WO2024127482A1 - Ozone supply device and ozone supply method - Google Patents

Ozone supply device and ozone supply method Download PDF

Info

Publication number
WO2024127482A1
WO2024127482A1 PCT/JP2022/045773 JP2022045773W WO2024127482A1 WO 2024127482 A1 WO2024127482 A1 WO 2024127482A1 JP 2022045773 W JP2022045773 W JP 2022045773W WO 2024127482 A1 WO2024127482 A1 WO 2024127482A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
gas
adsorption
buffer device
supplying
Prior art date
Application number
PCT/JP2022/045773
Other languages
French (fr)
Japanese (ja)
Inventor
洋航 松浦
学 生沼
大道 古賀
望 安永
芳明 有馬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/045773 priority Critical patent/WO2024127482A1/en
Priority to JP2023514390A priority patent/JP7292554B1/en
Publication of WO2024127482A1 publication Critical patent/WO2024127482A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • This application relates to an ozone supplying device and an ozone supplying method.
  • An ozone adsorption/desorption device related to a conventional ozone supply device includes an ozone adsorption/desorption tower, an ozone discharge line that supplies carrier gas to the ozone adsorption/desorption tower and discharges the desorbed ozone together with the carrier gas, a temperature controller that controls the temperature of the ozone adsorption/desorption tower, a pressure controller that controls the pressure of the ozone adsorption/desorption tower, an ozone concentration control device that controls the ozone concentration, and an ozone tank that stores the desorbed ozone, and the ozone concentration control device controls the temperature and/or pressure so that the desorbed ozone has a constant concentration, and a constant flow rate is supplied from the ozone tank (see, for example, Patent Document 1).
  • this ozone adsorption/desorption device can maintain a constant concentration of desorbed ozone by controlling the temperature and/or pressure, store the ozone gas in an ozone tank, and then stably desorb and supply the ozone at a constant flow rate from the ozone tank.
  • the ozone generator supplies ozone via an ozone adsorption/desorption tower, so the concentration of ozone output by desorption varies greatly depending on the state of ozone adsorption/desorption in the ozone adsorption/desorption tower.
  • fluctuations in the concentration of ozone output cause fluctuations in the amount of ozone acting on the treatment target, so there is an issue with not being able to achieve a stable treatment effect.
  • This application discloses technology for solving the problems described above, and aims to provide an ozone supplying device that can suppress and stabilize the concentration of ozone gas supplied to a target by purging with a pressurized carrier gas or by introducing reduced pressure desorbed ozone gas into an ozone buffer device under positive pressure conditions.
  • the ozone supplying device disclosed in the present application is an ozone generator for generating ozone; an adsorption/desorption tower for adsorbing and desorbing the ozone; an ozonized gas transfer circuit for transferring the ozonized gas generated by the ozone generator to the adsorption/desorption tower; At least one of a pressurizing mechanism that supplies a pressurized carrier gas to the adsorption/desorption tower and a depressurizing mechanism that depressurizes a gas in the adsorption/desorption tower; an ozone buffer device that contains an adsorbent that adsorbs the ozone and suppresses fluctuations in the concentration of the ozone desorbed and transferred from the adsorption/desorption tower; a desorbed gas transfer circuit for transferring the ozone desorbed from the adsorption/desorption tower by the supply of the carrier gas to the ozone buffer device and supplying the ozone from the ozone buffer device to a supply
  • the ozone supplying device disclosed in this application can provide an ozone supplying device that can suppress fluctuations in the concentration of ozone gas supplied to a target and stabilize it by introducing a pressurized carrier gas into an adsorption/desorption tower, or introducing reduced pressure desorbed ozone gas into an ozone buffer device under positive pressure conditions.
  • FIG. 1 is a diagram for explaining a configuration of an ozone supplying device according to a first embodiment
  • FIG. 2 is a diagram for explaining one configuration of an ozone buffer device of the ozone supplying device according to the first embodiment
  • 6 is a diagram for explaining another configuration of the ozone buffer device of the ozone supplying device according to the first embodiment.
  • FIG. FIG. 11 is a diagram for explaining the configuration of an ozone supplying device according to a second embodiment.
  • FIG. 11 is a diagram showing an example of actual measurement of the concentration of ozone gas flowing in and out of an ozone buffer device of the ozone supplying device according to the second embodiment.
  • FIG. 11 is a diagram for explaining the configuration of an ozone supplying device according to a third embodiment.
  • FIG. 13 is a diagram for explaining the configuration of an ozone supplying device according to a fourth embodiment.
  • FIG. 13 is a diagram for explaining the configuration of an ozone supplying device according to a fifth embodiment.
  • Fig. 1 is a diagram for explaining the configuration of an ozone supplying device according to embodiment 1.
  • the ozone supplying device 100 according to embodiment 1 includes, as main components, at least one of an ozone generator 1 for generating ozone, an adsorption/desorption tower 2 for adsorbing and desorbing ozone, a pressurizing mechanism 3 for introducing a pressurized carrier gas into the adsorption/desorption tower, and a decompression mechanism 4 for decompressing the gas in the adsorption/desorption tower (hereinafter, also referred to simply as a decompression mechanism 4 for decompressing the adsorption/desorption tower), an ozone buffer device 5 containing an adsorbent for adsorbing ozone, and a desorption gas transfer circuit 6 for supplying the ozone gas desorbed by the pressurized carrier gas supplied from the adsorption/desorption tower or
  • the ozone generator is a device that generates an ozonized gas containing ozone using a raw material gas supplied from a raw material gas supply unit (not shown).
  • a silent discharge type ozone generator driven by a high AC voltage may be used.
  • the adsorption/desorption tower is a device that selectively adsorbs ozone contained in the ozonized gas generated in the ozone generating section by using an adsorbent filled inside, via an ozonized gas transfer circuit 7, and discharges the adsorbed ozone to a supply target.
  • ozone that breaks through the adsorption/desorption tower during adsorption is treated in a treatment device (not shown) via an adsorption gas transfer circuit 8, rendered harmless, and discharged outside the device.
  • the adsorbent used in the adsorption/desorption tower may be one that preferentially adsorbs ozone contained in the ozonized gas, such as silica gel. Due to the adsorption characteristics of the adsorbent, the ozone concentration on the surface of the adsorbent is higher than the ozone concentration in the ozonized gas.
  • the adsorption/desorption tower concentrates ozone so as to increase the ozone concentration in the ozonized gas, thereby generating concentrated ozone.
  • the ozone supply device is provided with a pressurizing mechanism that injects a gas that serves as a carrier gas for ozone desorption into the adsorption/desorption tower through a desorption gas transfer circuit 6.
  • the gas for desorption is, for example, oxygen.
  • the ozone buffer device is a device that selectively adsorbs ozone contained in the ozonized gas discharged from the adsorption/desorption tower by using an adsorbent filled inside, and discharges the adsorbed ozone to a supply target.
  • a material that preferentially adsorbs ozone contained in the ozonized gas such as silica gel, may be used.
  • the operation of the ozone supply device of the first embodiment will be described.
  • the ozone gas desorbed from the adsorption/desorption tower is introduced into the ozone buffer device, thereby suppressing fluctuations in the ozone concentration of the desorbed ozone gas and averaging the ozone concentration to be supplied to the supply target.
  • the ozone buffer device with an ozone adsorbent and containing it, the amount of ozone stored per unit volume in the ozone buffer device can be significantly increased.
  • a pressurizing mechanism for pressurizing the carrier gas or a depressurizing mechanism for depressurizing the adsorption/desorption tower is provided, and the desorption of ozone gas from the adsorption/desorption tower is promoted by pressurizing the carrier gas for desorption of ozone from the adsorption/desorption tower or by controlling the depressurization of the gas inside the adsorption/desorption tower, and the desorbed ozone gas is introduced into the ozone buffer device, thereby stabilizing the ozone concentration in the subsequent process.
  • a pressurizing mechanism is provided upstream of the adsorption/desorption tower, and in the case of reduced pressure desorption, a reduced pressure mechanism is provided between the ozone buffer device and the adsorption/desorption tower, so that the desorbed ozone gas can be introduced into the ozone buffer device under positive pressure conditions, and the ozone adsorption performance of the adsorbent in the ozone buffer device can be maintained at a high level for use, so that the concentration of ozone gas supplied to the supply target can be stabilized.
  • This also makes it possible to suppress fluctuations in ozone gas concentration within the required specification range.
  • a pressure reduction mechanism by installing it downstream of the adsorption/desorption tower, the pressure on the downstream side is reduced relative to the pressure on the upstream side (creating negative pressure), creating a pressure difference and desorbing ozone toward the outlet connected to the supply target.
  • a pressure increase mechanism by installing it upstream of the adsorption/desorption tower and increasing the pressure on the inlet side, the pressure on the outlet side is reduced relative to the pressure on the inlet side, and ozone is desorbed toward the outlet connected to the supply target.
  • the amount of ozone adsorbed per unit amount of adsorbent is greater when the ozone buffer device is installed on the secondary side of the pressure reduction mechanism than when it is installed on the primary side of the pressure reduction mechanism. This is because the pressure on the secondary side of the pressure reduction mechanism is higher than that on the primary side, and the partial pressure of ozone is higher when ozone is adsorbed by the adsorbent in the ozone buffer device.
  • a pressurizing mechanism there must be a pressure difference greater than the pressure loss between the pressurizing mechanism and the supply target, and in the case of a pressure reduction mechanism, there must be a pressure difference greater than the pressure loss between the adsorption/desorption tower and the pressure reduction mechanism.
  • high adsorption performance can be achieved by setting the pressure of the ozone buffer device at atmospheric pressure or higher, and the higher the pressure of the adsorbent in the ozone buffer device, the greater the amount of ozone adsorbed per unit of adsorbent, so it is preferable to install a back pressure valve or the like on the secondary side (supply target side) of the ozone buffer device to maintain a higher pressure.
  • a pressure gauge may be added as a means for confirming that the pressure inside the ozone buffer device is positive, i.e., above atmospheric pressure.
  • a vacuum pump is used as the pressure reducing mechanism, it is preferable to select a pump whose secondary pressure is above atmospheric pressure and whose pressure inside the ozone buffer device is positive. By installing a vacuum pump with the above specifications, there is no need to boost the pressure on the secondary side of the vacuum pump.
  • the gas is pushed out to the ozone buffer device side by using pressurized gas to drive the ejector for suction, so that the gas can be supplied at atmospheric pressure or higher.
  • the primary pressure is lower than the secondary pressure in the pressure reducing mechanism, so care must be taken because the pressure is lower than when the ozone buffer device is installed on the secondary side, and the amount of ozone adsorbed per unit of adsorbent is accordingly smaller.
  • the adsorbent contained in the above-mentioned ozone buffer device will be described in detail below with reference to the figures.
  • the adsorbent is contained in the ozone buffer device in a configuration as shown in Figure 2 or Figure 3.
  • the adsorbent 52 (a typical example of this adsorbent is silica gel) is filled in a container 51 (e.g., a stainless steel container, PTFE (polytetrafluoroethylene), etc.) made of a highly corrosion-resistant material.
  • a container 51 e.g., a stainless steel container, PTFE (polytetrafluoroethylene), etc.
  • a configuration is used in which ozone gas is supplied to the entire adsorbent using punched metal 53 or the like, thereby suppressing unnecessary consumption of ozone due to exothermic decomposition.
  • a refrigerant 54 is passed around the adsorbent to cool it, thereby further increasing the amount of ozone adsorbed per unit of adsorbent.
  • Embodiment 2 As described above, the ozone supplying device according to the first embodiment can achieve the objective of stabilizing the concentration. In order to achieve this objective of stabilizing the concentration more actively or easily, the ozone supplying device according to the second embodiment focuses on the concentration of ozone gas flowing in and out of the ozone buffer device. This will be described in detail below with reference to Figs. 4 and 5.
