprising: a flat-plate shaped radiating element disposed on the substrate so as to face the second ground electrode.
  14.  前記基板の法線方向から平面視した場合に、前記放射素子の少なくとも一部が、前記誘電体ブロックと重なっている、請求項13に記載のアンテナモジュール。 The antenna module according to claim 13, wherein at least a portion of the radiating element overlaps with the dielectric block when viewed in a plan view from the normal direction of the substrate.
  15.  前記基板上に配置され、前記誘電体ブロックおよび前記放射素子に高周波信号を供給するように構成された給電回路をさらに備える、請求項4に記載のアンテナモジュール。 The antenna module of claim 4, further comprising a power supply circuit disposed on the substrate and configured to supply a high-frequency signal to the dielectric block and the radiating element.
  16.  請求項1~15のいずれか1項に記載のアンテナモジュールを搭載した、通信装置。 A communication device equipped with an antenna module according to any one of claims 1 to 15.
  17.  前記アンテナモジュールを収容する筐体をさらに備え、
     前記筐体は、少なくとも一部に金属を含まない材料で形成された特定部分を含み、
     前記誘電体ブロックにおける電波の放射面の法線方向から平面視した場合に、前記放射面の全体が前記特定部分と重なっている、請求項16に記載の通信装置。
    Further comprising a housing for accommodating the antenna module,
    the housing includes a specific portion formed at least in part of a material that does not contain metal;
    The communication device according to claim 16 , wherein, when viewed in a plan view from a normal direction of a radiation surface of the dielectric block for radio waves, the entire radiation surface overlaps with the specific portion.
  18.  前記放射面は、前記特定部分と接している、請求項17に記載の通信装置。 The communication device according to claim 17, wherein the radiation surface is in contact with the specific portion.
PCT/JP2023/030488 2022-12-16 2023-08-24 Antenna module and communication device equipped with same WO2024127720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022200985 2022-12-16
JP2022-200985 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024127720A1 true WO2024127720A1 (en) 2024-06-20

Family

ID=91484720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030488 WO2024127720A1 (en) 2022-12-16 2023-08-24 Antenna module and communication device equipped with same

Country Status (1)

Country Link
WO (1) WO2024127720A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234616A (en) * 2002-02-06 2003-08-22 Sharp Corp Radiator
JP2010245893A (en) * 2009-04-07 2010-10-28 Murata Mfg Co Ltd Mounting structure of antenna
WO2015089643A1 (en) * 2013-12-20 2015-06-25 Tayfeh Aligodarz Mohammadreza Dielectric resonator antenna arrays
WO2020170722A1 (en) * 2019-02-20 2020-08-27 株式会社村田製作所 Antenna module, communication device on which antenna module is mounted, and method for manufacturing antenna module
JP2022020566A (en) * 2020-07-02 2022-02-01 アップル インコーポレイテッド Dielectric resonator antenna modules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234616A (en) * 2002-02-06 2003-08-22 Sharp Corp Radiator
JP2010245893A (en) * 2009-04-07 2010-10-28 Murata Mfg Co Ltd Mounting structure of antenna
WO2015089643A1 (en) * 2013-12-20 2015-06-25 Tayfeh Aligodarz Mohammadreza Dielectric resonator antenna arrays
WO2020170722A1 (en) * 2019-02-20 2020-08-27 株式会社村田製作所 Antenna module, communication device on which antenna module is mounted, and method for manufacturing antenna module
JP2022020566A (en) * 2020-07-02 2022-02-01 アップル インコーポレイテッド Dielectric resonator antenna modules

Similar Documents

Publication Publication Date Title
WO2018230475A1 (en) Antenna module and communication device
WO2020261806A1 (en) Antenna module and communication device equipped with same
US20190173167A1 (en) Antenna module
JPWO2019026595A1 (en) Antenna module and communication device
US11581635B2 (en) Antenna module
KR102432311B1 (en) Antenna module, communication device mounted thereon, and circuit board
WO2019188471A1 (en) Antenna module and communication device loading same
US20220181766A1 (en) Antenna module and communication device equipped with the same
US11916312B2 (en) Antenna module, communication device mounting the same, and circuit board
WO2022224650A1 (en) Antenna module
JP6798656B1 (en) Antenna module and communication device equipped with it
US20230188223A1 (en) Communication apparatus
WO2022264737A1 (en) Antenna module and communication device having same
WO2024127720A1 (en) Antenna module and communication device equipped with same
WO2023210118A1 (en) Antenna module
WO2024106004A1 (en) Antenna module and communication device equipped therewith
WO2024135047A1 (en) Antenna module and communication device equipped therewith
WO2023188969A1 (en) Antenna module
JP7294525B2 (en) Antenna module and communication device equipped with it
WO2022185874A1 (en) Antenna module and communication device equipped with same
CN221353166U (en) Antenna module and communication device equipped with same
WO2024075334A1 (en) Antenna module and communication device having same mounted thereto
WO2023037806A1 (en) Antenna module and communication device having same mounted thereon
US20220384945A1 (en) Antenna module and communication device equipped with the same
WO2023047801A1 (en) Antenna module and communication device equipped with same