WO2024125462A1 - 一种光纤 - Google Patents

一种光纤 Download PDF

Info

Publication number
WO2024125462A1
WO2024125462A1 PCT/CN2023/137957 CN2023137957W WO2024125462A1 WO 2024125462 A1 WO2024125462 A1 WO 2024125462A1 CN 2023137957 W CN2023137957 W CN 2023137957W WO 2024125462 A1 WO2024125462 A1 WO 2024125462A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical fiber
leakage
buffer
leakage channel
Prior art date
Application number
PCT/CN2023/137957
Other languages
English (en)
French (fr)
Inventor
孙将
王东
李允博
韩柳燕
张德朝
李晗
Original Assignee
***通信有限公司研究院
***通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信有限公司研究院, ***通信集团有限公司 filed Critical ***通信有限公司研究院
Publication of WO2024125462A1 publication Critical patent/WO2024125462A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present invention relates to the technical field of optical transmission media, and in particular to an optical fiber.
  • optical fiber In inter-satellite optical communications, as the transmission distance increases, the light field expands, resulting in a decrease in received power, affecting data transmission capacity; large mode area optical fiber can be used in high-power fiber lasers and amplifiers.
  • the leakage channels of large mode area optical fibers are evenly distributed at equal intervals, and the leakage channels radially pass through the center of the optical fiber core, which makes the optical fiber manufacturing difficult and hard to achieve.
  • the technical problem to be solved by the present invention is to provide an optical fiber which reduces the difficulty of manufacturing the optical fiber while ensuring the transmission performance of the optical fiber.
  • an optical fiber comprising:
  • the outer groove layer group includes at least two outer groove layers, and each of the at least two outer groove layers is provided with at least two leakage channel groups; the leakage channel group includes at least one leakage channel that does not radially pass through the center of the fiber core, and the leakage channel group is a combination of multiple leakage channels passing through multiple outer groove layers.
  • a second buffer refractive layer is disposed between every two adjacent outer groove layers of the at least two outer groove layers.
  • the number of leakage channels on each outer trench layer is the same, and the leakage channel is a region in the annular region of the outer trench layer having a refractive index different from that of the outer trench layer.
  • the angle formed by two adjacent connecting lines is greater than or equal to 180/N degrees and less than or equal to 360/N degrees;
  • the connecting line is a connecting line between the center point of each leakage channel group on each outer groove layer and the center of the fiber core, N is the number of leakage channels on each outer groove layer, and N is an integer greater than or equal to 2.
  • the center point of the leakage channel group is the center point of a polygon formed by the vertices of the outer edges of the leakage channels on multiple outer groove layers and the vertices of the inner edges of the leakage channels on the first outer groove layer, and the first outer groove layer is the outer groove layer closest to the inner groove layer.
  • the polygon is a quadrilateral.
  • an absolute value of a difference between a refractive index of the outer trench layer and a refractive index of the outer cladding layer is greater than 0.1%*a first preset threshold value and is less than the first preset threshold value, and the first preset threshold value is set based on the refractive index of the outer cladding layer.
  • the absolute values of the differences between the refractive index of the first buffer refractive layer, the refractive index of the second buffer refractive layer, the refractive index of the core and the refractive index of the leakage channel region and a first preset threshold are all less than 0.1%*first preset threshold, and the first preset threshold is set based on the refractive index of the outer cladding.
  • the core, the inner groove layer, the first buffer refractive layer, the at least two outer groove layers, the second buffer refractive layer and the outer cladding are made of the same or different materials.
  • the materials of the core, the inner groove layer, the first buffer refractive layer, at least two outer groove layers, the second buffer refractive layer and the outer cladding are the same, different amounts of impurities are added to the materials of the core, the inner groove layer, the first buffer refractive layer, at least two outer groove layers, the second buffer refractive layer and the outer cladding, respectively.