  • FIG. 4 is a diagram for explaining the configuration of an ozone supplying device 101 according to the second embodiment.
  • the configuration of the ozone supplying device 101 according to the second embodiment (the portion surrounded by a dotted line frame in FIG. 4) is different from the configuration of the ozone supplying device 100 according to the first embodiment in that a controller 9 is newly added.
  • This controller 9 can independently control the operation of all the components (ozone generator 1, adsorption/desorption tower 2, pressurizing mechanism 3, decompression mechanism 4, ozone buffer device 5) shown inside the dashed line frame F. By providing this controller 9, the control described below with reference to FIG. 5 is possible.
  • the controller 9 is defined as a device that controls the transition between the three operations of saturation, concentration stabilization, and completion, and the switching of a circuit switch described later.
  • the circuit switch refers to a device (e.g., a valve) that opens and closes the gas circuit, or a device (e.g., a three-way valve) that switches the gas circuit.
  • FIG. 5 is a diagram showing an example of the results of measuring the concentration of ozone gas entering and leaving the ozone buffer device using the ozone supply device according to embodiment 2.
  • the horizontal axis of the graph shown in this figure indicates the test time (unit: minutes), and the vertical axis indicates the ozone concentration (unit: g/Nm 3 ).
  • the dashed line indicates the change in ozone concentration at the inlet of the ozone buffer device
  • the solid line indicates the change in ozone concentration at the outlet of the ozone buffer device.
  • the curve for test time 0-10 minutes shows the change in ozone concentration in the saturation process where the adsorbent in the ozone buffer device is saturated with adsorption.
  • the curve for test time 10-60 minutes shows the change in ozone concentration in the concentration stabilization process where some ozone is adsorbed by the adsorbent in the ozone buffer device when the ozone concentration desorbed from the adsorption/desorption tower is higher than a specified concentration, and some ozone is desorbed from the adsorbent in the ozone buffer device when the ozone concentration desorbed from the adsorption/desorption tower is lower than the specified concentration.
  • the curve for test time 10-60 minutes shows the change in ozone concentration in the completion process where the ozone gas adsorbed in the ozone buffer device is desorbed.
  • the graph also shows that there is no ozone in the completion process.
  • completion means that the desorption of ozone gas from the adsorption/desorption tower is stopped and the operation of the ozone supply device is completed.
  • the completion process is the process of removing (desorbing) the ozone adsorbed in the ozone buffer device after the desorption of ozone gas from the adsorption/desorption tower is stopped. More details on this are provided below.
  • the desorption of ozone from the adsorption/desorption tower is stopped, and dry air or raw oxygen gas is introduced into the ozone buffer device to desorb the ozone adsorbed on the adsorbent in the ozone buffer device.
  • dry air or raw oxygen gas is introduced into the ozone buffer device to desorb the ozone adsorbed on the adsorbent in the ozone buffer device.
  • the reason why the change width of the outlet concentration becomes smaller relative to the inlet concentration is as follows: That is, as a characteristic of the adsorbent contained in the ozone buffer device, when a saturated adsorption state is reached for a certain adsorption concentration P (hereinafter also simply referred to as concentration P), and then ozone gas with an adsorption concentration Q (hereinafter also simply referred to as concentration Q) larger than the concentration P is introduced, the adsorbent acts to adsorb ozone due to an increase in the ozone partial pressure of the introduced gas, so that the ozone concentration output from the ozone buffer device becomes smaller relative to the inlet concentration A.
  • concentration P a saturated adsorption state is reached for a certain adsorption concentration P
  • Q ozone gas with an adsorption concentration Q
  • concentration Q ozone gas with an adsorption concentration Q
  • concentration S ozone gas having an adsorption concentration S (hereinafter simply referred to as concentration S) smaller than the concentration P
  • concentration S concentration S
  • concentration P concentration A
  • the time when the concentration change curve reaches its maximum and minimum is inversely related to the concentration at the inlet and the concentration at the outlet.
  • the reason why such a phase shift occurs between the concentration at the inlet and the concentration at the outlet is as follows. That is, as a characteristic of the adsorbent contained in the ozone buffer device, after the saturated adsorption state is reached with respect to the inlet concentration A, when ozone gas with a concentration Q where P ⁇ Q is introduced into the ozone buffer device, the adsorption equilibrium point rises and the ozone tries to be further adsorbed, so the concentration at the outlet tends to decrease with respect to the inlet concentration A.
  • FIG. 5 is an example of the concentration change before and after the ozone buffer device, and is not limited to this as long as the method of suppressing ozone concentration fluctuations using the above action is used.
  • FIG. 6 is a diagram for explaining the configuration of an ozone supplying device 102 (a portion surrounded by a dotted line frame in Fig. 6) according to the third embodiment.
  • the configuration of the ozone supplying device 102 according to the third embodiment is particularly different from the configuration of the ozone supplying device according to the first embodiment in that a circuit switch 10, a flow rate regulator 11, and a dilution gas introduction circuit 12 are newly added.
  • the circuit switch 10 is a device for switching between opening and closing the gas circuit that flows into the pressure reduction mechanism, and is also called a circuit controller. It controls the switching between the desorption gas transfer circuit 6 that connects the adsorption/desorption tower and the pressure reduction mechanism 4a (here, a vacuum pump is used as the pressure reduction mechanism), and the dilution gas introduction circuit 12 that connects the flow rate regulator 11 and the pressure reduction mechanism. Although two circuit switchers are shown in FIG. 6, one circuit switch may be used.
  • the flow rate regulator 11 is controlled by a controller (not shown) to adjust the flow rate of the dilution gas that flows into the pressure reduction mechanism via the dilution gas introduction circuit 12 according to the concentration of ozone desorbed in the adsorption/desorption tower.
  • the dilution gas is a gas used to dilute the ozone, and generally, dry oxygen gas or air is good, high purity oxygen such as oxygen from a cylinder or liquid oxygen, or highly concentrated oxygen with a dew point of 10°C or less that has been passed through PSA (Pressure Swing Adsorption) or VPSA (Vacuum Pressure Swing Adsorption), etc. are preferable.
  • PSA Pressure Swing Adsorption
  • VPSA Vauum Pressure Swing Adsorption
  • a circuit switch 10 By adding a circuit switch 10 to the configuration of the ozone supply device according to the first embodiment, after stopping the desorption of ozone gas from the adsorption/desorption tower in the completion step shown in the second embodiment, dry air or raw oxygen gas can be introduced into the ozone buffer device, and the ozone gas adsorbed on the adsorbent in the ozone buffer device can be desorbed. Specifically, in response to an instruction from a controller (not shown), the circuit switch 10 closes the desorption gas transfer circuit 6 and opens the dilution gas introduction circuit 12. This operation stops the desorption of ozone gas from the adsorption/desorption tower, and allows dry air or raw oxygen gas to be introduced into the ozone buffer device.
  • FIG. 7 is a diagram for explaining the configuration of an ozone supplying device 103 (a portion surrounded by a dotted line frame in Fig. 7) according to the fourth embodiment.
  • the configuration of the ozone supplying device 103 according to the fourth embodiment is particularly different from the configuration of the ozone supplying device 102 according to the third embodiment in that the speed reducing mechanism is a gas ejector (hereinafter also referred to as an ejector), and a compressor 13, a cooling device 14, and a first bypass circuit 15 are provided instead of a flow rate regulator.
  • the speed reducing mechanism is a gas ejector (hereinafter also referred to as an ejector)
  • a compressor 13 a cooling device 14, and a first bypass circuit 15 are provided instead of a flow rate regulator.
  • a pressurized drive gas When an ejector is used in the pressure reduction mechanism, a pressurized drive gas must be used to drive the ejector for suction, so if the drive gas is dry air, a compressor 13 with a dehumidifying function is required. In addition, the dry air output from the compressor 13 becomes hot, and if it is mixed with the ozone gas desorbed from the adsorption/desorption tower, it may promote ozone decomposition, so it is desirable to have a cooling device 14 to cool the dry air (see “Gas flow during the saturation process and concentration stabilization process" indicated by the thick arrow in Figure 7).
  • the circuit switch 10a (also called the first circuit switch 10a) closes the desorbed gas transport circuit 6, and the circuit switch 10b (also called the second circuit switch 10b) opens the first bypass circuit 15, in response to instructions from a controller (not shown).
  • the ozone supplying device 103 of the fourth embodiment unlike the operation of the ozone supplying device 102 of the third embodiment, when introducing the dilution gas into the pressure reducing mechanism 4b, instead of using only the dilution gas introduction circuit 12, a part of the circuit is replaced with the first bypass circuit 15, and this first bypass circuit 15 is used.
  • This circuit selection makes it possible to introduce high-temperature dry air into the ozone buffer device, and the desorption of ozone is promoted by the high-temperature gas, making it possible to shorten the completion process (see "Gas flow during the completion process" indicated by the thick arrow in Figure 7).
  • Fig. 8 is a diagram for explaining the configuration of an ozone supplying device 104 (a portion surrounded by a dotted line frame in Fig. 8) according to the fifth embodiment.
  • the configuration of the ozone supplying device 104 according to the fifth embodiment differs from the configuration of the ozone supplying device according to the first embodiment in that it additionally includes a NOx removal device 16 (here, NOx is a general term for nitrogen oxides), a NOx gas transfer circuit 17, and a second bypass circuit 18.
  • NOx removal device 16 here, NOx is a general term for nitrogen oxides
  • the NOx gas transfer circuit 17 and the second bypass circuit 18 are used when desorbing and removing NOx from the NOx removal device 16.
  • the NOx removal device 16 is installed on the piping between the ozone generator and the adsorption/desorption tower. This NOx removal device is a device that removes NOx generated in the ozone generator.
  • a method for removing NOx in a NOx removal device is, for example, to use an adsorbent that selectively adsorbs NOx (hereafter referred to as "NOx adsorbent").
  • NOx adsorbent whose adsorption performance changes with temperature is preferred, and in particular one whose adsorption amount of NOx changes significantly in the range of -30°C to 40°C is preferred.
  • a NOx adsorbent that can desorb adsorbed NOx using a pressure reduction mechanism is also preferred. NOx desorbed from the NOx adsorbent in the NOx removal device by reducing pressure in the pressure reduction mechanism is discharged from the NOx gas transfer circuit 17.
  • Silica gel for example, can be used as the NOx adsorbent.
  • the device transitions to a NOx desorption process in which NOx is desorbed from the NOx adsorbent in the NOx removal device.
  • the second bypass circuit that does not pass through the ozone buffer device by selecting the second bypass circuit that does not pass through the ozone buffer device, it is possible to prevent NOx from being adsorbed and accumulated in the adsorbent inside the ozone buffer device.
  • the supply of ozone from the adsorption/desorption tower is interrupted during the NOx desorption process, it is preferable to adjust the amount of NOx adsorbent loaded or the adsorption conditions so that the timing is such that the NOx desorption process is transitioned to during or after the completion process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

This ozone supply device comprises: an ozone generator (1) that generates ozone; an adsorbing and desorbing tower (2) that adsorbs and desorbs the ozone; an ozonized gas transfer circuit (7) for transferring ozonized gas generated in the ozone generator to the adsorbing and desorbing tower; a pressurizing mechanism (3) that introduces pressurized carrier gas to the adsorbing and desorbing tower (2) or a depressurizing mechanism (4) that depressurizes the adsorbing and desorbing tower (2); an ozone buffering device (5) that suppresses fluctuation of the concentration of the introduced ozone, wherein an adsorbent adsorbing the ozone is included in the ozone buffering device (5); and a desorbed gas transfer circuit (6) for transferring ozone desorbed from the adsorbing and desorbing tower (2) to the ozone buffering device (5) and subsequently supplying same to a supply target.

Description

オゾン供給装置およびオゾン供給方法Ozone supplying device and ozone supplying method
 本願は、オゾン供給装置およびオゾン供給方法に関する。 This application relates to an ozone supplying device and an ozone supplying method.
 従来のオゾン供給装置に関わるオゾン吸脱着装置は、オゾン吸脱着塔と、オゾン吸脱着塔にキャリアガスを供給して脱着したオゾンをキャリアガスと共に排出するオゾン排出ラインと、オゾン吸脱着塔の温度を制御する温度制御器と、オゾン吸脱着塔の圧力を制御する圧力制御器と、オゾン濃度を制御するオゾン濃度制御装置と、脱着したオゾンを貯留するオゾンタンクと、を備えて、オゾン濃度制御装置により脱着オゾンが一定濃度になるように温度及び/又は圧力を制御し、オゾンタンクから一定流量を供給していた(例えば、特許文献1参照)。  An ozone adsorption/desorption device related to a conventional ozone supply device includes an ozone adsorption/desorption tower, an ozone discharge line that supplies carrier gas to the ozone adsorption/desorption tower and discharges the desorbed ozone together with the carrier gas, a temperature controller that controls the temperature of the ozone adsorption/desorption tower, a pressure controller that controls the pressure of the ozone adsorption/desorption tower, an ozone concentration control device that controls the ozone concentration, and an ozone tank that stores the desorbed ozone, and the ozone concentration control device controls the temperature and/or pressure so that the desorbed ozone has a constant concentration, and a constant flow rate is supplied from the ozone tank (see, for example, Patent Document 1).
 すなわち、このオゾン吸脱着装置は、温度及び/または圧力を制御することにより、脱着オゾンを一定濃度に保持して、オゾンガスをオゾンタンクに貯留し、その後、このオゾンタンクから一定流量で安定して脱着・供給することができるものであった。 In other words, this ozone adsorption/desorption device can maintain a constant concentration of desorbed ozone by controlling the temperature and/or pressure, store the ozone gas in an ozone tank, and then stably desorb and supply the ozone at a constant flow rate from the ozone tank.
特開2000-72407号公報JP 2000-72407 A
 このような装置においては、オゾン発生器は、オゾン吸脱着塔を介してオゾン供給を行うため、オゾン吸脱着塔内のオゾンの吸着状態により、脱着により出力されるオゾン濃度が大きく変動する。そのため、一般的な水処理で適用されるシングルパス処理では、出力されるオゾン濃度の変動により、処理対象に作用するオゾン量が変動するため、安定した処理効果が得られないという課題があった。 In such equipment, the ozone generator supplies ozone via an ozone adsorption/desorption tower, so the concentration of ozone output by desorption varies greatly depending on the state of ozone adsorption/desorption in the ozone adsorption/desorption tower. As a result, with single-pass processing, which is commonly used in water treatment, fluctuations in the concentration of ozone output cause fluctuations in the amount of ozone acting on the treatment target, so there is an issue with not being able to achieve a stable treatment effect.
 また、この課題を解決するため、オゾン濃度変動を抑制するためのバッファタンク(空洞)を設ける例もあるが、必要となるバッファタンクの容量が大きくなるため、オゾン供給装置にこのようなバッファタンクを導入することは容易ではない。 In order to solve this problem, there are some cases where a buffer tank (cavity) is provided to suppress fluctuations in ozone concentration, but since the required capacity of the buffer tank is large, it is not easy to introduce such a buffer tank into an ozone supply device.
 本願は、上記のような課題を解決するための技術を開示するものであり、加圧キャリアガスでのパージ、または減圧脱着したオゾンガスをオゾン緩衝装置に正圧条件で導入することにより、供給対象に供給するオゾンガスの濃度の変動を抑制して安定化させることが可能なオゾン供給装置を提供することを目的としている。 This application discloses technology for solving the problems described above, and aims to provide an ozone supplying device that can suppress and stabilize the concentration of ozone gas supplied to a target by purging with a pressurized carrier gas or by introducing reduced pressure desorbed ozone gas into an ozone buffer device under positive pressure conditions.
 本願に開示されるオゾン供給装置は、
オゾンを生成するオゾン発生器と、
前記オゾンを吸着および脱着する吸脱着塔と、
前記オゾン発生器で発生したオゾン化したガスを前記吸脱着塔に移送するためのオゾン化ガス移送回路と、
前記吸脱着塔に対して加圧したキャリアガスを供給する加圧機構、および前記吸脱着塔内のガスを減圧する減圧機構、のうち、少なくとも一方と、
前記オゾンを吸着する吸着剤を内包するとともに、前記吸脱着塔から脱着されて移送された前記オゾンの濃度変動を抑制するオゾン緩衝装置と、
前記キャリアガスの供給により前記吸脱着塔から脱着されたオゾンを、前記オゾン緩衝装置に移送するとともに前記オゾン緩衝装置から供給対象に供給するための脱着ガス移送回路と、
を備えたことを特徴とするものである。
The ozone supplying device disclosed in the present application is
an ozone generator for generating ozone;
an adsorption/desorption tower for adsorbing and desorbing the ozone;
an ozonized gas transfer circuit for transferring the ozonized gas generated by the ozone generator to the adsorption/desorption tower;
At least one of a pressurizing mechanism that supplies a pressurized carrier gas to the adsorption/desorption tower and a depressurizing mechanism that depressurizes a gas in the adsorption/desorption tower;
an ozone buffer device that contains an adsorbent that adsorbs the ozone and suppresses fluctuations in the concentration of the ozone desorbed and transferred from the adsorption/desorption tower;
a desorbed gas transfer circuit for transferring the ozone desorbed from the adsorption/desorption tower by the supply of the carrier gas to the ozone buffer device and supplying the ozone from the ozone buffer device to a supply target;
The present invention is characterized by comprising:
 本願に開示されるオゾン供給装置によれば、吸脱着塔への加圧キャリアガスの導入、または減圧脱着したオゾンガスをオゾン緩衝装置に正圧条件で導入することにより、供給対象に供給するオゾンガスの濃度の変動を抑制して安定化させることが可能なオゾン供給装置を提供することができる。 The ozone supplying device disclosed in this application can provide an ozone supplying device that can suppress fluctuations in the concentration of ozone gas supplied to a target and stabilize it by introducing a pressurized carrier gas into an adsorption/desorption tower, or introducing reduced pressure desorbed ozone gas into an ozone buffer device under positive pressure conditions.
実施の形態1に係るオゾン供給装置の構成を説明するための図である。1 is a diagram for explaining a configuration of an ozone supplying device according to a first embodiment; 実施の形態1に係るオゾン供給装置のオゾン緩衝装置の一の構成を説明するための図である。FIG. 2 is a diagram for explaining one configuration of an ozone buffer device of the ozone supplying device according to the first embodiment. 実施の形態1に係るオゾン供給装置のオゾン緩衝装置の他の構成を説明するための図である。6 is a diagram for explaining another configuration of the ozone buffer device of the ozone supplying device according to the first embodiment. FIG. 実施の形態2に係るオゾン供給装置の構成を説明するための図である。FIG. 11 is a diagram for explaining the configuration of an ozone supplying device according to a second embodiment. 実施の形態2に係るオゾン供給装置のオゾン緩衝装置に出入りするオゾンガスの濃度を計測した実測例を示す図である。FIG. 11 is a diagram showing an example of actual measurement of the concentration of ozone gas flowing in and out of an ozone buffer device of the ozone supplying device according to the second embodiment. 実施の形態3に係るオゾン供給装置の構成を説明するための図である。FIG. 11 is a diagram for explaining the configuration of an ozone supplying device according to a third embodiment. 実施の形態4に係るオゾン供給装置の構成を説明するための図である。FIG. 13 is a diagram for explaining the configuration of an ozone supplying device according to a fourth embodiment. 実施の形態5に係るオゾン供給装置の構成を説明するための図である。FIG. 13 is a diagram for explaining the configuration of an ozone supplying device according to a fifth embodiment.
実施の形態1.
 図1は、実施の形態1に係るオゾン供給装置の構成を説明するための図である。実施の形態1のオゾン供給装置100(図1において点線の枠で囲まれた部分)は、オゾンを生成するオゾン発生器1、オゾンを吸着および脱着する吸脱着塔2、この吸脱着塔に加圧したキャリアガスを導入する加圧機構3、および吸脱着塔内のガスを減圧する減圧機構4(以降、簡略化して、吸脱着塔を減圧する減圧機構4、とも言う)のうち、少なくとも一方(の機構)と、オゾンを吸着する吸着剤を内包したオゾン緩衝装置5、および、このオゾン緩衝装置を介して、吸脱着塔から供給される加圧したキャリアガスにより脱着した、または吸脱着塔の減圧により脱着した、オゾンガスを供給対象に供給するための脱着ガス移送回路6、を主な構成要素として備えている。
Embodiment 1.
Fig. 1 is a diagram for explaining the configuration of an ozone supplying device according to embodiment 1. The ozone supplying device 100 according to embodiment 1 (the portion surrounded by a dotted line frame in Fig. 1) includes, as main components, at least one of an ozone generator 1 for generating ozone, an adsorption/desorption tower 2 for adsorbing and desorbing ozone, a pressurizing mechanism 3 for introducing a pressurized carrier gas into the adsorption/desorption tower, and a decompression mechanism 4 for decompressing the gas in the adsorption/desorption tower (hereinafter, also referred to simply as a decompression mechanism 4 for decompressing the adsorption/desorption tower), an ozone buffer device 5 containing an adsorbent for adsorbing ozone, and a desorption gas transfer circuit 6 for supplying the ozone gas desorbed by the pressurized carrier gas supplied from the adsorption/desorption tower or desorbed by decompressing the adsorption/desorption tower to a supply target via the ozone buffer device.
 上記オゾン発生器は、(図示しない)原料ガス供給部から供給された原料ガスを用いて、オゾンを含むオゾン化ガスを生成する装置である。オゾン発生器としては、例えば、交流高電圧により駆動する無声放電式のオゾン発生装置を用いればよい。
 吸脱着塔は、内部に充填された吸着剤によって、オゾン発生部で生成したオゾン化ガスに含まれるオゾンを、オゾン化ガス移送回路7を介して選択的に吸着するとともに、吸着したオゾンを供給対象に対して排出する装置である。なお、吸着時において吸脱着塔から破過したオゾンは、吸着ガス移送回路8を通じて、(図示しない)処理装置で処理され、無害化されて装置外部に排出される。
 ここで、吸脱着塔で用いられる吸着剤としては、オゾン化ガスに含まれるオゾンを優先的に吸着するもの、例えば、シリカゲルを用いればよい。吸着剤の吸着特性により、吸着剤表面でのオゾン濃度は、オゾン化ガス中のオゾン濃度よりも高くなる。吸脱着塔は、オゾン化ガスのオゾン濃度を高めるようにオゾンを濃縮し、濃縮オゾンを生成する。吸脱着塔の吸着剤に吸着された濃縮オゾンを吸着剤から脱着するために、オゾン供給装置には、オゾン脱着用のキャリアガスとなる気体を、脱着ガス移送回路6を通して、吸脱着塔に注入する加圧機構が設けられる。脱着用の気体は、例えば酸素である。
 オゾン緩衝装置は、内部に充填された吸着剤によって、吸脱着塔から排出されたオゾン化ガスに含まれるオゾンを選択的に吸着するとともに、吸着したオゾンを供給対象に対して排出する装置である。吸着剤としては、オゾン化ガスに含まれるオゾンを優先的に吸着するもの、例えば、シリカゲルを用いればよい。
The ozone generator is a device that generates an ozonized gas containing ozone using a raw material gas supplied from a raw material gas supply unit (not shown). As the ozone generator, for example, a silent discharge type ozone generator driven by a high AC voltage may be used.
The adsorption/desorption tower is a device that selectively adsorbs ozone contained in the ozonized gas generated in the ozone generating section by using an adsorbent filled inside, via an ozonized gas transfer circuit 7, and discharges the adsorbed ozone to a supply target. Note that ozone that breaks through the adsorption/desorption tower during adsorption is treated in a treatment device (not shown) via an adsorption gas transfer circuit 8, rendered harmless, and discharged outside the device.
Here, the adsorbent used in the adsorption/desorption tower may be one that preferentially adsorbs ozone contained in the ozonized gas, such as silica gel. Due to the adsorption characteristics of the adsorbent, the ozone concentration on the surface of the adsorbent is higher than the ozone concentration in the ozonized gas. The adsorption/desorption tower concentrates ozone so as to increase the ozone concentration in the ozonized gas, thereby generating concentrated ozone. In order to desorb the concentrated ozone adsorbed on the adsorbent in the adsorption/desorption tower from the adsorbent, the ozone supply device is provided with a pressurizing mechanism that injects a gas that serves as a carrier gas for ozone desorption into the adsorption/desorption tower through a desorption gas transfer circuit 6. The gas for desorption is, for example, oxygen.