  • the outer groove layer group of the optical fiber includes at least two outer groove layers, each of the at least two outer groove layers is provided with at least two leakage channels; the at least two leakage channels include at least one leakage channel that does not pass through the center of the core in the radial direction; thus, the leakage channels do not pass through the center of the core in the radial direction. It needs to strictly pass through the center of the fiber core and does not need to be evenly distributed between the leakage channels. Under the premise of ensuring the transmission performance of the optical fiber, the optical fiber has a large mode field area, strong high-order mode suppression capability and low transmission loss.
  • FIG1 is a schematic diagram of the cross-sectional structure of an optical fiber of the present invention.
  • FIG2 is a schematic diagram of an exemplary structure of an optical fiber according to the present invention having two leakage channels;
  • FIG. 3 is a schematic diagram comparing transmission performance curves of the optical fiber of the present invention and the optical fiber of the prior art.
  • an embodiment of the present invention provides an optical fiber, comprising:
  • the outer groove layer group includes at least two outer groove layers, each of the at least two outer groove layers is provided with at least two leakage channel groups 21; the leakage channel group 21 includes at least one leakage channel that does not pass through the center of the fiber core 11 in the radial direction, and the leakage channel group is a combination of multiple leakage channels passing through multiple outer groove layers.
  • the radial direction 23 of the leakage channel group is the connection direction from the leakage channel of the outermost outer groove layer to the leakage channel of the innermost outer groove layer.
  • At least two leakage channel groups are arranged on each outer groove layer, and the leakage channel group includes at least one leakage channel that does not pass through the center of the fiber core radially; therefore, the leakage channel does not need to strictly pass through the center of the fiber core radially, and does not need to be evenly distributed between the leakage channels. While ensuring the transmission performance of the optical fiber, the system difficulty is small, and the optical fiber mode field area is large, the high-order mode suppression capability is strong, and the transmission loss is small.
  • a second buffer refractive layer (15) is provided between each two adjacent outer groove layers of the at least two outer groove layers, as shown in FIG1 , so as to prevent the lateral force from acting on the optical fiber, reduce microbending losses, and extend the service life of the optical fiber.
  • each outer trench layer has the same number of leakage channels 22.
  • the leakage channel (22) is a region in the annular region of the outer trench layer having a different refractive index from that of the outer trench layer.
  • the number of leakage channels 22 on each outer trench layer is 6; these 6 leakage channels do not all pass through the center of the fiber core 11 radially.
  • This example shows a special case, and all leakage channels do not pass through the center of the fiber core radially.
  • the leakage channel does not need to strictly pass through the center of the fiber core radially, and does not need to be evenly distributed between the leakage channels, and the system difficulty is small while ensuring the optical fiber transmission performance.
  • the angle formed by two adjacent connecting lines is greater than or equal to 180/N degrees and less than or equal to 360/N degrees;
  • the connecting line is a connecting line between the center point of each leakage channel group 21 on each outer groove layer and the center of the fiber core 11, and N is the number of leakage channels on each outer groove layer, and N is an integer greater than or equal to 2.
  • the center point of the leakage channel group 21 is the center point of a polygon formed by the vertices of the outer edges of the leakage channels on the multiple outer gully layers and the vertices of the inner edges of the leakage channels on the first outer gully layer 14, and the first outer gully layer 14 is the outer gully layer closest to the inner gully layer 12.
  • the polygon is preferably a quadrilateral, such as a flat quadrilateral.
  • the polygon is determined according to the specific location of the leakage channel.
  • the angle formed by two adjacent lines between the center point of each leakage channel on each outer groove layer and the center of the circle of the fiber core 11 is greater than or equal to 30 degrees and less than or equal to 90 degrees, ensuring that the angle is neither too small nor too large, so that the optical fiber can achieve good high-order mode suppression capability.
  • the absolute value of the difference between the refractive index of the outer trench layer and the refractive index of the outer cladding layer 16 is greater than 0.1%*the first preset threshold value, and is less than the first preset threshold value.
  • the first preset threshold value may be set based on the refractive index of the outer cladding 16. For example, the first preset threshold value is equal to the refractive index of the outer cladding 16.