The ozone buffer device is a device that selectively adsorbs ozone contained in the ozonized gas discharged from the adsorption/desorption tower by using an adsorbent filled inside, and discharges the adsorbed ozone to a supply target. As the adsorbent, a material that preferentially adsorbs ozone contained in the ozonized gas, such as silica gel, may be used.
 次に、実施の形態1のオゾン供給装置の作用について説明する。上述の構成による実施の形態1のオゾン供給装置においては、吸脱着塔から脱着したオゾンガスをオゾン緩衝装置に導入することで、脱着したオゾンガスのオゾン濃度の変動を抑制して供給対象に供給するオゾン濃度を平均化させることができる。また、オゾン緩衝装置にオゾンの吸着剤を充填させて内包することで、オゾン緩衝装置内の単位体積あたりのオゾン貯留量を大幅に増加させることができる。また、オゾンの脱着手段としてキャリアガスを加圧する加圧機構、又は吸脱着塔を減圧する減圧機構が備わっており、吸脱着塔からのオゾンの脱着のためにキャリアガスを加圧するか、あるいは吸脱着塔内(のガス)を減圧する制御によって吸脱着塔からのオゾンガスの脱着を促進し、脱着したオゾンガスをオゾン緩衝装置に導入することで、後の工程において、オゾン濃度を安定化させることができる。 Next, the operation of the ozone supply device of the first embodiment will be described. In the ozone supply device of the first embodiment with the above configuration, the ozone gas desorbed from the adsorption/desorption tower is introduced into the ozone buffer device, thereby suppressing fluctuations in the ozone concentration of the desorbed ozone gas and averaging the ozone concentration to be supplied to the supply target. In addition, by filling the ozone buffer device with an ozone adsorbent and containing it, the amount of ozone stored per unit volume in the ozone buffer device can be significantly increased. In addition, as a means for desorbing ozone, a pressurizing mechanism for pressurizing the carrier gas or a depressurizing mechanism for depressurizing the adsorption/desorption tower is provided, and the desorption of ozone gas from the adsorption/desorption tower is promoted by pressurizing the carrier gas for desorption of ozone from the adsorption/desorption tower or by controlling the depressurization of the gas inside the adsorption/desorption tower, and the desorbed ozone gas is introduced into the ozone buffer device, thereby stabilizing the ozone concentration in the subsequent process.
 ここで、加圧(された)キャリアガスの導入による脱着の場合には、加圧機構を吸脱着塔の上流側に設け、減圧脱着の場合には減圧機構をオゾン緩衝装置と吸脱着塔の間に設けることで正圧条件にて、脱着したオゾンガスをオゾン緩衝装置に導入でき、オゾン緩衝装置内の吸着剤のオゾン吸着性能が高い状態に維持して利用することができるため、供給対象に供給するオゾンガスの濃度を安定化させることができる。また、これにより、オゾンガスの濃度変動を要求される仕様の範囲内に抑えることができる。 Here, in the case of desorption by introduction of pressurized carrier gas, a pressurizing mechanism is provided upstream of the adsorption/desorption tower, and in the case of reduced pressure desorption, a reduced pressure mechanism is provided between the ozone buffer device and the adsorption/desorption tower, so that the desorbed ozone gas can be introduced into the ozone buffer device under positive pressure conditions, and the ozone adsorption performance of the adsorbent in the ozone buffer device can be maintained at a high level for use, so that the concentration of ozone gas supplied to the supply target can be stabilized. This also makes it possible to suppress fluctuations in ozone gas concentration within the required specification range.
 減圧機構の場合には、吸脱着塔の下流側に設置することにより、上流側の圧力に対して下流側の圧力を小さくする(負圧にする)ことで圧力差を作り、供給対象に繋がる出口に向けてオゾンを脱着させる。一方、加圧機構の場合は、吸脱着塔の上流に設置して入口側を昇圧することで入口側の圧力に対して出口側の圧力を小さくし、供給対象に繋がる出口に向けてオゾンを脱着させる。 In the case of a pressure reduction mechanism, by installing it downstream of the adsorption/desorption tower, the pressure on the downstream side is reduced relative to the pressure on the upstream side (creating negative pressure), creating a pressure difference and desorbing ozone toward the outlet connected to the supply target. On the other hand, in the case of a pressure increase mechanism, by installing it upstream of the adsorption/desorption tower and increasing the pressure on the inlet side, the pressure on the outlet side is reduced relative to the pressure on the inlet side, and ozone is desorbed toward the outlet connected to the supply target.
 また、減圧機構の一次側にオゾン緩衝装置を設置した場合に対して、減圧機構の二次側にオゾン緩衝装置を設置した場合の方が、単位吸着剤量当たりのオゾン吸着量が大きい。これは、減圧機構の二次側は一次側に対して圧力が高く、オゾン緩衝装置内の吸着剤にオゾンを吸着させる際のオゾン分圧が高くなるためである。なお、加圧機構の場合は、加圧機構から供給対象までの間、減圧機構の場合は、吸脱着塔から減圧機構までの間の圧力損失より大きい圧力差があれば良い。 In addition, the amount of ozone adsorbed per unit amount of adsorbent is greater when the ozone buffer device is installed on the secondary side of the pressure reduction mechanism than when it is installed on the primary side of the pressure reduction mechanism. This is because the pressure on the secondary side of the pressure reduction mechanism is higher than that on the primary side, and the partial pressure of ozone is higher when ozone is adsorbed by the adsorbent in the ozone buffer device. In the case of a pressurizing mechanism, there must be a pressure difference greater than the pressure loss between the pressurizing mechanism and the supply target, and in the case of a pressure reduction mechanism, there must be a pressure difference greater than the pressure loss between the adsorption/desorption tower and the pressure reduction mechanism.
 ここで、オゾン緩衝装置の圧力は大気圧以上とすることで、高い吸着性能が得られ、オゾン緩衝装置内の吸着剤の圧力は高ければ高いほど単位吸着剤当たりのオゾン吸着量は大きくなるため、より高い圧力に保つための背圧弁などをオゾン緩衝装置の2次側(供給対象側)に設置する方が望ましい。 Here, high adsorption performance can be achieved by setting the pressure of the ozone buffer device at atmospheric pressure or higher, and the higher the pressure of the adsorbent in the ozone buffer device, the greater the amount of ozone adsorbed per unit of adsorbent, so it is preferable to install a back pressure valve or the like on the secondary side (supply target side) of the ozone buffer device to maintain a higher pressure.
 オゾン緩衝装置内の圧力が正圧、すなわち大気圧以上の圧力であることを確認する手段として圧力計を追加しても良い。また、減圧機構として真空ポンプを利用した場合は、ポンプ二次側の圧力は大気圧以上になるものを選択し、オゾン緩衝装置内の圧力が正圧となるものを選択する方が望ましい。上記仕様の真空ポンプを設置することで、真空ポンプ二次側での昇圧動作が不要となる。
 また、エジェクタを利用した場合も同様に、エジェクタの吸引駆動に加圧ガスを利用してオゾン緩衝装置側にガスを押し出すため、大気圧以上で供給することができる。さらに、減圧機構の前にオゾン緩衝装置を設置した場合は、減圧機構においては一次圧<二次圧の関係となるため、二次側に設置した場合に比べて圧力は低く、その分単位吸着材当たりのオゾン吸着量は小さくなってしまうので注意が必要である。
A pressure gauge may be added as a means for confirming that the pressure inside the ozone buffer device is positive, i.e., above atmospheric pressure. In addition, when a vacuum pump is used as the pressure reducing mechanism, it is preferable to select a pump whose secondary pressure is above atmospheric pressure and whose pressure inside the ozone buffer device is positive. By installing a vacuum pump with the above specifications, there is no need to boost the pressure on the secondary side of the vacuum pump.
Similarly, when an ejector is used, the gas is pushed out to the ozone buffer device side by using pressurized gas to drive the ejector for suction, so that the gas can be supplied at atmospheric pressure or higher. Furthermore, when an ozone buffer device is installed before the pressure reducing mechanism, the primary pressure is lower than the secondary pressure in the pressure reducing mechanism, so care must be taken because the pressure is lower than when the ozone buffer device is installed on the secondary side, and the amount of ozone adsorbed per unit of adsorbent is accordingly smaller.
 次に、上述のオゾン緩衝装置に内包された吸着剤について、以下、図を用いて詳しく説明する。実施の形態1に係るオゾン供給装置においては、図2、あるいは図3に示したような構成で、吸着剤がオゾン緩衝装置に内包されている。 Next, the adsorbent contained in the above-mentioned ozone buffer device will be described in detail below with reference to the figures. In the ozone supply device according to the first embodiment, the adsorbent is contained in the ozone buffer device in a configuration as shown in Figure 2 or Figure 3.
 図2に示したオゾン緩衝装置5aでは、吸着剤52(この吸着剤の代表例としてはシリカゲル)は、耐腐食性の高い材質の容器51(例えば、SUS容器、PTFE(ポリテトラフルオロエチレン)など)中に、充填される。また、局所的なガス供給を避けるため、パンチングメタル53などで吸着剤全体にオゾンガスが供給される構成とすることで、発熱分解によるオゾンの無効消費を抑制することができる。また、図3に示したオゾン緩衝装置5bでは、吸着剤の周りに冷媒54を流し、吸着剤を冷却することで、単位吸着材当たりのオゾン吸着量を更に増加させることができる。 In the ozone buffer device 5a shown in FIG. 2, the adsorbent 52 (a typical example of this adsorbent is silica gel) is filled in a container 51 (e.g., a stainless steel container, PTFE (polytetrafluoroethylene), etc.) made of a highly corrosion-resistant material. To avoid localized gas supply, a configuration is used in which ozone gas is supplied to the entire adsorbent using punched metal 53 or the like, thereby suppressing unnecessary consumption of ozone due to exothermic decomposition. In the ozone buffer device 5b shown in FIG. 3, a refrigerant 54 is passed around the adsorbent to cool it, thereby further increasing the amount of ozone adsorbed per unit of adsorbent.
実施の形態2.
 実施の形態1に係るオゾン供給装置は、上述のように、濃度を一定化する目的を実現できる。この濃度一定化の目的をさらに能動的、あるいは容易に達成するために、実施の形態2に係るオゾン供給装置では、オゾン緩衝装置に出入りするオゾンガスの濃度に着目した。この内容について、図4、図5を用いて、以下、詳しく説明する。
Embodiment 2.
As described above, the ozone supplying device according to the first embodiment can achieve the objective of stabilizing the concentration. In order to achieve this objective of stabilizing the concentration more actively or easily, the ozone supplying device according to the second embodiment focuses on the concentration of ozone gas flowing in and out of the ozone buffer device. This will be described in detail below with reference to Figs. 4 and 5.
 図4は、実施の形態2に係るオゾン供給装置101の構成を説明するための図である。この実施の形態2に係るオゾン供給装置101(図4において点線の枠で囲まれた部分)の構成は、実施の形態1に係るオゾン供給装置100の構成と比べて、制御器9が新たに追加されている点が異なっている。この制御器9は、一点鎖線の枠Fの内部に示した、すべての構成要素(オゾン発生器1、吸脱着塔2、加圧機構3、減圧機構4、オゾン緩衝装置5)の動作をそれぞれ独立して制御することが可能である。この制御器9を備えたことで、以下、図5を用いて説明するような制御が可能になった。なお、以下でも説明するが、制御器9は、飽和、濃度安定化、完了の3つの動作の移行、および後述する回路切替器の切替制御を行う機器として定義される。ここで、回路切替器とは、ガス回路の開閉動作を行う機器(例えばバルブ)、あるいは切替え動作を行う機器(例えば三方弁)のことである。 FIG. 4 is a diagram for explaining the configuration of an ozone supplying device 101 according to the second embodiment. The configuration of the ozone supplying device 101 according to the second embodiment (the portion surrounded by a dotted line frame in FIG. 4) is different from the configuration of the ozone supplying device 100 according to the first embodiment in that a controller 9 is newly added. This controller 9 can independently control the operation of all the components (ozone generator 1, adsorption/desorption tower 2, pressurizing mechanism 3, decompression mechanism 4, ozone buffer device 5) shown inside the dashed line frame F. By providing this controller 9, the control described below with reference to FIG. 5 is possible. As described below, the controller 9 is defined as a device that controls the transition between the three operations of saturation, concentration stabilization, and completion, and the switching of a circuit switch described later. Here, the circuit switch refers to a device (e.g., a valve) that opens and closes the gas circuit, or a device (e.g., a three-way valve) that switches the gas circuit.