  • the absolute values of the differences between the refractive index of the first buffer refractive layer 13, the refractive index of the second buffer refractive layer 15, the refractive index of the core 11, and the refractive index of the leakage channel region and the first preset threshold are all less than 0.1%*the first preset threshold.
  • the first preset threshold can be set based on the refractive index of the outer cladding 16. For example, the first preset threshold is equal to the refractive index of the outer cladding 16.
  • the core 11, the inner trench layer 12, the first buffer refractive layer 13, at least two outer trench layers, the second buffer refractive layer 15 and the outer cladding 16 are made of the same or different materials.
  • the materials of the core 11, the inner groove layer 12, the first buffer refractive layer 13, the at least two outer groove layers, the second buffer refractive layer 15 and the outer cladding 16 are the same, different amounts of impurities are added to the materials of the core 11, the inner groove layer 12, the first buffer refractive layer 13, the at least two outer groove layers, the second buffer refractive layer 15 and the outer cladding 16 to form different refractive indices. It should be noted that no matter whether the materials of the core 11, the inner groove layer 12, the first buffer refractive layer 13, the at least two outer groove layers, the second buffer refractive layer 15 and the outer cladding 16 are the same or different, they all need to meet the above-mentioned refractive index requirements.
  • FIG3 it is a performance simulation test diagram of the optical fiber of the present invention. It can be seen from FIG3 that when the optical fiber is bent, when the angle between the line connecting the center points of the leakage channels of the optical fiber of the present invention and the bending direction of the optical fiber (the horizontal axis in FIG3 ) increases, the optical signal loss performance (the vertical axis in FIG3 ) change curve S1 is compared with the optical signal loss performance change curve S2 in the prior art. The optical signal loss performance of the optical fiber of the present invention does not drop or fluctuate too much.