 図5は、実施の形態2に係るオゾン供給装置を用いて、オゾン緩衝装置に出入りするオゾンガスの濃度を計測した結果の一例を示す図である。この図に示したグラフの横軸は、試験時間(単位:分)を示し、縦軸はオゾン濃度(単位:g/Nm)を示している。また、グラフ中の曲線のうち、破線は、オゾン緩衝装置の入口におけるオゾン濃度変化を示し、グラフ中の曲線のうち、実線は、オゾン緩衝装置の出口におけるオゾン濃度変化を示している。 5 is a diagram showing an example of the results of measuring the concentration of ozone gas entering and leaving the ozone buffer device using the ozone supply device according to embodiment 2. The horizontal axis of the graph shown in this figure indicates the test time (unit: minutes), and the vertical axis indicates the ozone concentration (unit: g/Nm 3 ). Among the curves in the graph, the dashed line indicates the change in ozone concentration at the inlet of the ozone buffer device, and the solid line indicates the change in ozone concentration at the outlet of the ozone buffer device.
 さらに、図において、試験時間0-10分での曲線は、オゾン緩衝装置内の吸着剤を飽和吸着させる飽和工程でのオゾン濃度の変化を示している。試験時間10-60分での曲線は、吸脱着塔から脱着されるオゾン濃度が所定濃度より高い時には、オゾン緩衝装置内の吸着剤で一部のオゾンを吸着し、吸脱着塔から脱着されるオゾン濃度が所定濃度より低い時には、オゾン緩衝装置内の吸着剤から一部のオゾンを脱着する濃度安定化工程でのオゾン濃度の変化を示している。試験時間10-60分での曲線は、オゾン緩衝装置内に吸着したオゾンガスを脱着する完了工程でのオゾン濃度の変化を示している。 Furthermore, in the figure, the curve for test time 0-10 minutes shows the change in ozone concentration in the saturation process where the adsorbent in the ozone buffer device is saturated with adsorption. The curve for test time 10-60 minutes shows the change in ozone concentration in the concentration stabilization process where some ozone is adsorbed by the adsorbent in the ozone buffer device when the ozone concentration desorbed from the adsorption/desorption tower is higher than a specified concentration, and some ozone is desorbed from the adsorbent in the ozone buffer device when the ozone concentration desorbed from the adsorption/desorption tower is lower than the specified concentration. The curve for test time 10-60 minutes shows the change in ozone concentration in the completion process where the ozone gas adsorbed in the ozone buffer device is desorbed.
 このグラフでの上記2種類の曲線(実線と破線で示した2つの曲線)の変動幅の比較から、オゾン緩衝装置の入口でのオゾン濃度の変動幅に比較して、出口でのオゾン濃度の変動幅が、約1/8に抑えられていることが分かる。この変動幅は、オゾン緩衝装置に内包された吸着剤の充填量を増加することにより、更に小さくすることが可能である。 Comparing the range of fluctuations of the two types of curves (the solid and dashed curves) in this graph, we can see that the range of fluctuations in ozone concentration at the outlet of the ozone buffer device is suppressed to about 1/8 of the range of fluctuations in ozone concentration at the inlet. This range of fluctuations can be further reduced by increasing the amount of adsorbent packed into the ozone buffer device.
 また、完了工程では、オゾンが無くなっていることをグラフは示している。ここで、完了とは、吸脱着塔からのオゾンガスの脱着を停止し、オゾン供給装置の運転を完了させることを意味する。言い換えると、完了工程とは、吸脱着塔からのオゾンガスの脱着を停止後に、オゾン緩衝装置内に吸着したオゾンを抜く(脱着する)工程のことである。この詳細については、以下で説明する。 The graph also shows that there is no ozone in the completion process. Here, completion means that the desorption of ozone gas from the adsorption/desorption tower is stopped and the operation of the ozone supply device is completed. In other words, the completion process is the process of removing (desorbing) the ozone adsorbed in the ozone buffer device after the desorption of ozone gas from the adsorption/desorption tower is stopped. More details on this are provided below.
 上記の完了工程では、吸脱着塔からオゾンを脱着することを停止し、乾燥空気もしくは原料酸素ガスをオゾン緩衝装置に導入して、オゾン緩衝装置内の吸着剤に吸着したオゾンを脱着させる動作が行われる。上記動作を行うことで、完了工程終了(装置停止)時に、オゾン緩衝装置内にオゾンが残らないようにする(残存するオゾンを脱着する)ことができる。 In the above completion step, the desorption of ozone from the adsorption/desorption tower is stopped, and dry air or raw oxygen gas is introduced into the ozone buffer device to desorb the ozone adsorbed on the adsorbent in the ozone buffer device. By performing the above operation, it is possible to prevent ozone from remaining in the ozone buffer device (remaining ozone is desorbed) when the completion step is completed (the device is stopped).
 以上において、入口濃度に対して出口濃度の変化幅が小さくなるのは、以下のような理由による。すなわち、オゾン緩衝装置に内包される吸着剤の特性として、ある吸着濃度P(以下、単に濃度Pとも呼ぶ)に対して飽和吸着状態に達した後に、濃度Pに対して大きい吸着濃度Q(以下、単に濃度Qとも呼ぶ)のオゾンガスが導入されると、導入ガスのオゾン分圧の増加により吸着剤がオゾンを吸着する作用が生じるため、オゾン緩衝装置から出力されるオゾン濃度は入口濃度Aに対して小さくなる。
 一方、濃度Pに対して小さい吸着濃度S(以下、単に濃度Sとも呼ぶ)のオゾンガスが導入されると、導入ガスのオゾン分圧の低下により吸着剤がオゾンを脱着する作用が生じるため、オゾン緩衝装置から出力されるオゾン濃度Bは入口での濃度A(以下、入口濃度Aと呼ぶ)に対して大きくなる。
In the above, the reason why the change width of the outlet concentration becomes smaller relative to the inlet concentration is as follows: That is, as a characteristic of the adsorbent contained in the ozone buffer device, when a saturated adsorption state is reached for a certain adsorption concentration P (hereinafter also simply referred to as concentration P), and then ozone gas with an adsorption concentration Q (hereinafter also simply referred to as concentration Q) larger than the concentration P is introduced, the adsorbent acts to adsorb ozone due to an increase in the ozone partial pressure of the introduced gas, so that the ozone concentration output from the ozone buffer device becomes smaller relative to the inlet concentration A.
On the other hand, when ozone gas having an adsorption concentration S (hereinafter simply referred to as concentration S) smaller than the concentration P is introduced, the decrease in the ozone partial pressure of the introduced gas causes the adsorbent to desorb ozone, so that the ozone concentration B output from the ozone buffer device becomes larger than the concentration A at the inlet (hereinafter referred to as inlet concentration A).
 また、濃度変化曲線の極大および極小となる時間は、入口での濃度と出口での濃度では、逆の関係になっている。このような入口での濃度と出口での濃度の位相のズレが発生するのは、以下のような理由による。すなわち、オゾン緩衝装置に内包される吸着剤の特性として、入口濃度Aに対して飽和吸着状態まで達した後に、P<Qとなる濃度Qのオゾンガスがオゾン緩衝装置に導入されると、吸着平衡点が上昇し、更にオゾンを吸着しようとするため、出口での濃度は入口濃度Aに対して低下する傾向を示す。一方、P>Sとなる濃度Sのオゾンガスがオゾン緩衝装置に導入されると、吸着平衡点が低下し、オゾンを脱着しようとするため、出口での濃度は入口濃度Aに対して増加する傾向を示す。なお、この図5は、オゾン緩衝装置前後の濃度変化の一例であり、上記作用を用いたオゾン濃度変動の抑制方法であれば、これに限らない。 Also, the time when the concentration change curve reaches its maximum and minimum is inversely related to the concentration at the inlet and the concentration at the outlet. The reason why such a phase shift occurs between the concentration at the inlet and the concentration at the outlet is as follows. That is, as a characteristic of the adsorbent contained in the ozone buffer device, after the saturated adsorption state is reached with respect to the inlet concentration A, when ozone gas with a concentration Q where P<Q is introduced into the ozone buffer device, the adsorption equilibrium point rises and the ozone tries to be further adsorbed, so the concentration at the outlet tends to decrease with respect to the inlet concentration A. On the other hand, when ozone gas with a concentration S where P>S is introduced into the ozone buffer device, the adsorption equilibrium point falls and the ozone tries to be desorbed, so the concentration at the outlet tends to increase with respect to the inlet concentration A. Note that FIG. 5 is an example of the concentration change before and after the ozone buffer device, and is not limited to this as long as the method of suppressing ozone concentration fluctuations using the above action is used.
実施の形態3.
 次に、実施の形態3に係るオゾン供給装置の構成について、図6を用いて説明する。図6は、実施の形態3に係るオゾン供給装置102(図6において点線の枠で囲まれた部分)の構成を説明するための図である。この実施の形態3に係るオゾン供給装置102の構成は、実施の形態1に係るオゾン供給装置の構成と比べて、回路切替器10、および流量調節器11、希釈ガス導入回路12が新たに追加されている点が特に異なっている。
Embodiment 3.
Next, the configuration of an ozone supplying device according to a third embodiment will be described with reference to Fig. 6. Fig. 6 is a diagram for explaining the configuration of an ozone supplying device 102 (a portion surrounded by a dotted line frame in Fig. 6) according to the third embodiment. The configuration of the ozone supplying device 102 according to the third embodiment is particularly different from the configuration of the ozone supplying device according to the first embodiment in that a circuit switch 10, a flow rate regulator 11, and a dilution gas introduction circuit 12 are newly added.
 上記回路切替器10は、減圧機構へ流入させるガス回路の開閉を切り替えるための機器であって回路制御器とも呼ばれ、吸脱着塔と減圧機構4a(ここでは、減圧機構として、特に真空ポンプを用いる)を繋ぐ脱着ガス移送回路6と、流量調節器11と減圧機構を繋ぐ希釈ガス導入回路12とを切替える制御を行う。なお、図6では、2個の回路切替器を示したが、1個の回路切替器であっても良い。また、上記流量調節器11は、(図示しない)制御器に制御されて、吸脱着塔で脱着されたオゾン濃度に応じて、希釈ガス導入回路12を介して減圧機構へ流入する希釈ガスの流量を調節する。 The circuit switch 10 is a device for switching between opening and closing the gas circuit that flows into the pressure reduction mechanism, and is also called a circuit controller. It controls the switching between the desorption gas transfer circuit 6 that connects the adsorption/desorption tower and the pressure reduction mechanism 4a (here, a vacuum pump is used as the pressure reduction mechanism), and the dilution gas introduction circuit 12 that connects the flow rate regulator 11 and the pressure reduction mechanism. Although two circuit switchers are shown in FIG. 6, one circuit switch may be used. The flow rate regulator 11 is controlled by a controller (not shown) to adjust the flow rate of the dilution gas that flows into the pressure reduction mechanism via the dilution gas introduction circuit 12 according to the concentration of ozone desorbed in the adsorption/desorption tower.
 ここで、希釈ガスとは、オゾンを希釈するためのガスであって、一般的には乾燥した酸素ガス、もしくは空気が良く、ボンベ酸素、液体酸素などの高純度酸素、もしくはPSA(Pressure Swing Adsorption)・VPSA(Vacuum Pressure Swing Adsorption)などを通した露点10℃以下の高濃度酸素などが好ましい。なお、大気中の空気を利用する場合には希釈ガスを乾燥する処理を行う方が良い。すなわち、大気の露点10℃以上の高湿空気を希釈ガスとして供給すると、オゾン緩衝装置内の吸着剤が水分を吸着し、オゾンの吸着を阻害する。 Here, the dilution gas is a gas used to dilute the ozone, and generally, dry oxygen gas or air is good, high purity oxygen such as oxygen from a cylinder or liquid oxygen, or highly concentrated oxygen with a dew point of 10°C or less that has been passed through PSA (Pressure Swing Adsorption) or VPSA (Vacuum Pressure Swing Adsorption), etc. are preferable. Note that when using air from the atmosphere, it is better to carry out a process to dry the dilution gas. In other words, if humid air with a dew point of 10°C or more is supplied as the dilution gas, the adsorbent in the ozone buffer device will adsorb moisture and inhibit the adsorption of ozone.
 実施の形態1に係るオゾン供給装置の構成に対して、回路切替器10を新たに追加することで、実施の形態2で示した完了工程における吸脱着塔からのオゾンガスの脱着を停止後に、乾燥空気もしくは原料酸素ガスをオゾン緩衝装置に導入し、オゾン緩衝装置内の吸着剤に吸着したオゾンガスを脱着させることができる。具体的には、(図示しない)制御器からの指示により、回路切替器10は脱着ガス移送回路6を閉じ、希釈ガス導入回路12を開く動作を行う。この操作により、吸脱着塔からのオゾンガスの脱着を停止し、乾燥空気もしくは原料酸素ガスをオゾン緩衝装置に導入することができる。 By adding a circuit switch 10 to the configuration of the ozone supply device according to the first embodiment, after stopping the desorption of ozone gas from the adsorption/desorption tower in the completion step shown in the second embodiment, dry air or raw oxygen gas can be introduced into the ozone buffer device, and the ozone gas adsorbed on the adsorbent in the ozone buffer device can be desorbed. Specifically, in response to an instruction from a controller (not shown), the circuit switch 10 closes the desorption gas transfer circuit 6 and opens the dilution gas introduction circuit 12. This operation stops the desorption of ozone gas from the adsorption/desorption tower, and allows dry air or raw oxygen gas to be introduced into the ozone buffer device.
 実施の形態1に係るオゾン供給装置の構成に対して、流量調節器11を新たに追加することで、吸脱着塔から脱着するオゾンガスのオゾン濃度を調整し、オゾン緩衝装置に導入するオゾンガスの濃度変動をあらかじめ小さくすることができる。 By adding a flow regulator 11 to the configuration of the ozone supply device according to the first embodiment, it is possible to adjust the ozone concentration of the ozone gas desorbed from the adsorption/desorption tower, and to reduce the concentration fluctuation of the ozone gas introduced into the ozone buffer device in advance.
実施の形態4.
 次に、実施の形態4に係るオゾン供給装置の構成について、図7を用いて説明する。図7は、実施の形態4に係るオゾン供給装置103(図7において点線の枠で囲まれた部分)の構成を説明するための図である。この実施の形態4に係るオゾン供給装置103の構成は、実施の形態3に係るオゾン供給装置102の構成と比べて、減速機構はガスエジェクタ(以下、エジェクタとも呼ぶ)であり、流量調節器に変えて、コンプレッサ13と冷却装置14、第1のバイパス回路15を備えている点が特に異なる。
Embodiment 4.
Next, the configuration of an ozone supplying device according to a fourth embodiment will be described with reference to Fig. 7. Fig. 7 is a diagram for explaining the configuration of an ozone supplying device 103 (a portion surrounded by a dotted line frame in Fig. 7) according to the fourth embodiment. The configuration of the ozone supplying device 103 according to the fourth embodiment is particularly different from the configuration of the ozone supplying device 102 according to the third embodiment in that the speed reducing mechanism is a gas ejector (hereinafter also referred to as an ejector), and a compressor 13, a cooling device 14, and a first bypass circuit 15 are provided instead of a flow rate regulator.
 減圧機構にエジェクタを使用する場合には、エジェクタの吸引駆動に加圧駆動ガスを利用する必要があるため、駆動ガスを乾燥空気とする場合には、除湿機能を備えたコンプレッサ13が必要となる。また、コンプレッサ13から出力される乾燥空気は高温となり、吸脱着塔から脱着したオゾンガスと混合するとオゾン分解を促進する可能性があるため、乾燥空気を冷却する冷却装置14があることが望ましい(図7中に太い矢印で示した「飽和工程・濃度安定化工程時のガスの流れ」を参照)。 When an ejector is used in the pressure reduction mechanism, a pressurized drive gas must be used to drive the ejector for suction, so if the drive gas is dry air, a compressor 13 with a dehumidifying function is required. In addition, the dry air output from the compressor 13 becomes hot, and if it is mixed with the ozone gas desorbed from the adsorption/desorption tower, it may promote ozone decomposition, so it is desirable to have a cooling device 14 to cool the dry air (see "Gas flow during the saturation process and concentration stabilization process" indicated by the thick arrow in Figure 7).
 完了工程におけるオゾン緩衝装置内のオゾンガスの脱着では、(図示しない)制御器からの指示により、回路切替器10a(第1の回路切替器10aとも呼ぶ)は、脱着ガス移送回路6を閉じ、回路切替器10b(第2の回路切替器10bとも呼ぶ)は、第1のバイパス回路15を開く動作を行う。 In the completion process of desorption of ozone gas in the ozone buffer device, the circuit switch 10a (also called the first circuit switch 10a) closes the desorbed gas transport circuit 6, and the circuit switch 10b (also called the second circuit switch 10b) opens the first bypass circuit 15, in response to instructions from a controller (not shown).
 実施の形態4のオゾン供給装置103では、実施の形態3のオゾン供給装置102での動作とは異なり、減圧機構4bへの希釈ガスの導入の際、希釈ガス導入回路12のみを利用するのではなく、その一部を第1のバイパス回路15で代替し、この第1のバイパス回路15を利用する。この回路選択により、高温乾燥空気をオゾン緩衝装置に導入可能となり、高温ガスによりオゾンの脱着が促進され、完了工程を短時間にすることが可能である(図7中に太い矢印で示した「完了工程時のガスの流れ」を参照)。 In the ozone supplying device 103 of the fourth embodiment, unlike the operation of the ozone supplying device 102 of the third embodiment, when introducing the dilution gas into the pressure reducing mechanism 4b, instead of using only the dilution gas introduction circuit 12, a part of the circuit is replaced with the first bypass circuit 15, and this first bypass circuit 15 is used. This circuit selection makes it possible to introduce high-temperature dry air into the ozone buffer device, and the desorption of ozone is promoted by the high-temperature gas, making it possible to shorten the completion process (see "Gas flow during the completion process" indicated by the thick arrow in Figure 7).
実施の形態5.
 次に、実施の形態5に係るオゾン供給装置の構成について、図8を用いて説明する。図8は、実施の形態5に係るオゾン供給装置104(図8において点線の枠で囲まれた部分)の構成を説明するための図である。この実施の形態5に係るオゾン供給装置104の構成は、実施の形態1に係るオゾン供給装置の構成と比べて、新たに、NOx除去装置16(ここで、NOxは窒素酸化物の総称)、NOxガス移送回路17、第2のバイパス回路18を備えている点が異なる。
Embodiment 5.
Next, the configuration of an ozone supplying device according to a fifth embodiment will be described with reference to Fig. 8. Fig. 8 is a diagram for explaining the configuration of an ozone supplying device 104 (a portion surrounded by a dotted line frame in Fig. 8) according to the fifth embodiment. The configuration of the ozone supplying device 104 according to the fifth embodiment differs from the configuration of the ozone supplying device according to the first embodiment in that it additionally includes a NOx removal device 16 (here, NOx is a general term for nitrogen oxides), a NOx gas transfer circuit 17, and a second bypass circuit 18.
 ここで、NOxガス移送回路17、および第2のバイパス回路18は、NOx除去装置16からNOxを脱着除去する際に利用する。NOx除去装置16は、オゾン供給装置においては、オゾン発生器と吸脱着塔との間の配管上に設置される。このNOx除去装置は、オゾン発生器において生成されたNOxを除去する装置である。 Here, the NOx gas transfer circuit 17 and the second bypass circuit 18 are used when desorbing and removing NOx from the NOx removal device 16. In the ozone supply device, the NOx removal device 16 is installed on the piping between the ozone generator and the adsorption/desorption tower. This NOx removal device is a device that removes NOx generated in the ozone generator.
 NOx除去装置でのNOxの除去方法としては、例えば、NOxを選択的に吸着する吸着剤(以下、「NOx吸着剤」という)を用いる方法が挙げられる。NOx吸着剤としては、温度変化による吸着性能が変化するものが好ましく、特に-30℃以上40℃以下の範囲でNOxの吸着量が大きく変化するものが好ましい。また、NOx吸着剤としては、減圧機構により、吸着したNOxを脱着可能なものが好ましい。減圧機構での減圧によって、NOx除去装置内のNOx吸着剤から脱着したNOxは、NOxガス移送回路17から排出される。NOx吸着剤としては、例えば、シリカゲルを用いればよい。 A method for removing NOx in a NOx removal device is, for example, to use an adsorbent that selectively adsorbs NOx (hereafter referred to as "NOx adsorbent"). A NOx adsorbent whose adsorption performance changes with temperature is preferred, and in particular one whose adsorption amount of NOx changes significantly in the range of -30°C to 40°C is preferred. A NOx adsorbent that can desorb adsorbed NOx using a pressure reduction mechanism is also preferred. NOx desorbed from the NOx adsorbent in the NOx removal device by reducing pressure in the pressure reduction mechanism is discharged from the NOx gas transfer circuit 17. Silica gel, for example, can be used as the NOx adsorbent.
 NOx除去装置内のNOx吸着剤がオゾン発生器から供給されるNOxを所定の割合以上に吸着できなくなった際に、NOx除去装置内のNOx吸着剤からNOxを脱着するNOx脱着工程に移行する。NOx脱着工程に移行する場合は、飽和工程、濃度安定化工程、および完了工程の一連の工程は一時中断し、NOx脱着のためのガス回路であるNOxガス移送回路17、減圧機構4、第2のバイパス回路18の順に移動させたNOxガスを供給対象に排出する(図8中に、それぞれ太い矢印で示した「NOx脱着工程時のガスの流れ」、および「飽和工程・濃度安定化工程時のガスの流れ」を参照)。この際、第2のバイパス回路18を利用するため(オゾン緩衝装置へのNOxガスの流入を避けるために第2のバイパス回路18を利用する)、オゾン緩衝装置の入口側と出口側にそれぞれ、回路切替器10を設置する。 When the NOx adsorbent in the NOx removal device is no longer able to adsorb the NOx supplied from the ozone generator at a predetermined rate or more, the device transitions to a NOx desorption process in which NOx is desorbed from the NOx adsorbent in the NOx removal device. When transitioning to the NOx desorption process, the series of processes of the saturation process, concentration stabilization process, and completion process are temporarily suspended, and the NOx gas that has been transferred in the order of the NOx gas transfer circuit 17, which is a gas circuit for NOx desorption, the pressure reduction mechanism 4, and the second bypass circuit 18, is discharged to the supply target (see the "gas flow during the NOx desorption process" and the "gas flow during the saturation process and concentration stabilization process" indicated by thick arrows in Figure 8). At this time, in order to utilize the second bypass circuit 18 (the second bypass circuit 18 is utilized to avoid the inflow of NOx gas into the ozone buffer device), circuit switches 10 are installed on both the inlet and outlet sides of the ozone buffer device.
 NOx脱着工程において、オゾン緩衝装置を通さない第2のバイパス回路を選択することによって、オゾン緩衝装置内部の吸着剤にNOxが吸着蓄積することを抑制することができる。また、NOx脱着工程中は、吸脱着塔からのオゾン供給が中断するため、完了工程中、または完了工程後にNOx脱着工程に移行するようなタイミングとなるように、NOx吸着剤の充填量、または吸着条件を調整することが好ましい。 In the NOx desorption process, by selecting the second bypass circuit that does not pass through the ozone buffer device, it is possible to prevent NOx from being adsorbed and accumulated in the adsorbent inside the ozone buffer device. In addition, since the supply of ozone from the adsorption/desorption tower is interrupted during the NOx desorption process, it is preferable to adjust the amount of NOx adsorbent loaded or the adsorption conditions so that the timing is such that the NOx desorption process is transitioned to during or after the completion process.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments are not limited to application to a particular embodiment, but may be applied to the embodiments alone or in various combinations.
Therefore, countless modifications not exemplified are assumed within the scope of the technology disclosed in the present specification, including, for example, modifying, adding, or omitting at least one component, and further, extracting at least one component and combining it with a component of another embodiment.
 1 オゾン発生器、2 吸脱着塔、3 加圧機構、4 減圧機構、4a 減圧機構(真空ポンプ)、4b 減圧機構(エジェクタ)、5、5a、5b オゾン緩衝装置、6 脱着ガス移送回路、7 オゾン化ガス移送回路、8 吸着ガス移送回路、9 制御器、10 回路切替器、10a 回路切替器(第1の回路切替器)、10b 回路切替器(第2の回路切替器)、11 流量調節器、12 希釈ガス導入回路、13 コンプレッサ、14 冷却装置、15 第1のバイパス回路、16 NOx除去装置、17 NOxガス移送回路、18 第2のバイパス回路、51 容器、52 吸着剤、53 パンチングメタル、54 冷媒、100、101、102、103、104 オゾン供給装置 1 Ozone generator, 2 Adsorption/desorption tower, 3 Pressurization mechanism, 4 Pressure reduction mechanism, 4a Pressure reduction mechanism (vacuum pump), 4b Pressure reduction mechanism (ejector), 5, 5a, 5b Ozone buffer device, 6 Desorption gas transfer circuit, 7 Ozonized gas transfer circuit, 8 Adsorption gas transfer circuit, 9 Controller, 10 Circuit switch, 10a Circuit switch (first circuit switch), 10b Circuit switch (second circuit switch), 11 Flow regulator, 12 Dilution gas introduction circuit, 13 Compressor, 14 Cooling device, 15 First bypass circuit, 16 NOx removal device, 17 NOx gas transfer circuit, 18 Second bypass circuit, 51 Container, 52 Adsorbent, 53 Punching metal, 54 Refrigerant, 100, 101, 102, 103, 104 Ozone supply device