  • the leakage channel does not need to strictly pass through the center of the fiber core in radial direction. While ensuring the signal transmission performance of the optical fiber, the leakage channels do not need to be evenly distributed, thereby reducing the difficulty of optical fiber manufacturing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

本发明的实施例提供一种光纤,涉及光传输介质领域,解决现有技术中光纤制造难度大的问题;所述光纤包括:纤芯;包覆在所述纤芯外部的内沟壑层,所述内沟壑层上无泄漏通道;包覆在所述内沟壑层外部的第一缓冲折射层;包覆在所述第一缓冲折射层外部的外沟壑层组;包覆在所述外沟壑层组外部的外包层;其中,所述外沟壑层组包括至少两个外沟壑层,所述至少两个外沟壑层中的每个外沟壑层上设置有至少两个泄漏通道组;所述泄漏通道组包括至少一个径向不通过纤芯的圆心的泄漏通道,所述泄漏通道组为多个外沟壑层上穿通的多个泄露通道的组合。本发明的方案保证光纤传输性能的情况下,降低了光纤制造难度。

Description

一种光纤
相关申请的交叉引用
本申请基于申请号为202211626298.8、申请日为2022年12月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及光传输介质技术领域,特别涉及一种光纤。
背景技术
在卫星间的光通信中,随着传输距离的增加,光场扩大,导致接收功率降低,影响数据传输容量;大模场面积光纤可以用于高功率光纤激光器和放大器中。
现有技术中,大模场面积光纤的泄露通道是等间隔均匀分布,泄漏通道径向是通过光纤纤芯圆心的,至使光纤制造难度大,不易实现。
发明内容
本发明要解决的技术问题是提供一种光纤,保证光纤传输性能的情况下,降低光纤制造难度。
为解决上述技术问题,本发明提供一种光纤,包括:
纤芯;
包覆在所述纤芯外部的内沟壑层,所述内沟壑层上无泄漏通道;
包覆在所述内沟壑层外部的第一缓冲折射层;
包覆在所述第一缓冲折射层外部的外沟壑层组;
包覆在所述外沟壑层组外部的外包层;
其中,所述外沟壑层组包括至少两个外沟壑层,所述至少两个外沟壑层中的每个外沟壑层上设置有至少两个泄漏通道组;所述泄漏通道组包括至少一个径向不通过纤芯的圆心的泄漏通道,所述泄漏通道组为多个外沟壑层上穿通的多个泄露通道的组合。
可选的,所述至少两个外沟壑层中的每两个相邻的外沟壑层之间设置有第二缓冲折射层。
可选的,所述至少两个外沟壑层中,每个外沟壑层上的泄漏通道的个数相同,所述泄露通道为外沟壑层的环形区域中与外沟壑层折射率不同的区域。
可选的,相邻的两个连线形成的夹角大于或者等于180/N度,且小于或者等于360/N度;所述连线是每个外沟壑层上的每个泄漏通道组的中心点与所述纤芯的圆心之间的连线,所述N为每个外沟壑层上的泄漏通道的个数,所述N为大于等于2的整数。
优选的,所述泄漏通道组的中心点为多个外沟壑层上的泄漏通道的外边沿的顶点和第一外沟壑层上的泄露通道的内边沿的顶点形成的多边形的中心点,所述第一外沟壑层是距离所述内沟壑层最近的外沟壑层。
可选的,所述多边形为四边形。
可选的,所述外沟壑层的折射率与所述外包层的折射率的差值的绝对值大于0.1%*第一预设阈值,且小于所述第一预设阈值,所述第一预设阈值是基于所述外包层的折射率设定的。
可选的,所述第一缓冲折射层的折射率、所述第二缓冲折射层的折射率、所述纤芯的折射率以及泄漏通道区域的折射率分别与第一预设阈值的差值的绝对值均小于0.1%*第一预设阈值,所述第一预设阈值是基于所述外包层的折射率设定的。
可选的,所述纤芯、内沟壑层、第一缓冲折射层、至少两个外沟壑层、第二缓冲折射层以及外包层的材质相同或者不同。
可选的,所述纤芯、内沟壑层、第一缓冲折射层、至少两个外沟壑层、第二缓冲折射层以及外包层的材质相同时,所述纤芯、内沟壑层、第一缓冲折射层、至少两个外沟壑层、第二缓冲折射层以及外包层的材质中分别添加有不同量的杂质。
本发明的上述方案至少包括以下有益效果:
本发明的上述方案中,光纤的外沟壑层组包括至少两个外沟壑层,所述至少两个外沟壑层中的每个外沟壑层上设置有至少两个泄漏通道;至少两个泄漏通道包括至少一个径向不通过纤芯的圆心的泄漏通道;由此,泄漏通道径向不 需要严格通过纤芯圆心,不需要泄漏通道之间均匀分布,在保证光纤传输性能的情况下,光纤具有模场面积大、高阶模式抑制能力强、传输损耗少。
附图说明
图1是本发明的光纤的截面结构示意图;
图2是本发明的光纤内有两个泄漏通道的示例结构示意图;
图3是本发明的光纤与现有技术的光纤的传输性能曲线对比的示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
如图1所示,本发明的实施例提出一种光纤,包括:
纤芯11;
包覆在所述纤芯11外部的内沟壑层12,所述内沟壑层12上无泄漏通道;
包覆在所述内沟壑层12外部的第一缓冲折射层13;
包覆在所述第一缓冲折射层13外部的外沟壑层组;
包覆在所述外沟壑层组外部的外包层16;
其中,所述外沟壑层组包括至少两个外沟壑层,所述至少两个外沟壑层中的每个外沟壑层上设置有至少两个泄漏通道组21;所述泄漏通道组21包括至少一个径向不通过纤芯11的圆心的泄漏通道,所述泄漏通道组为多个外沟壑层上穿通的多个泄露通道的组合。泄漏通道组径向23为从最外侧外沟壑层的泄露通道向最内侧外沟壑层的泄露通道的连线方向。
本发明的该实施例中,每个外沟壑层上设置有至少两个泄漏通道组,所述泄漏通道组包括至少一个径向不通过纤芯的圆心的泄漏通道;由此,泄漏通道径向不需要严格通过纤芯圆心,不需要泄漏通道之间均匀分布,在保证光纤传输性能的情况下,制度难度小,且光纤模场面积大、高阶模式抑制能力强、传输损耗少。
可选的,所述至少两个外沟壑层中的每两个相邻的外沟壑层之间设置有第二缓冲折射层(15),如图1所示,这样可以防止横向力对光纤的作用,减少微弯损耗,延长光纤的使用寿命。
可选的,所述至少两个外沟壑层中,每个外沟壑层上的泄漏通道22的个数相同。所述泄露通道(22)为外沟壑层的环形区域中与外沟壑层折射率不同的区域。
一种具体的实现实例中,如图1所示,每个外沟壑层上的泄漏通道22的个数为6;这6个泄漏通道径向不全部通过纤芯11的圆心,此示例展示了一个特例,及所有的泄漏通道径向都不通过纤芯圆心。
如图2所示,另一示例中,每个外沟壑层上有两个泄漏通道组21,两个泄漏通道组21中一个泄漏通道组21径向通过纤芯11的圆心,另一个不通过纤芯11的圆心。由此,泄漏通道径向不需要严格通过纤芯圆心,不需要泄漏通道之间均匀分布,保证光纤传输性能的情况下,制度难度小。
本发明的一可选的实施例中,相邻的两个连线形成的夹角大于或者等于180/N度,且小于或者等于360/N度;所述连线是每个外沟壑层上的每个泄漏通道组21的中心点与所述纤芯11的圆心之间的连线,所述N为每个外沟壑层上的泄漏通道的个数,所述N为大于等于2的整数。
本实施例中,所述泄漏通道组21的中心点为多个外沟壑层上的泄漏通道的外边的顶点和第一外沟壑层14上的泄露通道的内边沿的顶点形成的多边形的中心点,所述第一外沟壑层14是距离所述内沟壑层12最近的外沟壑层。如图1和图2所示,该多边形优选为四边形,比如平形四边形。当然根据泄漏通道的具***置确定该多边形。
本发明的上述图1所示的实施例中,在每个外沟壑层上具有6个泄漏通道的情况下,将每个外沟壑层上的每个泄漏通道的中心点与所述纤芯11的圆心之间的连线中,相邻的两个连线形成的夹角大于或者等于30度,且小于或者等于90度,确保该夹角不能太小,也不能太大,以使得光纤可以实现好的高阶模式抑制能力。
本发明的上述实施例中,所述外沟壑层的折射率与所述外包层16的折射率的差值的绝对值大于0.1%*第一预设阈值,且小于所述第一预设阈值。从而 保证光纤对光信号的传输性能,这里第一预设阈值可以是基于外包层16的折射率设定的。比如,该第一预设阈值等于外包层16的折射率。
本发明的上述实施例中,所述第一缓冲折射层13的折射率、所述第二缓冲折射层15的折射率、所述纤芯11的折射率以及泄漏通道区域的折射率分别与第一预设阈值的差值的绝对值均小于0.1%*第一预设阈值。保证光纤对光信号的传输性能,这里第一预设阈值可以是基于外包层16的折射率设定的。比如,该第一预设阈值等于外包层16的折射率。
本发明的上述实施例中,所述纤芯11、内沟壑层12、第一缓冲折射层13、至少两个外沟壑层、第二缓冲折射层15以及外包层16的材质相同或者不同。
本实施例中,所述纤芯11、内沟壑层12、第一缓冲折射层13、至少两个外沟壑层、第二缓冲折射层15以及外包层16的材质相同时,所述纤芯11、内沟壑层12、第一缓冲折射层13、至少两个外沟壑层、第二缓冲折射层15以及外包层16的材质中分别添加有不同量的杂质,形成不同折射率。需要说明的是,无论所述纤芯11、内沟壑层12、第一缓冲折射层13、至少两个外沟壑层、第二缓冲折射层15以及外包层16的材质相同或者不同,均需要满足上述的折射率的要求。
如图3所示,为本发明的上述光纤的性能仿真测试图,从图3中可以看出,在将光纤弯曲时,本发明的上述光纤的泄露通道中心点连线与光纤弯曲方向之间的夹角(图3中的横轴)增大时,光信号损失性能(图3中的纵轴)的变化曲线S1和现有技术中的光信号损失性能的变化曲线S2相比,本发明的光纤的光信号损失性能没有太大下降或者波动。