Claims (10)

  1. オゾンを生成するオゾン発生器と、
    前記オゾンを吸着および脱着する吸脱着塔と、
    前記オゾン発生器で発生したオゾン化したガスを前記吸脱着塔に移送するためのオゾン化ガス移送回路と、
    前記吸脱着塔に対して加圧したキャリアガスを供給する加圧機構、および前記吸脱着塔内のガスを減圧する減圧機構、のうち、少なくとも一方と、
    前記オゾンを吸着する吸着剤を内包するとともに、前記吸脱着塔から脱着されて移送された前記オゾンの濃度変動を抑制するオゾン緩衝装置と、
    前記キャリアガスの供給により前記吸脱着塔から脱着されたオゾンを、前記オゾン緩衝装置に移送するとともに前記オゾン緩衝装置から供給対象に供給するための脱着ガス移送回路と、
    を備えたことを特徴とするオゾン供給装置。
    an ozone generator for generating ozone;
    an adsorption/desorption tower for adsorbing and desorbing the ozone;
    an ozonized gas transfer circuit for transferring the ozonized gas generated by the ozone generator to the adsorption/desorption tower;
    At least one of a pressurizing mechanism that supplies a pressurized carrier gas to the adsorption/desorption tower and a depressurizing mechanism that depressurizes a gas in the adsorption/desorption tower;
    an ozone buffer device that contains an adsorbent that adsorbs the ozone and suppresses fluctuations in the concentration of the ozone desorbed and transferred from the adsorption/desorption tower;
    a desorbed gas transfer circuit for transferring the ozone desorbed from the adsorption/desorption tower by the supply of the carrier gas to the ozone buffer device and supplying the ozone from the ozone buffer device to a supply target;
    An ozone supplying device comprising:
  2. 前記オゾン緩衝装置は、前記供給対象の側に設置された背圧弁を有し、
    前記オゾン緩衝装置に内包された吸着剤は、当該吸着剤全体にオゾンガスが供給されるように構成されていることを特徴とする請求項1に記載のオゾン供給装置。
    The ozone buffer device has a back pressure valve installed on the side of the ozone supply target,
    2. The ozone supplying device according to claim 1, wherein the adsorbent contained in the ozone buffer device is configured so that ozone gas is supplied to the entire adsorbent.
  3. 前記オゾン緩衝装置は、内包された吸着剤の周りを冷媒が移送されるように構成されていることを特徴とする請求項2に記載のオゾン供給装置。 The ozone supply device according to claim 2, characterized in that the ozone buffer device is configured so that a refrigerant is transported around the adsorbent contained therein.
  4. 前記オゾン緩衝装置の入口のオゾン濃度に応じて、前記吸脱着塔から脱着したオゾンを前記オゾン緩衝装置に内包した吸着剤に吸着させるか、または前記オゾン緩衝装置に内包した吸着剤から脱着させる制御を行う際に、
    前記オゾン濃度が所定濃度より高い時には、前記オゾン緩衝装置に内包した吸着剤で一部のオゾンを吸着させ、前記オゾン濃度が所定濃度より低い時には、前記オゾン緩衝装置に内包した吸着剤から一部のオゾンを脱着させる制御を行う制御器を備えた、
    ことを特徴とする請求項1から3のいずれか1項に記載のオゾン供給装置。
    When controlling the ozone desorbed from the adsorption/desorption tower to be adsorbed by the adsorbent contained in the ozone buffer device or to be desorbed from the adsorbent contained in the ozone buffer device according to the ozone concentration at the inlet of the ozone buffer device,
    The ozone buffer device includes a controller that controls the ozone buffer device to adsorb a part of the ozone by an adsorbent contained in the ozone buffer device when the ozone concentration is higher than a predetermined concentration, and controls the ozone buffer device to desorb a part of the ozone from the adsorbent contained in the ozone buffer device when the ozone concentration is lower than the predetermined concentration.
    4. The ozone supplying device according to claim 1, wherein the ozone supplying device is a device for supplying ozone to a gas.
  5. 前記減圧機構は真空ポンプであり、
    前記オゾンを希釈する希釈ガスを導入するための希釈ガス導入回路と、
    前記吸脱着塔で脱着されたオゾン濃度に応じて、前記希釈ガスの流量を調節する流量調節器と、
    前記吸脱着塔および前記流量調節器と、前記減圧機構との間に設置された、前記脱着ガス移送回路の開閉を制御する回路切替器を備え、
    前記制御器は、前記オゾン緩衝装置から前記オゾンを脱着する際、前記回路切替器を用いて前記脱着ガス移送回路を閉状態にすることを特徴とする請求項4に記載のオゾン供給装置。
    the pressure reducing mechanism is a vacuum pump,
    a dilution gas introduction circuit for introducing a dilution gas for diluting the ozone;
    a flow rate regulator that regulates the flow rate of the dilution gas in accordance with the concentration of ozone desorbed in the adsorption/desorption tower;
    a circuit switch that is installed between the adsorption/desorption tower and the flow rate regulator, and the pressure reduction mechanism, and that controls opening and closing of the desorption gas transfer circuit;
    5. The ozone supplying device according to claim 4, wherein the controller closes the desorption gas transport circuit by using the circuit switch when the ozone is desorbed from the ozone buffer device.
  6. 前記減圧機構はエジェクタであり、
    前記オゾンを希釈する希釈ガスを導入する希釈ガス導入回路と、
    前記希釈ガスを加圧するコンプレッサと、
    前記コンプレッサと前記減圧機構の間に設置され、前記希釈ガスを冷却する冷却装置と、
    前記冷却装置を通さずに、前記コンプレッサから前記減圧機構に前記希釈ガスを供給するための第1のバイパス回路と、
    前記吸脱着塔と、前記減圧機構との間に設置された第1の回路切替器と、
    前記第1のバイパス回路の入口側と出口側にそれぞれ設置された第2の回路切替器と、
    を備え、
    前記制御器は、前記オゾン緩衝装置から前記オゾンを脱着する際、前記第1のバイパス回路に前記希釈ガスが流れるように、前記第1の回路切替器および前記第2の回路切替器を切り替えることを特徴とする請求項4に記載のオゾン供給装置。
    the pressure reducing mechanism is an ejector,
    a dilution gas introduction circuit for introducing a dilution gas for diluting the ozone;
    a compressor for compressing the dilution gas;
    a cooling device disposed between the compressor and the pressure reducing mechanism and configured to cool the dilution gas;
    a first bypass circuit for supplying the diluent gas from the compressor to the pressure reducing mechanism without passing through the cooling device;
    a first circuit switch installed between the adsorption/desorption tower and the pressure reduction mechanism;
    a second circuit switch disposed on an inlet side and an outlet side of the first bypass circuit,
    Equipped with
    5. The ozone supplying device according to claim 4, wherein the controller switches the first circuit switch and the second circuit switch so that the diluted gas flows into the first bypass circuit when the ozone is desorbed from the ozone buffer device.
  7. 前記オゾン化ガス移送回路の回路内に設置され、オゾン発生器で生成される窒素酸化物を除去するNOx除去装置と、
    前記NOx除去装置から、減圧脱着したNOxガスを前記減圧機構に移送するNOxガス移送回路と、
    前記オゾン緩衝装置を通さずに前記減圧機構から前記供給対象にガスを供給するための第2のバイパス回路と、
    を備え、
    前記制御器は、NOxガスが脱着されるタイミングで前記第2のバイパス回路にガスが流れるように、前記脱着ガス移送回路を切り替えることを特徴とする請求項4から請求項6のいずれか1項に記載のオゾン供給装置。
    a NOx removal device that is installed in the ozonized gas transport circuit and removes nitrogen oxides generated by the ozone generator;
    a NOx gas transfer circuit that transfers the reduced pressure and desorbed NOx gas from the NOx removal device to the pressure reduction mechanism;
    a second bypass circuit for supplying gas from the pressure reducing mechanism to the supply target without passing through the ozone buffer device;
    Equipped with
    7. The ozone supplying device according to claim 4, wherein the controller switches the desorbed gas transfer circuit so that gas flows into the second bypass circuit at a timing when the NOx gas is desorbed.
  8. 請求項1に記載のオゾン供給装置を用いて前記供給対象にオゾンを供給するオゾン供給方法であって、
    前記吸脱着塔から脱着されるオゾンで前記オゾン緩衝装置に内包した吸着剤を飽和吸着させる飽和工程と、
    前記吸脱着塔から脱着されるオゾン濃度が所定濃度より高い時に、前記オゾン緩衝装置に内包した吸着剤で一部のオゾンを吸着し、前記吸脱着塔から脱着されるオゾン濃度が所定濃度より低い時に、前記オゾン緩衝装置に内包した吸着剤から一部のオゾンを脱着する濃度安定化工程と、
    前記オゾン緩衝装置に内包した吸着剤に吸着したオゾンガスを脱着する完了工程と、
    を含むことを特徴とするオゾン供給方法。
    2. An ozone supplying method for supplying ozone to a supply target using the ozone supplying device according to claim 1, comprising:
    a saturation step of saturating the adsorbent contained in the ozone buffer device with the ozone desorbed from the adsorption/desorption tower;
    a concentration stabilization step of adsorbing a part of the ozone with an adsorbent contained in the ozone buffer device when the concentration of the ozone desorbed from the adsorption/desorption tower is higher than a predetermined concentration, and desorbing a part of the ozone from the adsorbent contained in the ozone buffer device when the concentration of the ozone desorbed from the adsorption/desorption tower is lower than the predetermined concentration;
    a completion step of desorbing the ozone gas adsorbed in the adsorbent contained in the ozone buffer device;
    1. An ozone supply method comprising:
  9. 請求項3に記載のオゾン供給装置を用いて前記供給対象にオゾンを供給するオゾン供給方法であって、
    前記吸着剤が冷却されることを特徴とする請求項8に記載のオゾン供給方法。
    4. An ozone supplying method for supplying ozone to the supply target using the ozone supplying device according to claim 3, comprising:
    9. The method of claim 8, wherein the adsorbent is cooled.
  10. 請求項7に記載のオゾン供給装置を用いて前記供給対象にオゾンを供給するオゾン供給方法であって、
    前記NOx除去装置内のNOx吸着剤からNOxを脱着するNOx脱着工程を含み、
    前記完了工程中、または前記完了工程後に、前記NOx脱着工程に移行するタイミングとなるように、NOx吸着剤の充填量、または吸着条件を調整することを特徴とする請求項8に記載のオゾン供給方法。
    An ozone supplying method for supplying ozone to the supply target using the ozone supplying device according to claim 7, comprising the steps of:
    a NOx desorption step of desorbing NOx from a NOx adsorbent in the NOx removal device;
    9. The ozone supply method according to claim 8, wherein the amount of NOx adsorbent filled or the adsorption conditions are adjusted so that the NOx desorption step is started during or after the completion step.
PCT/JP2022/045773 2022-12-13 2022-12-13 Ozone supply device and ozone supply method WO2024127482A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/045773 WO2024127482A1 (en) 2022-12-13 2022-12-13 Ozone supply device and ozone supply method
JP2023514390A JP7292554B1 (en) 2022-12-13 2022-12-13 Ozone supply device and ozone supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/045773 WO2024127482A1 (en) 2022-12-13 2022-12-13 Ozone supply device and ozone supply method