本发明的上述实施例,泄漏通道径向不需要严格通过纤芯圆心,在保证光纤信号传输性能的同时,不需要泄漏通道之间均匀分布,降低了光纤制造难度。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种光纤,其特征在于,包括:
    纤芯(11);
    包覆在所述纤芯(11)外部的内沟壑层(12),所述内沟壑层(12)上无泄漏通道;
    包覆在所述内沟壑层(12)外部的第一缓冲折射层(13);
    包覆在所述第一缓冲折射层(13)外部的外沟壑层组;
    包覆在所述外沟壑层组外部的外包层(16);
    其中,所述外沟壑层组包括至少两个外沟壑层,所述至少两个外沟壑层中的每个外沟壑层上设置有至少两个泄漏通道组(21);所述泄漏通道组(21)包括至少一个径向不通过纤芯(11)的圆心的泄漏通道,所述泄漏通道组为多个外沟壑层上穿通的多个泄露通道(22)的组合。
  2. 根据权利要求1所述的光纤,其特征在于,所述至少两个外沟壑层中的每两个相邻的外沟壑层之间设置有第二缓冲折射层(15)。
  3. 根据权利要求2所述的光纤,其特征在于,所述至少两个外沟壑层中,每个外沟壑层上的泄漏通道(22)的个数相同,所述泄露通道(22)为外沟壑层的环形区域中与外沟壑层折射率不同的区域。
  4. 根据权利要求3所述的光纤,其特征在于,相邻的两个连线形成的夹角大于或者等于180/N度,且小于或者等于360/N度;所述连线是每个外沟壑层上的每个泄漏通道组(21)的中心点与所述纤芯(11)的圆心之间的连线,所述N为每个外沟壑层上的泄漏通道的个数,所述N为大于等于2的整数。
  5. 根据权利要求4所述光纤,其特征在于,所述泄漏通道组(21)的中心点为多个外沟壑层上的泄漏通道的外边沿的顶点和第一外沟壑层(14)上的泄露通道的内边沿的顶点形成的多边形的中心点,所述第一外沟壑层(14)是距离所述内沟壑层(12)最近的外沟壑层。
  6. 根据权利要求5所述光纤,其特征在于,所述多边形为四边形。
  7. 根据权利要求1所述的光纤,其特征在于,所述外沟壑层的折射率与所述外包层(16)的折射率的差值的绝对值大于0.1%*第一预设阈值,且小于 所述第一预设阈值,所述第一预设阈值是基于所述外包层(16)的折射率设定的。
  8. 根据权利要求2所述的光纤,其特征在于,所述第一缓冲折射层(13)的折射率、所述第二缓冲折射层(15)的折射率、所述纤芯(11)的折射率以及泄漏通道区域的折射率分别与第一预设阈值的差值的绝对值均小于0.1%*第一预设阈值,所述第一预设阈值是基于所述外包层(16)的折射率设定的。
  9. 根据权利要求2所述的光纤,其特征在于,所述纤芯(11)、所述内沟壑层(12)、所述第一缓冲折射层(13)、所述至少两个外沟壑层、所述第二缓冲折射层(15)以及所述外包层(16)的材质相同或者不同。
  10. 根据权利要求9所述的光纤,其特征在于,当所述纤芯(11)、所述内沟壑层(12)、所述第一缓冲折射层(13)、所述至少两个外沟壑层、所述第二缓冲折射层(15)以及所述外包层(16)的材质相同时,所述纤芯(11)、所述内沟壑层(12)、所述第一缓冲折射层(13)、所述至少两个外沟壑层、所述第二缓冲折射层(15)以及所述外包层(16)的材质中分别添加有不同量的杂质。
PCT/CN2023/137957 2022-12-16 2023-12-11 一种光纤 WO2024125462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211626298.8A CN118210099A (zh) 2022-12-16 2022-12-16 一种光纤
CN202211626298.8 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024125462A1 true WO2024125462A1 (zh) 2024-06-20

Family

ID=91454233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137957 WO2024125462A1 (zh) 2022-12-16 2023-12-11 一种光纤

Country Status (2)

Country Link
CN (1) CN118210099A (zh)
WO (1) WO2024125462A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240415A (ja) * 2003-01-14 2004-08-26 Japan Aviation Electronics Industry Ltd 光ファイバタップ
JP2013205760A (ja) * 2012-03-29 2013-10-07 Mitsubishi Cable Ind Ltd 光ファイバ及びそれを用いたファンアウトモジュール
JP2014126687A (ja) * 2012-12-26 2014-07-07 Mitsubishi Cable Ind Ltd 光ファイバ構造及びその製造方法
CN107132613A (zh) * 2017-06-08 2017-09-05 中国电子科技集团公司电子科学研究院 一种泄漏通道型光纤及其生产方法
CN107300738A (zh) * 2017-06-27 2017-10-27 中国电子科技集团公司电子科学研究院 一种光纤
CN107367788A (zh) * 2017-09-20 2017-11-21 北京交通大学 一种大模场改进型多层沟槽光纤
CN110989072A (zh) * 2019-12-06 2020-04-10 南京邮电大学 一种多包层螺旋结构的大模场单模光纤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240415A (ja) * 2003-01-14 2004-08-26 Japan Aviation Electronics Industry Ltd 光ファイバタップ
JP2013205760A (ja) * 2012-03-29 2013-10-07 Mitsubishi Cable Ind Ltd 光ファイバ及びそれを用いたファンアウトモジュール
JP2014126687A (ja) * 2012-12-26 2014-07-07 Mitsubishi Cable Ind Ltd 光ファイバ構造及びその製造方法
CN107132613A (zh) * 2017-06-08 2017-09-05 中国电子科技集团公司电子科学研究院 一种泄漏通道型光纤及其生产方法
CN107300738A (zh) * 2017-06-27 2017-10-27 中国电子科技集团公司电子科学研究院 一种光纤
CN107367788A (zh) * 2017-09-20 2017-11-21 北京交通大学 一种大模场改进型多层沟槽光纤
CN110989072A (zh) * 2019-12-06 2020-04-10 南京邮电大学 一种多包层螺旋结构的大模场单模光纤

Also Published As

Publication number Publication date
CN118210099A (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
CN108474903B (zh) 多芯光纤
US20110206330A1 (en) Multicore optical fiber
CN105425335B (zh) 一种通信用抗弯多芯光纤
JP5771025B2 (ja) マルチコアファイバ
CN106597603B (zh) 一种新型少模光纤
CN111474626A (zh) 一种多芯光纤
Sasaki et al. Crosstalk-managed heterogeneous single-mode 32-core fibre
CN110568548B (zh) 一种多层纤芯可控的多芯光纤
WO2020248552A1 (zh) 一种超低衰减大有效面积的单模光纤
US10295736B2 (en) Multicore fiber
WO2024125462A1 (zh) 一种光纤
CN111897045B (zh) 一种抗弯曲多芯光纤
JP5279980B2 (ja) 単一モード光ファイバ
KR20020038781A (ko) 넓은 유효면적과 낮은 분산 기울기를 가진 해저용 광섬유
CN210090726U (zh) 一种弱模间耦合少模光纤
CN211826598U (zh) 弱耦合十模式少模光纤
US6895153B2 (en) Optical fiber for wavelength division multiplex transmission networks
CN113589422A (zh) 一种易于识别的多芯光纤
CN111999799B (zh) 一种多芯光纤
Sasaki et al. High density multicore fibers employing small MFD cores for datacenters
RU2769089C9 (ru) Одномодовое оптическое волокно со сверхнизким затуханием и большой эффективной площадью
CN218917706U (zh) 一种少模态增益均衡光纤
CN113917595B (zh) 一种基于椭圆芯的大容量超模光纤
CN109683234A (zh) 一种弱模间耦合少模光纤
CN115166894B (zh) 一种多芯光纤