Publications (1)

Publication Number Publication Date
WO2024127482A1 true WO2024127482A1 (en) 2024-06-20

Family

ID=86729209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045773 WO2024127482A1 (en) 2022-12-13 2022-12-13 Ozone supply device and ozone supply method

Country Status (2)

Country Link
JP (1) JP7292554B1 (en)
WO (1) WO2024127482A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235103A (en) * 1996-03-01 1997-09-09 Mitsubishi Electric Corp Storage of electric power and apparatus therefor
JPH09235104A (en) * 1996-03-01 1997-09-09 Mitsubishi Electric Corp Storage of ozone and storage apparatus therefor
WO2020245885A1 (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Ozone supply device and ozone supply method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235103A (en) * 1996-03-01 1997-09-09 Mitsubishi Electric Corp Storage of electric power and apparatus therefor
JPH09235104A (en) * 1996-03-01 1997-09-09 Mitsubishi Electric Corp Storage of ozone and storage apparatus therefor
WO2020245885A1 (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Ozone supply device and ozone supply method

Also Published As

Publication number Publication date
JP7292554B1 (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US9403118B2 (en) Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus
US6923844B2 (en) Gas separation method and device
US20130061750A1 (en) Method and apparatus for concentrating ozone gas
US20050199122A1 (en) Gas separating method
JP2008238076A (en) Pressure swing adsorption type oxygen concentrator
KR20120010640A (en) Apparatus for supllying nitrogen and method of controlling the same
JPWO2008062534A1 (en) Ozone gas concentration method and apparatus
WO2024127482A1 (en) Ozone supply device and ozone supply method
JP2022054755A (en) Pressure swing adsorption device
TWI720164B (en) Ozone gas concentration method and ozone gas concentration device
JP6607337B1 (en) Ozone supply device and ozone supply method
JP5226282B2 (en) Oxygen concentrator
JP2005312766A (en) Oxygen enricher
WO2013114707A1 (en) Product gas supply method and product gas supply system
JP2009219990A (en) Oxygen concentrator
JPH09142807A (en) Ozone concentration and storage apparatus and control thereof
JP4673440B1 (en) Target gas separation and recovery method
JPH09142808A (en) Control of ozonizer
JP7024916B1 (en) Ozone supply device and ozone supply method
JP4750380B2 (en) Oxygen concentrator
WO2017187787A1 (en) Ozone gas concentration method and ozone gas concentration device
JP2000290004A (en) Device and method for supplying ozone
JP6748321B1 (en) Nitrogen-enriched gas manufacturing apparatus and manufacturing method
JP2006141896A (en) Oxygen concentrator
JP6823979B2 (en) Gas separator